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We use the continuous wavelet transform to extract a cascading process from experi-
mental turbulent velocity signals. We mainly investigate various statistical quantities
such as the singularity spectrum, the self-similarity kernel and space-scale correla-
tion functions, which together provide information about the possible existence and
nature of the underlying multiplicative structure. We show that, at the highest acces-
sible Reynolds numbers, the experimental data do not allow us to distinguish vari-
ous phenomenological cascade models recently proposed to account for intermittency
from their lognormal approximation. In addition, we report evidence that velocity
fluctuations are not scale-invariant but possess more complex self-similarity prop-
erties, which are likely to depend on the Reynolds number. We comment on the
possible asymptotic validity of the multifractal description.
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1. Introduction

Since Kolmogorov’s founding work (Kolmogorov 1941) (hereafter called K41), fully
developed turbulence has been intensively studied for more than 50 years (Monin
& Yaglom 1975; Frisch & Orzag 1990; Frisch 1995). A standard way of analysing a
turbulent flow is to look for some universal statistical properties of the fluctuations
of the longitudinal velocity increments over a distance l, δvl = v(x + l) − v(x). For
instance, investigating the scaling properties of the structure functions,

Sp(l) = 〈|δvl|p〉 ∼ lζp , p > 0, (1.1)

where 〈· · ·〉 stands for ensemble average, leads to a spectrum of scaling exponents
ζp, which has been widely used as a statistical characterization of turbulent fields
(Monin & Yaglom 1975; Frisch & Orzag 1990; Frisch 1995). Based upon assumptions
of statistical homogeneity, isotropy and of constant rate ε of energy transfer from large
to small scales, K41 theory predicts the existence of an inertial range η � l � L
(η and L being, respectively, the dissipative and integral scales), where Sp(l) ∼
εp/3lp/3. Although these assumptions are usually considered to be correct, there has
been increasing numerical (Briscolini et al. 1994; Vincent & Meneguzzi 1995) and
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experimental (Monin & Yaglom 1975; Anselmet et al. 1984; Gagne 1987; Frisch &
Orzag 1990; Frisch 1995; Tabeling & Cardoso 1995; Arneodo et al. 1996) evidence
that ζp deviates substantially from the K41 prediction ζp = 1

3p, at large p. The
observed nonlinear behaviour of ζp is generally interpreted as a direct consequence
of the intermittency phenomenon displayed by the rate of energy transfer (Castaing
et al. 1990; Meneveau & Sreenivasan 1991). Under the so-called Kolmogorov’s refined
hypothesis (Kolmogorov 1962), the velocity structure functions can be rewritten as

Sp(l) ∼ 〈εp/3l 〉lp/3 ∼ lτ(p/3)+p/3,

where εl is the local rate of energy transfer over a volume of size l. The scaling
exponents of Sp are thus related to those of the energy transfer: ζp = τ(1

3p) +
1
3p.

Richardson’s (1926) cascade pioneering picture is often invoked to account for
intermittency: energy is transferred from large eddies (of size of order L) down to
small scales (of order η) through a cascade process in which the transfer rate at a
given scale is not spatially homogeneous as in the K41 theory but undergoes local
intermittent fluctuations. Over the past 30 years, refined models—including the log-
normal model of Kolmogorov (1962) and Obukhov (1962) (hereafter called KO62),
multiplicative hierarchical cascade models, such as the random β-model, the α-model,
the p-model (for a review see Meneveau & Sreenivasan (1991)), the log-stable models
(Schertzer & Levejoy 1987; Kida 1990), and more recently the log-infinitely divisible
cascade models (Novikov 1990, 1995; Dubrulle 1994; She & Waymire 1995; Castaing
& Dubrulle 1995), together with the rather popular log-Poisson model advocated
by She & Leveque (1994)—have appeared in the literature as reasonable models for
mimicking the energy cascading process in turbulent flows. Unfortunately, all the
existing models appeal to adjustable parameters that are difficult to determine by
plausible physical arguments and that generally provide enough freedom to account
for the experimental data for the two sets of scaling exponents ζp and τ(p).
The scaling behaviour of the velocity structure functions (equation (1.1)) is at

the heart of the multifractal description pioneered by Parisi & Frisch (1985). K41
theory is actually based on the assumption that at each point of the fluid the veloc-
ity field has the same scaling behaviour δvl(x) ∼ l1/3, which yields the well-known
E(k) ∼ k−5/3 energy spectrum. By interpreting the nonlinear behaviour of ζp as a
direct consequence of the existence of spatial fluctuations in the local regularity of
the velocity field, δvl(x) ∼ lh(x), Parisi & Frisch (1985) attempt to capture intermit-
tency in a geometrical framework. For each h, let us call D(h) the fractal dimension
of the set for which δvl(x) ∼ lh. By suitably inserting this local scaling behaviour into
equation (1.1), one can bridge the so-called singularity spectrum D(h) and the set of
scaling exponents ζp by a Legendre transform: D(h) = minp(ph− ζp + 1). From the
properties of the Legendre transform, a nonlinear ζp spectrum is equivalent to the
assumption that there is more than a single scaling exponent h. Let us note that from
low- to moderate-Reynolds-number turbulence, the inertial scaling range is small and
the evaluation of ζp is not very accurate. Actually, the existence of scaling laws like
equation (1.1) for the structure functions is not clear experimentally (Arneodo et
al. 1996; Pedrizetti et al. 1996), even at the highest accessible Reynolds numbers;
this observation questions the validity of the multifractal description. Recently, Benzi
et al. (1993b, c, 1995) have shown that one can remedy the observed departure from
scale-invariance by looking at the scaling behaviour of one structure function against
another. More precisely, ζp can be estimated from the behaviour Sp(l) ∼ S3(l)ζp , if
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one assumes that ζ(3) = 1 (Frisch 1995). The relevance of the so-called extended
self-similarity (ESS) hypothesis is recognized to improve and to further extend the
scaling behaviour towards the dissipative range (Benzi et al. 1993b, c, 1995; Briscol-
ini et al. 1994). From the application of ESS, some experimental consensus has been
reached on the definite nonlinear behaviour of ζp and its possible universal charac-
ter, at least as far as isotropic homogeneous turbulence is concerned (Arneodo et
al. 1996). But beyond some practical difficulties there exists a more fundamental
insufficiency in the determination of ζp. From the analogy between the multifractal
formalism and statistical thermodynamics (Arneodo et al. 1995), ζp plays the role
of a thermodynamical potential which intrinsically contains only some degenerate
information about the ‘Hamiltonian’ of the problem, i.e. the underlying cascading
process. Therefore, it is not surprising that previous experimental determinations
of the ζp spectrum have failed to provide a selective test to discriminate between
various (deterministic or random) cascade models.
In order to go beyond the multifractal description, Castaing and co-workers (Cas-

taing et al. 1990, 1993; Gagne et al. 1994; Naert et al. 1994; Chabaud et al. 1994;
Castaing & Dubrulle 1995; Chillà et al. 1996) have proposed an intermittency phe-
nomenon approach which relies on the validity of Kolmogorov’s refined hypothesis
(Kolmogorov 1962) and which consists in looking for a multiplicative cascade process
directly on the velocity field. This approach amounts to modelling the evolution of the
shape of the velocity increment probability distribution function (PDF), from Gaus-
sian at large scales to more intermittent profiles with stretched exponential-like tails
at smaller scales (Gagne 1987; Castaing et al. 1990; Kailasnath et al. 1992; Tabeling
et al. 1996; Belin et al. 1996), by a functional equation that relates the two scales
using a kernel G. This description relies upon the ansatz that the velocity increment
PDF at a given scale l, Pl(δv), can be expressed as a weighted sum of dilated PDFs
at a larger scale l′ > l:

Pl(δv) =
∫
Gll′(lnσ)

1
σ
Pl′

(
δv

σ

)
d lnσ, (1.2)

where Gll′ is a kernel that depends on l and l′ only. Indeed, most of the well-known
cascade models can be reformulated within this approach (Castaing & Dubrulle 1995;
Chillà et al. 1996). This amounts to (i) specifying the shape of the kernel G(u) which
is determined by the nature of the elementary step in the cascade; and (ii) defining
the way Gll′ depends on both l and l′. In their original work, Castaing et al . (see
Castaing et al. 1990, 1993; Gagne et al. 1994; Naert et al. 1994; Chabaud et al.
1994) mainly focused on the estimate of the variance of G and its scale behaviour.
A generalization of the Castaing et al . ansatz to the wavelet transform (WT) of
the velocity field has been proposed in previous works (Arneodo et al. 1997, 1999;
Roux 1996) and shown to provide direct access to the entire shape of the kernel
G. This wavelet-based method has been tested on synthetic turbulent signals and
preliminarily applied to turbulence data. In § 2, we use this new method to process
large-velocity records in high-Reynolds-number turbulence (Arneodo et al. 1998c).
We start by briefly recalling our numerical method to estimate G. We then focus on
the precise shape of G and show that, for the analysed turbulent flows, G is Gaussian
within a very good approximation. Special attention is paid to statistical convergence;
in particular, we show that when exploring larger samples than in previous studies
(Arneodo et al. 1997, 1999; Roux 1996), one is able to discriminate between lognormal

Phil. Trans. R. Soc. Lond. A (1999)



2418 A. Arneodo and others

and log-Poisson statistics. However, in the same way the ζp and D(h) multifractal
spectra provide rather degenerate information about the nature of the underlying
process; equation (1.2) is a necessary but not sufficient condition for the existence of
a cascade. As emphasized in a recent work (Arneodo et al. 1998a), one can go deeper
in fractal analysis by studying correlation functions in both space and scales using
the continuous wavelet transform. This ‘two-point’ statistical analysis has proved
to be particularly well suited for studying multiplicative random cascade processes
for which the correlation functions take a very simple form. In § 3, we apply space-
scale correlation functions to high-Reynolds-number turbulent velocity signals. This
method confirms the existence of a cascade structure that extends over the inertial
range and that this cascade is definitely not scale-invariant. In § 4, we revisit the
multifractal description of turbulent velocity fluctuations under the objective of the
WT microscope. Going back to the WT coefficient PDFs and to the ζp spectrum,
we get additional confirmation of the relevance of a lognormal cascading process.
Furthermore, we discuss its robustness when varying the scale range or the Reynolds
number. We conclude in § 5 by discussing the asymptotic validity of the multifractal
description of the intermittency phenomenon in fully developed turbulence.
Throughout this study, we will compare the results obtained on experimental data

with the results of similar statistical analysis of lognormal and log-Poisson numerical
processes of the same length generated using an algorithm of multiplicative cas-
cade defined on an orthonormal wavelet basis. We refer the reader to Roux (1996),
Arneodo et al. (1997, 1998b, c, 1999) and § 3 b, where the main points of this synthetic
turbulence generator are described.

2. Experimental evidence for lognormal statistics in
high-Reynolds-number turbulent flows

(a) A method for determining the kernel G

As pointed out in Muzy et al. (1991, 1994) and Arneodo et al. (1995), the WT
provides a powerful mathematical framework for analysing irregular signals in both
space and scale without loss of information. The WT of the turbulent velocity spatial
field v at point x and scale a > 0, is defined as (Meyer 1990; Daubechies 1992)

Tψ[v](x, a) =
1
a

∫ +∞

−∞
v(y)ψ

(
x− y

a

)
dy, (2.1)

where ψ is the analysing wavelet. Note that the velocity increment δvl(x) is simply
Tψ[v](x, l) computed with the ‘poor man’s’ wavelet

ψ
(1)
(0)(x) = δ(x− 1)− δ(x).

More generally, ψ is chosen to be well localized not only in direct space but also
in Fourier space (the scale a can thus be seen as the inverse of a local frequency).
Throughout this study, we will use the set of compactly supported analysing wavelets
ψ

(n)
(m) defined in Roux (1996) and Arneodo et al. (1997). The ψ(1)

(m) are smooth ver-
sions of ψ(1)

(0) obtained after m successive convolutions with the box function χ. ψ(n)
(m)

are higher-order analysing wavelets with n vanishing moments. The WT associates
to a function in R, its transform defined on R × R

+ and is thus very redundant. Fol-
lowing the strategy proposed in Arneodo et al. (1997, 1998c), we restrict our analysis
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to the modulus maxima of the WT (WTMM) so that the amount of data to process
is more tractable (see figure 1). A straightforward generalization of equation (1.2) in
terms of the WTMM PDF at scale a, Pa(T ), then reads

Pa(T ) =
∫
Gaa′(u)Pa′(e−uT )e−u du, for a′ > a. (2.2)

From (2.2) one can show that, for any decreasing sequence of scales (a1, . . . , an), the
kernel G satisfies the composition law

Gana1 = Ganan−1 ⊗ · · · ⊗Ga2a1 , (2.3)

where ⊗ denotes the convolution product. According to Castaing and co-workers
(Castaing et al. 1990; Castaing & Dubrulle 1995), the cascade is self-similar if there
exists a decreasing sequence of scales {an} such that Ganan−1 = G is independent
of n. The cascade is said to be continuously self-similar if there exists a positive
decreasing function s(a) such that Gaa′ depends on a and a′ only through s(a, a′) =
s(a) − s(a′): Gaa′(u) = G(u, s(a, a′)). s(a, a′) actually accounts for the number of
elementary cascade steps from scale a′ to scale a (s(a) can be seen as the number
of cascade steps from the integral scale L down to the considered scale a). In the
Fourier space, the convolution property (equation (2.3)) turns into a multiplicative
property for Ĝ, the Fourier transform of G:

Ĝaa′(p) = Ĝ(p)s(a,a
′), for a′ > a. (2.4)

From this equation, one deduces that Ĝ has to be the characteristic function of
an infinitely divisible PDF. Such a cascade is referred to as a log-infinitely divisi-
ble cascade (Novikov 1990, 1995; Dubrulle 1994; She & Waymire 1995; Castaing &
Dubrulle 1995). According to Novikov’s definition (Novikov 1990, 1995), the cascade
is scale-similar (or scale-invariant) if

s(a, a′) = ln(a′/a), (2.5)

i.e. s(a) = ln(L/a). Let us note that in their original work Castaing et al. (1990) devel-
oped a formalism, based on an extremum principle, which is consistent with the KO62
general ideas of lognormality (Kolmogorov 1962; Obukhov 1962), but which predicts
an anomalous power-law behaviour of the depth of the cascade s(a) ∼ (L/a)β . From
the computation of the scaling behaviour of the variance of the kernel Gaa′ , they
have checked whether the above-mentioned power-law behaviour could provide a
reasonable explanation for the deviation from scaling observed experimentally on
the velocity fluctuation statistics (Castaing et al. 1990, 1993; Gagne et al. 1994;
Naert et al. 1994; Chabaud et al. 1994; Chillà et al. 1996).
Our numerical estimation of G (Arneodo et al. 1997, 1998c) is based on the com-

putation of the characteristic function M(p, a) of the WTMM logarithms at scale a:

M(p, a) =
∫

eip ln |T |Pa(T ) dT. (2.6)

From equation (2.2), it is easy to show that Ĝ satisfies

M(p, a) = Ĝaa′(p)M(p, a′). (2.7)
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After the WT calculation and the WTMM detection, the real and imaginary parts
of M(p, a) are computed separately as 〈cos(p ln |T |)〉 and 〈sin(p ln |T |)〉, respectively.
The use of the WTMM skeleton instead of the continuous WT prevents M(p, a′)
from getting too small compared with numerical noise over a reasonable range of
values of p, so that Ĝaa′(p) can be computed from the ratio

Ĝaa′(p) =
M(p, a)
M(p, a′)

. (2.8)

We refer the reader to Roux (1996) and Arneodo et al. (1997) for test applications
of this method to synthetic turbulent signals.

(b) Experimental determination of the kernel G

The turbulence data were recorded by Gagne and co-workers in the S1 wind tunnel
of ONERA at Modane. The Taylor-scale-based Reynolds number is about Rλ  2000
and the Kolmogorov k−5/3 law for the energy spectrum approximately holds on
an ‘inertial range’ (in § 5 we propose an objective definition of inertial range on
the basis of which the inertial range is significantly less than four decades; we will
implicitly use this definition in the remainder of this paper) of about four decades
(from the integral scale L  7 m down to the dissipative scale η  0.27 mm). The
overall statistical sample is about 25× 107 points long, with a resolution of roughly
3η, corresponding to about 25 000 integral scales. Temporal data are identified to
spatial fluctuations of the longitudinal velocity via the Taylor hypothesis (Frisch
1995; Tabeling & Cardoso 1995). Figure 1 illustrates the WT and its skeleton of a
sample of the (longitudinal) velocity signal of length of about two integral scales. The
analysing wavelet ψ(1)

(3) is a first-order compactly supported wavelet. We have checked
that all the results reported below are consistent when changing both the regularity
and the order of ψ. With the specific goal of investigating the dependence of the
statistics on the Reynolds number, we will also report results of similar analysis of
wind-tunnel (Rλ  3050), jet (Rλ  800 and 600) and grid (Rλ  280) turbulences,
but for statistical samples of smaller sizes.

(i) Uncovering a continuously self-similar cascade (Arneodo et al. 1998c)

In order to test the validity of equation (2.4), we first focus on the scale dependence
of Ĝaa′ as calculated with equation (2.8). Figure 2a shows the logarithm of the
modulus ln |Ĝaa′ | and figure 2b shows the phase φaa′ of Ĝaa′ for various pairs of
scales a < a′ in the inertial range. In figure 2c, d, we succeed in collapsing all these
different curves onto a single kernel Ĝ = Ĝ

1/s(a,a′)
aa′ , in very good agreement with

equation (2.4) and the continuously self-similar cascade picture. In the inserts of
figure 2a, b, we compare our estimation of Ĝaa′ for the turbulent signal and for
a lognormal numerical process of the same length (Arneodo et al. 1998b). On the
numerical lognormal cascade, deviations from the expected parabolic behaviour of
ln |Ĝaa′ |, as well as from the linear behaviour of φaa′ (see equation (2.12)), become
perceptible for |p| > 5. Very similar features are observed for the turbulence data,
showing that the slight dispersion at large values of p on the curves in figure 2c, d can
be attributed to a lack of statistics. Thus, from now on, we will restrict our analysis
of Ĝ(p) to p ∈ [−4, 4].
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Figure 1. Continuous WT of fully developed turbulence data from the wind-tunnel experiment
(Rλ � 2000). (a) The turbulent velocity signal over about two integral scales. (b) WT of the
turbulent signal; the amplitude is coded, independently at each scale a, using 32 grey levels from
white (|Tψ[v](x, a)| = 0) to black (maxx |Tψ[v](x, a)|). (c) WT skeleton defined by the set of all
the WTMM lines. In (b) and (c), the small scales are at the top. The analysing wavelet is ψ(1)

(3) .

In order to test scale-similarity or more generally the pertinence of equation (2.4),
we plot in figure 3a, c,

m(a, a′) = ∂
Im(Ĝaa′)

∂p

∣∣∣∣
p=0

and σ2(a, a′) = −∂2(ln |Ĝaa′ |)
∂p2

∣∣∣∣
p=0

,

respectively, as functions of s(a, a′) = ln(a′/a) for different couples of scales (a, a′) in
the inertial range. It is striking for the jet data (Rλ  800), but also noticeable for
the wind-tunnel data (Rλ  3050), that the curves obtained when fixing the largest
scale a′ and varying the smallest scale a, have a clear bending and do not merge on
the same straight line as expected for scale-similar cascade processes. In figure 3b, d,
the same data are plotted versus s(a, a′) = (a−β − a′−β)/β with β = 0.08 for the
wind-tunnel flow and β = 0.19 for the jet flow. In this case, the data for the mean
m(a, a′) and the variance σ2(a, a′) fall, respectively, on a unique line. Those velocity
fields are therefore not scale-similar but rather are characterized by some anomalous
behaviour of the number of cascade steps between scale a′ and scale a:

s(a, a′) = (a−β − a′−β)/β, (2.9)
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Figure 2. Estimation of Ĝaa′(p) for the Modane turbulent velocity signal (Rλ � 2000) using
equation (2.8). The analysing wavelet is ψ(1)

(3) . (a) ln |Ĝaa′(p)| versus p. (b) φaa′(p) versus p for:
a = 271η, a′ = 4340η (•); a = 385η, a′ = 3080η (�); a = 540η, a′ = 2170η (�); a = 770η,
a′ = 1540η (�). Inserts: the experimental Ĝaa′(p) for a = 770η and a′ = 1540η (dotted line)
compared with the computation of Ĝaa′(p) for a lognormal numerical process of parameters
m = 0.39 and σ2 = 0.036 with a = 28 and a′ = 29 (solid line). (c) and (d) The same curves after
being rescaled by a factor of 1/s(a, a′) with s = 1 (•), s = 0.754 (�), s = 0.508 (�), s = 0.254
(�).

where the exponent β somehow quantifies the departure from scale-similarity (scale-
invariance being restored for β → 0).† Let us point out that equation (2.9) differs
from the pure power law prompted by Castaing and co-workers (Castaing et al. 1990,
1993; Gagne et al. 1994; Naert et al. 1994; Chabaud et al. 1994; Chillà et al. 1996),
since when fixing the reference scale a′, the number of cascade steps required to reach
the scale a is not exactly a−β/β, but some corrective term −a′−β/β, which has to
be taken into account.

(ii) Discriminating between lognormal and log-Poisson cascades
(Arneodo et al. 1998c)

The relevance of equation (2.4) being established, let us turn to the precise analysis
of the nature of G. Using the Taylor-series expansion of ln Ĝ(p),

Ĝ(p) = exp
( ∞∑
k=1

ck
(ip)k

k!

)
, (2.10)

† Note that in order to collapse all the curves onto a single curve in figure 2c, d, equation (2.9) was
used with β = 0.095.

Phil. Trans. R. Soc. Lond. A (1999)



Lognormal cascade in turbulence 2423

ln(a'/a)

–5

–0.1

0

0.1
wind tunnel wind tunnel

wind tunnel wind tunnel

2 (a
, a

')
σ

–1

0

1

m
(a

, a
')

jet jet

jet jet

(c)

(a)

(d )

(b)

0 5

(a–β – a' – )/β β
–2 0 2

Figure 3.m(a, a′) and σ2(a, a′) as computed for the jet (Rλ � 800) and wind-tunnel (Rλ � 3050)
velocity signals for a′ = 26 (•), 27 (◦), 28 (�), 29 (�), 210 (×). (a) m(a, a′) versus ln(a′/a); (b)
m(a, a′) versus (a−β −a′−β)/β; (c) σ2(a, a′) versus ln(a′/a); (d) σ2(a, a′) versus (a−β −a′−β)/β.
In (b) and (d), β = 0.19 (jet) and β = 0.08 (wind tunnel).

equation (2.4) can be rewritten as

Ĝaa′(p) = exp
( ∞∑
k=1

s(a, a′)ck
(ip)k

k!

)
, (2.11)

where the (real-valued) coefficients ck are the cumulants of G.

(i) Lognormal cascade process (Kolmogorov 1962; Obukhov 1962): a lognormal
cascade is characterized by a Gaussian kernel (Roux 1996; Arneodo et al. 1997)

Ĝaa′(p) = exp[s(a, a′)(−imp− 1
2σ

2p2)], (2.12)

which corresponds to the following set of cumulants:

c1 = −m, c2 = σ2 and ck = 0 for k � 3. (2.13)

(ii) Log-Poisson cascade process (Dubrulle 1994; Castaing & Dubrulle 1995; She &
Waymire 1995): a log-Poisson cascade is characterized by the following kernel
shape (Roux 1996; Arneodo et al. 1997):

Ĝaa′(p) = exp[s(a, a′)(λ(cos(p ln δ)− 1) + i(pγ + λ sin(p ln δ)))], (2.14)
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Figure 4. The first three cumulants of Gaa′ versus the sample length. Turbulent velocity signal
for a = 770η and a′ = 1540η (◦ and dashed line), lognormal numerical process of parameters
m = 0.39 and σ2 = 0.036 (• and solid line) and log-Poisson numerical process of parameters
λ = 2, δ = 0.89 and γ = −0.082 (� and dotted line) for the two corresponding scales a = 28 and
a′ = 29. Error bars are estimates of the RMS deviations of the cumulants from their asymptotical
values.

where λ, δ and γ are parameters. This log-Poisson kernel corresponds to the
following set of cumulants:

c1 = γ + λ ln δ and ck = λ
(ln δ)k

k!
for k � 2. (2.15)

Note that the log-Poisson process reduces to a lognormal cascade for |p ln δ| �
1, i.e. in the limit δ → 1, where the atomic nature of the quantized log-Poisson
process vanishes.

For a given pair of inertial scales a < a′, we proceed to polynomial fits of ln |Ĝaa′(p)|
and φaa′(p), prior to the use of equation (2.11) to estimate the first three cumulants
Ck = s(a, a′)ck as a function of the statistical sample length for the wind-tunnel
turbulence data at Rλ  2000 and for both a lognormal and a log-Poisson syn-
thetic numerical process. Figure 4 shows that statistical convergence is achieved up
to the third-order coefficient. However, our sample total length does not allow us to
reach statistical convergence for higher-order cumulants. Note that the third cumu-
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lant computed for a synthetic lognormal process with parameters m and σ2 chosen
equal to the asymptotic values of C1 and C2 (figure 4a, b), namely m = 0.39 and
σ2 = 0.036, cannot be distinguished from the experimental C3 (figure 4c). In the
log-Poisson model, by setting λ = 2 (according to She & Leveque (1994), λ is the
codimension of the most intermittent structures that are assumed to be filaments),
we are able to find values of δ and γ close to those proposed in She & Leveque (1994)
(δ = (2

3)
1/3 and γ = −1

9) that perfectly fit the first two cumulants. However, as seen
in figure 4c, this set of parameters yields a third-order cumulant that is more than one
order of magnitude larger than the experimental cumulant. Actually, when taking λ
as a free parameter, good log-Poisson approximations of the first three cumulants are
obtained for unrealistic values of λ of order 100 and for values of δ very close to 1, i.e.
when the log-Poisson process reduces to the lognormal model. From these results,
we conclude that, for the analysed wind-tunnel velocity signal (Rλ  2000), G is a
Gaussian kernel since C3 = 0 implies Ck = 0 for k > 2. Therefore, the large size of
our statistical sample allows us to exclude log-Poisson statistics with the parameters
proposed in She & Leveque (1994).

3. Experimental evidence for a non-scale-invariant lognormal
cascading process in high-Reynolds-number turbulent flows

(a) Space-scale correlation functions from wavelet analysis

Correlations in multifractals have already been experienced in the literature (Cates
& Deutsch 1987; Siebesma 1988; Neil & Meneveau 1993). However, all these stud-
ies rely upon the computation of the scaling behaviour of some partition functions
involving different points; they thus mainly concentrate on spatial correlations of
the local singularity exponents. The approach developed in Arneodo et al. (1998a) is
different since it does not focus on (nor suppose) any scaling property but rather con-
sists in studying the correlations of the logarithms of the amplitude of a space-scale
decomposition of the signal. For that purpose, the wavelet transform is a natural tool
to perform space-scale analysis. More specifically, if χ(x) is a bump function such
that ||χ||1 = 1, then by taking

Σ2(x, a) = a−2
∫
χ((x− y)/a)|Tψ[v](y, a)|2 dy, (3.1)

one has

||v||22 =
∫ ∫

Σ2(x, a) dxda, (3.2)

and thus Σ2(x, a) can be interpreted as the local space-scale energy density of the
considered velocity signal v (Morel-Bailly et al. 1991). Since Σ2(x, a) is a positive
quantity, we can define the magnitude of the field v at point x and scale a as

ω(x, a) = 1
2 lnΣ

2(x, a). (3.3)

Our aim in this section is to show that a cascade process can be studied through the
correlations of its space-scale magnitudes (Arneodo et al. 1998a):

C(x1, x2, a1, a2) = ω̃(x1, a1)ω̃(x2, a2), (3.4)

where the overline stands for ensemble average and ω̃ for the centred process ω− ω.
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(b) Analysis of random cascades using space-scale correlation
functions (Arneodo et al. 1998a, b)

Cascade processes can be defined in various ways. Periodic wavelet orthogonal
bases (Meyer 1990; Daubechies 1992) provide a general framework in which they can
be constructed easily (Benzi et al. 1993a; Roux 1996; Arneodo et al. 1997, 1998b, c).
Let us consider the following wavelet series:

f(x) =
+∞∑
j=0

2j−1∑
k=0

cj,kψj,k(x), (3.5)

where the set {ψj,k(x) = 2j/2ψ(2jx−k)} is an orthonormal basis of L2([0, L]) and the
coefficients cj,k correspond to the WT of f at scale a = L2−j (L is the ‘integral’ scale
that corresponds to the size of the support of ψ(x)) and position x = ka. The above
sampling of the space-scale plane defines a dyadic tree (Meyer 1990; Daubechies
1992). If one indexes by a dyadic sequence {ε1, . . . , εj} (εk = 0 or 1), with each of
the 2j nodes at depth j of this tree, the cascade is defined by the multiplicative rule:

cj,k = cε1...εj = c0

j∏
i=1

Wεi .

The law chosen for the weights W (accounting for their possible correlations) deter-
mines the nature of the cascade and the multifractal (regularity) properties of f
(Benzi et al. 1993a; Arneodo et al. 1998b). From the above multiplicative struc-
ture, if one assumes that there is no correlation between the weights at a given
cascade step, then it is easy to show that for ap = L2−jp and xp = kpap (p = 1
or 2), the correlation coefficient is simply the variance V (j) of ln cj,k =

∑
lnWεi ,

where (j, k) is the deepest common ancestor to the nodes (j1, k1) and (j2, k2) on
the dyadic tree (Arneodo et al. 1998a, b). This ‘ultrametric’ structure of the correla-
tion function shows that such a process is not stationary (nor ergodic). However, we
will generally consider uncorrelated consecutive realizations of length L of the same
cascade process, so that, in good approximation, C depends only on the space lag
∆x = x2 − x1 and one can replace ensemble average by space average. In that case,
C(∆k, j1, j2) = 〈C(k1, k1 +∆k, j1, j2)〉 can be expressed as

C(∆k, j1, j2) = 2−(j−n)
j−n∑
p=1

2j−n−pV (j − n− p), (3.6)

where j = sup(j1, j2) and n = log2 ∆k. Let us illustrate these features on some
simple cases (Arneodo et al. 1998a, b).

(i) Scale-invariant random cascades

First let us choose, as in classical cascades, i.i.d. random variables lnWεi of variance
λ2 (e.g. lognormal). Then V (j) = λ2j and it can be established that, for sup(a1, a2) �
∆x < L,

C(∆x, a1, a2) = λ2
(
log2

(
L

∆x

)
− 2 + 2

∆x
L

)
. (3.7)
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Figure 5. Numerical computation of magnitude correlation functions for lognormal cascade pro-
cesses built on an orthonormal wavelet basis. Scale-invariant cascade: (a) ‘one-scale’ correlation
functions C(∆x, a, a) for a = 4 (�), 16 (•) and 64 (�); (b) ‘two-scale’ correlation functions
C(∆x, a, a′) for a = a′ = 16 (•), a = 4, a′ = 16 (�) and a = 16, a′ = 64 (�). The solid lines
represent fits of the data with the lognormal prediction (equation (3.7)) using the parameters
λ2 = 0.03 and log2 L = 16. Non-scale-invariant cascade: (c) ‘one-scale’ correlation functions; (d)
‘two-scale’ correlation functions. Symbols have the same meaning as in (a) and (b). The solid
lines correspond to equation (3.8) with β = 0.3, λ2 = 0.2 and log2 L = 16.

Thus, the correlation function decreases very slowly, independently of a1 and a2, as
a logarithm function of ∆x. This behaviour is illustrated in figure 5a, b, where a log-
normal cascade has been constructed using Daubechies compactly supported wavelet
basis (D-5) (Arneodo et al. 1998b). The correlation functions of the magnitudes of
f(x) have been computed as described above (equation (3.4)) using a simple box
function for χ(x). Let us note that all the results reported in this section concern the
increments of the considered signal and that we have checked that they are actually
independent of the specific choice of the analysing wavelet ψ. In figure 5a are plotted
the ‘one-scale’ (a1 = a2 = a) correlation functions for three different scales a = 4, 16
and 64. One can see that, for ∆x > a, all the curves collapse to a single curve, which
is in perfect agreement with expression (3.7): in semi-log-coordinates, the correlation
functions decrease almost linearly (with slope λ2) up to the integral scale L, that is
of order 216 points. In figure 5b are displayed these correlation functions when the
two scales a1 and a2 are different. One can check that, as expected, they still do not
depend on the scales provided ∆x � sup(a1, a2); moreover, they are again very well
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fitted by the above theoretical curve (except at very large ∆x where finite size effects
show up). The linear behaviour of C(∆x, a1, a2) versus ln(∆x) is characteristic for
‘classical’ scale-invariant cascades for which the random weights are uncorrelated.

(ii) Non-scale-invariant random cascades

One can also consider non-scale-invariant cascades where the weights are not iden-
tically distributed and have an explicit scale dependence (Arneodo et al. 1998a). For
example, we can consider a lognormal model whose coefficients ln cj,k have a variance
that depends on j as V (j) = λ2(2jβ −1)/(β ln 2). This model is inspired by the ideas
of Castaing and co-workers (Castaing et al. 1990, 1993; Gagne et al. 1994; Naert et
al. 1994; Chabaud et al. 1994; Castaing & Dubrulle 1995; Chillà et al. 1996) and the
experimental results reported in § 2. Note that it reduces to a scale-invariant model
in the limit β → 0. For finite β and sup(a1, a2) � ∆x < L, the correlation function
becomes

C(∆x, a1, a2) =
λ2

β ln 2

(
(L/∆x)β − (∆x/L)

2β+1 − 1
− 1 +

∆x
L

)
. (3.8)

As for the first example, we have tested our formalism on this model constructed
using the same Daubechies wavelet basis and considering, for the sake of simplicity,
i.i.d. lognormal weights Wεi . Figure 5c, d is the analogue of figure 5a, b. One can
see that, when scale-invariance is broken, our estimates of the magnitude correlation
functions are in perfect agreement with equation (3.8), which predicts a power-law
decrease of the correlation functions versus ∆x.

(iii) Distinguishing ‘multiplicative’ from ‘additive’ processes (Arneodo et al. 1998a)

The two previous examples illustrate the fact that magnitudes in random cascades
are correlated over very long distances. Moreover, the slow decay of the correlation
functions is independent of scales for large enough space lags (∆x > a). This is rem-
iniscent of the multiplicative structure along a space-scale tree. These features are
not observed in ‘additive’ models like fractional Brownian motions whose long-range
correlations originate from the sign of their variations rather than from the ampli-
tudes. In figure 6 are plotted the correlation functions of an ‘uncorrelated’ lognormal
model constructed using the same parameters as in the first example but without any
multiplicative structure (the coefficients cj,k have, at each scale j, the same lognor-
mal law as before but are independent) and for a fractional Brownian motion with
H = 1

3 . Let us note that from the point of view of both the multifractal formalism
and the increment PDF scale properties, the ‘uncorrelated’ and ‘multiplicative’ log-
normal models are indistinguishable since their one-point statistics at a given scale
are identical. As far as the magnitude space-scale correlations are concerned, the
difference between the cascade and the other models is striking: for ∆x > a, the
magnitudes of the fractional Brownian motion and of the lognormal ‘white-noise’
model are found to be uncorrelated.

(c) Analysis of velocity data using space-scale correlation
functions (Arneodo et al. 1998a)

In this subsection, we report preliminary application of space-scale correlation
functions to Modane wind-tunnel velocity data at Rλ  2000, which correspond to
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Figure 6. ‘One-scale’ (a = 4) magnitude correlation functions: lognormal cascade process (•);
lognormal ‘white noise’ (�); H = 1

3 fractional Brownian motion (�). Magnitudes are correlated
over very long distances for the cascade process while they are uncorrelated when ∆x > a for
the two other processes.

the highest statistics accessible to numerical analysis. In figure 7a, b are plotted (to
be compared with figure 5) the ‘one-scale’ and ‘two-scale’ correlation functions. Both
figures clearly show that space-scale magnitudes are strongly correlated. Very much
like previous toy cascades, it seems that for ∆x > a, all the experimental points
C(∆x, a1, a2) fall onto a single curve. We find that this curve is nicely fitted by
equation (3.8) with β = 0.3, λ2 = 0.27 and L  214 points. This latter length-scale
corresponds to the integral scale of the experiment that can be estimated from the
power spectrum. It thus seems that the space-scale correlations in the magnitude of
the velocity field are in very good agreement with a cascade model that is not scale-
invariant. This corroborates the results of § 2 from ‘one-point’ statistical studies.
However, we have observed several additional features that do not appear in wavelet
cascades. (i) For ∆x > L, the correlation coefficient is not in the noise level (C =
0 as expected for uncorrelated events) but remains negative up to a distance of
about three integral scales. This observation can be interpreted as an anticorrelation
between successive eddies: very intense eddies are followed by weaker eddies and
vice versa. (ii) For ∆x  a, there is a crossover from the value C(∆x = 0, a, a)
(which is simply the variance of ω at scale a) down to the fitted curve corresponding
to the cascade model. This was not the case in previous cascade models (figure 5).
This observation suggests that simple self-similar (even non-scale-invariant) cascades
are not sufficient to account for the space-scale structure of the velocity field. The
interpretation of this feature in terms of correlations between weights at a given
cascade step or in terms of a more complex geometry of the tree underlying the
energy cascade is under progress. The possible importance of spatially fluctuating
viscous smoothing effects (Frisch & Vergassola 1991) is also under consideration.
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Figure 7. Magnitude correlation functions of Modane fully developed turbulence data (Rλ �
2000): (a) ‘one-scale’ correlation functions at scales a = 24η (�), 48η (•), 96η (�) and 192η (�);
(b) ‘two-scale’ correlations functions at scales a = 24η, a′ = 48η (�), a = 48η, a′ = 48η (•),
a = 48η, a′ = 96η (�) and a = 48η, a′ = 192η (�). The solid lines correspond to a fit using
equation (3.8) with β = 0.3, λ2 = 0.27 and log2 L = 13.6.

4. The multifractal description of intermittency
revisited with wavelets

(a) WTMM probability density functions (Arneodo et al. 1998c)

A first way to check the consistency of our results is to test the convolution formula
(2.2) on the WTMM PDFs using a Gaussian kernel. The results of this test appli-
cation are reported in figure 8 (Arneodo et al. 1998c). Let us mention that a naive
computation of the PDFs of the (continuous) WT coefficients at different scales in
the inertial range (Roux 1996), leads to distributions that are nearly centred with a
shape that goes from Gaussian at large scales to stretched exponential-like tails at
smaller scales, very much like the evolution observed for the velocity increment PDFs
(Gagne 1987; Castaing et al. 1990; Kailasnath et al. 1992; Frisch 1995; Tabeling et
al. 1996; Belin et al. 1996). But the wavelet theory (Meyer 1990; Daubechies 1992)
tells us that there exists some redundancy in the continuous WT representation.
Indeed, for a given analysing wavelet, there exists a reproducing kernel (Grossmann
& Morlet 1984, 1985; Daubechies et al. 1986) from which one can express any WT
coefficient at a given point x and scale a as a linear combination of the neighbouring
WT coefficients in the space-scale half-plane. As emphasized in Muzy et al. (1991,
1993, 1994), Mallat & Hwang (1992) and Bacry et al. (1993), a way to break free
from this redundancy is to use the WTMM representation. In figure 8a are reported
the results of the computation of the WTMM PDFs when restricting our analysis
to the WT skeleton (figure 1c) defined by the WT maxima lines. Since by definition
the WTMM are different from zero, the so-obtained PDFs decrease very fast to zero
at zero, which will make the estimate of the exponents ζq tractable for q < 0 in
§ 4 b. When plotting lnPa(ln(|T |)) versus ln |T |, one gets in figure 8b the remarkable
result that for any scale in the inertial range all the data points fall, within a good
approximation, on a parabola, which is a strong indication that the WTMM have a
lognormal distribution. In figure 8c we have succeeded in collapsing all the WTMM
PDFs, computed at different scales, onto a single curve when using equation (2.2)
with a Gaussian kernel G(u, s(a, a′)), where s(a, a′) is given by equation (2.9) with
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Figure 8. Probability density functions of the WTMM for the Modane turbulent velocity signal
(Rλ � 2000): (a) Pa(|T |) versus |T | as computed at different scales a = 385η (◦), 770η (�),
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PDFs after being transformed according to equation (2.2) with a Gaussian kernel Gaa′ and
s(a, a′) = (a−β − a′−β)/β where β = 0.095. The (×) in (c) and (d) represent the velocity
increment PDF at scale a = 308η. The solid lines in (b) and (d) correspond to the Gaussian
approximations of the histograms. The analysing wavelet is ψ(1)

(3) .

β = 0.095 in order to account for the scale-invariance breaking mentioned above
(§ 2 b). This observation corroborates the lognormal cascade picture. Let us point
out that, as illustrated in figure 8c, d, the velocity increment PDFs are likely to sat-
isfy the Castaing and co-workers convolution formula (1.2) with a similar Gaussian
kernel, even though their shape evolves across the scales (Roux 1996). The fact that
the WTMM PDFs turn out to have a shape which is the fixed point of the underly-
ing kernel has been numerically revealed in previous works (Roux 1996; Arneodo et
al. 1997) for various synthetic log-infinitely divisible cascade processes. So far, there
exists no mathematical demonstration of this remarkable numerical observation.

(b) ζq scaling exponents

A second test of the lognormality of the velocity fluctuations lies in the deter-
mination of the ζq spectrum. As discussed in previous studies (Muzy et al. 1993,
1994), the structure-function approach pioneered by Parisi & Frisch (1985) has sev-
eral intrinsic insufficiencies which mainly result from the poorness of the underlying
analysing waveletψ(1)

(0) . Here we use instead the so-called WTMM method (Muzy et
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al. 1991, 1993 1994; Bacry et al. 1993; Arneodo et al. 1995) that has proved to be
very efficient in achieving multifractal analysis of very irregular signals. The WTMM
method consists of computing the following partition functions:

Z(q, a) =
∑
l∈L(a)

(
sup

(x,a′)∈l,
a′�a

|Tψ[v](x, a′)|
)q
, ∀q ∈ R, (4.1)

where L(a) denotes the set of all WTMM lines of the space-scale half-plane that
exist at scale a and contain maxima at any scale a′ � a. A straightforward analogy
with the structure functions Sq(l) (equation (1.1)) yields

S(q, a) = Z(q, a)
Z(0, a)

∼ aζq . (4.2)

However, there exist two fundamental differences between Sq(l) and S(q, a). (i) The
summation in equation (4.1) is over the WT skeleton defined by the WTMM. Since
by definition the WTMM do not vanish, equation (4.1) allows us to extend the
computation of the scaling exponents ζq from positive q values only when using the
structure functions (as shown in § 4 a, the velocity increment PDFs do not vanish
at zero), to positive as well as negative q values without any risk of divergences
(Muzy et al. 1993, 1994). (ii) By considering analysis of wavelets that are regular
enough and have some adjustable degree of oscillation, the WTMM method allows
us to capture singularities in the considered signal (0 � h � 1) like the structure
functions can do, but also in arbitrary high-order derivatives of this signal (Muzy et
al. 1993, 1994). In that respect, the WTMM method gives access to the entire D(h)
singularity spectrum and not only to the strongest singularities as the structure-
function method is supposed to do from Legendre transforming ζq for q > 0 only
(Muzy et al. 1991, 1993 1994; Bacry et al. 1993; Arneodo et al. 1995).
Since scale-invariance is likely to be broken, one rather expects the more general

scale dependence of S(q, a) (Roux 1996; Arneodo et al. 1997, 1999):

S(q, a) = κq exp(−ζqs(a)), (4.3)

where κq is a constant that depends only on q and s(a) = (a−β − 1)/β consistently
with the observed anomalous behaviour of s(a, a′) given by equation (2.9). Indeed,
S(q, a) can be seen as a generalized mean of |T |q so that formally, from the definition
of the characteristic function M(q, a) (equation (2.6)), one gets

S(q, a) ∼ M(−iq, a). (4.4)

From expression (2.8) of the Fourier transform of the kernel G and from equa-
tion (4.4), one deduces

S(q, a)
S(q, a′)

= Ĝaa′(−iq). (4.5)

When further using equation (2.11), this last equation becomes

S(q, a)
S(q, a′)

= exp
( ∞∑
k=1

s(a, a′)ck
qk

k!

)
, (4.6)
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Figure 9. WTMM estimation of the ζq spectrum for the Modane turbulent velocity signal
(Rλ � 2000). The analysing wavelet is ψ(1)

(3) : (a) ζq versus q; (b) deviation of the experimen-
tal spectrum from the K41 ζq = 1

3q prediction. The experimental ESS measurements (◦) are
compared with the theoretical quadratic spectrum of a lognormal process with m = 0.39 and
σ2 = 0.036 (solid line) and to the She & Leveque (1994) log-Poisson prediction with λ = 2,
δ = ( 2

3 )
1/3 and γ = − 1

9 (dotted line).

which is consistent with equation (4.3) provided that

ζq = −
∞∑
k=1

ckq
k

k!
. (4.7)

We have checked that fitting S(q, a)/S(q, a′) versus q for the two scales of figure 4
leads to the same estimates of Ck = s(a, a′)ck as above to within less than 1%.

Remark 4.1.

(i) Let us emphasize that for ψ = ψ
(1)
(0) , equation (4.3) is simply the general expo-

nential self-similar behaviour predicted by Dubrulle (1996) (for the structure
functions) by simple symmetry considerations.

(ii) As expressed by equation (4.3), the observed breaking of scale-invariance does
not invalidate the ESS hypothesis (Benzi et al. 1993b, 1993c, 1995). Actually,
equation (4.3) is equivalent to the ESS ansatz.

To estimate the ζq spectrum, we thus use the concept of ESS developed by Benzi
et al. (1993b, c, 1995) i.e. we set ζ3 = 1 and plot S(q, a) = (κq/κ3)S(3, a)ζq versus
S(3, a) in log-coordinates (for more details see Arneodo et al. (1999)). As shown
in figure 9a, the experimental spectrum obtained from linear regression procedure
remarkably coincides with the quadratic lognormal prediction ζq = mq− 1

2σ
2q2 with

the same parameters as in § 2 b (figure 4), up to |q| = 10. We have checked that
statistical convergence is achieved for |q| � 8; but even if the convergence becomes
questionable for larger values of q, the ‘error bars’ obtained by varying the range of
scales used for the ESS determination of ζq show the robustness of the spectrum.
Let us point out that the log-Poisson prediction ζq = −γq + λ(1 − δq), with the
She & Leveque (1994) parameter values: λ = 2, δ = (2

3)
1/3 and γ = −1

9 , provides
a rather good approximation of ζq for q ∈ [−6, 6], in agreement with the structure-
function estimations of ζq (She & Leveque 1994; She & Waymire 1995; Arneodo
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Figure 10. Cumulant ratios −C2/C1 (a) and C3/C1 (b), estimated from Ĝaa′ with a′ = 2a, as
a function of log2(a/η) for four turbulent flows of different Reynolds numbers Rλ � 2000 (◦),
800 (�), 600 (�) and 280 (�). In (b), the solid and dotted lines correspond, respectively, to the
lognormal and to the She & Leveque (1994) log-Poisson predictions for C3/C1.

et al. 1996; Belin et al. 1996) and with our results on the first two cumulants of G
(figure 4). However, when plotting the deviation of the ζq from the K41 linear ζq = 1

3q
spectrum (figure 9b), one reveals a systematic departure of the log-Poisson prediction
from the experimental spectrum, and this even for q ∈ [0, 3] as shown in the insert
of figure 9b, whereas the lognormal model still perfectly fits the experimental data.
This nicely corroborates our findings on the third-order cumulant of G (figure 4)
and shows that very long statistical samples are needed to discriminate between
lognormal and log-Poisson statistics in fully developed turbulence data. Note that,
according to the quadratic fit reported in figure 9, the ζq spectrum should decrease for
q � 11, in qualitative agreement with previous discussions (Castaing et al. 1990; Belin
et al. 1996). However, since statistical convergence is not achieved for such high
values of q, one has to be careful when extrapolating the ζq behaviour. As reported
in Belin et al. (1996), the number of data points needed to estimate ζq increases
exponentially fast with q. Reaching an acceptable statistical convergence for q  12
would thus require velocity records about 10 times bigger than those processed in
this work.
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5. Conclusions and perspectives

To complete our study, we must address the issue of the robustness of our results
when one varies the Reynolds number. We have reproduced our WT-based analysis
on the turbulent velocity signal at Reynolds number Rλ  800 (of about the same
length as the previous statistical sample at Rλ  2000 and with a resolution of 2.5η)
obtained by Gagne et al. (1994) in a laboratory jet experiment (Arneodo et al. 1998c).
Because of scale invariance breaking, the notion of inertial range is not well defined.
Thus, we may rather call ‘inertial range’ the range of scales on which equation (2.4)
holds with the same kernel G. As illustrated in figure 10, for Rλ  800, C3/C1  0.01
is significantly higher than for Rλ  2000, whereas −C2/C1 remains about equal to
0.15. An inertial range can still be defined (128η � a � 1

4L), on which Gaa′ keeps
a constant ‘inertial’ shape, but for Rλ  800, this shape becomes compatible with
a log-Poisson distribution as proposed in She & Leveque (1994). We have checked
that in that case, the She–Leveque model provides a better approximation of the
ζq spectrum than the lognormal model (Arneodo et al. 1998c). This result seems
to contradict previous studies (Arneodo et al. 1996; Belin et al. 1996), suggesting
that turbulent flows may be characterized by a universal ζq spectrum, independent
of the Reynolds number, at least for 0 � q � 6. However, as seen in figure 9a,
for that range of q values, the various models can hardly be distinguished without
plotting q/3− ζq. From our WT-based approach, which allows the determination of
ζq for negative q values, when using very long statistical samples to minimize error
bars, we can actually conclude that lognormal statistics no longer provide a perfect
description of the turbulent velocity signals at Reynolds numbers Rλ � 800. This
result, together with previous numerical (Leveque & She 1995, 1997; Benzi et al.
1996) and experimental (She & Leveque 1994; Ruiz-Chavarria et al. 1995) evidence
for the relevance of log-Poisson statistics at low and moderate Reynolds numbers,
strongly suggests that there might be some transitory regime (Rλ � 1000) towards
asymptotic lognormal statistics, which could be accounted for by a quantized log-
Poisson cascade or by some other cascade models that predict the correct relative
order of magnitude of the higher-order cumulants (mainly c3 and c4) of the kernel
G (equation (2.10)).
In figure 11 is reported the estimate of the scale-breaking exponent β (equa-

tion (2.9)), as a function of the Reynolds number (Arneodo et al. 1999); the five
points correspond to the results obtained for the two previous experiments and for
three additional datasets corresponding to wind-tunnel (Rλ  3050), jet (Rλ  600)
and grid (Rλ  280) turbulences. In figure 11a, β is plotted versus 1/ ln(Rλ) in order
to check experimentally the validity of some theoretical arguments developed in Cas-
taing et al. (1990) and Dubrulle (1996), which predict a logarithmic decay of β when
increasing Rλ. Indeed the data are very well fitted by β ∼ 1/ ln(Rλ) − 1/ ln(R∗

λ),
where R∗

λ  12 000, which suggests that scale-similarity is likely to be attained at
finite Reynolds numbers. However, as shown in figure 11b, for the range of Reynolds
numbers accessible to today experiments the data are equally very well fitted by a
power-law decay with an exponent which is close to 1

2 : β  R−0.556
λ . This second

possibility brings the clue that scale-similarity might well be valid only in the limit
of infinite Reynolds number. Whatever the relevant β behaviour, our findings for
the kernel Gaa′ at Rλ  2000 (high statistics in the present work) and 3050 (mod-
erate statistics in Arneodo et al. (1997, 1999)), strongly indicate that at very high
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Figure 11. β as a function of the Reynolds number. (a) β versus 1/ ln(Rλ); the dotted line
corresponds to a fit of the data with β = B(1/ ln(Rλ) − 1/ ln(R∗

λ)) with R∗
λ = 12 000. (b) β

versus R−0.556
λ ; the dashed line corresponds to a linear regression fit of the data. Error bars

account for variation of β according to the definition of the inertial range.

Reynolds numbers the intermittency phenomenon can be understood in terms of a
continuous self-similar multiplicative process that converges towards a scale-similar
lognormal cascade.

Remark 5.1. Let us note that in figure 10b the estimate of C3/C1 for the lowest
Reynolds-number velocity signal (Rλ  280) we have at our disposal cannot be distin-
guished from the results obtained for the wind-tunnel experiment at Rλ  2000. This
observation of lognormal statistics at low Reynolds number contradicts the above
conclusions. This might well be the consequence of the presence of some anisotropy
at large scales in this grid turbulence where the velocity increment PDFs were found
to depart significantly from a symmetric Gaussian shape (Gagne & Malecot, personal
communication).

To summarize, this study has revealed the existence of a scale domain that we call
‘inertial range’, where a high-Reynolds-number turbulent-velocity signal (Rλ  2000)
displays lognormal statistics. Our results confirm the relevance of the continuously
self-similar lognormal cascade picture initiated by Castaing and co-workers (Castaing
et al. 1990, 1993; Gagne et al. 1994; Naert et al. 1994; Chabaud et al. 1994; Castaing
& Dubrulle 1995; Chillà et al. 1996). We also emphasize the fact that such an analysis
requires very long statistical samples in order to get a good convergence of the cumu-
lants of the kernel G and of the ζq spectrum. Our last results about the dependence
of the statistics on the Reynolds number suggest that perfect lognormality may be
reached only for Rλ → ∞. A similar result is obtained concerning the breaking of
scale-invariance (Roux 1996; Arneodo et al. 1997, 1998c, 1999): scale-invariance is
likely to be restored only for very large Reynolds numbers. As emphasized by Frisch
(1995), scale-invariance together with lognormal statistics for the velocity fluctua-
tions imply that the Mach number of the flow increases indefinitely, which violates a
basic assumption needed in deriving the incompressible Navier–Stokes equations. Let
us note that this observation does not, however, violate the basic laws of hydrody-
namics since it is conceivable that, at extremely high Reynolds numbers, supersonic
velocity may appear. A systematic investigation of the evolution of the statistics
with both the scale range and the Reynolds number is currently under progress.
Further analysis of numerical and experimental data should provide new insights on
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the departure of Gaa′ from its ‘inertial’ shape outside the inertial range and on the
way it converges towards a Gaussian kernel at high Reynolds numbers.
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