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ABSTRACT
We examine the underlying structure of high resolution temporal rainfall by comparing the ob-

served series with surrogate series generated by a invertible nonlinear transformation of a linear
process. We document that the scaling properties and long range magnitude correlations of high
resolution temporal rainfall series are inconsistent with an inherently linear model, but are consis-
tent with the nonlinear structure of a multiplicative cascade model. This is in contrast to current
studies that have reported for spatial rainfall a lack of evidence for a nonlinear underlying structure.
The proposed analysis methodologies, which consider two-point correlation statistics and also do
not rely on higher order statistical moments, are shown to provide increased discriminatory power
as compared to standard moment-based analysis.
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1 Introduction

Empirical evidence has repeatedly demonstrated that both temporal and spatial rainfall fields ex-
hibit multiscaling (or multifractal) behavior, by which it is meant that the statistical moments of
the fluctuations of rainfall have a power-law dependence on scale, with the power-law exponents
varying as a non-linear function of moment order [e.g. Lovejoy and Mandelbrot, 1985; Schertzer
and Lovejoy, 1987; Gupta and Waymire, 1990; Veneziano et al. 1996; Deidda et al., 1999; Venu-
gopal et al., 2006]. One question that is raised by these findings is what type of stochastic model
could reproduce the observed statistics. The presence of multiscaling has often been associated
with an underlying multiplicative cascade as the model to generate rainfall or another preserved
quantity related to rainfall [Lovejoy and Schertzer, 1991; Gupta and Waymire, 1993; Deidda et
al., 1999; among others]. However, in a recent study Ferraris et al. [2003] concluded that the
observed scaling statistics of spatial rainfall could be reproduced by a linear model that was sub-
jected to an invertible nonlinear transformation, as opposed to an inherently nonlinear model. The
question of underlying nonlinearity of an observed series can be approached through the use of
surrogate series, first introduced by Theiler et al. [1992] for hypothesis testing in nonlinear time
series analysis [see also Basu and Foufoula-Georgiou, 2002]. To test for inherent nonlinearity in
this framework, one stochastically generates a number of synthetic sequences that retain as many
of the properties of the original data as possible but are derived from a linear model. Here the
retained properties are the probability density function (pdf) and the linear correlation structure
(or power spectrum) of the original series. Although the surrogates from a linear Gaussian model
would have a Gaussian pdf, the original pdf is reconstructed by applying an invertible nonlinear
transform as the final step in the surrogate generation process. This is what is meant by inherent
or underlying linearity of a series: that even if there is nonlinearity present it is the result of an
invertible nonlinear transform of a linear process. Finally, by comparing (with any pertinent test)
the original series with the ensemble of the surrogate series, the presence of inherent nonlinearity
and as the need for a nonlinear model can be concluded.

In the aforementioned study, Ferraris et al. [2003] found that the (multi)scaling statistical prop-
erties of spatial rainfall (using two-dimensional spatial rainfall fields from the GATE campaign)
could not be distinguished from those of their surrogates. The metrics used to examine the scaling
properties and test for nonlinearity were based on the log-log linear slopes of the statistical mo-
ments up to eighth order. As a result they concluded that a meta-Gaussian model (i.e. an invertible
transform of a linear Gaussian model) would be adequate to reproduce the spatial structure of rain-
fall. A nonlinear transform of a linear underlying model (an exponentiation of a Langevin model)
has been found also to adequately preserve the scaling properties of spatial rainfall by Sapozhnikov
and Foufoula-Georgiou [2007].
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In this paper we provide evidence that a model with linear underlying dynamics subjected to
an invertible nonlinear transformation is not consistent with high-resolution temporal rainfall ob-
servations. This is shown through the examination of one- and two-point magnitude coefficient
analysis, extensively used in turbulence and recently introduced for the analysis of scaling prop-
erties in rainfall [Venugopal et al. 2006 and references therein]. We conclude that a nonlinear
model with long-range (power-law decaying) dependencies would be more consistent with the ob-
servations, such as a multiplicative cascade model, which has frequently been used as a stochastic
model of rainfall [e.g. Schertzer and Lovejoy, 1987; Rebora et al., 2006; Gupta and Waymire,
1993; Carsteanu and Foufoula-Georgiou, 1996; Deidda et al., 1999].

The structure of this paper is as follows: in the following section we briefly outline the rainfall
data used in this study; in section 3 the surrogate data series are introduced and the surrogate
generation process is described; in section 4 the data analysis methods are presented with emphasis
on the new methodologies based on magnitude cumulant analysis. The results of the analysis are
presented in section 5, and conclusions drawn in section 6.

2 Rainfall observations

The high resolution temporal rainfall series analyzed here was collected during a storm on the 3rd
of May, 1990, at the Iowa Institute of Hydraulic Research, University of Iowa. The instrumentation
and the meteorological conditions are reported inGeorgakakos et al. [1994]. The sampling interval
of the data is 5s, and the duration approximately 9hr. The rainfall data is shown in Figure 1a. It can
be seen with the naked eye that the intensity is quite variable, with a mean of 2.7 mm/hr but a peak
above 10 mm/hr. The scaling properties of this rainfall time series were previously analyzed by
Venugopal et al. [2006], in which the presence of multiscaling was documented within a range of
scales between approximately 4 minutes and 1 hour. Note that the upper limit of this scaling range
is much less than the storm duration (9 hrs) but is of the order of the duration of the storm pulses
(1-2 hr), which can be identified in Figure 1a. Within this range of scaling, the series was found
to show significant intermittency and deviation from monoscaling, as well as having long-range
dependencies in the fluctuations, and to be consistent with a lognormal cascade model.

3 Surrogates

To investigate which type of model is consistent with the observed statistical structure of the rain-
fall data, and specifically to test the null hypothesis of inherent linearity with an invertible non-
linear transformation, we employ the so-called surrogate series [Schreiber and Schmitz 1996].The
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surrogates series {sn} is assumed to be generated by a process of the form

sn = S(xn), xn =
M∑

i=1

aixn−i +
N∑

i=0

biηn−i, (1)

where S could be any invertible nonlinear function, {xn} is the underlying linear process, {an}
and {bn} are constant coefficients, and {ηn} is white Gaussian noise.

Hypothesis testing is typically performed by evaluating some test statistic, or measure of non-
linearity, for both the original series and an ensemble of surrogate series. The results for the
ensemble of surrogates provide the distribution of the test statistic that would be produced by an
inherently linear process. This allows the establishment of confidence intervals for the rejection
of the null hypothesis based on the value of the test statistic computed from the original series.
To generate surrogates that maintain the pdf and correlation structure (and hence power spectrum)
of the original data, we use the surrogate generation method proposed by Schreiber and Schmitz
[1996], known as the iterative amplitude adjusted Fourier transform (IAAFT) method. This is a
modification of the earlier amplitude adjusted Fourier transform (AAFT) method [Theiler et al.
1992], that iteratively adjusts both pdf and linear correlation structure to minimize their deviation
from the original series. The generation process proceeds in the following way:

1. Randomly shuffle the data points of the original series {rn} to destroy any correlation or non-
linear relationships, while keeping the pdf unchanged. The reshuffled series is the starting
point for the iteration {s(0)

n }.

2. Take the Fourier transform of the current series {s(i)
n }, and adjust the amplitudes to recre-

ate the power spectrum of the original data. Keep the phases unchanged. Perform inverse
Fourier transform.

3. The pdf will no longer be correct. Transform the data to the correct pdf by rank ordering and
replacing each value with the value in the original series ({rn}) with the same rank. This
gives the updated series {s(i+1)

n }.

4. Repeat steps 2 and 3 until the discrepancy in the power spectrum is below a threshold, or the
sequence stops changing (reaches a fixed point).

In this manner a surrogate data series can be created with an identical pdf and optimally similar
power spectrum to the original series. Any underlying nonlinear structure, which in Fourier space
would be embodied by correlations in the phase, is destroyed, since only the absolute value (or
power) of the Fourier coefficients is retained, whereas the phases are randomized by the shuffling
of the series. For a heuristic argument for the convergence of the algorithm, see Schreiber and
Schmitz [1996].
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An ensemble of 20 surrogates were generated for the rainfall data using the IAAFT method
(sufficient for a 95% significance level for a one-sided test). An example of a surrogate series for
the rainfall data examined in this study can be seen in Figure 1b. Visually there is a striking resem-
blance with the original series, but in the following sections we will document striking differences,
as inferred by some statistical tests that compare the scale dependence and long-range dependence
of the original and surrogate series.

4 Methods of Analysis

In this section we review three different wavelet-based methods of analysing the scaling properties
of a data series, with the goal of comparing the scale dependence of the rainfall data with that
of its surrogates. Firstly the method of moments, or partition function approach, which looks
directly at the scaling of the moments of the fluctuations [Parisi and Frisch, 1985; Holschneider,
1989], is summarised, and its limitations in the context of nonlinearity detection or comparison
with surrogate data are discussed. Then two alternate test statistics to examine the scale dependent
structure of the series are described: magnitude cumulant analysis [Delour et al., 2001] and two-
point magnitude correlation analysis [Arneodo et al., 1998a, 1998b], which examine the one- and
two-point statistics, respectively, of the magnitude coefficients of the rainfall fluctuations. Both
of these were first developed for the analysis of fluid turbulence and have recently been applied
to temporal rainfall series by Venugopal et al. [2006]. For completeness, brief summaries of the
methods are presented here, but for a more in-depth discussion, readers are referred to Venugopal
et al. [2006] and references therein.

4.1 Method of Moments

The original multifractal formalism was developed for measures in the context of dynamical sys-
tems (e.g., Collet et al., 1997; Halsey et al., 1986], with a generalization for functions provided
by Muzy et al. [1991, 1994]. While a multifractal sequence is often described by the spectrum
of singularities [Bacry et al., 1993], in this work we focus on the alternate description, consisting
of the scaling exponents of the statistical moments (these two descriptions are equivalent and re-
lated by a Legendre transform [Parisi and Frisch, 1985; Arneodo et al., 1995]). More explicitly,
the scale-dependence of fluctuations in a time series is described by the scaling exponent function
τ(q), since for a scaling process

Z(q, a) ∼ aτ(q), (2)
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where Z(q, a) is the statistical moment of order q, estimated from the observations as

Z(q, a) =
1

N(a)

N(a)∑

x

|T (x, a)|q. (3)

T (x, a) are the so-called multi-resolution coefficients that capture the fluctuations in the time series
at the scale a, and N(a) is the total number of observations at that scale. The simplest choice for
multiresolution coefficients T (x, a) is to take first order increments, giving rise to what are known
as structure functions [Parisi and Frisch, 1985]. However, working with first order increments has
several limitations: they cannot detect singularities of order greater than 1, and they do not re-
move higher order non-stationary trends (first order increments remove only constant-level trends)
[Arneodo et al., 1995]. An alternative approach that avoids these limitations is to define T (x, a)

as the wavelet coefficients generated by the continuous wavelet transform (CWT), using wavelets
of increasing-order vanishing moments, as shown by Bacry et al. [1993] and Muzy et al. [1991,
1994].

The continuous wavelet transform of a function f(x) can be defined as:

Tψ(x, a) =
1

a

∫
f(x′)ψ

(
x′ − x

a

)
dx′, a > 0, x ∈ R, (4)

where a is the scale parameter, x is the location, and ψ defines a family of wavelets. For a general
background on wavelets, seeMeyer, [1992]; Daubechies, [1992];Mallat, [1998]. For our analysis,
we use as wavelets (apart from a normalizing constant) the successive derivatives of a Gaussian
function g(N)(x) = dN

dxN e−x2/2, which have N vanishing moments (
∫ +∞
−∞ xqg(N)(x)dx = 0, 0 ≤

q < N), thus satisfying our need to remove higher order nonstationarities (polynomials trends)
from the data, if such are present. These derivatives of a Gaussian have been used extensively to
study the behavior of fractal functions [e.g. Muzy et al., 1994; Arneodo et al., 1995].

The wavelet-based multifractal analysis thus consists of estimating the statistical moments
Z(q, a) using the wavelet coefficients Tψ(x, a) as the multiresolution coefficients, T (x, a), in equa-
tion (3). Finally the scaling exponents τ(q) are estimated from equation (2). It is reminded that
a linear τ(q) indicates monoscaling and a nonlinear τ(q) indicates multiscaling. Note that in this
work, we focus on the estimate of τ(q) for q > 0 only. This explains that we do not use the more
sophisticated wavelet transform modulus maxima method (WTMM) ([Muzy et al., 1991, 1994;
Arneodo et al, 1985]) which was shown to be well suited to compute τ(q) for both positive and
negative values of q. We have checked ([Venugopal et al, 2006]) that the results reported here for
q > 0 are consistent with the ones obtained with the WTMMmethod.

In the context of testing the consistency of a data set with a linear model (possibly with a
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subsequent invertible nonlinear transform) versus a nonlinear one, comparison is often performed
between the τ(q) curve estimated from the observed data series with that estimated from the surro-
gates. Note that this was essentially the approach of Ferraris et al [2003] (although their multires-
olution coefficients were not wavelet-based). There are two potential drawbacks of this approach.
The first is the need to estimate higher-order moments from the data in order to accurately define
the shape of the τ(q) curve. The use of higher-order moments is problematic not only for sta-
tistical reasons (a large number of data points is needed for accurate estimation), but also by the
inherent degeneracy of higher moments (greater than a critical order value q⋆) due to the so-called
multifractal phase transistion. This could be due to the fact that the observed multifractal field is
actually the result of an integral over an underlying cascade process [Schertzer and Lovejoy,1992
], or simply due to the inherent property of a multiplicative cascade to produce only a limited range
of singularity strengths [Lashermes et al., 2004; Lashermes, 2005]. Specifically, Venugopal et al.
[2006] found that for the temporal rainfall observations examined here, q⋆ was approximately 3,
and that while the τ(q) curve was well-estimated for q < 3, it degenerated to a linear curve for
moment-order greater than 3, due to the inherent multifractality of the field (specifically the limits
on singularity strength), rather than any limitation of sample size.

The second drawback of using the method of moments for nonlinearity detection is simply that
there is no clear test statistic for comparing the two τ(q) curves (for observations and surrogates),
given that these curves have confidence intervals that vary with moment order. This problem is
exacerbated by the first drawback mentioned above, i.e., the inability to accurately estimate τ(q)
for higher order moments.

There is an alternate approach, however, for examining the scaling properties of a data set,
which avoids the reliance on higher order moments and parameterizes the τ(q) curve with a only
few parameters. This approach is known as the magnitude cumulant analysis [Delour et al., 2001],
and we propose here that it can form the basis for a more powerful test for detetermining the
compatibility of a series with the linear model.

4.2 Magnitude Cumulant Method

Let X be a random variable, P(x) its probability density function, ΦP(k), its moment generating
function (i.e., the Fourier transform of P(x)), andMn its nth-order moment. Mn can be estimated
as the nth-derivative of ΦP(k) at k = 0. The cumulant generating function of a random variable
is defined as ΨP(k) = ln ΦP(k), and the cumulants Cn of X (similar to the moments) can be
estimated as the nth-derivative of ΨP(k) at k = 0. The moments and cumulants of X can in turn
be related as:

C1 = M1,
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C2 = M2 − M2
1 ,

C3 = M3 − 3M2M1 + 2M3
1 ,

C4 = M4 − 4M3M1 − 3M2
2 + 12M2M

2
1 − 6M4

1 .

· · · (5)

Consider the qth-order moment of the modulus of the wavelet coefficients, |Tψ(x, a)|, as defined
in Eqn. (3). Retaining only the dependence on scale a for the sake of brevity and rewriting the
coefficients as |Ta|, it can be shown [Delour et al. 2001] that:

−Df ln(a) +
∞∑

n=1

Cn(a)
qn

n!
∼ τ(q) ln(a), (6)

where Df is the fractal dimension of the support of singularities, and Cn(a) are the cumulants of
the so-called magnitude coefficients, ln |Ta| , i.e.,

C1(a) ≡ ⟨ln |Ta|⟩ ∼ c1 ln(a),

C2(a) ≡ ⟨ln2 |Ta|⟩ − ⟨ln |Ta|⟩2 ∼ −c2 ln(a),

C3(a) ≡ ⟨ln3 |Ta|⟩ − 3⟨ln2 |Ta|⟩⟨ln |Ta|⟩ + ⟨ln |Ta|⟩3 ∼ c3 ln(a),

· · · (7)

It is then easy to see from equations (6) and (7) that:

τ(q) = −Df
q0

0!
+

∞∑

n=1

[
Cn(a)

ln(a)

]
qn

n!

= −c0 + c1q − c2q
2/2! + c3q

3/3! · · · (8)

where the coefficients cn > 0 are estimated as the slope of Cn(a) vs. ln(a) (n = 1, 2, 3 · · ·), and
c0 = Df (see also Venugopal et al. [2006] for the proof).

Thus having access to the coefficients cn (from linear-log regression of the cumulants of ln |Ta|
versus scale), one can estimate the functional form for τ(q). For instance, if cn = 0, n ≥ 2,
then the given function is a monofractal, since τ(q) is linear. A quadratic estimate for τ(q), on
the other hand, which signifies a multifractal, will require two regression fits to estimate c1, and
c2. For the temporal rainfall data it was previously found [Venugopal et al., 2006] that cn = 0

for n > 2, and as such a quadratic τ(q) was sufficient, and only two parameters were required.
Thus, in relation to the standard structure function or wavelet-based multifractal formalism based
on the method of moments, the cumulant-based estimation of the multifractal attributes could be
considered more efficient, as it requires fewer regression fits to determine the shape of the spectrum
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of scaling exponents. More pertinently, it does not require the use of higher order moments and
produces (for rainfall) just two relevant parameters, c1 and c2, whose distribution can be found for
the surrogate data series and compared to the values for the original series. This method of course
requires the convergence of at least the 2nd order cumulant. Note that the magnitude cumulant
analysis implicitely assumes that the τ(q) spectrum does not display any nonanalyticity.

4.3 Two-point Magnitude Correlation Analysis

The analysis methods that we have presented thus far (method of moments and magnitude cumu-
lant analysis) can be categorized as one-point statistics . However, it is known that for a multifrac-
tal the one-point statistics do not provide all possible information about the underlying mechanism
that might have given rise to the multifractal: the two-point statistics will carry further information.

For example, one of the common models used to generate a multifractal field is a multiplicative
cascade [Schertzer and Lovejoy, 1987; Waymire and Gupta, 1993; Deidda et al., 1999]. It is
evident from a multiplicative cascade construction that the “parent” (large scale) would somehow
be related to the children (any small scale). Thus, examining two-point statistics will allow us to
evaluate if there exists any dependence between scales, and, if so, whether it follows any particular
behavior. The hypothesis testing with surrogates remains necessary, as it allows us to assess the
levels to which such long-term dependencies could occur through an inherently linear process,
and hence set confidence levels on any conclusions we might make about the underlying cascade
structure.

Specifically, the two-point correlation function of the magnitude coefficients (log of the wavelet
coefficients), defined [Arneodo et al. 1998a, 1998b] as:

C(a, ∆x) = ⟨ (ln |Ta(x)|− ⟨ln |Ta(x)|⟩) (ln |Ta(x + ∆x)| − ⟨ln |Ta(x)|⟩) ⟩, (9)

can provide information about the space-scale (or time-scale) structure that underlies the multi-
fractal properties of the considered signal. For example, if C(a, ∆x) is logarithmic in ∆x and
independent of scale a provided that∆x > a, i.e.,

C(a, ∆x) ∼ ln ∆x ∆x > a , (10)

then long-range dependence is inferred. For a random multiplicative cascade on a dyadic tree
Arneodo et al. [1998a, 1998b] showed that:

C(a, ∆x) ∼ −c2 ln ∆x (11)
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where the proportionality coefficient c2 is the same as the one defined in Eqn. (7)), i.e.,

C(a, ∆x = 0) ≡ C2(a) ∼ −c2 ln(a). (12)

We reiterate that the presence of multifractality does not necessarily imply either long-range de-
pendence or a multiplicative cascade structure [Arneodo et al., 1999]. For instance, one can have
scaling in C2(a), and if the (log-linear) slope is non-zero, it suggests the presence of multifrac-
tality. In addition to that, if C(a, ∆x) decreases to zero rapidly, it would suggest that there is no
long-range dependence; or, if C(a, ∆x) changes linearly with ln ∆x, then it suggests long-range
dependence. All these cases can be judged in relation to the surrogates of the data, that are known
not to have a cascade construction, and can be used to show the range of correlation that could be
produced with an underlying linear mechanism. When the slope of C(a, ∆x), vs ln a, ∆x > a, is
equal to c2 (which is the slope of C2(a) vs ln a), and also significantly different than the slope of
the inherently linear surrogates, we can infer that the underlying mechanism which gave rise to the
multifractal, is a multiplicative cascade.

Thus the two-point magnitude correlation provides a second test that is not dependent on higher
order moments, which provides a single numerical statistic that can be compared between rainfall
and its surrogates, and can provide additional information about the underlying structure of a model
that is consistent with the observations. Armed with these statistical methods of examining in detail
the multiscale statistical structure of a series, we can now begin to examine the scaling properties
of the rainfall and its surrogates.

5 Results

5.1 Application of the Method of Moments for comparison with Surrogates

The scale-dependence of the rainfall data and the twenty surrogate series, of the same length as
the data, generated by the IAAFT method described in section 3, was analyzed by the method of
moments. It was previously found [Venugopal et al., 2006] that an analyzing wavelet with N = 3

vanishing moments was required to remove the nonstationarities from the rainfall time series and
correctly estimate its scaling properties. Thus the g (3) wavelet was used for the analysis of all
data series for consistency, although using a lower order was not seen to affect the results for the
surrogate data. It can be seen in Figure 2 that the moments of the wavelet coefficients are log-log
linear, implying thus scaling-invariance for both the rainfall and surrogate data series between the
scales of approximately 4 minutes and 1 hour. Plotting the scaling exponents τ(q) for rain and its
surrogates (Figure 3) shows that although there is some difference between the scaling exponents
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for rain and the ensemble averaged values for the surrogates, the spread amongst the 20 surrogate
series is certainly large enough to encompass the observed scaling exponents of rainfall. Hence,
from the method of moments it would be difficult to reject the null hypothesis of an underlying
linear generating process. This is the same conclusion that Ferraris et al. [2003] obtained for
spatial rainfall data using the method of moments.

However, as outlined in section 4.1, the method of moments has limitations, and the cumulant
analysis methods will be shown in the next section to exhibit higher discriminatory power. Finally,
note that on average the τ(q) for the surrogate series in Figure 3 seems to be closer to a straight
line, i.e. closer to a monofractal, than the rainfall data, although still showing a slight curvature.
We will see that this tendency becomes more apparent as we consider the results from the other
tests.

5.2 Magnitude Cumulant Analysis

Similarly, the wavelet-based magnitude cumulant analysis was performed on both the rainfall and
surrogate time series. The first, second and third-order cumulants are displayed as a function of the
scale a in Figure 4. While the rainfall and surrogates have overlapping third-order cumulants with
slopes c3 ≈ 0, it can be seen that there is a clear difference in the second order cumulant, with the
mean slope being−c2 = −0.26 for rainfall and−c2 = −0.03 for the surrogates. Thus the cumulant
analysis shows an even more marked tendency for the surrogates to be closer to monoscaling, that
is, the surrogates have a more linear τ(q) and lower intermittency as measured by the parameter c2

(but still not having a c2 = 0 that would indicate a perfectly monoscaling field). Figure 5 shows
the frequency histogram for the values of c2 estimated from a realization of 20 surrogates. The
c2 value of 0.26 estimated from the rainfall observations is greater than the largest c2 of 0.08 for
the surrogates. Since the c2 of rainfall is greater than the largest value for the surrogates, this test
would allow us to clearly reject (with a 95% confidence level) the null hypothesis of an inherently
linear generating process.

Now consider the first order cumulant, which from Figure 4 is also linearly dependent on ln(a),
with a slope of c1. We have seen that the surrogates have significantly reduced c2 compared to the
rainfall series, which has a relatively high c2. But the surrogate generation is designed to preserve
the value of the power spectrum, and hence the scaling properties of the second moment of the
fluctuations, which is to say that it preserves τ(2). So if one were to start with a parabolic τ(q) (as
is the case with a lognormal cascade, and as has been observed for temporal rainfall [Venugopal et
al. 2006]), i.e., τ(q) = c1q − c2q2/2, then the surrogate operation, by design, preserves τ(2). In
other words,

2cR
1 − 2cR

2 = τR(2) = τS(2) = 2cS
1 − 2cS

2 (13)
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where the superscript R denotes the original rainfall and S the surrogates. Cancelling the factor of
2, we see cR

1 − cR
2 = cS

1 − cS
2 .

In our case the c1 of rainfall is 0.64 from the slope of the first order cumulant. If we assume that
cS
2 tends to 0, we would predict that the slope of the first order cumulant of the surrogates should
be cS

1 = cR
1 − cR

2 , or 0.64-0.26=0.38 in our case. If we take the mean cS
2 of the surrogates as 0.03

(from our analysis), we get instead cS
1 = 0.38 +0.03 = 0.41. Direct fitting of the slopes of the first

order cumulant gives cS
1 = 0.40 ± 0.4, closely matching either of these estimates.

Thus the cumulant analysis shows that the surrogates are much closer to monofractal (lower
c2) than the original rainfall series, and that the c1 is reduced to compensate for this and maintain
the original τ(2) value (and slope of the preserved power spectrum). The c2 value of rainfall being
significantly higher than the maximum c2 of the surrogate ensemble indicates that the rainfall time
series is not generated by an underlying linear Gaussian process, but has an inherently nonlinear
structure. Finally, we will see that the two-point magnitude correlation confirms this result.

5.3 Two Point Magnitude correlation

The two-point magnitude correlation analysis described in section 4.3 was performed on the rain-
fall and surrogate time series, and the resulting magnitude correlation functions C(a, ∆x) are
shown in Figure 6 as a function of the displacement ∆x. Once again there is a clear difference
between the rainfall series that shows a very gradual decay of the correlation, i.e. a long range
dependence in the magnitude coefficients, with a slope of -0.27 in the scaling range.. Recall that
Arneodo et al.[1998a, 1998b] show that a multifractal cascade process on a wavelet dyadic tree
leads to a slope of C(a, ∆x) that is given by −c2 (equation (11)), which is the same c2 estimated
by the cumulant analysis. So therefore this slope of -0.27, is consistent with the c2 of 0.26 that was
estimated in the previous section from scaling of the second order cumulant. Note that before we
use this correspondence as an argument that the underlying generation process is consistent with
a multiplicative cascade, we should check the magnitude correlation of the surrogates, to ensure
that this long-range dependencies could not have, by chance, been generated by an underlying
linear process. Observing Figure 6 however shows that the correlations in the magnitude of the
surrogates, are in general much lower than those of the rainfall, and on average have a slope in
the scaling range of just -0.02. Once again the comparison between the properties of the rainfall
and its surrogates indicate that the rainfall series have an underlying structure which significantly
differs from the linear structure of the surrogates.
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6 Discussion and Conclusion

The question as to what models give rise to statistics which are consistent with the rich multiscaling
structure of temporal and spatial rainfall observations, is a long debated one. Although it is un-
derstood that there might not exist a unique model which reproduces the statistics of the observed
data, it is still of interest to at least be able to infer some of the basic characteristics required for a
model to match the observations, such as deterministic versus stochastic and linear vs. nonlinear
dynamics. This paper focuses on whether a distinction can be made between the rainfall series
generated by a linear stochastic process subjected to an invertible nonlinear transformation, and a
rainfall series generated by an inherently nonlinear process, such as a multiplicative cascade.

Our study was motivated by the previous work of Ferraris et al. [2003], which reported that
multifractal cascades or other nonlinear stochastic processes might not be necessary to reproduce
the observed spatial rainfall statistics, and that a nonlinear filtering of a linear autoregressive pro-
cess suffices. In this paper we report distinct differences between the statistical properties of tem-
poral rainfall and a nonlinearly filtered linear process (exogenous nonlinearity), while we report
similarities between rainfall and a multiplicative cascade process (inherent nonlinearity). We at-
tribute our ability to depict differences between linear and nonlinear structures, in the more pow-
erful testing methodology we employ, based on magnitude cumulant analysis instead of method of
moments. The magnitude cumulant analysis offers two main advantages: firstly it avoids the use
of higher order moments, known to suffer from statistical convergence problems when estimated
from small samples and also to exhibit a theoretically degenerate behaviour - called a linearization
effect - in known models such as both purely multiplicative cascades [e.g. Lashermes 2008] and
fractionally integrated cascades [e.g. Schertzer et al., 1993]. Secondly, the magnitude cumulant
analysis parameterizes the multiscaling in a few parameters (c1 and c2 here) and makes statistical
inference easier [see also Basu et al., 2007]. In addition, we employ a two-point correlation anal-
ysis which adds significantly to the ability to clearly depict differences in the linear and nonlinear
dynamics. By way of comparison, we demonstrated that using only the scaling exponents directly
estimated from the statistical moments of the fluctuations, it was impossible to reject the inherent
linearity hypothesis for temporal rainfall data, just as was concluded for spatial data by Ferraris et
al. [2003].

As a concluding remark, we can note that determining the consistency of the data series with
a linear (or nonlinear) underlying structure could serve as a model diagnostic for stochastic sim-
ulation or downscaling models of rainfall. For example, the results in this paper would indicate
that for high resolution temporal rainfall the statistical structure (on the order of minutes to hours)
would not be well reproduced by a linear model, subject to any invertible transformation. Rather,
an inherently nonlinear model structure would be necessary.
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Figure 1: (a) The observed rainfall series of May 3, 1990 in Iowa city; (b) one surrogate time series
which preserves the pdf and power spectrum of the original series.
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Figure 2: Moments of the intensity of rainfall (o) and of surrogates (*) analyzed with the g (3)

wavelet. Shown are the first, second and third moments.
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Figure 3: τ(q) curve for rain (o) and surrogates (*). Error bars represent the 5% and 95% levels
for x the surrogate series.
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Figure 4: Cumulants of the rainfall intensity and of surrogates analyzed with the wavelet g (3).
Plots (a), (b) and (c), show the first, second and third cumulants respectively, for the rainfall (o)
and surrogates (⋆). The vertical lines indicate the scaling range over which parameter estimation
was performed.
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Figure 5: Histogram of c2 values estimated from the magnitude cumulant analysis of 20 surrogate
data series
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Figure 6: Two point magnitude correlation of the rainfall series (solid line) and its surrogates
(dashed curve) computed at scale a =?.
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