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Abstract. In the context of fully developed turbulence, Castaing et al. [10] have recently
advocated a description of a randonl cascade process in ternls of a kernel Gaa>(x) that charac-

terizes the nature of the cascade when going from a scale a' to a finer scale a. We elaborate on

a nlethod to est1nlating, directly from exper1nlental data, the shape of Gaa, for all scales a and
a'. We apply this method to turbulent velocity data and we show that it provides very instruc-

tive infornlations about the soundness of various phenonlenological nlodels for the intermittency
character of turbulent flows.

It is now well-accepted [1,2] that in the fully developed regime, a turbulent flow is likely
to be in a universal state that can be experimentally characterized by statistical quantities
such as the scaling exponents (p of the velocity structure functions or the shape of the velocity
increment probability density functions (pdf). For more than thirty years, one of the main

features recognized experimentally, is the intermittency of small scales [1-4]; this phenomenon
manifests in a nonlinear behavior of (p that does not seem to depend on the Reynolds number

[5]. This observed violation of the scaling properties predicted by the dimensional theory
of Kolmogorov [6] (K41) has been attributed to the large spatial fluctuations of the energy
dissipation local rate. Since Richardson's pioneering work [Ii, further developed by Kolmogorov
and Obukhov [4j (K062), the energy transfer from large to small scales is often seen as a

cascade process resulting from strong nonlinear interactions. The notions of "self-similarity",
"fractals" and "scale-similarity" introduced by Mandelbrot [7] and Novikov [8] have provided

some mathematical framework to a lot of cascade models ranging from the early proposed
"fl-model" [2,3] to the more recent "log-Poisson" description of the dissipation field [9].
In a series of papers [10], Castaing and his collaborators, who were mainly interested in the

shape of the velocity increment pdf, proposed a description based on a functional equation that

relates two scales using a kernel G. This description relies upon the ansatz that the pdf Pi (dv)
of the velocity increments over a distance I, can be expressed as a weighted sum of dilated

pdfs of increments over a distance I' > I: Pi(dv)
=
f Gut (lnr) )Pi> ())dr =, where Ga> is a

kernel that depends on I and I' only. Indeed most of the well-known cascade models can- be

reformulated within this approach [10d,ej. This amounts I) to specify the shape of the kernel
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G(z) which is determined by the nature of the elementary step in the cascade and it) to define

the way Ga> depends on both I and I'.
In this paper, we address the issue of the estimation of G from experimental data. Partial

results were obtained by Castaing et al. [10j who succeeded to show that, under some mild

hypothesis, the variance of G and its scale behavior could be estimated. Our goal is to show

that one can go a step further and extract the entire shape of the Fourier transform of G for

any couple of scales. Our method will be tested on various examples of self-similar functions

and then applied to turbulent velocity signals.
Let us first generalize the previous ansatz and define the notion of abstract cascade. Usually

a cascade process refers to a multiplicative way of spreading mass or energy ii. e. a positive
quantity) within smaller and smaller boxes. The cascade is then defined by the way the scales

are refined (e.g. divided by a factor two at each step) and the statistics of the multiplicative
factors le. g. log-normal distribution). The limitations of such models are obvious: I) they
concern positive fields only and it) the statistics at fixed analyzing scale does not obviously
correspond to the statistics at a fixed construction level of the cascade [3, iii. To circumvent

these difficulties, we will consider instead cascade models for the construction of the wavelet

transform (WT) of the considered field. Actually, wavelet analysis [12] is the general mathe-

matical framework for analyzing signals in both space and scale without loss of information.

The WT of a function f is defined by [12]: T(b, a) =
a~~ f ~fi( ~) f(z)dz, where ~fi(x) is the

analyzing wavelet. Let us point out that the increment of f at a point To over a distance
I can be seen as the wavelet coefficient T(zo,I) using the "poor man's" analyzing wavelet

~fi(x) =
&(z + I) d(z). More generally,

~fi
is chosen to be well localized not only in direct space

but also in Fourier space (the scale a can thus be seen as the inverse of a local frequency). The
WT has been advocated as a powerful tool to analyze fractal distributions [13]. It associates to

a function on lit, its transform defined on lit x
lit+ and is thus very redundant. To reduce the

amount of information to process, one can either work with an orthonormal wavelet basis [12]
or restrict ourselves to the modulus maxima of the WT [14].
We can now define an abstract cascade as a process whose WT coefficient pdf at a scale a

can be written in terms of the pdf at a coarser scale a' as: Va < a' < L (the largest scale in
the problem), B Gaa> (z) such that

Pa (T)
"

/
Gaa' (Z)Pa'(~~~T) ~~~dZ. (I)

The way of the shape of Gaa, ix may depend on the analyzing wavelet
~fi

and on the fact that one

restricts oneself to coefficients on the dyadic grid or at the modulus maxima points is discussed
below. The term cascade is used because, from the above definition, one can show that, for

any decreasing sequence of scales jai,
...,

an), one has [10]: Ga~a~
=
Ga~a~_~ o... o Ga~a~,

where o denotes the convolution product. Referring to the work of Castaing et al. [10], we

will say that the cascade is self-similar if there exists a decreasing sequence of scales (an ) such
that Ga~a~~_~ =

G is independent of n. The cascade is said continuously self-similar if there
exists a positive, monotonous function s(a), such that Gaai depends on a and a' only through
s(a,a')

=
s(a) s(a'): Gaa>(z)

=
G(z,s(a,a')). Using Novikov's definition [8], we will say

that the cascade is scale-similar if s(a, a')
=
In(ala'). By analogy with stochastic processes,

if one identifies t with In a, self-similarity is equivalent to consider processes with independent
increments and scale-similarity amounts to impose the process to be stationary.
From a general point of view, given a function G, it is not obvious that there exists a pro-

cess that meets the above requirements and if it is so, that this process be unique. But one

can show that most multiplicative cascade models correspond to scale-similar abstract cas-

cades. For example, for a multiplicative cascade defined on an orthonormal wavelet basis [15],
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a wavelet coefficient Cj,k, at scale a =
2~J and position

=
k2~J, can be written as II(~iW~

where lV~ are I.I.d. random variables of given law p. It is then easy to prove that 1§(C)
=

f G(x)Pj-i (e~~C)e~~dx where G(x)
=
e~p(e~) is the pdf of In W. The multiplicative cascade

is therefore a scale-similar cascade. Because the statistics of IV can be proved to be indepen-
dent of the analyzing wavelet [13], the kernel G does not depend on ~. More generally, for
self-similar processes, one expects Gaa> to depend upon the analyzing wavelet

~fi
only through

a multiplicative factor in s(a, a').
Let us now switch to the numerical estimation of G. Let M(p,a) be the characteris-

tic function associated to the logarithm of the wavelet coefficientj at scale a: fit(p,a)
=

fe~P'~('~'lPa(T)dT. From equation ii), it is easy to show that G, the Fourier transform

of G, satisfies:
Mlp> ~)

"
fi'lp>~') Gaa'[p) 12)

From the convolution property of G and the additivity of the function s, one can see that the

cascade is continuously self-similar if and only if

©aa'lp)
"
©jp)~~~'~'i j3)

From this equation, one deduces that has to be the characteristic function of an infinitely
divisible pdf. Such cascade is referred to as a log-infinitely divisible cascade.
If the characteristic function M(p, a') does not vanish, one can then estimate ©aai lp) as the

ratio AI lp, a) /fiI(p, a'). Numerically, the real and imaginary parts of this complex quantity are

computed separately from the estimates of the mean of cos(pIn (T( and sin(pIn (T( over the

WT coefficients at scales a and a'. To avoid numerical instabilities over a reasonable range
of values of p, one needs that fit(p, a') remains large as compared to numerical noise. This is

practically achieved by restricting our analysis to the WT modulus maxima [13] (instead of

using the continuous WT).
Let us illustrate these idea on some simple examples. In Figure la, we show the computation

of for Brownian motion. If a process is homogeneously scale invariant, the pdf of its WT

coefficients satisfies Pa(T)
=
(f)~~Pa> (())~~T) (H is the Holder exponent of the path of

the process; H
=
1/2 for Brownian motion). A straightforward calculation yields ©aa,(p)

=

e~P~~~~°/°') which attests that the process is continuously scale-similar: is a pure wave of

pulsation H In(ala'). Numerical estimates of the real and imaginary parts of are compared
to the above analytical expression for log~(a'la)

=
6. One can see that for p E [-6,6], the

agreement is very good. The deviations from the theoretical predictions for larger values of

(p( come mainly from finite statistics effects and the rapid decrease of M(p, a'). In Figure 16,
similar calculations are performed for a Bernoulli measure that is build by dispatching, at

each step, the measure on two half-subintervals with multiplicative weights /11 "
0.6 and

/12 "
0.4 respectively. For a =

2~~ and a'
=
2~~, ©aa, is simply given by the expression:

©aai (p)
=

~j~)"~~ One can see that this process is again scale-similar since G depends
only on n m =

logi /~ (ala'). One can check in Figure 16 that the above expression provides

a very good fit of the numerical data obtained using our method.

Recently, there has been a renewal of interest for the so-called log-infinitely divisible dis-

tributions [8-10] in the context of fully developed turbulence modelling. A well known ex-

ample of such distributions is the log-normal model originally introduced by Kolmogorov and

Obukhov [4j. Another example comes from the recent works of She et al. [9] and Dubrulle

[16a] that show that a cascade model involving log-Poisson statistics provides a remarkable

fit to the available experimental data. These two models are scale-similar since the function

s(a,a') can be proved to be In(ala'). In Figure 2, our method for estimating is tested

on both these distributions. The models we analyze are a log-normal and a log-Poisson
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Fig. 1. Numerical conlputation of ©aa> ~p) for (a) Brownian and (b) nlultiplicative Bernoulli pro-

cesses: (.) [©[, (.) Re(©)/[©[ and lo) In1(©)/[©[. The solid and dashed lines represent the cor-

responding theoretical predictions. a =
2~ and a'

=
2~~ and

~fi =
e'~~(e~~~/~ vie~~~&e~~~) is

the complex Morlet wavelet [12]. S1nlilar results are obtained with other analyzing wavelets, e.g. the

successive derivatives of the Gaussian function
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Fig. 2. Nunlerical computation of ©aa>(p) for the log-nornlal nlodel (m
=

-0.37 and a~
=
0.026)

(.) (b(, (.) Re(©) /[©[ and (O) In1(©)/[©[. In (a) the symbols (x correspond to results obtained for

the log-Poisson Inodel (1= 2, fl =
(2/3)~/~ and1

=
-1/9). The solid and dashed lines represent the

corresponding theoretical predictions. a =
2~ and a'

=
2~~ Sanle analyzing wavelet as in Figure 1.
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Fig. 3. -Numerical conlputation of ©aai(p) for the the log-nornlal nlodel. la) xo(a,a')
=

0In1(©aa,)/0p[p=o
vs.

ln(ala'); 16) A(a,a')
=
-0~ln([©aai[)/0p~[p=o

vs. ln(ala'): a'
=
2~ (.),

2~ IO), 2~ (.), 2~ (D) and 2~° (x). The solid lines represent the theoretical predictions:
To =

-mln(ala') and A(a,a')
=
-a~ In(ala').

cascade (on a WT orthornormal basis using L~ normalization) for parameter values as es-

timated from turbulence data [9]: ©aai (p)
=
e~~P~'~~"~~/~'~eP~~ ~"~~/~') with m =

-0.37 and
a~

=
0.026 for the log-normal model and ©aa, (p)

=

e~~~~/~'ll'll~c°~lP~" ~))~?l"+'~~"(P~" ill
=

with ~
=
2, fl

=
(2/3)~/~ and i =

-1/9 for the log-Poisson model. Let us note that if
(pInfl( « I, the log-Poisson process reduces to its quadratic approximation and thus to a

log-normal model. For both models one can see in Figure 2 that the numerical data are in
perfect agreement with the above analytical expressions. In Figure 3, we have plotted, for
the log-normal model and different couples of scales (a, a'), To (a, a') =

0Im(©aai)/8p(p=o and
A(a, a')

=
-8~(In (©aa,()/0p~(p=o as functions of In(ala'). One can see that all the points

fall on a unique straight line which matches the theoretical predictions and confirms the scale-
similarity of the cascade.

Let us now proceed to the analysis of fully developed turbulence data. The experimental
data were recorded by Gagne and his collaborators [10a, b] in two different flows and represent
temporal fluctuations of the longitudinal velocity component. In all our computations we

use Taylor hypothesis to identify temporal and spatial variations. The first set of data was

recorded at the O.N.E.R.A. wind tunnel in Modane; the Taylor scale based Reynolds number
is R> t 3050. The second flow is a laboratory jet flow for which R>

=
835. Our sample

represents a statistics of1.5 x
10~ points with resolution Ax t 1.2q for the wind tunnel data

and of about 2.I x 10~ points with resolution Ax t 2q for the jet, where q is the corresponding
dissipative scale. In Figure 4 are represented the modulus and the phase of the function ©aa>
that we numerically estimate in the inertial range for both flows (a

=
25 and a'

=
21~).

One can see that these data are very well-fitted by a log-normal model. Actually, we have
checked that for all couple of scales (a,a') in the inertial range, cumulants of Gaa> of order
higher than 2 are negligible. It is clear that, with the available statistical sample, the various
log-infinitely divisible cascade models [8-10] cannot be distinguished from their log-normal
approximations. In order to test the scale-similarity of turbulence, we reproduce in Figure 5a
the same analysis as in Figure 3a. It is striking (in particular for the jet flow) that the curves

obtained for the different scales (a, a') do not merge on the same straight line. The function
s(a, a') is thus significantly different from In(ala'). In Figure 5b, the same data are plotted
uersw s(a, a')

=
fl(a~° a'~°) with a t 0.08 for the wind tunnel flow and a m 0.20 for the

jet flow (let us note that in the limit a -+ 0, this behavior reduces to In(a la'), a regime which is
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Fig. 4. (a) ©aai(p) extracted fron1wind tunnel (.) and jet (x) turbulence exper1nlents.
(b) Re ©/[©[ (.) and In1 ©/[©[ (O) for wind tunnel data. (c) Same as (b) for jet data. The
solid and dashed lines correspond to the log-normal nlodel after adjusting the paranleters m and a.
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Fig. 5. xo(a,a')
=
0Im(©«~>)/0p[p=o as coInputed froIn wind tunnel and jet turbulence experi-

n1ents. (a) xo(a,a') vs. ln(a la'). (b) xo(a,a') vs.
fl(a~~ a'~°) with o =

0.08 (wind tunnel) and

o =
0.20 (jet) respectively. The different curves correspond to the following values of the reference

8cale: a'= 2~ (.), 2~ (O), 2~ (.), 2~ (D) and 2" (x).

almost reached in the Modane wind tunnel experiment). In this case, whatever (a, a'), all the
data points fall on the same line. The velocity fields we have analyzed are therefore not scale-
similar. We have checked that the variance [17] of G, A(a, a'), behaves like the mean To (a, a')
with the same exponent a. According to these findings one would expect the moments of the
WT coefficient pdf (actually the structure functions if the WT corresponds to increments) to
be of the functional form (instead of a power law)

SP(I)
"
CP~~~i ~ ~~ ~~

'
(4)

where Cp depends on p, a and the analyzing wavelet ~fi, C~ depends on ~fi, and (p
= -mp

a~p~ /2 is the quadratic spectrum of the log-normal model. According to this equation, if one
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wants to compare experimental results for different flows and different analyzing wavelets, one

can apply the concept of extended self-similarity [18] which consists in estimating the ratio
(p/(q by plotting one structure function against the other.

To conclude, we have shown that the notion of abstract cascade inspired by the work of
Castaing et al. [10] provides a generalization of the classical cascade models. It does not refer

a priori to a particular construction scheme and is characterized by a kernel G which turns out

to be computable by a deconvolution method. Application of these notions to fully developed
turbulence shows that all the models introduced to fit experimental data can be replaced by
their log-normal approximation. Moreover we have reported evidences that fully developed
turbulence is not scale-similar but possesses more complex self-similarity properties that are

likely to depend on the Reynolds number. These results strongly support the idea of Castaing's
group [10] and of a recent work by Dubrulle [16b]. More specific applications to turbulence,
e.g. the evolution of the exponent a with the Reynolds number, will be published elsewhere.
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