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Abstract. We apply the 2D wavelet transform modulus maxima (WTMM) method to high-resolution
LANDSAT satellite images of cloudy scenes. The computation of the τ (q) and D(h) multifractal spectra
for both the optical depth and the radiance fields confirms the relevance of the multifractal descrip-
tion to account for the intermittent nature of marine stratocumulus clouds. When assisting the 2D
WTMM method by the wavelet based deconvolution method designed to compute the self-similarity
kernel, we show that our numerical tools are very efficient to disentangle the anisotropic texture
induced by the presence of convective rolls from the background radiance fluctuations which are likely
to display isotropic scale invariance. Moreover, this analysis reveals that with the available set of experi-
mental data, there is no way to discriminate between various phenomenological cascade models recently
proposed to account for intermittency and their log-normal approximations. When further investigating
the “two-point” space-scale correlation functions, we bring definite proof of the existence of an underlying
multiplicative structure from an “integral” coarsest scale which is given by the characteristic width of the
convective patterns. We emphasize the log-normal random W-cascade model on separable wavelet orthog-
onal basis introduced in paper II (N. Decoster, S.G. Roux, A. Arnéodo, Eur. Phys. J. B 15, 739 (2000)), as
a very attractive model (at least as compared to the models commonly used in the literature) of the cloud
architecture. Finally, we comment on the multifractal properties of marine stratocumulus radiance fields
comparatively to previous experimental analysis of velocity and temperature fluctuations in high Reynolds
number turbulence.

PACS. 92.60.Nv Cloud physics – 47.27.Jv High-Reynolds-number turbulence – 05.40.+j Fluctuation
phenomena, random processes, noise, and Brownian motion – 47.53.+n Fractals

1 Introduction

The problematic of nonlinear variability over a wide range
of scales has been considered for a long time with re-
spect to the highly intermittent nature of turbulent flows
in fluid dynamics [1–4]. Special attention has been paid
to their asymptotic and possibly universal behavior when
the dissipation length goes to zero, i.e., when the Reynolds
number goes to infinity. Besides wind-tunnel and labora-
tory (grid, jet, ...) experiments, the atmosphere is a huge
natural laboratory where high Reynolds number (fully
developed) turbulent dynamics can be studied. Clouds,
which are at the source of the hydrological cycle, are the
most obvious manifestation of the earth’s turbulent at-
mospheric dynamics [5–8]. By modulating the input of so-
lar radiation, they play a critical role in the maintenance
of the earth’s climate [9]. They are also one of the main
sources of uncertainty in current climate modeling [10],
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where clouds are assumed to be homogeneous media
lying parallel to the earth’s surface; at best, a linear
combination of cloudy and clear portions according to
cloud fraction is used to account for horizontal inho-
mogeneity when predicting radiative properties. During
many years, the lack of data hindered our understand-
ing of cloud microphysics and cloud-radiation interactions.
Nowadays, it is well-recognized that clouds are variable
in all directions and that fractal [5,6,11–16] and multi-
fractal [7,8,17–19] concepts are likely to be relevant to
the description of the complex 3D geometry of clouds.
Note that by cloud geometry, we mean not only their
external convoluted shapes which are spectacular conse-
quences of the surrounding convection, shear and ensu-
ing turbulence, but also their intermittent internal struc-
ture which is likely to have strong impact on radiation
transport [8,17,20–25]. Until quite recently, the internal
structure of clouds was probed by balloons or aircrafts
that penetrated the cloud layer, revealing an extreme
variability of 1D cuts of some cloud fields [19,26–33]. In
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particular, in situ measurements of cloud liquid water con-
tent (LWC) were performed during many intensive field
programs (FIRE [34], ASTEX [35], SOCEX [36] ...). In-
deed, during the past fifteen years, vast amounts of data
on the distribution of atmospheric liquid water from a va-
riety of sources were collected and analyzed in many dif-
ferent ways. All these data contain information on spatial
and/or temporal correlations in cloudiness, enabling the
investigation of scale invariance over a range from a few
centimeters to hundred of kilometers. An attractive alter-
native to in situ probing is to use high-resolution satellite
imagery that now provides direct information about the
fluctuations in liquid water concentration in the depths
of clouds [12,14–16,21,25,37–41]. These rather sophisti-
cated remote sensing systems called “millimeter radars”
are actually sensitive not only to precipating rain drops
but also to suspended cloud droplets. Spectral analysis
of the recorded 2D radiance field [21,25,37–41] confirms
previous 1D findings that make it likely that cloud scenes
display scaling over a wide range of scales.

Fractal analysis of atmospheric data has gained con-
siderable momentum since Lovejoy’s seminal paper [5]
on the area-perimeter relation for clouds and rain. Since
then, such morphological studies have become rather
popular, following a path open by Mandelbrot in his
famous books [42]. Starting from the middle eighties, high-
resolution cloud liquid water data became available, con-
firming the fractal nature of the cloud structure. Most
preliminary analysis of these complex 1D signals focused
on the characterization of scale invariance in Fourier
space [25–32]. In particular, the fluctuations of liquid wa-
ter density in clouds were shown to have power-law en-
ergy spectra, S(k) ∼ 1/kβ, over a large range of scales,
from tens of meters to tens of kilometers. Let us point out
that the estimated spectral exponent β ∼ 1.4−1.7, is close
to the prediction β = 5/3 of Corssin [43]-Obukhov [44]
phenomenology for a passive scalar in fully developed 3D
turbulence as well as to Kraichnan [45] prediction for 2D
turbulence. But as discussed in Section 3.1 of paper I [46],
power-spectral analysis has been heavily criticized for its
intrinsic inability to capture multifractal scaling. From
the measurement of the spectral exponent β = 2H + 1,
one gets some estimate of the so-called Hurst exponent,
H ∼ 0.20−0.35, from which one learns that the fluctuating
field is singular and non stationary (0 < H < 1). Unfor-
tunately, the intermittent nature of the recorded liquid
water data required new concepts and more elaborated
technical tools. Again, one has to give credit to Lovejoy
and co-workers [17,18,47–54] for applying the multifractal
description to atmospheric phenomena. Using the trace
moment and double trace moment techniques [49–54],
they have brought experimental evidence for multiple scal-
ing (or in other words, the existence of a continuum of scal-
ing exponent values) in various geophysical fields. More
recently, Davis and co-workers [8,19,33,41] have used the
structure function method to study LWC data recorded
during ASTEX and FIRE programs. Both these analy-
ses converge to the conclusion that the internal marine
stratocumulus (Sc) structure is multifractal over at least

three decades in scales. Quite similar multifractal be-
havior has been reported by Wiscombe et al. [40] when
analyzing liquid water path (LWP) data (i.e., column in-
tegrated LWC), from the Atmosperic Radiation Measure-
ment (ARM) archive. Even though all these studies seem
to agree, at least as far as their common diagnostic of
multifractal scaling of the cloud structure, they all con-
cern 1D data. To our knowledge, the structure function
method has been also applied to 1D cuts of high-resolution
satelitte images [25,55], but we are not aware of any
results coming out from a specific 2D analysis.

In this paper, our first goal is to take advantage of the
2D wavelet transform modulus maxima (WTMM) method
introduced in paper I [46] and further tested on synthetic
multifractal surfaces in paper II [56], to carry out a mul-
tifractal analysis of high-resolution satelitte images of Sc
cloudy scenes [57,58]. Our objective is not only to ex-
tend previous analysis of 1D profiles to full 2D image pro-
cessing, but also to remedy to the insufficiencies of the
structure function method which, as pointed out in refer-
ences [59–62], fails to achieve complete multifractal char-
acterization. Theoretically, only the strongest singulari-
ties, corresponding to the increasing branch of the D(h)
singularity spectrum, are amenable to this method. More-
over, there is a risk that the possible existence of very weak
(h > 1) singularities as well as regular behavior induces
some bias in the estimate of the structure function scaling
exponents τ(q) for q > 0. As successfully experienced in
paper II [56], the application of the 2D WTMM method
is likely to provide reliable quantitative estimates of the
entire τ(q) and D(h) multifractal spectra, within the per-
spective of confirming the intermittent nature of the inter-
nal cloud structure. Although this result would not be a
surprise in such a highly turbulent environment, the pos-
sibility of comparing quantitatively the statistical scaling
properties of the optical depth or the radiance fields with
those of the velocity or temperature fluctuations in high
Reynolds turbulent flows, might be very instructive as far
as the influence of atmospheric dynamics on the liquid
water distribution in clouds.

Beyond the issue of improving statistical charac-
terization of in situ and remotely sensed data, there
is a most challenging aspect which consists in ex-
tracting structural information to constraint stochastic
cloud models which in turn will be used for radiative
transfer simulations [8,15,17,20,22,23,25,41,63–66].
Then by comparing the multifractal properties of the
numerically generated artificial radiation fields with those
of actual measurements, one can hope to achieve some
degree of closure. As reviewed in the introduction of
paper II [56], in contrast to the proliferation of multi-
plicative cascade models for the generation of singular
measures [47–54,67–78], there exist in the literature, only
a few examples of models for generating multifractal
functions [61,79–82]. Surprisingly, it is in the context
of geophysical data modeling that 1D and 2D synthesis
algorithms have been introduced to account for the
pioneering observations of multifractal scaling. To bridge
the gap between multifractal measures and multifractal
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functions, Schertzer and Lovejoy in 1987 [49] proposed
a straightforward generalization of the devil’s staircase
concept. As a mean of introducing the continuity that
necessarily comes with multi-affine functions, they
suggested to use “fractional” integration instead of its
standard counterpart. This power-law filtering of singular
cascade measures is known as Fractionally Integrated
Singular Cascades (FISCs [49–51,54,83]). Another route
from multiplicative singular cascades to nonstationary
multiscaling processes was charted by Cahalan et al. in
1990 [84] for the purpose of modeling the fluctuations
of internal structure in marine stratocumulus. The main
idea of the so-called “bounded” cascade models, further
developed in reference [85], consists in acting on the
multiplicative weights during the cascade in physical
space to recover continuity in the small-scale limit. One
of the major issue addressed in the present work, is to use
our algorithmic battery (developed in paper II [56]) to
compute the self-similarity kernel and the “space-scale”
correlation functions, with the specific goal to reveal the
existence of a multiplicative cascade process underlying
the spatial fluctuations of both the radiance and the
optical depth fields of marine Sc clouds. As the main
outcome of this analysis, we will show that the log-normal
random W-cascade model introduced in Section 2.2 of
paper II [56], provides a very attractive modeling of the
internal cloud structure [86] that can be further used to
“feed” numerical codes for cloud-radiation studies. Our
final message will thus consist in emphasizing the wavelet
techniques as rather powerful and very promising tools
for statistical cloud data analysis as well as for image
synthesis of artificial rough surfaces that statistically
reproduce the intermittent nature of real clouds.

The paper is organized as follows. In Section 2, we
present the 2D radiance and optical depth data collected
by Landsat imagery of marine Sc clouds. We comment on
the geophysical importance of analyzing marine Sc. They
are one of the most studied cloud types, partly because
they exert a systematic effect on the global radiation bud-
get. In Section 3, we use the 2D WTMM method to per-
form a comparative multifractal analysis of the radiance
and optical depth fields. We show that for both fields,
the τ(q) and D(h) multifractal spectra are well approx-
imated by parabolic curves, the signature of log-normal
statistics. In Section 4, we apply the wavelet based decon-
volution method designed to compute the self-similarity
kernel, to radiance LANDSAT images. This method turns
out to be very efficient to disentangle the anisotropic
texture induced by the presence of convective rolls from
the background radiance fluctuations which display nearly
isotropic scale invariance [86]. From the computation of
the cumulants of the corresponding self-similarity kernel,
we show that there is no way to discriminate between vari-
ous plausible cascade models recently proposed to account
for intermittency in fully developed turbulence and their
log-normal approximations. Section 5 is devoted to the ex-
perimental demonstration of the existence of an underly-
ing ultrametric hierarchical organization in the WT space-
scale representation of the radiance fluctuations. From

the unambiguous diagnostic provided by the computa-
tion of the “two-point” space-scale correlation functions,
we emphasize the log-normal random W-cascade model
as a very promising model for simulating the statistical
multifractal scaling properties of the Sc internal struc-
ture. We conclude in Section 6, by commenting the results
of a comparative multifractal analysis of Sc radiance and
optical depth fields with those of previous experimental
investigations of velocity and temperature fields in high
Reynolds number turbulence.

2 Landsat data of marine stratocumulus
cloud scenes

Over the past fifteen years, Landsat imagery has provided
the remote sensing community at large with a very at-
tractive and reliable tool for studying the Earth’s envi-
ronment [8,12,14–16,21,25,37–41,83,87]. One of the main
advantages of high-resolution satellite imagery is its rather
low effective cost as compared to outfitting and flying re-
search aircraft. Moreover this instrument is well calibrated
and it offers the possibility to reach unusual high spatial,
spectral and radiometric resolutions [25,83]. Indeed, the
five-channel Multi-Spectral Scanning (MSS, Landsat 1-3)
radiometer resolves features down to 80 m with 7 bits
of dynamic range. The seven-channel Thematic Mapper
(TM, Landsat 4-5) camera does even better with a reso-
lution of 30 m and a dynamic range of 8 bits. Both these
instruments are essentially proportional to nadir-viewing
radiance at satellite level (' 800 km). Scores of Land-
sat completely or partially cloudy scenes have thus been
acquired, mainly for the purpose of characterizing cloud
morphology. Mainly two types of statistical analysis have
been applied so far to Landsat imagery: spectral anal-
ysis of the 2D radiance field [21,25,37–39,83] and joint
area and perimeter distributions for ensembles of individ-
ual clouds [12,14–16] defined by some threshold in radi-
ance. One of the most remarkable properties of Landsat
cloud scenes is their statistical “scale-invariance” over a
rather large range of scales, which justifies why fractal
and multifractal concepts have progressively gained more
acceptance in the atmospheric scientist community [7,8].

Off all cloud types, marine stratocumulus (Sc) are
without any doubt the ones which have attracted the
most attention, mainly because of their first-order ef-
fect on the Earth’s energy balance [6–8,25,83,84]. Being
at once very persistent and horizontally extended, ma-
rine Sc layers carry considerable weight in the overall
reflectance (albedo) of the planet and, from there, com-
mand a strong effect on its global climate [9]. Furthermore,
with respect to climate modeling [10] and the major prob-
lem of cloud-radiation interaction [8,17,20–25,64], they
are presumably at their simplest in marine Sc which are
relatively thin (∼ 300−500 m), with well-defined (quasi-
planar) top and bottom, thus approximating the plane-
parallel geometry where radiative transfer theory is well
developed [6,17,22,23,25,64]. However, because of its
internal homogeneity assumption, plane-parallel the-
ory shows systematic biases in large-scale average



768 The European Physical Journal B

Fig. 1. The original Landsat TM image in the 0.6−0.7 µm channel. This 196 × 168 km2 scene was captured at l = 30 m
resolution on July 7 1987, off the coast of San Diego (Ca) during FIRE [34]. Quasi-nadir viewing radiance at satellite level is
digitized on a eight-bit grey scale. The thick black square represents one among the 32 overlapping 1024× 1024 pixels2 portions
selected in the cloudy region to carry out our 2D WT multifractal analysis of an extensive marine Sc. The thin black square
corresponds to the inner 512× 512 central part where our WT computations are safe from (finite size) edge effects. The dashed
squares are the neighbouring 512 × 512 central cloudy portions.

reflectance [23,88] relevant to Global Circulation Model
(GCM) energetics and large random errors in small-scale
values [64,89] relevant to remote-sensing applications. In-
deed, marine Sc have huge internal variability [19,33], not
necessarily apparent to the remote observer (see Figs. 1
and 2). The aim of the present study is to challenge pre-
vious analysis [8,12,14–16,21,25,37–41,83,87] of Landsat
imagery using the 2D WTMM methodology [57,58,86] de-
scribed in paper I [46], with the specific goal to improv-
ing statistical characterization of the highly intermittent
radiance fluctuations of marine Sc, a prerequisite for de-
veloping better models of cloud structure and, in turn,
furthering our understanding of cloud-radiation interac-
tion.

Figure 1 is a grey-scale rendering of the entire ('
196× 168 km2) original cloudy Landsat 5 scene captured
with the TM camera (1 pixel = 30 m) in the 0.6−0.7 µm
channel (i.e. reflected solar photons as opposed to their
counterparts emitted in the thermal infrared) during the
first ISCCP (International Satellite Cloud Climatology
Project) Research Experiment (FIRE) field program [34],
which took place over the Pacific Ocean off San Diego
in summer 1987. Since almost half of the global scene
is clear, we will mainly focus our “wavelet transform
microscope” [61,62,90–92] on the right half-part of the
image in Figure 1, with the specific goal to zooming

into the intricate fine structure of marine Sc. In order
to master edge effects in the 2D WT computation (see
Sect. 4.3 of paper I [46]), we actually select 32 overlapping
1024× 1024 pixels2 subscenes in this cloudy region. The
overall extend of the explored area is about 7840 km2.
Figure 2a shows a typical (1024 × 1024) portion of the
original image where the eight-bit grey scale coding of the
quasi-nadir viewing radiance clearly reveals the presence
of some anisotropic texture induced by convective struc-
tures which are generally aligned to the wind direction.
When looking at the profiles obtained through 1D cuts in
Figures 2c and 2e, one still recognizes the convective rolls
as a rather regular structure superimposed to highly ir-
regular and intermittent fluctuations. Figure 3a shows an
averaged (over the 32 1024× 1024 pixels2 images) Fourier
transform ln |Î(k)| of the nadir radiance field which, be-
sides some weak square lattice anisotropy induced by the
discretization process, displays some weak anisotropy in
the direction θ = arctan(ky/kx) = −π/6 (±π). Note that
this anisotropy is somehow enhanced at large scales when
k−1 = |k|−1 becomes larger than the characteristic width
(λ ' 5−6 km) of the convective patterns. Thus it is likely
to be induced by the characteristic texture generated by
convective motions. When plotting S(k) as a function of
k = |k| in logarithmic coordinates in Figure 3b, one can
see two distinct scale breaks: one at 0.2−0.4 km and one
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Fig. 2. A 1024 × 1024 pixels2 portion of the original Landsat TM image shown in Figure 1. Nadir radiance: (a) the cloudy
subscene; (c) 1D profile obtained along some horizontal cut; (e) 1D profile obtained along some vertical cut. Optical depth as
computed from the nadir radiance using DISORT look-up table for a homogeneous plane-parallel cloud (see Fig. 4): (b) the
cloudy sub-scene; (d) some horizontal 1D profile; (f) some vertical 1D profile. I(x) is coded using 256 grey levels from black
(min I) to white (max I).

at ' 6 km. Between these two limits, a rather nice power-
law behavior prevails:

S(k) ∼ k−β (1)

with β = 2.72 ± 0.08. This value of the spectral
exponent is quite compatible with previous estimates
obtained for 1D LWC data [21,25–32,37–39,83], namely
βLWC = 1.4 − 1.7 ' β2D − 1. The cross-over observed at
large scales from β = 2.72 towards β = 0 in some way
marks the integral scale for marine Sc during FIRE. In-
deed this cross-over begins at a scale ∼ 5−6 km which
corresponds to the characteristic width of the convective
patterns. The statistical signifiance of this cross-over is
that most of the correlations in cloud structure are con-
fined inside the convective rolls and apparently do not
propagate from one convective structure to the neigh-
bouring ones. Of course this observation applies for Sc
cloudy scenes that usually display convective structures
with a width to height ratio of about 2 to 6. The transi-
tion at scales 0.2−0.4 km to a spectrum which becomes

steeper at smaller scales as the signature of smoother be-
havior, has been the subject of some controversy in the
literature [19,21,25,37–39]. Cahalan and Snider [37] noted
that the characteristic scale of the so-called “Landsat
scale break” is close to the nominal geometrical thick-
ness for marine Sc. However, in situ probings of LWC
fluctuations in marine Sc have revealed scale-invariance
properties from a few tens of meters to a few tens
of kilometers [19,32,33]; no special behavior occurs at
cloud thickness scale, nor at that of the whole bound-
ary layer. This makes any dynamical mechanism that
may somehow controls internal cloud structure an un-
likely explanation for the Landsat scale break. Lovejoy
and co-workers [38] have expressed some skepticism as
far as the physical relevance of the Landsat scale break.
They mainly argued about two technical reasons that
might cause a spurious scale break: on the one hand
the fact that the Landsat radiometer saturates frequently
in cloudy scenes, and on the other hand the fact that
many of the published statistical analysis suffer from in-
sufficient sampling. Let us point out that the data used
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Fig. 3. Power-spectrum analysis of 32 (1024 × 1024) images
as the ones shown in Figures 2a and 2b respectively. Nadir
radiance: (a) ln |Î(k)| as coded using 32 grey levels from white

(min ln |Î|) to black (max ln |Î|); (b) S(|k|) vs. |k| in logarithmic

representation. Optical depth: (c) ln |Î(k)|; (d) S(|k|) vs. |k|
in logarithmic representation. The fuzzy curves made of small
black dots in (a) and (c) are level curves to guide the eyes.

in Figures 1 and 2 to obtain the statistics required for
the power spectrum analysis reported in Figure 3 is less
than 1.25% saturated. Moreover, our set of 32 (1024 ×
1024) pixels2 cloudy scenes is large enough to establish
experimentally the statistical convergence of the power
spectral exponent β. The best fit to equation (1) between
70 m and 300 m in Figure 3b yields β ' 5.0; but as pre-
viously noticed for the analysis of 1D intersects [25], one
cannot rule out an exponential cut-off. Our finding are
therefore very much in favor of Davis et al. [25,65] physical
interpretation of the Landsat scale break in terms of net
horizontal fluxes excited by the horizontal variability of Sc
layers [93–96]. We refer the reader to reference [25], where
these authors have succeeded in simulating the Landsat
scale break in strictly scaling cloud models, thus confirm-
ing that the scale break is actually caused by radiation
transport process.

Remark

Note that very much like the so-called bottleneck phe-
nomenon [97–99] observed in the power spectra of fully de-
veloped turbulent fields at the wave number corresponding
to peak dissipation, the Landsat scale break around 200–
400 m involves some energy pile up which diminishes the
power-law decay of S(k) prior to the transition to strong
damping.

The above discussion raises the crucial issue of up to
which extend the fluctuations of the radiance field col-
lected by the Landsat TM camera reflect the internal
variability of marine Sc clouds. Previous analysis of LWC

Fig. 4. The plane-parallel optical depth-nadir radiance mono-
tonic nonlinear relation as obtained when using DISORT rou-
tines [63]. The rectangle defined by the dashed lines delimits
the dynamical range for radiance and optical depth values in
the original image (Fig. 1)

fluctuations inside marine Sc during FIRE and ASTEX
strongly support the idea that realistic models for cloud
optical depth must obey power-law statistics over at least
three orders of magnitude in scale [21,25–33,37–39,83].
For FIRE, scaling is actually observed down to 20-40 m,
i.e., roughly down to the Landsat pixel-scale. But is there
a way to extracting the optical depth field from nadir ra-
diance measurements? In references [23,37,64], Cahalan
et al. argue that a way to compute radiance escaping from
a horizontally inhomogeneous cloud model is to apply the
Independent Pixel Approximation (IPA) which amounts
to using plane-parallel theory on a pixel basis. In Figure 4
is shown the monotonic nonlinear mapping from the opti-
cal depth to the radiance as obtained when using Stammes
et al.’s DISORT software package [63] to perform plane-
parallel radiance computations [25]. Since this mapping is
monotonic, one can invert it to transform radiance data
into optical depth (pseudo) data. In Figures 2b, 2d and
2f are reported the results of such a transformation; from
a simple visual inspection, one does not see any signifi-
cant change when comparing to the radiance data in Fig-
ures 2a, 2c and 2e respectively. From a more quantitative
point of view, the results of the power-spectrum analysis
of the optical depth in Figures 3c and 3d are remarkably
similar to the ones previously obtained for the radiance
field. A well-defined power-law behavior with an exponent
β = 2.73± 0.08 is observed over a range of scale that ex-
tends from ∼300−400 m up to 5–6 km where a cross-over
to a decorrelated “white-noise” behavior is initiated. Be-
low 300–400 m, we still observe a transition to smoother
behavior which, according to Davis and co-workers [25,65],
should not be there but which is the direct consequence
of the inaccuracy of the IPA to model radiation transport
in variable media. When using Monte-Carlo simulations
that take into account horizontal fluxes (this amounts to
relax the IP assumption), these authors [25,65] not only
establish the radiative origin of the Landsat scale break,
but they also bring evidence for the relevance of the IPA
to accurately predicts the fluctuations of the radiance field
from the knowledge of the optical depth and vice versa, for
scales which are larger than some “radiative smoothing”
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Fig. 5. 2D wavelet transform analysis of a Landsat image of marine Sc clouds.  (x) is the first-order radially symmetric
analyzing wavelet shown in Figure 1 of paper I [46]. (a) 256 grey-scale coding of a (1024× 1024) portion of the original radiance
image. In (b) a = 22.9σW, (c) a = 21.9σW and (d) a = 23.9σW (where σW = 13 pixels ' 390 m), are shown the maxima chains;
the local maxima of M along these chains are indicated by (•) from which originates an arrow whose length is proportional
to M and its direction (with respect to the x-axis) is given by A ; only the central (512 × 512) part delimited by a dashed
square in (a) is taken into account to define the WT skeleton. In (b), the smoothed image φb,a ∗I is shown as a grey-scale coded
background from white (min) to black (max).

scale ηrs =
√
lt∆z ∼ 200−300 m, where ∆z is the cloud’s

geometrical thickness and lt the transport mean free path.

Remark

Note that the resolution of our 2D WT microscope will not
allow us to investigate the Landsat scale break discussed
just above. As described in paper I [46], σW = 13 pixels
(∼ 390 m) is the width of the analyzing wavelet at the
smallest scale where it is still well enough resolved. Above
that scale, we will assume that radiance field data provide
almost direct access to the internal structure of marine Sc.
This working hypothesis turns out to be quite reasonable
since, as seen in Figure 4, the dynamical range of radi-
ance data in the original Landsat image (Fig. 1), does not
extend above 0.61 where the nonlinearity of the optical
depth-radiance IPA mapping is the most pronounced.

3 Application of the 2D WTMM method
to Landsat images of stratocumulus clouds

This section is devoted to the application of the 2D
WTMM method [58,86] to the Landsat cloudy scene
shown in Figure 1. We systematically follow the numeri-
cal implementation procedure described in Section 4.3 of
paper I [46]. We first wavelet transform the 32 overlap-
ping (1024 × 1024) images, cut out of the original im-
age as explained in Section 2, with the first-order (nψ =
1) radially symmetric analyzing wavelet defined in Fig-
ure 1 of paper I [46]. To master edge effects, we then
restrain our analysis to the (512 × 512) central part of
the wavelet transform of each image. From the wavelet
transform skeleton defined by the WTMMM, we compute
the partition functions from which we extract the τ(q)
and D(h) multifractal spectra as explained in Section 4.1
of paper I [46]. We systematically test the robustness of
our estimates with respect to some change in the shape
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Fig. 6. Determination of the τ (q) and D(h) spectra of radi-
ance Landsat images of marine Sc. The 2D WTMM method
is used with either a first-order (•) or a third-order (◦) radi-
ally symmetric analyzing wavelet (see Fig. 1 of paper I [46]).
(a) log2 Z(q, a) vs. log2 a; the solid lines correspond to linear
regression fits of the data over the first and a half octave.
(b) τ (q) vs. q as obtained from a linear regression fit of the
data in (a). (c) D(h) vs. h, after Legendre transforming the
τ (q) curve in (b). In (b) and (c), the solid lines correspond to
the theoretical multifractal spectra for log-normal W-cascades
with parameter values m = −0.38 ln 2 and σ2 = 0.07 ln 2
(Eqs. (29, 30) in paper II [56]).

of the analyzing wavelet, in particular when increasing the
number of zero moments.

3.1 Numerical computation of the multifractal τ(q)
and D(h) spectra

In Figure 5 is illustrated the computation of the max-
ima chains and the WTMMM for the marine Sc sub-scene
shown in Figure 2a. In Figure 5b is shown the convolution
of the original radiance field (Fig. 5a) with the isotropic
Gaussian smoothing filter φ (Eq. (22) of [46]). Accord-
ing to the definition of the WTMM, the maxima chains
correspond to well defined edge curves of the smoothed
image. The local maxima of Mψ along these curves are
indicated by (•) from which originates an arrow whose
length is proportional to Mψ and its direction (with re-
spect to the x-axis) is given by Aψ. After linking these
WTMMM across scales, one constructs the WT skeleton
from which one computes the partition functions Z(q, a)
(Eq. (59) of paper I [46]). As reported in Figure 6a, the
annealed average partition functions (•) display some well-
defined scaling behavior over the first three octaves, i.e.
over the range of scales 390 m . a . 3120 m, when plot-
ted versus a in a logarithmic representation. Indeed the

scaling deteriorates progressively from the large scale side
when one goes to large values of |q| & 3. In the following,
we will see that besides the fact that we are suffering from
insufficient sampling, the presence of localized Dirac like
structures is likely to explain the fact that the observed
cross-over to a steeper power-law decay occurs at a smaller
and a smaller scale when one increases q > 0. Actually for
q & 3, the cross-over scale a∗ . 1200 m becomes signif-
icantly smaller than the so-called integral scale which is
approximately given by the characteristic width λ w 5–
6 km of the convective rolls (Fig. 5a). When processing to
a linear regression fit of the data in Figure 6a over the first
octave and a half (in order to avoid any bias induced by
the presence of the observed cross-over at large scales), one
gets the τ(q) spectrum (•) shown in Figure 6b. In contrast
to the fractional Brownian rough surfaces studied in Sec-
tion 5 of paper I [46], this τ(q) spectrum unambiguously
deviates from a straight line. When Legendre transform-
ing this nonlinear τ(q) curve, one gets the D(h) singularity
spectrum reported in Figure 6c. Its characteristic single
humped shape over a finite range of Hölder exponents is
a clear signature of the multifractal nature of the marine
Sc radiance fluctuations. As a test of the reliability of our
Legendre transform computation, we report in Figure 7
the results (•) of the estimate of the D(h) singularity spec-
trum from the scaling behavior of the partition functions
h(q, a) (Eq. (66) in paper I [46]) and D(q, a) (Eq. (67) of
paper I [46]). While D(q, a) in Figure 7b displays a quite
well-defined scaling behavior over the entire range of scales
represented, namely 390 m . a . 6240 m, h(q, a) in Fig-
ure 7a exhibits some q-dependent cross-over scale which
reminds the cross-over phenomenon observed on Z(q, a)
in Figure 6a. When proceeding to linear regression fits
over the first and a half octave in both Figures 7a and 7b,
one gets estimates for h(q) and D(q) from which one ex-
tracts the D(h) singularity spectrum shown in Figure 7c.
The so-obtained D(h) curve (•) is quite indistinguishable
from the D(h) spectrum (N) previously obtained from the
Legendre transform of the τ(q) data. Moreover the “error
bars” estimated by varying the range of scales used to per-
form the linear regression fit for both h(q, a) and D(q, a),
give some indication of up to which extend one can
trust our data, especially when one increases (decreases)
inconsiderately q beyond 3 (−3).

In Figure 6 are also shown for comparison the re-
sults (◦) obtained when applying the 2D WTMM method
with a third-order (nψ = 3) radially symmetric analyzing
wavelet (the smoothing function φ being the isotropic 2D
mexican hat). As seen in Figure 6a, the use of a wavelet
which has more zero moments seems to somehow im-
prove scaling. For the range of q-values investigated in
Figure 6a, the cross-over scale turns out to be rejected
at a larger scale, enlarging by some amount the range
of scales over which scaling properties can be measured,
especially for the largest values of |q|. This observation
is confirmed in Figure 7a where h(q, a) displays a more
convincing scaling behavior for q = 2, 3... up to 6. The
fact that one improves scaling when increasing the or-
der of the analyzing wavelet suggests that perhaps some
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Fig. 7. Determination of the D(h) singularity spectrum of ra-
diance Landsat images of marine Sc. The 2D WTMM method
is applied with either a first-order (• and N) or a third-order
(◦ and 4) radially symmetric analyzing wavelet. (a) h(q, a)
vs. log2 a. (b) D(q, a) vs. log2 a. (c) D(h) vs. h, as obtained
from a linear regression fit of the data in (a) and (b) over the
first and a half octave (•); the symbols (N) correspond to the
D(h) curve after Legendre transforming the τ (q) data in Fig-
ure 6b;  is a first-order analyzing wavelet. (d) D(h) vs. h,
same computation as in (c) but with a third-order analyzing
wavelet. In (c) and (d), the solid and dashed lines correspond
to parabolic spectra as predicted by the log-normalW-cascade
model with parameters: (m = −0.38 ln 2, σ2 = 0.07 ln 2) and
(m = −0.366 ln 2, σ2 = 0.06 ln 2) respectively.

smooth behavior unlikely deteriorates our statistical esti-
mate of the multifractal spectra of the original Landsat
radiance image. Let us recall that, as explained in Sec-
tion 3.2 of paper I [46], smooth C∞ behavior may give
rise to maxima lines along which Mψ ∼ anψ (see exam-
ple 1 in Sect. 3.3 of paper I [46]); hence larger nψ smaller is
the overall contribution of those “spurious” maxima lines
in the partition function summation over the WT skele-
ton. As seen in Figures 1 and 2, the anisotropic texture
induced by the convective streets or rolls might well be at
the origin of the relative lack of well defined scale invari-
ance. When looking at the corresponding τ(q) spectrum
(◦) extracted from the data in Figure 6a, using the same
linear regression procedure as before, one gets quantita-
tively the same estimates for q & −1. For more negative
values of q, the data obtained with the third-order ana-

lyzing wavelet clearly depart from the previous estimates
with the first-order wavelet. The slope of the new τ(q)
spectrum is somehow weakened which implies, from the
Legendre transform properties, that the corresponding
values of h(q) = ∂τ/∂q are reduced. The computation of
the D(h) singularity spectrum (◦) in Figure 6c enlightens
this phenomenon: while the increasing left-hand branch
(which corresponds to the strongest singularities) of the
D(h) curve appears to be quite robust with respect to the
choice of ψ, the decreasing right-hand branch (associated
to the weakest singularities) is modified when increasing
the number of zero moments of ψ. This effect is confirmed
in Figure 7d, where a remarkably similar narrower (from
its right-hand side) D(h) curve is obtained when using
h(q, a) and D(q, a) instead of the Legendre transform. As
illustrated in Figures 6 and 7, the D(h) spectrum as well
as the τ(q) spectrum data, are very well fitted by the theo-
retical quadratic spectra predicted for log-normal random
W-cascades (Eqs. (29, 30) of paper II [56]), namely

τ(q) = − σ2

2 ln 2
q2 − m

ln 2
q − 2, (2)

and

D(h) = − (h+m/ ln 2)2

2σ2/ ln 2
+ 2. (3)

However, with the first-order analyzing wavelet, the best
fit is obtained with the parameter values m = −0.38 ln 2 =
−0.263 and σ2 = 0.07 ln 2 = 0.049, while for the third-
order wavelet these parameters take slightly different
values, namely m = −0.366 ln2 = −0.254 and σ2 =
0.06 ln 2 = 0.042. The variance parameter σ2 which char-
acterizes the intermittent nature of marine Sc radiance
fluctuations is therefore somehow reduced when going
from nψ = 1 to nψ = 3. We will see in Section 3.2 that
the lack of statistical convergence because of insufficient
sampling is actually the main reason for this uncertainty
in the estimate of σ2. As previously experienced in pa-
per II [56] for synthetic multifractal rough surfaces, an ac-
curate estimate of the exponents τ(q) for q . −3 requires
more than 32 (1024× 1024) images. With the statistical
sample of Landsat images we have at our disposal, one
gets D(h(q = 0) = 0.37 ± 0.02) = 2.00 ± 0.01, which is
a strong indication that the radiance field is singular ev-
erywhere. From the estimate of τ(q = 2) = −1.38± 0.02;
one gets the following estimate of the spectral exponent:
β = τ(2) + 4 = 2.62± 0.02, i.e., a value which is slightly
smaller than the one extracted from the power-law decay
of the energy spectrum in Figure 3b. This difference comes
from the range of wavevector |k| used in Figure 3b, which
actually corresponds to some shift towards the largest
scales as compared to the range of scales selected in Fig-
ure 6a for the WTMM computation of the τ(q) spectrum.

To corroborate the soundness of the last remark raised
at the end of Section 2, we have repeated our WTMM
computations for the 32 (1024× 1024) images of the ma-
rine Sc optical depth as reconstructed from the radiance
data using DISORT routines [63] (see Fig. 2b). The re-
sults are reported in Figure 8, where radiance (•) and
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Fig. 8. Determination of the τ (q) and D(h) multifractal spec-
tra of the radiance (•) and optical depth (�) Landsat data. The
analyzing wavelet is the first-order radially symmetric wavelet
used in Figure 6. (a) h(q, a) vs. log2 a. (b) D(q, a) vs. log2 a.
(c) τ (q) vs. q; same computations as in Figure 6b. (d) D(h) vs.
h; same computations as in Figure 7c. In (c) and (d), the solid
lines correspond to the best quadratic log-normal spectra for
the optical depth data with parameter values m = −0.399 ln 2
and σ2 = 0.065 ln 2.

optical depth (�) data are shown for comparison. Clearly,
for the range of values of q for which statistical conver-
gence is likely to be achieved (−3 . q . 5), one does not
see any significant difference between the statistical scal-
ing properties of these two fields. The respective τ(q) and
D(h) spectra are indistinguishable as compared to the size
of the error bars. This is the confirmation that the radi-
ance fluctuations collected by Landsat TM camera can be
considered as a faithful representation of the intermittent
internal structure of marine Sc clouds.

3.2 WTMMM probability density functions

This sub-section is mainly devoted to the analysis of
the joint probability distribution function Pa(M,A) (see
Sect. 4.2 of paper I [46]) as computed from the wavelet
transform skeletons of the 32 (1024 × 1024) radiance
images with the first-order radially symmetric analyz-
ing wavelet (nψ = 1) used in Figures 5 [86]. In
Figures 9a and 9b are respectively shown the pdf’s
Pa(M) =

∫
dAPa(M,A) and Pa(A) =

∫
dMPa(M,A),

Fig. 9. Pdf’s of the WTMMM coefficients of the 32 (1024 ×
1024) radiance Landsat images. First-order radially symmetric
analyzing wavelet: (a) Pa(M) vs. M; (b) Pa(A) vs. A; the
symbols correspond to the following scales a = 20.3σW = 480 m
(•), 21.3σW = 960 m (◦) and 22.3σW = 1920 m (×). Third-
order radially symmetric analyzing wavelet: (c) Pa(M) vs.M;
(d) Pa(A) vs. A; the symbols correspond to the scales a =
20.6σW = 591 m (•), 21.6σW = 1182 m (◦) and 22.6σW =
2364 m (×).

for three different values of the scale parameter a =
20.3σW (480 m), 21.3σW (960 m) and 22.3σW (1920 m).
First let us concentrate on the results shown in Figure 9b
for Pa(A). This distribution is clearly scale dependent
with some evidence of anisotropy enhancement when go-
ing from small to large scales, in particular when one
reaches scales which become comparable to the charac-
teristic width of the convective structures (i.e., a few kilo-
meters wide). Two peaks around the valuesA w −π/6 and
5π/6 become more and more pronounced as the signature
of a privileged direction in the analyzed images. As one
can check from a visual inspection of Figures 1 and 2a, this
direction is nothing but the perpendicular to the mean di-
rection of the convective rolls that are generally aligned
to the wind direction. This is another clear indication
that, at large scales, the wavelet transform microscope
is sensitive to the convective roll texture, a rather regu-
lar modulation superimposed to the background radiance
fluctuations [86]. In Figures 9c and 9d are shown for com-
parison the pdf’s Pa(M) and Pa(A) as computed when
using a third-order radially symmetric analyzing wavelet
(nψ = 3) which is supposed to be less sensitive to smooth
behavior. Clearly Pa(A) is much flattened as before and it
no longer exhibits some systematic scale dependence. This
observation is an important step towards the demonstra-
tion that the background radiance fluctuations actually
display nearly isotropic scale invariance.

Another important message which comes out from our
analysis is illustrated in Figure 10. When conditioning the
pdf of M by the argument A, the shape of this pdf is
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Fig. 10. Pdf’s of the WTMMM coefficients of the 32 (1024×
1024) radiance Landsat images as computed with a first-order
radially symmetric analyzing wavelet. Pdf’s of M when con-
ditioned by A. The different symbols correspond to fixing A
(mod π) to 0 ± π/8 (◦), π/4 ± π/8 (�), π/2 ± π/8 (4) and
3π/4 ± π/8 (�). (a) a = 20.3σW = 480 m; (b) a = 21.3σW =
960 m.

Fig. 11. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter: (a) a = σW =
390 m; (b) a = 2σW = 780 m; (c) a = 22σW = 1560 m and
(d) a = 23σW = 3120 m.  is a first-order radially symmet-
ric analyzing wavelet. Same 2D WTMM computations as in
Figures 9a and 9b.

shown to be independent of the considered value of A, as
long as the value of the scale parameter a remains small
as compared to the characteristic width of the convec-
tive structures. The observation that the joint probability
distribution actually factorizes, i.e.,

Pa(M,A) = Pa(M)Pa(A), (4)

is the signature that M and A are likely to be indepen-
dent [86]. This actual decoupling of M and A does not
clearly materialize in Figure 11 where the WTMMM are
plotted in the (Tψ1 , Tψ2) plane (see Sect. 2 of paper I [46])
for four values of the scale parameter a. What shows up
from the evolution of the distribution of the WTMMM

Fig. 12. Pdf’s of the WTMMM coefficients of the 32 (1024 ×
1024) Landsat radiance images: ln(Pa(M)) vs. ln(M). (a)
First-order radially symmetric analyzing wavelet (n = 1);
(b) third-order radially symmetric analyzing wavelet (n = 3).
The symbols have the same meaning as in Figures 9a and 9c
respectively. The solid lines are parabola to guide the eyes.

is that, despite the rarefaction of the maxima lines in the
WT skeleton when increasing a, more we approach the size
of the characteristic width of the convective structures,
more this distribution is angularly concentrated around
A = −π/6 and 5π/6.

The validity of equation (4) implies that all the mul-
tifractal properties of the marine Sc radiance fluctuations
are contained in the way the shape of the pdf ofM evolves
when one decreases the scale parameter a [86]. This evo-
lution is illustrated in Figure 9a when using a first-order
radially symmetric analyzing wavelet. Since by definition
the WTMMM are different from zero, Pa(M) decreases
exponentially fast to zero at zero. As previously empha-
sized in paper I [46], this observation is at the heart of
the 2D WTMM method which, for this reason, does not
suffer any divergency problem when estimating the τ(q)
spectrum for q < 0. When plotting lnPa(M) vs. lnM, one
gets in Figure 12a the remarkable result that for any scale
significantly smaller than the integral scale (∼ 5−6 km, as
given by the characteristic width of the convective struc-
tures), all the data points fall, within a good approxima-
tion, on a parabola. This is a strong indication that the
WTMMM have a log-normal statistics. As shown in Fig-
ure 12b, this experimental feature is not specific to some
particular shape of the analyzing wavelet since log-normal
pdf’s are also found when using a third-order radially sym-
metric analyzing wavelet. As explained in Section 5.3 of
paper I [46], a way to check whether statistical conver-
gence is likely to be achieved is to represent MqPa(M)
versus M. Indeed, according to equation (70) of paper
I [46], the integral of MqPa(M) is proportional to the
partition function Z(q, a) whose scaling exponents τ(q)
are key quantities in the multifractal WTMM description.
Even more clever is to look for the following rescaling
properties [57,58]:

a−qhMqPa(M) = Fq(M/ah), (5)

where Fq are q-dependent functions that do not depend
upon the scale parameter a. As experienced in Section 5.3
of paper I [46] for fractional Brownian surfaces, monofrac-
tal scaling implies that there exists a unique exponent
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Fig. 13. Pdf’s of the WTMMM coefficients of 32 (1024×1024)
multifractal rough surfaces generated with the log-normal
random W-cascade model (Sect. 2.2 in paper II [56]) for
the parameter values m = −0.38 ln 2 and σ2 = 0.03 ln 2.
a−qh(q)MqPa(M) vs. M/ah(q) for q = −4 (a), −2 (b) 2 (c),
4 (d), 6 (e) and 8 (f). The different curves correspond to the
following scales: a = σW (. . . ), 2σW ( ), 22σW ( ) and
23σW ( ).  is the first-order radially symmetric analyzing
wavelet shown in Figure 1 of paper I [46].

h = H, independent of q, such that equation (5) is ver-
ified. As illustrated in Figure 13, equation (5) is still
valid for multifractal rough surfaces generated with the
log-normal random W-cascade model introduced in Sec-
tion 2.2 of paper II [56], provided the exponent h be sys-
tematically adjusted to the value h = h(q) = ∂τ/∂q. For
q ∈ [−3, 8], all the data collected at different scales actu-
ally collapse on a rather well defined single humped shape
distribution which clearly depends upon q, in good agree-
ment with equation (5). Because of the progressive lack
of statistics when one increases a, the distributions ob-
tained at the largest scales become more and more noisy.
This means that the integral of these distributions, i.e.,
Z(q, a)/Z(q = 0, a), is less and less accurately estimated
at large scales. As illustrated in Figure 13a, for q = −4,
there is no longer a well defined Fq distribution whatever
the value of the scale a; this means that we are faced with
insufficient sampling when computing Z(q, a) and in turn
τ(q), for q . −3. One can already perceived in Figure 13f,

Fig. 14. Pdf’s of the WTMMM coefficients of the 32
(1024 × 1024) radiance Landsat images as computed with a
first-order radially symmetric analyzing wavelet (n = 1).
a−qh(q)MqPa(M) vs. M/ah(q) for q = −4 (a), −2 (b) 2 (c),
4 (d), 6 (e) and 8 (f). The different curves correspond to the
following scales: a = σW = 390 m (. . . ), a = 2σW = 780 m
( ), a = 22σW = 1560 m ( ) and a = 23σW = 3120 m
( ).

that a similar lack of statistical convergence is already
attained for q & 8.

In Figure 14 are shown the results of a similar anal-
ysis of the M-pdf’s of the radiance Landsat images as
computed with a first-order radially symmetric analyzing
wavelet (see Fig. 9a). As compared to the numerical results
for the synthetic rough surfaces in Figure 13, it is clear
that when plugging into equation (5), the values of h(q)
obtained from a linear regression fit of the data of h(q, a)
vs. log2 a over the first and a half octave in Figure 7a,
one does not get a very spectacular collapse, except at
small scales. This is another way to evidence the cross-over
observed at large scales in Figures 7a and 8a. Furthermore,
more we increase q > 0, more pronounced is the separa-
tion of the single humped shape distributions obtained at
different scales. Let us point out that the fact that those
distributions are shifted to the left (i.e., to smaller val-
ues of M/ah(q)), when a is increased, means that h(q) is
somehow overestimated. This is not such a surprise since
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Fig. 15. Pdf’s of the WTMMM coefficients of the radiance
Landsat images as computed with a third-order radially sym-
metric analyzing wavelet (n = 3). Same representation as in
Figure 14.

as seen in Figure 7a, for q = 3, h(q, a) versus log2 a in-
creases at small scales (h(q) > 0) up to some cross-over
scale where it starts decreasing (h(q) < 0). We will see
in the next sub-section that this cross-over behavior is
the signature of the presence of very strong singularities
with negative Hölder exponents in the radiance images.
As far as statistical convergence is concerned, one real-
izes that for q . −3 as well as for q & 6, the distribu-
tions become very noisy. These poorly resolved distribu-
tions explain a posteriori the impossibility to get reliable
estimate of the τ(q) exponents for q . −3 and q & 6
in Figure 6. In Figure 15 are reported the results of the
same WTMMM analysis of the radiance Landsat images
except that now the analyzing wavelet ψ is a third-order
radially symmetric wavelet. For each value of q & −2, the
collapse of the distributions obtained at different scales
is definitely improved, in particular for the scales much
smaller than the integral scale. The shift to the left of the
distributions observed in Figure 14 when increasing a, has
almost disappeared. It is clear that one does not feel as
strong as before the presence of localized structures asso-
ciated with negative Hölder exponents. On the contrary,
for q . −3, the distributions look more different than in
Figure 14. This is some indication that the estimates of

τ(q) for q ≤ −3 are more sensitive to finite sampling with
the third-order analyzing wavelet than with the first-order
analyzing wavelet. This may explain the underestimation
of the intermittency parameter σ2 in Figure 7d. The re-
sults reported in Figures 14 and 15 therefore strongly sug-
gest that, up to finite sampling effects, the relation (5) is
valid for the background radiance fluctuations in marine
Sc clouds. We will see in the next sub-section that an
even more convincing check of the relevance of equation
(5) can be obtained if one removes from the WT skeleton,
the maxima lines that are associated to rather localized
structures corresponding to very strong singularities with
negative Hölder exponents [60–62,91,92,100–102].

3.3 Uncovering localized structures in Landsat
radiance images

As experienced in previous analysis of fully developed tur-
bulent fields [60–62,91,92,100–102], statistical scale in-
variance can be disturbed by the presence of isolated lo-
calized structures that behave as very strong “quasi” sin-
gularities associated to negative Hölder exponent values.
Originally discovered in a pioneering wavelet analysis of
Modane wind tunnel velocity data [100], the understand-
ing of these rare and intense events in terms of vortic-
ity filaments has been recently confirmed in some swirling
turbulent flow experiments [103–105] especially designed
for simultaneous visual observation and pressure record-
ing. Vorticity filaments actually appear as very deep pres-
sure drops that can be distinguished from the background
pressure fluctuations from their Dirac pulse like behav-
ior [104–109]. In reference [101], we have shown that the
continuous wavelet transform is a very powerful tool to
detect those multi-scale structures (we refer the reader
to the work of Abry and co-workers [107–109] who have
proposed an alternative strategy based on the discrete or-
thogonal wavelet decomposition). When focusing the WT
microscope on a strong depression, this pulse-like struc-
ture appears as a very strong singularity (i.e., a Dirac
peak) when one continuously increases magnification from
the integral scale down to the scale of the filament core
below which the pressure signal is smooth. The maxima
lines corresponding to these very strong “quasi” singular-
ities can be easily distinguished from the other maxima
lines in the WT skeleton since, when sliding along these
lines from large scales down to small scales, the WT-
MMM coefficients anomalously increase (h < 0) instead
of decreasing as commonly observed for singularities with
Hölder exponent h > 0 [60–62,91,92,100–102]. Our goal
in this sub-section is to use the same strategy for the anal-
ysis of radiance Landsat images in order to check whether
similar “anomalous” maxima lines actually do exist in the
corresponding WT skeletons.

In Figure 16a, is shown a 256 × 256 pixel2 portion of
the original radiance Landsat image of marine Sc clouds
(Fig. 1). On this image, the symbols (◦) identify the
locations of the roots of some maxima lines computed
with a first-order radially symmetric wavelet, along which
the WT modulus behaves “anomalously” as shown in
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Fig. 16. A 256×256 pixel2 portion of the original Landsat TM
image shown in Figure 1. The symbols correspond to locations
where point to some “anomalous” maxima lines along which
the WTMMM increase when going from large to small scales
as reported in Figure 17b.  is a first-order (◦) or a third-order
(�) radially symmetric analyzing wavelet. In (b) and (c) are
respectively represented the horizontal and vertical 1D radi-
ance profiles obtained when crossing the localized downward
spike event identified by the symbol (×) in (a).

Figure 17. In Figure 17a is represented the behavior of
log2(Mψ) vs. log2 a as obtained along most of the maxima
lines (•) that belong to the WT skeleton. Despite the pres-
ence of some oscillations, one observes a rather convincing
power-law decrease from large scales to small scales with
a slope which takes values in the range 0.1 . h(x0) . 0.7,
i.e., in some interval which is included in the support
of the D(h) singularity spectrum previously computed in
Figures 6c and 7c. In Figure 17b is reported the behav-
ior observed on some maxima lines (◦), along which some
rather convincing power-law increase from large scales to
small scales, witnesses to the presence of unusually strong
singularities with Hölder exponent h . −0.5. When look-
ing at 1D intersects of the radiance field that cross those
particular points, one gets profiles similar to the ones il-
lustrated in Figures 16b and 16c. These special points cor-

Fig. 17. Characterizing the local Hölder regularity of the ra-
diance fluctuations from the behavior of the WTMMM along
the maxima lines: log2(M ) vs. log2 a. (a) Maxima lines as-
sociated with background radiance fluctuations (h > 0). (b)
Maxima lines associated with localized downward spike events
(h < 0).  is a first-order (•, ◦) or a third-order (�, �) radially
symmetric analyzing wavelet.

respond to strong localized events that remind the inter-
mittently distributed downward spikes observed in LWC
measurements during FIRE and ASTEX programs [32,
33]. Some tentative interpretation of these downspikes as
probable dry air entrained from cloud top and carried
by penetrating downdrafts has been proposed by Davis
et al. [32]. As seen in Figure 16a, when using a third-
order radially symmetric analyzing wavelet which is less
sensitive to the smooth envelop contribution of the convec-
tive patterns, one discovers that these localized downward
spikes (�) are not systematically located along the edges
of the convective rolls but can also be found as isolated
localized structures. There is no doubt that these rather
rare anomalously strong singularities should not disturb
too much the scaling behavior of the partition functions
Z(q, a) and h(q, a) in Figures 6a and 7a for small val-
ues of |q|. Because they correspond to isolated singular-
ities, the corresponding number of maxima lines in the
WT skeleton is constant across scales as compared to the
high rate of proliferation N(a) ∼ a−2 of the maxima lines
associated to the most frequently observed Hölder expo-
nent, namely h(q = 0) = 0.37 ± 0.02. But as soon as
one increases q & 3, the statistical contribution of these
anomalous maxima lines becomes less and less negligible
as compared to the set of maxima lines associated with
the leading singularities of Hölder exponents h ' h(q).
Therefore, one can expect to observe the signature of the
presence of these very strong singularities mainly at large
scales where their statistical contribution is likely to be-
come very quickly competitive when increasing q. This
is actually what is observed in Figures 6a and 7a where
for q = 3, one already notices some cross-over at a scale
a∗ = 2σW (' 780 m), for both Z(q, a) and h(q, a). (Note
that this cross-over scale may depend upon the shape
of the analyzing wavelet.) The fact that this cross-over
scale clearly decreases when increasing q is quite consis-
tent with the above scenario. A way to improve scaling
would thus consist in discriminating in the WT skeleton,
the maxima lines induced by those localized downward
spike like structures from those corresponding to back-
ground radiance fluctuations. As previously experienced
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in reference [101] when identifying vorticity filaments from
background pressure fluctuations in swirling turbulent
flows, such a discrimination requires some rather rigorous
operational protocol. The results reported in Figure 17b
are only specific examples of the presence of strongly local-
ized downward spike events in radiance Landsat images.
We hope to report on a more systematic study of those
intermittent events in a forthcoming publication.

4 WTMM computation of the self-similarity
kernel of radiance Landsat images

We have seen in Section 3.2, that the joint probability
distribution Pa(M,A) of the WTMMM coefficients of the
radiance Landsat images is likely to satisfy the factoriza-
tion relationship (4) that ensures the statistical indepen-
dence of the modulus and the argument of the WTMMM.
As exemplified on multifractal rough surfaces generated
with the random W-cascade model in Section 4 of pa-
per II [56], under this factorization condition, one can use
the 2D wavelet based deconvolution method [86] described
in Section 4.1 of paper II [56], to compute the so-called
self-similarity kernelGaa′ which accounts for the evolution
of the shape of Pa(M) when going from a coarse scale a′
to a smaller scale a:

Pa(M) =
∫
Gaa′(u)Pa′(e−uM)e−udu, for a′ > a. (6)

As demonstrated in paper II [56], if one notes

M(p, a) =
∫

eip lnMPa(M)dM, (7)

the characteristic function associated with the WTMMM
logarithms at scale a, then the Fourier transform Ĝ of the
kernel G can be computed from the ratio:

Ĝaa′(p) =
M(p, a)
M(p, a′)

, (8)

provided M(p, a′) do not vanish. According to the defi-
nition of continuously self-similar cascades [78,110–113],
Ĝaa′ should be of the form:

Ĝaa′(p) = Ĝ(p)s(a,a
′), (9)

where s(a, a′) accounts for the number of elementary cas-
cade steps from scale a′ to scale a (s(a) can be seen as the
number of steps from the “integral” scale L down to the
considered scale a). According to Novikov’s definition [75],
the cascade is scale-similar (or scale-invariant) if:

s(a, a′) = ln(a′/a), (10)

i.e., s(a) = ln(L/a).
In order to test the validity of equation (9), let us

first focus on the scale dependence of Ĝaa′ , as computed
with equation (8). Figures 18a and 18c respectively show

Fig. 18. Estimation of Ĝaa′(p) for 32 (1024 × 1024) radiance
Landsat images. The analyzing wavelet is the first-order radi-
ally symmetric wavelet shown in Figure 1 of paper I [46]. (a)

ln |Ĝaa′(p)| vs. p; (b) ln |Ĝaa′(p)|/ ln(a′/a) vs. p; (c) Φaa′(p) vs.
p; (d) Φaa′(p)/ ln(a′/a) vs. p. The symbols correspond to the
following pairs of scales: a = 20.5σW = 551 m, a′ = 22.5σW =
2204 m (◦); a = 21.5σW = 1102 m, a′ = 22σW = 1560 m
(•); a = 2σW = 780 m, a′ = 22σW = 1560 m (�); a =
2σW = 780 m, a′ = 22.5σW = 2204 m (�). In (b) and (d),
the solid lines correspond to the theoretical log-normal ker-
nel Ĝ(p) = exp[(imp− σ2p2/2)/ ln 2], for the parameter values
m = −0.38 ln 2 and σ2 = 0.08 ln 2.

the modulus logarithm (ln |Ĝaa′ |) and the phase (Φaa′) of
Ĝaa′ , for various pairs of scales a < a′, as computed from
the WT skeleton of the 32 (1024× 1024) radiance Land-
sat images using a first-order radially symmetric wavelet
(nψ = 1) [86]. In Figures 18b and 18d respectively, we
succeed in collapsing all different data in Figures 18a
and 18c onto a single kernel Ĝ(p) = Ĝ

1/s(a,a′)
aa′ (p), with

s(a, a′) = ln(a′/a) in good agreement with equations (9)
and (10) and the continuously scale-invariant self-similar
cascade picture. Let us point out that this collapse starts
deteriorating for |p| & 4, mainly as the consequence of
finite size effects as well as of some insufficient sampling
as previously experienced in Section 4 of paper II [56]
when analyzing synthetic rough surfaces generated by the
random W-cascade model. But there is some additional
reason here for the observed departure from general col-
lapse for |p| & 4, which is the presence of the local-
ized downward spike structures discovered in Section 3.3.
These “dirac” like isolated events are identified by the
wavelet transform microscope as very strong singularities
(h < 0) which definitely perturb the statistical scaling
properties of the background radiance fluctuations when
one increases p & 4. Nevertheless, as illustrated by a solid
line in Figures 18b and 18d, a log-normal kernel, i.e., a
parabola for ln |Ĝ(p)| and a straight line for Φ(p), provide
remarkable fits of the data in the range −4 . p . 4. As



780 The European Physical Journal B

Fig. 19. Computation of the cumulants of the self-similarity kernel Ĝ of the radiance Landsat images.  is the first-order
radially symmetric analyzing wavelet. (a) C1(a, a′) vs. ln(a′/a); (b) C2(a, a′) vs. ln(a′/a); (c) C3(a, a′) vs. ln(a′/a). The symbols
correspond to the following values of the reference scale a′ = 20.5σW = 551 m (•), 2σW = 780 m (◦), 21.5σW = 1102 m (*)

and 22σW = 1560 m (�). The solid lines correspond to linear regression fit estimates of the cumulants: c1 = −0.38 ± 0.01,
c2 = 0.08 ± 0.01 and c3 = 0.014 ± 0.005.

discussed in Section 4.2 of paper II [56], one can proceed
to a quantitative estimate of the cumulants ck of G:

Ĝ(p) = exp

( ∞∑
k=1

ck
(ip)k

k!

)
, (11)

via the computation of

C2n+1(a, a′) = (−1)n∂2n+1Φaa′/∂p
2n+1|p=0,

= c2n+1s(a, a′), (12)

and

C2n+2(a, a′) = ∂2n+2 ln |Ĝaa′ |/∂p2n+2|p=0,

= c2n+2s(a, a′), (13)

for n ≥ 0. In Figure 19 are reported the results of a lin-
ear regression fit of C1(a, a′), C2(a, a′) and C3(a, a′) when
plotted versus ln(a′/a), for different values of the refer-
ence scale a′. For both C1 and C2, one gets for the first
two cumulants, values which corroborate the parametriza-
tion of the τ(q) data in Figure 6b, namely c1 = m/ ln 2 =
−0.38± 0.01 and c2 = σ2/2 = 0.08± 0.01. Let us recall at
that point the expression that links τ(q) to the cumulants
ck (Eq. (64) in paper II [56]):

τ(q) = −
∞∑
k=1

ck
qk

k!
− 2. (14)

Note that the fact that all the data points fall on a same
straight line in both Figures 19a and 19b corroborates the
existence of scale invariant properties as long as the scale
parameter a . 22.5σW (2204 m) remains small enough as
compared to the integral scale. It is clear on Figure 19c
that scale invariance is no longer obvious on the behav-
ior of C3(a, a′) vs. ln(a′/a). As previously discussed in
section 4 of paper II [56], the computation of c3 and
higher-order cumulants requires incredibly high sampling
in order to control statistical convergence. If we try to

compare the experimental data in Figure 19c to the nu-
merical data in Figures 26c and 28c in paper II [56] for
respectively log-normal and log-Poisson synthetic rough
surfaces, one may be tempted to conclude that our esti-
mate of c3 = 0.014 ± 0.005 bring evidence for some de-
parture from the log-normal W-cascade scenario (ck = 0,
∀k ≥ 3). (Let us point out that on the contrary to c1
and c2, the estimate of c3 is quite unstable and depends
strongly on the investigated range of scales.) In order to
avoid a too hurried conclusion, let us use the convolution
equation (6) to collapse all the WTMMM pdf’s computed
at different scales in Figure 9a onto a single curve, using
either the full self-similarity kernel G with c1 = −0.38,
c2 = 0.08 and c3 = 0.014 as obtained in Figure 19, or its
log-normal approximation by fixing c3 = 0. As shown in
Figure 20,

a remarkably good collapse is obtained either way
which is not surprising since the fact that c3 may be dif-
ferent from zero is governed by the tail of Pa(M) at large
M values which, as seen in Figure 20a, is rather noisy be-
cause of insufficient sampling. This means that one must
not be abused by the strikingly good collapse of the tails
of Pa(M) in Figure 20c, which looks more spectacular, be-
cause of the smoothing effect of the self-similarity kernel
in the convolution equation (6), than expected as regards
to the highly fluctuating tails observed in Figure 20a for
551 m ≤ a ≤ 2204 m. The WTMM computation of the
self-similarity kernel of the radiance Landsat images of
marine Sc clouds therefore confirms the existence of an
underlying scale-invariant self-similar cascade structure;
but with the available set of experimental data, there is
no way to discriminate between various phenomenological
cascade models recently proposed to account for intermit-
tency and their log-normal approximations.

Remark

Let us note that the estimate of the intermittency pa-
rameter from the computation of the second cumulant of
G, namely c2 = σ2/ ln 2 = 0.08, is slightly larger than
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Fig. 20. Pdf’s of M as computed at different scales a = 20.5σW = 551 m (◦), 2σW = 780 m (. . . ), 21.5σW = 1102 m
( ), 22σW = 1560 m ( ) and 22.5σW = 2204 m ( ).  is the first-order radially symmetric analyzing wavelet. Same
computations as in Figure 9a. (a) lnPa(M) vs. M. (b) lnPa(M) vs. M; same data as in (a) but after being transformed
according to equation (6) with a Gaussian kernel build from the first two cumulants estimated in Figures 19a and 19b, namely
c1 = −0.38 and c2 = 0.08. (c) Same pdf’s as in (a) but after being transformed with a kernel build from the first three cumulants
estimated in Figure 19, namely c1 = −0.38, c2 = 0.08 and c3 = 0.014.

Fig. 21. Computation of the cumulants of the self-similarity kernel Ĝ of the radiance Landsat images.  is the third-order
radially symmetric analyzing wavelet. (a) C1(a, a′) vs. ln(a′/a); (b) C2(a, a′) vs. ln(a′/a); (c) C3(a, a′) vs. ln(a′/a). The symbols
correspond to the following values of the reference scale a′ = σW = 390 m (•), 20.5σW = 551 m (◦), 2σW = 780 m (*),

21.5σW = 1102 m (�) and 22σW = 1560 m (�). The solid lines correspond to linear regression fit estimates of the cumulants:
c1 = −0.37± 0.01, c2 = 0.055 ± 0.01 and c3 = 0.012 ± 0.005.

the value obtained from the best parabolic fit of the τ(q)
data in Figure 6b, namely σ2/ ln 2 = 0.07. This difference
is actually significative of the degree of accuracy of our
numerical estimate: σ2/ ln 2 = 0.075± 0.010.

The above conclusion is indeed corroborated by the
results of similar studies carried out with higher-order
analyzing wavelets. In Figure 21 are plotted C1(a, a′),
C2(a, a′) and C3(a, a′) versus ln(a′/a), as computed with
a third-order radially symmetric analyzing wavelet. The
data still indicate the existence of scale invariance; all
the points corresponding to values of a and a′ in the
range [σW, 22.5σW] ([390 m,2204 m]), fall again on a same
straight line. From linear regression fit of the data in Fig-
ures 21a and 21b, one gets the following estimates for
the first two cumulants: c1 = −0.37 ± 0.01 and c2 =
0.055± 0.010, which are in good agreement with the val-
ues obtained in Figure 7d from the parametrization of the
D(h) data. We thus confirm the slight difference previ-
ously observed in the WTMM estimates (Figs. 7c and 7d)

of the intermittency exponent c2 = σ2/ ln 2 when using an-
alyzing wavelets of different orders. As already pointed out
when comparing the distributions obtained in Figures 14
and 15 with respectively a first-order and a third-order an-
alyzing wavelet, this difference shows that the requirement
of statistical convergence is more and more demanding
when further increasing the order of the analyzing wavelet.
As far as the estimate of the third cumulant in Figure 21c,
the spreading of the data points about some hypothetic
increasing straight line makes us very cautious as regard
to this very poor evidence of statistical convergence. The
result of the linear regression fit c3 = 0.012 ± 0.005 is
just given for comparison with the previous estimate in
Figure 19c.

Remark

Let us mention that we have performed similar computa-
tions of the self-similarity kernel for the 32 (1024× 1024)
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images of the marine Sc optical depth as reconstructed
from the radiance data using DISORT routines [63] (see
Fig. 2b). The results so obtained are quite indistinguish-
able from those reported in Figures 18, 19, 20 and 21 for
the radiance field. This is not such a surprise after the re-
markable agreement found in Figure 8 for the respective
τ(q) and D(h) spectra.

5 Space-scale correlation function analysis
of radiance Landsat images

As pointed out in previous works [113–116], the real
demonstration of the existence of an underlying multi-
plicative structure consists in taking advantage of the
space-scale unfolding provided by the continuous wavelet
transform, to compute the cross-scale correlation func-
tions. This “two-point” statistical analysis amounts to
compute the correlations of the logarithms of the ampli-
tude of a space-scale decomposition of the signal. The so-
called magnitude of the function f at the point x and scale
a can be defined using the wavelet transform skeleton:

ω(x, a) = ln
(
Mψ[f ]

(
Lx(a)

))
, (15)

where Lx(a) is a maxima line that points to the points x
in the limit a→ 0. As originally defined in reference [114]
for 1D signals and generalized in 2D in Section 5.1 of pa-
per II [56], one can use an alternative definition which is
based on the continuous wavelet transform and which does
not require the computation of the WTMMM:

ω(x, a) =
1
2

ln ε2(x, a), (16)

where

ε2(x, a) = a−4

∫
χ((x− y)/a)|Tψ[f ](y, a)|2d2y. (17)

This means that instead of working with the WTMMM,
one works with some average of |Tψ|2 over some inter-
val centered at x and of size a (χ(x) is a bump function
such that ||χ||1 = 1). As defined in equation (68) of pa-
per II [56], the space-scale magnitude correlations consist
in computing:

C(x1,x2; a1, a2) = 〈ω̃(x1, a1)ω̃(x2, a2)〉, (18)

where 〈. . . 〉 stands for ensemble average and ω̃ for the
centered process ω − 〈ω〉.

As documented in references [113,114] and Section 5
of paper II [56], a scale invariant multiplicative process
can be revealed by a characteristic scale independent slow
decay of its space-scale magnitude correlation functions:

C(∆x = |∆x|, a1, a2) ∼ σ2 log2

(
L

∆x

)
,

when sup(a1, a2) ≤ ∆x < L, (19)

Fig. 22. Magnitude correlation function C(∆x, a1, a2) vs.
log2(∆x), as computed from the 32 (1024 × 1024) radi-
ance Landsat images using a first-order radially symmet-
ric analyzing wavelet. (a) WTMMM magnitude: ω(x, a) =
ln[M [f ](Lx(a))] (Eq. (15)). (b) Continuous WT magnitude:
ω(x, a) = 1

2
ln ε2(x, a) (Eq. (16)). The symbols have the follow-

ing meaning: a1 = a2 = 2σW = 780 m (◦); a1 = σW = 390 m,
a2 = 2σW = 780 m (4); a1 = σW = 390 m, a2 = 4σW =
1560 m (�); a1 = 2σW = 780 m, a2 = σW = 1560 m (�).
The solid (dashed) lines correspond to the theoretical predic-
tion (Eq. (20)) for multifractal rough surfaces generated with
the random W-cascade model with parameters σ2 = 0.08 ln 2
(0.16 ln 2) and L = 220 pixels = 6.6 km.

after some averaging over all the pairs of points sep-
arated by a spatial distance ∆x. In Figure 22 are re-
ported the results of the computation of C(∆x, a1, a2)
when averaging over the 32 (1024× 1024) radiance Land-
sat images, using either the WTMMM (Fig. 22a) or the
continuous WT (Fig. 22b) definition of the magnitude
of f (Eqs. (15, 16) respectively). One can see that, for
∆x > sup(a1, a2), all the data points fall, in good ap-
proximation, onto a unique curve when plotted versus
log2(∆x), independently of the considered pair of scales
(a1, a2). Moreover, a straight line of slope −σ2 = −0.012
provides a rather reasonable fit of the data up to a sepa-
ration distance ∆x ' 27 pixels ' 3.8 km, where decorre-
lation seems to be attained. Note that the fact of using
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the WTMMM instead of the continuous WT does not
make any difference; this is a strong indication of the
existence of some ultrametric properties underlying the
branching structure of the space-scale wavelet representa-
tion of the radiance fluctuations. On the top of the data in
both Figures 22a and 22b, we have shown, for comparison,
the theoretical prediction for the “two-scale” correlation
function of multifractal rough surfaces generated by the
random W-cascade model (Eq. (76) in paper II [56]):

C(∆x, a1, a2) = σ2

(
log2

(
L

∆x

)
− 2 + 2

∆x

L

)
,

when sup(a1, a2) ≤ ∆x < L. (20)

This formula provides a reasonable fit of the data when
adjusting the model parameters to σ2 = 0.16 ln 2 and
L = 220 pixels = 6.6 km. While the estimate of the
integral scale seems to be of the right order of magnitude
as regard to the characteristic width (λ ∼ 5−6 km) of the
convective rolls, the value obtained for the intermittency
parameter σ2 is about twice bigger than previous esti-
mates derived from the WTMM computation of the τ(q)
and D(h) multifractal spectra in Figures 6 and 7 and of
the self-similarity kernel in Figure 19. At this point, let us
emphasize that a similar discrepancy has been previously
noticed in the WTMM analysis of wind tunnel turbulent
velocity fields [114,116]. It may suggest that simple scale-
invariant self-similar cascades as pictured by the random
W-cascade model are not sophisticated enough to account
for the space-scale structure of the radiance fluctuations
in marine Sc clouds. The interpretation of this feature in
terms of correlations between weights at a given cascade
step or in terms of a more complex geometry of the tree un-
derlying the multiplicative structure of the radiance field
is under progress. The possible importance of the intermit-
tently distributed localized downward spike structures is
also under consideration. Before drawing definite conclu-
sions, there is clearly a need to repeat the “two-point” cor-
relation function analysis on the background radiance fluc-
tuations, once all the maxima lines corresponding to those
Dirac like singularities be removed from the WT skeleton.
As a test of the robustness of the above results, we show
in Figure 23 the results of a similar analysis when using a
higher-order analyzing wavelet. Whatever the shape of the
analyzing wavelet, one still gets very strong evidence for
some scale-invariant ultrametric structure underlying the
intermittent nature of the marine Sc radiance data. Let
us point out that similar convincing results are obtained
when analyzing the optical depth reconstructed data.

6 Discussion

To summarize, we have reported the results of the ex-
perimental application of the 2D WTMM method, intro-
duced in paper I [46] and numerically tested on synthetic
multifractal rough surfaces in paper II [56], to radiance
Landsat images of marine Sc clouds collected during FIRE
program. The computation of the τ(q) and D(h) spectra

Fig. 23. Magnitude correlation function C(∆x, a1, a2) vs.
log2(∆x), as computed from the 32 (1024 × 1024) ra-
diance Landsat images using a third-order radially sym-
metric analyzing wavelet. WTMMM magnitude: ω(x, a) =
ln[M [f ](Lx(a))] (Eq. (15)). The symbols have the same
meaning as in Figure 22. The solid (dashed) lines correspond
to the theoretical prediction (Eq. (20)) for multifractal rough
surfaces generated with the random W-cascade model with
parameters σ2 = 0.06 ln 2 (0.12 ln 2) and L = 220 pixels =
6.6 km.

have definitely quantified the multifractal scaling proper-
ties of both the radiance and the optical depth (computed
using DISORT routines [63]) fields. Besides the presence
of rather isolated localized downward spike events, the in-
ternal cloud structure is clearly intermittent and displays
rather convincing isotropic scaling over a range of scale
that extend from our WT microscope resolution (σW = 13
pixels = 390 m) up to L/2, where L ∼ 5−6 km is some
integral scale which is apparently dictated by the aver-
age characteristic width of the convective rolls that modu-
late the amplitude of radiance fluctuations. The additional
computation of the self-similarity kernel and of the “space-
scale” correlation functions further confirms the existence
of some ultrametric space-scale organization that can
be understood in terms of a continuous scale-invariant
self-similar log-normal multiplicative process [86].

Let us point out that a similar 1D WTMM analy-
sis of the velocity fluctuations in high Reynolds number
turbulence has come to conclusions very close to those
of the present study [111,112,114,116,117]. Besides the
presence of rather localized Dirac like structures that wit-
ness to the probing of vorticity filaments [91,92,100–102],
the multifractal nature of turbulent velocity is likely to
be understood in terms of a log-normal cascading pro-
cess which is expected to be scale-invariant in the limit
of very high Reynolds numbers [116,117]. In Figure 24
are shown for comparison the results obtained in Figure 7
for the D(h) singularity spectrum of the radiance Land-
sat images together with the D(h) data extracted from
the 1D analysis of a turbulent velocity signal recorded
at the Modane wind tunnel (Rλ ' 2000) [112,116] (in-
deed D(h) + 1 is represented for the latter in order to
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Fig. 24. D(h) singularity spectrum of the radiance Land-
sat images as computed with the 2D WTMM method us-
ing a first-order (a) or a third-order (b) radially symmetric
analyzing wavelet. Same computations as in Figures 7c and
7d respectively. The solid lines correspond to the log-normal
quadratic spectrum with m = −0.38 ln 2, σ2 = 0.08 ln 2 (a)
and m = −0.366 ln 2, σ2 = 0.06 ln 2 (b). The D(h) singularity
spectrum of velocity (dotted lines) and temperature (dashed
lines) fluctuations in fully developed turbulence are shown for
comparison.

compare 1D to 2D data). The turbulent velocity D(h)
spectrum significantly differs from the results obtained for
the marine Sc cloud. They have a common feature, i.e.,
the Hölder exponent the most frequently encountered in
the radiance field h = m/ ln 2 = h(q = 0) = ∂τ/∂q|q=0 =
0.38 ± 0.01 is indistinguishable from the corresponding
exponent h = h(q = 0) = 0.39 ± 0.01 found for the
turbulent velocity field. Note that these values are sig-
nificantly larger than the theoretical value h = 1/3 pre-
dicted by Kolmogorov in 1941 [118] to account for the
observed k−5/3 power-spectrum behavior. The main dif-
ference comes from the intermittency parameter which
is much stronger for the cloud, σ2/ ln 2 = 0.08 ± 0.01
(nψ = 1) or σ2/ ln 2 = 0.06 ± 0.01 (nψ = 3) than for
the turbulent velocity, σ2/ ln 2 = 0.036 ± 0.004. This is
the signature that the radiance field is much more in-
termittent than the velocity field: the D(h) singularity
spectrum for the former is unambiguously wider than the
corresponding spectrum for the later. (Let us recall that
insufficient sampling is probably at the origin of the under-
estimation of the intermittency parameter c2 = σ2/ ln 2
when using a third-order analyzing wavelet. This means
that one must not pay too much attention to the decreas-
ing right-hand part of the D(h) cloud data in Fig. 24b.)
For the sake of comparison, we have also reported in
Figure 24, the multifractal D(h) spectrum of the tem-
perature fluctuations recorded in a Rλ = 400 turbulent
flow [119]. The corresponding single humped curve is def-
initely much wider than the velocity D(h) spectrum and
it is rather close to the data corresponding to the marine
Sc radiance field. It is well recognized however that liq-
uid water is not really passive and that its identification
with a passive component in atmospheric dynamics offers
limited insight into cloud structure since, by definition,
near-saturation conditions prevail and latent heat produc-
tion affects buoyancy [41]. So cloud microphysical pro-

cesses are expected to interact with the circulation at
some, if not all, scales [120]. Nevertheless, our results in
Figure 24 tell us that from a multifractal point of view, the
intermittency captured by the Landsat satellite looks sta-
tistically equivalent to the intermittency of a passive scalar
in fully-developed 3D turbulence. The fact that the inter-
nal structure of Sc cloud somehow reflects some statistical
properties of atmospheric turbulence is not such a surprise
in this highly turbulent environment. The investigation of
different sets of Landsat data is urgently required in or-
der to test the degree of generality of the results reported
in this first WTMM analysis of high-resolution satellite
images. In particular, one may wonder up to which ex-
tend the marine Sc Landsat data collected off the coast
of San Diego on July 7, 1987 under specific observation
conditions, actually reflect the specific internal structure
of Sc clouds. Work in this direction is currently in progress
and we hope to be able to answer this rather fundamental
question in a forthcoming publication.

Finally, with respect to the issue of cloud modeling,
it comes out quite naturally from the WTMM analysis of
marine Sc Landsat data, that the 2D random W-cascade
models introduced in Section 2.2 of paper II [56], are much
more realistic hierarchical models than commonly used
multifractal models like the fractionally integrated singu-
lar cascade [49–51,54,83] or the bounded cascade mod-
els [84,85]. We are quite optimistic in view of using the log-
normalW-cascade models with realistic parameter values
for radiation transfer simulations. To our opinion, random
W-cascade models are a real breakthrough, not only for
the general purpose of image synthesis, but more specif-
ically for cloud modeling. It is likely that better cloud
modeling will make further progress in our understanding
of cloud-radiation interaction possible.
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3515 (1991).
60. J.F. Muzy, E. Bacry, A. Arnéodo, Phys. Rev. E 47, 875
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91. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy,
Ondelettes, Multifractales et Turbulences: de l’ADN aux
croissances cristallines (Diderot Éditeur, Art et Sciences,
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100. E. Bacry, A. Arnéodo, U. Frisch, Y. Gagne, E.

Hopfinger, in Turbulence and Coherent Structures, edited
by M. Lesieur, O. Metais (Kluwer, Dordrecht, 1991),
p. 203.

101. S.G. Roux, J.F. Muzy, A. Arnéodo, Eur. Phys. J. B 8,
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112. A. Arnéodo, S. Manneville, J.F. Muzy, Eur. Phys. J. B

1, 129 (1998).
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