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We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity
statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical
simulation (DNS) data. We show that this approach reproduces the shape evolution of velocity
increment probability density functions (PDF) from Gaussian to stretched exponentials as the time
lag decreases from integral to dissipative time scales. We observe that numerical and experimental
data are accurately described by a unique quadratic D(h) spectrum which is found to extend from
hmin ≈ 0.18 to hmax ≈ 1, as the signature of the highly intermittent nature of Lagrangian velocity
fluctuations.

Statistical properties of homogeneous three dimen-
sional turbulence have been studied for a long time in
the Eulerian framework [1]. Recently a growing inter-
est in studying intermittency from a dynamical point of
view has been motivated by high precision Lagrangian
experiments. Essentially two experimental groups have
performed particle tracking in highly turbulent flows.
The group at Cornell [2] reports measurements of La-
grangian acceleration in a turbulent water flow between
two counter-rotating disks for Taylor-based Reynolds
numbers 200 < Rλ < 900. The experiment carried out
at ENS-Lyon [3], in a similar von Kármán flow, is based
on acoustic tracking. It provides Lagrangian velocity
records covering the inertial range of turbulent motion,
up to several integral time scales. In addition to these
complementary experiments, DNS of the Navier-Stokes
equations [3, 4] have produced comparative numerical re-
sults in the range 75 < Rλ < 380. The aim of the present
work is to provide a comprehensive description of the La-
grangian intermittency, using a formalism that describes
both the inertial and dissipative range of time scales. The
multifractal description [5], already widely used in Eule-
rian studies of turbulence, is a natural choice [6, 7]. In
the present description, a first-order Lagrangian velocity
increment over a time scale τ is written as :

δτv(t) = v(t + τ) − v(t) = β (τ/T ) δT v , (1)

where all the time scale dependence is contained in the
independent random function β(τ/T ). The PDF of in-
tegral time scale increments δT v is thus assumed to be
Gaussian (G) — a result of a central limit argument, also
in agreement with Eulerian observations. Once the dis-
tribution of P(β) is known, the PDF of increments at
any time scale τ is computed as

P(δτv) =

∫

dβ

β
G

(

δτv

β

)

P(β) . (2)

In the standard mutifractal formalism [5], β is assumed to
have a power law scale dependence in the inertial range,
β ∼ (τ/T )h, with a spectrum D(h) (meaning that the
PDF of observing an exponent h at scale τ is propor-
tional to (τ/T )1−D(h)). To describe the entire range of
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FIG. 1: Comparison of the experimental (a,c) and numerical
(b,d) data for the normalized velocity increment PDF P(δτv),

where δτv = δτv/〈(δτv)2〉
1
2 , with the predictions of the mul-

tifractal description. (•)(a,c): ENS-Lyon experimental data,
for time lags τ/T = 1, 0.35, 0.16 and 0.07, from bottom to
top; the solid lines are the model fit with c2 = 0.075.(•)(b,d)
DNS data calculated for τ/T = 1, 0.25, 0.17, 0.11 and 0.05,
from bottom to top; the solid lines correspond to parameter
value c2 = 0.086.(◦)(a,c) Cornell acceleration data, the solid
lines are the model predictions for c2 = 0.079. The original
δv-axis for the acceleration PDF (◦) has been shrunk by a
factor of 4.

scales covered in experimental measurements and com-
puter simulations, one must take into account the effects
of viscosity (finite Rλ). In the dissipative range, veloc-
ity fluctuations are smoothed by viscous damping (or
by measurement filtering) and the velocity increments
become proportional to the time scale δτv(t) = τa(t),
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FIG. 2: D(h) curves extracted from: (�) ENS-Lyon velocity
data, (∇) Cornell acceleration data and (◦) DNS numerical
data. Are also represented for comparison the Eulerian log-
normal (thick solide line) and log-Poisson (thick dashed line)
spectra as well as their Lagrangian counter-parts.

where a(t) is the Lagrangian acceleration. We shall con-
sider that the cross-over between inertial and dissipative
statistics occurs when the local Reynolds number is of
order unity,

Re(τ/T ) =
τ

T
β2
( τ

T

)

Re = 1 , (3)

where Re is the integral scale Reynolds number. This
defines a local Kolmogorov dissipative time τη(h) =

TRe
−1

2h+1 where the local velocity increments change from
inertial scale invariance to dissipative scaling (this im-
plies h ≥ −1/2, for time scales to be shorter than T ).
Changing the integration variable from β to h in Eq.(2),
the PDF of velocity increments at any scale τ/T can be
written as the sum of two contributions,

P(δτv) =

∫ h∗( τ

T
,Re)

−1/2

dh
Pi

(

h, τ
T ,D(h)

)

βi

(

τ
T , h

) G

(

δτv

βi

(

τ
T , h

)

)

+

∫ +∞

h∗( τ

T
,Re)

dh
Pd (h, Re,D(h))

βd

(

τ
T , h, Re

) G

(

δτv

βd

(

τ
T , h, Re

)

)

(4)

where the functions βi,d and Pi,d have the proper in-

ertial (βi ∼ (τ/T )h, Pi ∼ (τ/T )1−D(h)) and dissipa-

tive (βd ∼ τ/T, Pd ∼ (τη(h)/T )1−D(h)) scalings. The
change occurs at the critical value h∗ for which the local
Reynolds number is unity:

h∗

( τ

T
, Re

)

= −
1

2

(

1 +
ln Re

ln τ
T

)

. (5)

For h < h∗(τ/T, Re), the increments δτv are in the in-
ertial range, while they lie in the dissipative range for
h > h∗. Finally, we impose that the function β(τ/T )
be continuous and differentiable at the transition, fol-
lowing a strategy used in the Eulerian domain [7], and
inspired from an elegant interpolation formula proposed
by Batchelor [8] (see [10] for details). In this work, and
as a posteriori justified, we assume a quadratic form
D(h) = 1 − (h − c1)

2/2c2. A first finding of our anal-
ysis is that almost identical functions D(h) are obtained
for the three sets of data (Cornell, Lyon and DNS), al-
though they cover a wide range of scales and of turbulent
Reynolds numbers: the symbols in Fig.2 are undistigu-
ishable, certainly within error bars.

To conclude, we return to our observation that a
unique D(h) spectrum yields an accurate description of
the Lagrangian velocity statistics at all scales. Such a
spectrum DE(h) has been extensively studied in the Eu-
lerian domain [1, 9]. Two widely used forms (correspond-
ing to log-normal and log-Poisson statistics) are shown in
Fig.2. They can be mapped into the Lagrangian domain
:

D(h) = −h + (1 + h)DE (h/(1 + h)) , (6)

using a Kolmogorv Refined Similarity argument in the
spirit of the work done by Borgas [11] . The resulting
curves are shown in Fig.2.; we note that the agreement
with the measured LagrangianD(h) functions is excellent
on the left-hand side of the curves, i.e. for values h < c1

corresponding to intense velocity increments. On the
right-hand side (h > c1) there is a noticeable difference.
Whether this difference is significant deserves more inves-
tigation. It may be of importance since the above rela-
tionship clearly shows that the Eulerien and Lagrangian
singularity spectra cannot be both log-normal.
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