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Surface texture is a critical feature in the manufacture, marketing, and use of photographic paper. Raking light reveals
texture through a stark rendering of highlights and shadows. Though close-up raking light images effectively document
surface features of photographic paper, the sheer number and diversity of textures used for historic papers prohibits
efficient visual classification. This work provides evidence that automatic, computer-based classification of texture
documented with raking light is feasible by demonstrating an encouraging degree of success sorting a set of 
images made from samples of historic silver gelatin paper. Using this dataset, four university teams applied different
image-processing strategies for automatic feature extraction and degree of similarity quantification. All four approaches
successfully detected strong affinities and outliers built into the dataset. The creation and deployment of the algorithms
was carried out by the teams without prior knowledge of the distributions of similarities and outliers. These results indi-
cate that automatic classification of silver gelatin photographic paper based on close-up texture images is feasible and
should be pursued. To encourage the development of other classification schemes, the  sample ‘training’ dataset
used in this work is available to other academic researchers at http://www.PaperTextureID.org.
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. TEXTURE IN PHOTOGRAPHIC PAPER
Texture is a defining attribute of photographic paper.
Starting in the early th century, manufacturers

manipulated texture to differentiate their products
and to satisfy the esthetic and functional requirements
of photographers. Especially prior to WWII, when
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black and white silver gelatin paper was the dominant
photographic medium (Messier ), dozens of man-
ufacturers worldwide produced a wide array of sur-
faces. From this period a book of specimen prints by
the Belgian company Gevaert lists  different surfaces
made up of combinations of texture, reflectance, color,
and paper thickness (Gavaert Company of America
c.)2 . Around the same time, a sample book from
the Defender Company of Rochester New York lists
 surfaces (Defender Photo Supply Company
c.), Mimosa  (Mimosa c.), and Kodak 
(Eastman Kodak Company c.a, (b)3 . Each
listed surface was proprietary to the different manufac-
turers and each was used across their multiple brands of
paper with changes, additions, and deletions occurring
over a span of many years.

A vital factor in the evaluation of paper surface,
texture impacts the visibility of fine detail, and other
qualitative features thus providing insight into the
intent of the photographer and the envisioned purpose
of a particular print. For example, prints made for repro-
duction or documentary functions tend to be better
suited to smooth-surface papers that render detail with
sharpness and clarity, whereas more impressionistic or
expressive subjects, especially those depicting large
unmodulated masses of shadows or highlights, are best
suited for papers with rough, broadly open textures
(Eastman Kodak Company c.a, b). A result
of a careful and deliberate manufacturing process,
texture applied to silver gelatin paper is designed to be
distinct and distinguishable through processing and post-
processing procedures. Likewise manufacturer-applied
texture endures despite localized defects such as
abrasions and deterioration caused by poor handling,
storage environment, and enclosures. Given these attri-
butes, an encyclopedic collection of surface textures
could reveal vital clues about a photographic print of
unknown origin. Ultimately a method for classifying tex-
tures could provide a means to link prints to specific
photographers or to other prints of known provenance.

Previous work (Messier et al. ; Parker and
Messier ) 4established the practicality of the
image data collection procedure used in this study
and suggested that more sophisticated approaches to
automated classification could yield a highly reliable
texture matching methodology.

. MATERIALS AND METHODS

. A COLLABOARATIVE COMPETITION

As part of the Museum of Modern Art’s (MoMA)
Thomas Walther Collection project, close-up raking
light images were made from  modernist photo-
graphs within its collection. Begun in , the over-
arching research goal of the Walther project was to
advance the scholarship about dating and characteriz-
ation techniques for th-century photographic
materials and establish a new model for collaborative
research, interpretation, and inter-disciplinary dialogue
(Daffner ). Combined with the prior image classifi-
cation work cited above, the MoMA texture images
stimulated interest in developing an automated
scheme to cluster like prints based on surface texture.
Initiating a collaborative completion, an appeal was
made to university teams to develop methods for
sorting texture images. Invited teams had both signal-
processing experience and an established interest in
developing cultural heritage applications. Four univer-
sity teams joined the project. table  lists the teams
and their computational approaches described in
Section .

. TEXTURE IMAGE PREPARATION

The close-up texture images were acquired with a
microscope system assembled using an Infinity –
imager manufactured by the Lumenera Corporation
fitted with an Edmund Optics VZM i lens, as
shown in Ofigure . The imager uses an Interline
Sony ICX . megapixel color progressive scan

TABLE . TEAMS AND COMPUATIONAL METHODS

Lead institution Team members Computational method Method
classification

University of Wisconsin,
Madison (Wiscincin)

William Sethares Eigentextures Non-semantic

Tilburg University
(Tilburg)

Nanne van Noord, Laurens van der
Maaten, Eric Postma

Random-feature texton
method

Non-semantic

Ecole Normale
Superieure de Lyon
(Lyon)

Patrice Abry, Stéphane Jaffard,
Herwig Wendt, Stéphane Roux,
Nelly Pustelnik

Anisotropic wavelet
multiscale analysis

Multiscale

Worcester Polytechnic
Institute (WPI)

Andrew Klein, Christopher Brown, Anh
Hoang Do, Philip Klausmeyer

Pseudo-area-scale analysis Multiscale
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CCD sensor producing images that incorporate  ×
, . µm, square pixels. The imaged area on each
sample measured . × . cm. Raking light close-up
images were made using a fixed point illumination
source using a -in. LED line light manufactured by
Advanced Illumination placed at a ° raking angle to
the surface of the photographic paper. Each raking
light photomicrograph generated an .MB, -bit,
TIFF. Typical images are shown in Ofigure , depicting
papers manufactured by Ilford and Agfa. The image
capture technique is non-contact/non-destructive and
therefore easily adapted for use on photographic
prints of high intrinsic value. It is also relatively quick
and requires minimal specialized handling meaning
large image sets can be produced rapidly (excluding
museum registration and logistical issues, the imaging
work at MoMA on Thomas Walther collection prints
was conducted over a period of three days).

. DATASETS

Sample papers dating from  to  were
selected from a large reference collection of photo-
graphic paper. Each sample was identified by manufac-
turer, brand, date, and manufacturer-assigned surface
designation. The reference collection and the methods
used to identify the samples have been described else-
where (Messier et al. ; Connors-Rowe et al. ).5
Each of the four teams was given preliminary data-

sets composed of  sample textures with some

known matches. Using this set, the teams developed
prototype classification algorithms. Findings from this
work established basic parameters that informed the
construction of the finished datasets described below:
the orientation of the primary paper fiber direction rela-
tive to the raking light had no significant impact on
results (this finding does not exclude a priori that
photo paper textures may possess other forms of aniso-
tropy), the depicted surface area and resolution held
sufficient texture-related information to enable classifi-
cation, and the angle of illumination rendered relief
without causing large over- and underexposed passages
(and subsequent loss of data).
This preliminary work resulted in the design of a

-sample dataset of raking light images of photo-
graphic papers with known metadata including manu-
facturer, brand, date, gloss, and texture classification,
and offering varying degrees of self-similarity (the

FIG. . System for raking-light close-up image acquisition.

FIG. . Examples of raking-light close-up images. Sample
, Ilford, Plastika, Special Grained, Half Matt, expired
in , Messier Reference #  (top) and sample ,
Agfa, Brovira, B  Crystal, Lustre, expired , Messier
Reference # . The surface area of the samples measures
. × . cm.
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Appendix lists all samples used in this study). Using
only this metadata, an ‘expert observer’ knowledgeable
in the history of photographic papers and able to inter-
pret manufacturer terminology, ranked texture
affinities for each possible pairing of samples. For
example, the same textures made by the same manufac-
turer during the same time period would be expected to
have a high level of affinity where a pair of textures
identified as having a regularly patterned ‘linen’
surface compared to a smooth surface would have a
low affinity.

Thus classified, the dataset delivered to the teams for
testing was largely composed of nine ‘affinity groups’ of
ten paper samples each. Within these groups, there were
three similarity subsets: () images made from the same
sheet of paper, () images made from sheets taken from
the same manufacturer package of paper, and ()
images from papers made to the same manufacturer
specifications over a period of time. A fourth subset,
composed of  samples, was assembled without
concern for texture similarity but instead was selected
to span the range of textures associated with historic
silver gelatin paper.

Applied to this dataset, the expert observer assess-
ment reflects conventional wisdom that any raking
light photomicrograph taken from different spots on a
single sheet of paper should appear nearly identical.
Likewise, texture images from different sheets of
paper taken from the same manufacturer package
also should show strong similarity. Furthermore,
shots from papers manufactured to the same specifica-
tions but made at different times should show strong
similarity, but to a somewhat lesser degree. For the
thirty remaining samples, selected to demonstrate diver-
sity, some would appear similar to the group of  tex-
tures and some would appear to be unique. The
challenge posed to the teams was to discover the simi-
larity groupings and mismatches evident to an expert
observer.

. TECHNICAL APPROACHES

The approaches taken by the four teams can be divided
into two categories (Haralick ; Gonzalez and
Woods ) based on the approach to feature
definition: () non-semantic/Wisconsin and Tilburg
and () multiscale/Lyon and WPI. The fundamental
difference is that non-semantic features are derived
directly from a case-by-case analysis of the image
data, where the multiscale approaches are based on
fixed structural models considered relevant to the
encountered data. Accordingly, methods developed by
Wisconsin and Tilberg extract and analyze a large
number of random patches for each sample, whereas
Lyon and WPI analyze the samples sets through the
application of predetermined features. These

techniques and many of the other terms used in this
section are described in the glossary.

. UNIVERSITY OF WISCONSIN, MADISON

The Wisconsin method is based on eigentextures. In
this approach, a collection of small patches are
chosen from each photographic image. These patches
are gathered into a large matrix and then simplified to
retain only the most relevant eigendirections using a
singular value decomposition (SVD) (Moon and Stir-
ling ). The preparation stage consists of two steps:

. For each imaged paper j, randomly pickN p × p pixel
patches Xj;i [ Rp!p for i = ,,…,N (with N = 
and p =  in this case). Lexigraphically reorder the
Xj,i into column vectors a j;i [ Rp2 .

. Create matrices Aj = [aj, aj, … aj,N] consisting of the
N column vectors and calculate the SVDsAj ¼ UjSVj
for all j. Extract the m columns of Uj corresponding
to the m largest singular values and call this Uj

(with m selected as  in this case).

TheUj are the representatives of the classes and may be
thought of as vectors pointing in the most-relevant direc-
tions.During the classification stage, a number of similarly
sized patches are drawn from the tested photographic
paper. Each of these patches is compared to the represen-
tatives of the classes via a least squares procedure.

. Select Q (with Q =  used here) p × p pixel
patches Qi from the tested paper and reorder into
vectors qi [ Rp2 . Calculate the distance from the
ith patch to the jth class:

d i; jð Þ ¼ qi % U j UT
j qi

! "###
###

###
###
2

ð1Þ

Every patch is closest to one of the classes, and the
number of patches closest to the jth class is recorded.

. For each patch i, fi ¼ argminj dði; jÞ locates the smal-
lest of the d(i,j), indicating that class j is the best fit for
patch i. Tally the set of all such fi, i ¼ 1; 2; . . . ;Q.

The commonest entry among the fi is the most likely
class for this image. The second most common entry is
the next most likely class for this image, etc.

. TILBURG UNIVERSITY

The method developed by Tilberg combines random
features and textons, i.e. the random-feature texton
method. This method was developed by Liu and
Fieguth () and is an adaptation of the texton
approach (Varma and Zisserman ) using random
features. Textons are prototypical exemplar image
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patches capturing the ‘essence’ of the texture of an
image. Random-features (RFs) are random projections
of image patches with N ×N pixels to vectors with D
elements (N = , D = , D <N ×N). More specifically,
a RF is defined as a D ×N matrix, the elements of
which are sampled from the standard multivariate
normal distribution N(,).
The application of the random-feature texton

method on the  sample dataset is conducted as
follows. A set of X sub-images of M ×M pixels is
selected for each gray-value texture image in the 
sample dataset (M = ). The sub-images are defined
to be the central regions of M ×M pixels of which the
intensity distributions are normalized to zero mean
and unit variance. A sample of , randomly
selected N ×N (N < <M) patches (represented as
vectors of length N) of the normalized sub-images
are contrast-normalized and subsequently multiplied
with RFs, yielding RF vectors of length D.
Subsequently, a texton dictionary is created by apply-

ing k-means clustering to all RF vectors of the X sub-
images of each texture image of the  sample dataset.
Each image of the dataset is transformed into a texture
histogram by comparing all of its patches (represented
as RF vectors) to the entries in the texton dictionary.
Finally, the histograms are classified using a k-nearest
neighbor algorithm using the X similarity measure.

. ECOLE NORMALE SUPERIEURE DE LYON

The method developed by the Ecole Normale Super-
ieure de Lyon relies on the use of the Hyperbolic
Wavelet Transform (HWT) (Devore et al. ; Roux
et al. ) which is a variation of the D-Discrete
Wavelet Transform (D-DWT) (Mallat ). The
HWT explicitly takes into account the possible aniso-
tropic nature of image textures. Indeed, instead of
relying on a single dilation factor a used along both
directions of the image (as is the case for the
D-DWT), HWT relies on the use of two independent
factors a1 ¼ 2 j1 and a2 ¼ 2 j2 along directions x and
x, respectively. The hyperbolic wavelet coefficients of
imaged paper i, denoted as Tiðða1; a2Þ; ðk1; k2ÞÞ are
theoretically defined as:

Tiðða1; a2Þ; ðk1; k2ÞÞ ¼, iðx1; x2Þ;

1
ffiffiffiffiffiffiffiffiffi
a1a2

p c
x1 % k1

a1
;
x2 % k2

a2

% &
.

ð2Þ

From these HWT coefficients, structure functions,
consisting of space averages at given scales a, a, are
defined as:

Si a1; a2ð Þ; qð Þ ¼ 1
na

X

k

jTi a1; a2ð Þ; k1; k2ð Þð Þjq; ð3Þ

where na stands for the number of Tiðða1; a2Þ; ðk1; k2ÞÞ

actually computed and not degraded by image border
effects.
To measure proximity between two images i and j, a

cepstral distance between their structure functions
Si a1; a2ð Þ; qð Þ and Sj a1; a2ð Þ; qð Þ is computed. It consists
of a classical Lp norm computed on log-transformed
normalized structure functions:

dði; jÞ ¼
X

a Siða; qÞ % Siða; qÞj jp
! "1

p ð4Þ

with

~Siða; qÞ ¼ ln
Siða; qÞP
a0 Siða

0 ; qÞ
ð5Þ

. WORCESTER POLYTECHNIC INSTITUTE

Area-scale analysis is a technique which has been
applied to various problems in surface metrology
(Brown et al. ). Much as the measured length of
a coastline depends on the scale of observation and
therefore the resolvability of small features, the
measured area of a surface is also a function of the
scale of observation. The area-scale approach uses
fractal analysis to decompose a surface into a patch-
work of triangles of a given size. As the size of the tri-
angles is increased, smaller surface features become
less resolvable and the ‘relative area’ of the surface
decreases. The topological similarity of two surfaces is
computed by comparing relative areas at various
scales. The technique has traditionally been employed
on topographic datasets containing height information
over a surface. Though lacking a direct measure, area-
scale analysis can be applied to the images using light
intensity as a proxy for height.
The proposed approach proceeds in three steps: ()

preprocessing, () feature extraction, and () classifi-
cation. The preprocessing step extracts a square N ×
N region from the center of the image (where N was
chosen to be ), and normalizes the intensity of
the resulting extracted image. The N ×N grid of
equally spaced points (representing pixel locations) is
decomposed into a patchwork of

2
N % 1

s

% &2

ð6Þ

isosceles right triangles where s is a scale parameter
representing the length of two legs of each triangle.
The pixel values at each of the triangle vertices are
then taken as the ‘pseudo-height’ of each of the vertices.
The area of each triangle in -D space is then computed
and the areas of all triangular regions are summed,
resulting in the total relative area As at the chosen
scale s. To conduct feature extraction, the relative
area for an image is computed over a range of scale
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values; in this study,  scale values were used ranging
from  to  pixels, which correspond to lengths of
. µm to . mm, respectively. Finally, to classify
and compare the similarity of two images i and j, a x

distance measure d(i,j) is computed via

d i; jð Þ ¼
X

s[S

ðA ið Þ
s % A jð Þ

s Þ2

A ið Þ
s þ A jð Þ

s

ð7Þ

where AðiÞ
s is the relative area of image i at scale s and S

is the set of chosen scale values. Small values of d(i,j)
indicate high similarity between images i and j, while
large values indicate low similarity.

. RESULTS AS AFFINITY MAPS

Based on the results from the expert observer and each
teams’ automatic classifiers, the degree of similarity
(affinity) was tabulated for each possible pairing of
images in the  sample dataset. These scores were
then converted to a gray-scale with the darkest intensi-
ties indicating the greatest affinity and the lightest the
least affinity.

To visualize these values a table containing  rows
and  columns was created, one row and column for
each sample in the dataset. Each of the resulting  
cells in the table was shaded according to the similarity
of compared samples with black describing an exact
match, white a total mismatch and gray-scale values

in between describing a range of better or worse simi-
larities. For example, the top diagram in Ofigure ,
shows predicted similarities within the sample group
suggested by the metadata including manufacturer,
texture, brand, and date. As expected, the nine dark
blocks starting in the upper left and continuing down
along the diagonal show a high degree of affinity
(dark gray and black) as these blocks depict the nine
groups of similar textures. Lesser degrees of similarity
are scattered throughout the figure with the 
samples selected to show diversity (poorer levels of
similarity) falling in the lower right quadrant and
along the right side and bottom edge.

Gray-scale affinity maps produced to display the
results from each of the four teams are also shown in
figure . The principal similarity among the five
affinity maps in figure  are the nine dark squares
along the upper left to lower right diagonal. Given the
construction of the dataset, these blocks should be
dark due to the high affinity of the samples in these
groups. The light stripes in the right and bottom quar-
ters of the affinity maps, due to some relatively match-
less textures among samples –, are also shared by
all five affinity maps. While small local differences
among the five maps indicate that work remains to
find an ideal automated scheme, striking fundamental
similarities between the metadata-based affinity map
and the four produced by automated schemes indicate
raking light close-up images have sufficient texture

FIG. . Affinities (dark: strong, light: weak) for each possible pairing of surface texture images. Expert domain knowledge
(top). Bottom Quartet: Wisconsin (upper left), Tilburg (upper right), Lyon (lower left), WPI (lower right).
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information to support the automated classification of
historic photographic papers.

. OBSERVATIONS

As shown in figure  there is a relatively high level of
agreement between the affinity pairings prepared by
the classification algorithms and those derived from
metadata and subject-matter expertise. As discussed in
the previous section, the principal correspondence
among the five affinity maps is the nine dark squares
along the diagonal running from upper left to lower
right. Given the construction of the dataset, the
samples in these blocks are very similar and these
texture affinities were recognized both by a subjective
metadata sort and by the four automated solutions. In
addition, both the expert observer and automated sol-
utions were sensitive to the increased levels of diversity
within samples – (ninth dark block on the diag-
onal) that track a single proprietary surface over a
fairly extended period of  years. Besides the nine simi-
larity groupings added to the dataset by design, both
the expert observer and the automated solutions dis-
covered another strong affinity between subsets –
and – (shown along the cross-diagonal axis
adjoining the third dark square on the diagonal). As
shown in the Appendix, these samples have the same
manufacturer, brand, surface designation, and date
but are taken from different paper packages.
These findings are reinforced by Ofigure , which

shows a normalization of the distances between each
texture pairing within the tested groups. The shape of
the curves is remarkably consistent with the automated
solutions and the expert observer detecting very similar
degrees of affinity across the groups. The chart confirms
that there is no measurable difference between texture
images made from the same sheet of paper as compared
to images made from different sheets from the same
manufacturer package. Further, depending on the

technique, textures within the same manufacturing
standard produced over time show fair-to-good levels
of similarity. These results, though not a surprise
given high levels of manufacturing regularity, are
important for the possible development of future
systems that rely on indices of known ‘exemplar’
textures to identify unknowns.

. CONCLUSIONS AND NEXT STEPS
This project opens a path toward a machine vision
system that provides meaningful results for the study
of photographic prints. To have meaning, an automated
classification system cannot produce results simply based
on an internal, self-referential ‘sameness/difference’ par-
ameter but instead must render results that are relevant
to trained practitioners such as conservators and cura-
tors. For example, the images made from  spots on
the same sheet of paper, though totally different
images, need to be recognized as the ‘same.’ Likewise
the two other similarity groups made from different
sheets from the same manufacturer package and from
papers manufactured to the same standard must be
recognized as related. A useful system needs to reliably
cluster these groups together though be discriminating
enough to set these groups apart from others that
might have similar textures but, for example, are made
by different manufacturers. Using different techniques,
each of the four teams met this standard. The fundamen-
tal outcome of this experiment is the intuitive expert
observer conception of a classification system based on
sameness/difference can be replicated through imaging
and signal-processing techniques.
Specific to each technique, more work is required to

discover potential strengths and weaknesses. Though
all techniques produce results similar to those predicted
by the expert observer, subtle differences among the
techniques are possible and have yet to be determined.
For example, one technique may show advantages over
another when it comes to evaluating different types of
surfaces (i.e. pattered versus random feature distri-
bution). Most likely fully realized systems for classify-
ing textures would incorporate the means to toggle
between each of these techniques as well as to aggregate
results across multiple methods.
Such systems could engender new modes of scholar-

ship based on the discovery of material-based affinities.
Work at MoMA is underway to determine how these
techniques might meaningfully be applied to prints in
its Thomas Walther collection. Moving forward, refer-
ence libraries of surface textures, containing papers
grouped by photographer or paper manufacturer can
be assembled and used as a basis of comparison. This
work is already underway through the assembly of
large paper reference collections categorized by manu-
facturer, brand, surface finish, and date as well as for

FIG. . Normalized and averaged image pair distances with
standard deviations for the dataset of texture images, diag-
onal blocks: – same sheet, – same package, – same
manufacturing standard, – diverse samples.
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ID Manufacturer Brand Texture Reflectance Date M ID

 samples from the same sheet (× sheets)
– Kodak Vitava athena C – Smooth Matte  

– Kodak Kodabromide E – Fine grain Lustre  

– Leonar Rano kraftig N/A Chamois  

 samples from the same package (× packages)
– Kodak Kodabromide E – Fine grained Luster  

– Ilford Contact P Glossy  

– Ilford Plastika Special grained Half Matt  

 samples from the same manufacturer surface finish (× manufacturers)
 Kodak Velox F – Smooth Glossy  

 Kodak Kodabrom F – Smooth Glossy  

 Kodak Kodabrom F – Smooth Glossy  

 Kodak Azo F – Smooth Glossy  

 Kodak Azo F – Smooth Glossy  

 Kodak Azo F – Smooth Glossy  

 Kodak Azo F – Smooth Glossy  

 Kodak Azo F – Smooth Glossy  

 Kodak Vitava athena F – Smooth Glossy  

 Kodak [no brand] F Glossy  

 Dupont-Defender Apex A Semi Matte  

 Dupont-Defender Velour black A Semi Matte  

 Dupont-Defender Velour black A Semi Matte  

 Dupont-Defender Velour black A Semi Matte  

 Dupont-Defender Velour black A Semi Matte  

 Dupont-Defender Velour black A Semi Matte  

 Dupont-Defender Varigam A Semi-Matt  

 Dupont Varigam A Semi Matte  

 Dupont-Defender Velour black A Semi-Matt  

 Dupont-Defender Velour black A Semi-Matt  

 Agfa-Gevaert Brovira B  Lustre  

 Agfa-Gevaert Brovira B  Luster  

 Agfa Brovira B  crystal Lustre  

 Agfa Brovira B  crystal Luster  

 Agfa-Gevaert Brovira B  Glossy  

 Agfa Brovira B  crystal N/A  

 Agfa-Gevaert Brovira B  Lustre  

 Agfa-Gevaert Brovira B  – Filigran Glossy  

 Agfa-Gevaert Brovira B  – Fine grained Lustre  

 Agfa-Gevaert Lupex N/A Glossy  

 samples showing diversity
 Defender Argo N/A Matte  

 Ansco Cyko N/A N/A  

Continued
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individual artists including Man Ray (–) and
Lewis Hine (–). With standardized imaging
techniques and a networked infrastructure, conserva-
tors could query such texture libraries to detect
similar papers held by other collections, potentially
characterizing and identifying works in their collection
as well as revealing relationships within an artist’s body
of work and between artists. These methodologies are
being applied to other media, including ongoing work
with ink-jet papers (Messier et al. ) and the plati-
num papers of F. Holland Day (–).
A website, www.PaperTextureID.org, has been

created to distribute the dataset of silver gelatin textures
used as the basis for this study. An ink-jet paper dataset
composed is also posted at this site. The availability of
these image sets should encourage other teams to

develop their own automated classification and
sorting schemes.
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GLOSSARY

D-Discrete Wavelet Transform (D-DWT). The
D-DWT is a classical image processing tool that

CONTINUED

ID Manufacturer Brand Texture Reflectance Date M ID

 Darko Darko developing
paper

N/A Matte  

 Kodak Velvet velox N/A Semi gloss  

 Agfa ansco Convira B Glossy  

 Kodak Velox F – Smooth Glossy  

 Kodak Kodabromide G – Fine grained Lustre  

 Unicolor B & W N/A N/A  

 Ansco Cyko Linen Buff  

 Darko [no brand] N/A Velvet  

 Kodak Carbon velox N/A Matte  

 Agfa ansco Cykora N/A – Silk N/A  

 Kodak Ektamatic SC F – Smooth Glossy  

 Kodak Azo A – Smooth Luster  

 Defender Argo N/A Normal
gloss

 

 Kodak (Canadian) Azo F Glossy  

 Ansco Cyko N/A Buff  

 Defender Veltura N/A Matte  

 Ilford Clorona Porcelain N/A  

 Kodak Velox F – Smooth Glossy  

 Delaware Photographic Co. Enlarging paper N/A Semi matte  

 Kodak Kodabromide E – Fine grained Buff luster  

 Kodak Panalure F – Smooth Glossy  

 Agfa-Gevaert Brovira B  Glossy  

 Agfa ansco Brovira B  Lustre  

 Agfa ansco Convira N/A Glossy  

 Kodak Kodabromide F – Smooth Glossy  

 Defender Veltura N/A Matte  

 Agfa-Gevaert Brovira B  Lustre  

 Agfa ansco Cykora Kashmir N/A  
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provides a multiscale, exact, and invertible, represen-
tation of an image by assessing the collection of image
versions band-pass filtered at different scales.

Cepstral distance. The word cepstrum was invented
 and derives from a reordering of the first letters
in spectrum. A cepstrum is the result of analyzing
signals or images with (a normalized version of) the log-
arithm of the absolute value of a classical spectrum, so
as to better permit comparisons in terms of change rate,
magnitude, phase, power, and other features. The ceps-
tral distance is the net result of this comparison.

Eigentextures. For a given image, eigentextures are
the columns of an imposed matrix that form the basis
for a set of all depicted textures. The eigentextures
provide a rank ordering of the most significant of
these sub-spaces, thus providing a reduced dimensional
approximation, or distillation, of the texture pattern.

k-means clustering. k-means clustering is an adapted
signal-processing technique used to analyze vectors and
other complex variables for the purposes of modeling
large datasets and to derive affinity groupings.
k-means clustering is often used for data mining and
machine learning applications.

Least Squares. Least square is a standard method for
data fitting and regression analysis. Data fitting refers to
the determination of a curve or mathematical function
that best describes (or ‘fits’) a set of data points. Simi-
larly, regression analysis is used to estimate the relation-
ships between variables.

Multiscale. Multiscale methods refer to broad range
of signal processing and classification techniques that
analyze data jointly or simultaneously at different
scales or resolutions. Often, multiscale techniques rely
on fitting and comparing data against exemplar struc-
tural building blocks, also at different scales.

Non-sematic. Non-semantic methods also refer to a
broad range of signal processing and classification tech-
niques. As opposed to multiscale techniques, non-
semantic methods are based on values measured
directly from the sample under consideration versus
the application of a prototypical patterns and data
structures.

Hyperbolic wavelet transform (HWT): The hyper-
bolic wavelet transform extends the D-DWT by allow-
ing the use of different dilation factors (changes of
scale) on the horizontal and vertical axes of a data
matrix. Image analysis using HWT allows both multi-
scale and anisotropic feature extraction.

Singular value decomposition. Singular value
decomposition is a mathematical method for a
data-driven derivation of substructures, patterns,
correlations, and variations from complex, multi-
dimensional data matrices.

Textons. Textons are the most basic texture
elements that, when repeated, fully define an image
depicting a textured surface. These fundamental

micro-structures are often described as the ‘atoms’
of texture perception.

APPENDIX

PAPER SAMPLES USED IN THE SILVER GELATIN

DATASET

For the following tables ID is the sequential numbering system
suggested by the teams following image processing. Date
refers to the paper expiration dates applied to manufacturer
packages or estimates made based on packaging, M ID is
the Messier Reference Collection catalog number. Other
descriptors, such as brand and paper characteristics are
taken directly from the manufacturer packaging.
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