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Abstract. - The statistics of signal increments are commonly used in order to test for possible
intermittent properties in experimental or synthetic data. However, for signals with steep power
spectra [i.e., E(ω) ∼ ω−n with n ≥ 3], the increments are poorly informative and the classical
phenomenological relationship between the scaling exponents of the second-order structure func-
tion and of the power spectrum does not hold. We show that in these conditions the relevant
quantities to compute are the second or higher degree differences of the signal. Using this statis-
tical framework to analyze a synthetic signal and experimental data of wave turbulence on a fluid
surface, we accurately characterize intermittency of these data with steep power spectra. The
general application of this methodology to study intermittency of experimental signals with steep
power spectra is discussed.

Introduction. – Since the prediction of Kolmogorov
in 1941 [1], it is well known that the spatial power spec-
trum E(k) of a fluid particle velocity v in a turbulent
flow is a power-law of the wave number k as k−5/3.
The −5/3 exponent of the spatial power spectrum is re-
lated to the second-order moment of velocity increments
S2(r) ≡ 〈[v(l + r) − v(l)]2〉 ∼ r2/3, l and r being a posi-
tion and a spatial separation [2]. The phenomenological
relationship between both exponents comes from Fourier
transform properties. It can be generalized to any station-
ary random processes: if the power spectrum of the pro-
cess is E(k) ∼ k−n, then S2(r) ∼ rζ2 with ζ2 = n− 1 [2].
This property allows to perform measurements in the real
space to reach the power-law exponent of the power spec-
trum. The statistics of velocity increments are also cru-
cial to characterize the intermittent nature of the velocity
field using the scaling properties of structure functions:
Sp(r) ≡ 〈[v(l + r) − v(l)]p〉 ∼ rζp (p positive integer) [3].
A non-linear dependence of ζp versus p is the hallmark of
intermittency.

Steep power-law spectra (∼ ω−n or ∼ k−n with n close
or larger than 3) of a process are observed in various
situations: magnetohydrodynamics turbulence [4], atmo-

spherics turbulence [5], gravity [6] or capillary [7] wave
turbulence on a fluid surface, and direct cascade of two-
dimensional fluid turbulence [8, 9]. Whatever the corre-
sponding signal measured in space or in time (e.g. fluid
velocity or vorticity, surface-wave height, magnetic field,
wind), such steep spectra mean that the measured sig-
nal is at least once continuously differentiable [2]. The
signal differences or increments are thus poorly informa-
tive since they are dominated by the differentiable com-
ponent of the signal. For instance, some numerical sim-
ulations of the power-law scaling of the energy spectrum
in two-dimensional turbulence exhibited apparent contra-
dictions with its reconstruction from spatial correlation
measurement, i.e. ζ2 6= n − 1 (see Ref. [10]). Babi-
ano et al. have systematically reconsidered the theoretical
relations between second-order structure functions and en-
ergy spectra instead of phenomenological or dimensional
arguments [10]. They showed that the apparent contra-
dictions come from the fact that the relation ζ2 = n − 1
does not hold for steep power-law spectra. Indeed, due to
the differentiable component, the exponent of the second-
order structure function is independent of the spectrum
slope as soon as this one is steeper than −3; that is ζ2 = 2
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whatever n ≥ 3 [10]. This latter property has been noted
elsewhere without derivation [2, 11, 12]. The indirect con-
clusions drawn from the structure function analysis to
reach the exponent of the power-law spectrum (using the
relation ζ2 = n − 1) are thus misleading for n ≥ 3, but
suprinsingly are still used for some experimental signals
with steep power spectra [13].

In this letter, we emphasize that the increments are not
the relevant quantities in order to statistically character-
ize the fluctuations of a steep power spectrum signal and,
in particular, to probe for its possible intermittent na-
ture. We show analytically that, depending on the spec-
tral steepness, it is necessary to adapt the degree of the
difference statistics used to analyze the signal. Given an
adapted degree, we provide a general relationship between
the exponents of the second-order structure function and
of the power spectrum whatever the steepness of the spec-
trum. Finally, applying this approach to a synthetic sig-
nal, and to an experimental signal of wave turbulence on a
fluid surface allows us to accurately characterize intermit-
tency of these data with steep power spectra. Note that a
general framework for the study of intermittency of a sig-
nal with arbitrary degree of regularity has been previously
proposed using more complex estimators based on the con-
tinuous wavelet transform [14] or on inverse statistics [15].
Here, we propose a practical approach and provide simple
rules that should be easily applicable on the workbench
to study intermittency of experimental signals with steep
spectra.

Scaling properties of irregular signals. – Let us
first recall the pioneering work of Parisi and Frisch [3]
introduced for the description of the irregular nature of
longitudinal velocity data in fully developed turbulence.
They locally described the fluctuations of an erratic signal,
η(t), by means of the singularity exponents h(t0) which
caracterizes the power-law behaviour of the finite differ-
ences (or increments) of η over a time lag τ at a time t0

δτη(t0) ≡ η(t0 + τ)− η(t0) ∝
τ 7→0+

τh(t0) . (1)

Since the characterization of non-local singularities cannot
be achieved in a purely local manner, Parisi and Frisch
introduced the p-order structure functions

Sp(τ) ≡ 〈|δτη(t)|p〉 , (2)

where 〈·〉 represents an average over time t and from which
they defined the spectra of global exponents ζp such as

Sp(τ) ∝ τ ζp . (3)

Note that it is useful to consider the moment of order p
of |δτη(t)| rather than δτη(t) as used in Ref. [3], so that
Eqs. (2) and (3) are defined for all p positive real. In
the presence of homogeneous fluctuations, i.e. h(t0) = H
whatever t0, it is straightforward that ζp is a linear func-
tion of p with ζp = pH. Reciprocally, a non-linear depen-
dence of ζp with p is the signature of non-homogeneous

fluctuations whose singularity exponents vary with time,
i.e. the hallmark of intermittency.

Scaling exponents of two point statistics. – We
now resume the relationships between the power-law expo-
nents of the second-order structure functions, the correla-
tion function, and the power spectrum. Let us consider a
stochastics process η(t) which is not necessarily stationary
(see below). We assume that finite differences of η over
a time lag τ , δτη(t) ≡ η(t + τ) − η(t), form a stationary
process of zero mean and that η(0) = 0. Let us look at the
correlation between two short intervals (of size ∆) sepa-
rated by a lag θ, that is the quantity δ∆η(t+θ)δ∆η(t). We
choose ∆ equals to the sampling time of η(t), that is the
duration between two successive measurement points. For
p = 2, the scaling of Eq. (3) implies a power-law decay of
the correlation function C of the increments δ∆η at large
lags θ as [16]

C(θ) ≡ 〈δ∆η(t+ θ)δ∆η(t)〉 ∝
|θ|7→∞

|θ|−κ ,with κ = 2− ζ2 .
(4)

This scaling behaviour for large lags coincides to a low-
frequency power-law behaviour of the power spectrum Ĉ
of the increments δ∆η, defined as the Fourier transform
(FT) of the correlation function [16]

Ĉ(ω) ≡
∫

R
C(θ)eiωθdθ ∝

|ω|7→0
|ω|−β , with β = ζ2 − 1 ,

(5)
ω being the angular frequency. An estimator of the power
spectrum Ĉ(ω) is obtained taking the square modulus of
the FT of the increments δ∆η(t) observed over a finite
time range [0, T ],

Ĉ(ω) ' Eδ∆η(ω) ≡
∣∣∣∣∣ 1
T

∫ T

0

δ∆η(t)eiωtdt

∣∣∣∣∣
2

. (6)

In practice, a common habit is to compute the empirical
power spectrum of η, denoted E(ω), rather than that of
the increments, Eδ∆η(ω). Indeed, these spectra are related
by Eδ∆η(ω) = 2 [1− cos(ω)]E(ω) leading to the empirical
power spectrum scaling

E(ω) ' Ĉ(ω)
2 [1− cos(ω)]

∝
|ω|7→0

|ω|−n , with n = β + 2 . (7)

The scaling exponents of S2(τ) ∝ τ ζ2 , C(θ) ∝ |θ|−κ and
Ĉ(ω) ∝ ω−β for the increments thus read respectively

ζ2 = n− 1, κ = 3− n, and β = n− 2, (8)

where n < 3 (see below) is the exponent of the power
spectrum of η(t) [see Eq. (7)].

It is fundamental to note that the above stationarity
condition for the increments does not imply the station-
arity of the signal, so that the correlation function of η
might not be defined and, thus, that E may not be a
power spectrum in the statistical sense (i.e. the FT of
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Table 1: Relationships between the spectral exponent n, the structure function exponent and the differentiability of a signal
η(t) with a self-similar power spectrum. Reference indicates the existing derivation of the relationships. S(1)

2 (τ) ≡ 〈|δ(1)τ η|2〉,
S

(2)
2 (τ) ≡ 〈|δ(2)τ η|2〉 and S(3)

2 (τ) ≡ 〈|δ(3)τ η|2〉.
Power spectrum Differen- Difference statistics used to test intermittency Second-order

E(ω) ∼ ω−n tiability structure funct.
n < 3 0 δ

(1)
τ η = η(t+ τ)− η(t) S

(1)
2 ∼ τn−1 [10]

n ≥ 3 ≥ 1 - S
(1)
2 ∼ τ2 [10]

n < 5 1 δ
(2)
τ η = η(t+ 2τ)− 2η(t+ τ) + η(t) S

(2)
2 ∼ τn−1

n ≥ 5 ≥ 2 - S
(2)
2 ∼ τ4

n < 7 2 δ
(3)
τ η = η(t+ 3τ)− 3η(t+ 2τ) + 3η(t+ τ)− η(t) S

(3)
2 ∼ τn−1

n ≥ 7 ≥ 3 - S
(3)
2 ∼ τ6

a correlation function). Also, one should be careful that
the estimation of the spectrum E(ω) for a non-stationary
signal η(t) may be significantly biased depending on the
FT numerical algorithm used. In such condition, a more
robust practice to estimate the spectral scaling exponent
n consists in numerically computing the FT of the sta-
tionary signal δ∆η(t), i.e., Eδ∆η(ω), and to use Eq. (7) to
convert back to the usual power spectrum.

Meaning of steep power spectra. – Here, we ex-
plain why the usual relationships of Eq. (8) no longer hold
in the presence of steep power spectra (n ≥ 3). In this
case, Eq. (8) leads to κ < 0, suggesting that the correla-
tion function of δ∆η does not go to 0 but rather diverge
at large lag values [see Eq. (4)]. Obviously, this is neither
physically nor statistically acceptable. Indeed, for a non
trivial stationary process δτη satisfying Eq. (3), the corre-
lation function of Eq. (4) is only defined for κ = 2−ζ2 > 0,
that is for ζ2 < 2. This implies that the spectrum of the
increments is only defined for β = ζ2 − 1 < 1. Con-
sequently, for a process with stationary increments, the
scaling exponent of the empirical power spectrum must
satisfies n = ζ2 + 1 < 3. Hence, for steep power spectra
(n ≥ 3), the basic assumption that increments form a sta-
tionary process is not verified so that the structure func-
tions of Eq. (3) and the correlation function of Eq. (4) are
not well defined. In practice, the classical phenomenologi-
cal relation between E(ω) ∼ ω−n and S2(τ) ∼ τn−1 is thus
invalid for n ≥ 3, so that the spectral slope can not be de-
duced from the measurement of the second-order structure
function. This also means that the process η(t) is at least
once differentiable at times where η(t+τ)−η(t) ' τdη/dt
at the first order in τ [2]. These local linear trends are
responsible for the non-stationarity of signal increments
and, in turns, bias the estimation of scaling exponents.
Indeed, near these times, one has |δ∆η(t)|p ∼ τp that cor-
responds to ζp = p [using Eqs. (2) and (3)]. This means
that the scaling of the exponent of the structure functions
are independent of the spectral steepness. Thus, the in-
crements of the signal do not appear as relevant quantities
when looking for possible intermittency (i.e. a non-linear
evolution of ζp with p) in signals with steep power spectra.

Using higher-degree difference statistics to re-
cover stationarity. – As recalled above, the scaling
exponent of the spectrum of the increments is decreased
by two with respect to the one of the spectrum of the sig-
nal (β = n − 2). Clearly, the repetition of the difference
process allows recovering the power spectrum of a station-
ary process. For instance, for 3 ≤ n < 5, the second-
degree difference of the signal δ(2)

∆ η(t) ≡ δ∆[δ∆η(t)] =
η(t + 2∆) − 2η(t + ∆) + η(t) has a power spectrum with
scaling exponent β(2) = n − 4 < 1, which is compati-
ble with δ(2)

∆ η(t) being stationary. The second-degree dif-
ferences thus remove the local linear trends in the sig-
nal η responsible for the saturation ζp = p when n ≥ 3.
Thus, when looking for possible intermittency in this case,
one should use the structure functions of degree 2, that
is S

(2)
p (τ) ≡ 〈|δ(2)

τ η(t)|p〉 ∝ |τ |ζ(2)
p . We have indeed

ζ
(2)
2 = n−1 for n < 5. For n ≥ 5, one have ζ(2)

2 = 4 due to
local quadratic trends in the signal. Thus, for 5 ≤ n < 7,
the power spectrum of third-degree differences δ(3)

∆ η(t) ≡
δ∆[δ(2)

∆ η(t)] = η(t+ 3∆)− 3η(t+ 2∆) + 3η(t+ ∆)− η(t),
is well defined and intermittency should be tested with
S

(3)
p (τ) ≡ 〈|δ(3)

τ η(t)|p〉 ∝ |τ |ζ(3)
p . These results are sum-

marized in the Table 1. Note that, even though the slope
of the power spectrum is reduced by computing higher-
degree difference statistics, the upper bound of the spec-
tral bandwidth, related to the finite dynamic resolution of
the original signal measurement, is not bypassed.

Workbench recipe. – In practice, given a first esti-
mate of the empirical power spectrum scaling exponent n,
further statistical analysis should be performed using dif-
ference statistics of degree d > d∗ where d∗ is the smallest
integer such that n−2d∗ < 1. For instance, structure func-
tion of degree d, S(d)

p (τ) ≡ 〈|δ(d)
τ η(t)|p〉 ∝ |τ |ζ(d)

p should
be used to test for intermittency while spectral analysis
or correlation analysis should be done on degree d differ-
ences, E

δ
(d)
∆ η

(ω) ∝ |ω|β(d)
and C

δ
(d)
∆ η

(θ) ∝ |θ|−κ(d)
. The

relationships between the scaling exponents then become

ζ
(d)
2 = n− 1, κ(d) = 1 + 2d− n, β(d) = n− 2d, (9)

for n < 1 + 2d. In other words, the proposed procedure
removes the biases in the estimation of the scaling expo-
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Fig. 1: Power spectra of the experimental data η(t) (solid line)
and of a synthetic signal (dash-dotted line). Dashed lines have
slopes of -4.3 and -2.8. Inset: Typical temporal evolution of
η(t) during 10 s, 〈η〉 ' 0.

nents. These biases arise from the local regular behaviors
of a signal that can occur at different degrees of the sig-
nal differentiability. Hence, in order to numerically check
that the signal regular components have been adequately
removed, it is good practice to check that results remains
consistent when increasing degree d to d + 1. In particu-
lar, one should make sure that ζ(d)

p ' ζ
(d+1)
p . Note that

for discontinuous signals the use of increments or higher-
degree differences is unsuitable, a wavelet-based approach
is more suited [14].

Applications. – To illustrate the results of the previ-
ous section, let us now apply the proposed estimator based
on higher-degree difference statistics to signals with steep
spectra and probe their possible intermittent nature. A
synthetic signal with prescribed intermittency and exper-
imental data of wave turbulence on a fluid surface will
be tested below for comparison. To our knowledge, only
one study has compared the method of second-degree dif-
ferences with more complex estimators based on inverse
statistics in order to probe intermittency in a simulation
of two-dimensional flows [17].
Synthetic data. Here, we apply the above suggested

estimator to a synthetic data. Recently, it has been
proposed that the scaling properties of experimental ve-
locity (transverse to the mean flow) in fully developed
turbulence could be described by log-normal Random
Wavelet Cascade (RWC) [18]. RWC generalizes the con-
cept of self-similar cascades leading to multifractal mea-
sures (−1 ≤ n ≤ 1) to the construction of scale-invariant
signals (n > 1) using orthonormal wavelet basis [18]. In-
stead of redistributing the measure over sub-intervals with
multiplicative weights, it allocates the wavelet coefficients
in a multiplicative way on the dyadic grid. This method
has been implemented to generate multifractal functions
from a given deterministic or probalistic multiplicative
process. From a mathematical point of view, the con-
vergence of the cascade and the regularity properties of
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Fig. 2: Rescaled second-order moment of the structure func-
tions S2(τ)/τ

n−1 with n = 4.3 computed from the (◦) first-,
(�) second-, (�) third- and (4) fourth-degree differences of the
signal as a function of the time lag τ . a) Synthetic signal. b)
Experimental signal. Correlation time is τc ' 63 ms.

the so-obtained stochastic functions have been discussed
in Ref. [19]. Intermittency of RWC is characterized by the
theoretical scaling exponents ζp = c1p−c2p2/2 [19]. Here,
we consider a realization of 3×106 data points of the RWC
process and choose c1 = 1.92 and c2 = 0.27 to reproduce
the intermittent properties of experimental data of wave
turbulence (see below).

We first compute the usual power spectrum of the RWC
signals allowing us to assess that its frequency power law
exponent is around 3 < n < 5. This suggests that unbi-
ased estimates of the scaling exponents will be obtained
using second (or higher) degree difference statistics (see
Table 1). The unbiased power spectrum of this signal is
then computed using the Fourier transform of the second-
degree differences [see Eqs. (6) and (7)] and is shown in
Fig. 1. It roughly behaves as a steep power-law over one
decade in frequency, i.e. E(ω) ∝ ω−n with n ' 4.3. The
second-order structure functions S(d)

2 of this synthetic sig-
nal are then computed using the first, second, third and
fourth degree difference statistics (d = 1, 2, 3 and 4) as
shown in Fig. 2a. We observe that, when using the third-
degree statistics (d = 3), one has S(3)

2 (τ) ' τ ζ
(3)
2 with

ζ
(3)
2 = 3.33 that is in good agreement with the theoreti-
cal value ζ2 = 2(c1 − c2) = 3.3, the classical relationship
ζ

(3)
2 = n − 1 being thus well satisfied. When d = 4, we
obtain ζ(4)

2 = 3.35 a value that is consistent with the one
found with d = 3. For d = 2, one obtains ζ(2)

2 = 3.23, a
value that is slightly below the previous one since it be-
gins to be biased by the smoother part of the signal (two
times differentiable or more). Finally, using the usual first-
degree statistics (d = 1) leads to ζ(1)

2 ' 2 since the RWC
signal is differentiable with a steep power spectrum of ex-
ponent n ≥ 3 (see Table 1).

The estimations of the structure-function exponents ζ(d)
p

versus p using the first, second, third and fourth degree
difference statistics (d = 1, 2, 3 and 4) are presented in
Fig. 3a. We observe that ζ(2)

p is a non-linear function of
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Fig. 3: Structure function exponents, ζp, as a function of p for
the synthetic data (b) and experimental (a). (◦) ζ(1)

p computed
from the first-degree increments ; (�) ζ(2)

p computed from the
second-degree differences and fitted by (−−) ζ(2)

p = c1p−c2p2/2

with c1 = 1.92 and c2 = 0.27; (�) ζ(3)
p and (4) ζ(4)

p computed
from the third-degree and fourth-degree differences. Solid lines
are linear fits of ζ(1)

p : (a) ζ(1)
p = 0.95p, and (b) ζ(1)

p = 0.8p.

p which provides a clear evidence of the intermittent na-
ture of the RWC signal fluctuations. The fact that ζ(3)

p

and ζ
(4)
p estimates are consistent with the previous ones

(ζ(2)
p ' ζ(3)

p ' ζ(4)
p ) provides further confidence on this di-

agnosis. It is noteworthy that ζ(2)
p , ζ(3)

p and ζ(4)
p estimates

are in good agreement with the theoretical expectation
ζp = c1p − c2p

2/2, which illustrates that the proposed
framework allows an accurate characterization of the in-
termittent properties. Finally, as expected for a differen-
tiable signal, using first-degree increments leads to ζ(1)

p is
a linear function of p with a slope close to 1. This latter
result thus leads to a misleading conclusion that the RWC
signal does not present intermittency. This exemplifies the
need to adapt the degree of the difference statistics to the
steepness of the power spectrum.

Finally, the probability density functions (PDFs) of the
first-degree increments of the synthetic signal are plotted
in Fig. 4a for different time lags τ . All the PDFs have
the same shape independent of the scale τ , thus showing
no intermittency. In contrast, the PDFs of the second-
degree increments displayed in Fig. 4b show a clear evo-
lution across scales, highlighting the intermittency of the
signal. This is consistent with the previous structure func-
tion analysis, and further underlines that high-degree dif-
ference statistics is needed to test intermittency of steep
power-spectrum signals.

Wave turbulence data. We now apply the above pro-
posed statistical estimator on an experimental signal of
hydrodynamics surface wave turbulence [20]. A typical
signal is the temporal evolution of the surface wave ampli-
tude, η(t), measured at a given location of the free surface
of the fluid (see inset of Fig. 1). Data are recorded from 10
successive experiments of 300 s each where surface waves
are generated by a wave maker driven by random noise
forcing in a frequency range 0–6 Hz [20]. Wave heights was
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Fig. 4: PDFs of the first-degree increments δ(1)τ η for different
τ from 6 to 100 ms (see arrows): (a) Synthetic data, and (c)
Experimental data. PDFs of the second-degree differences δ(2)τ η
for 6 ≤ τ ≤ 100 ms: (b) Synthetic data, and (d) Experimental
data. Dashed-line: Gaussian with zero mean and unit standard
deviation. στ are the rms values. Each curve has been shifted
for clarity.

measured at 1 kHz sampling rate (∆ = 1 ms) resulting in
3 × 106 data points. As for the RWC signal, the initial
estimation of the power spectrum steepness indicates that
3 < n < 5. In order to probe for possible intermitent prop-
erties of this signal with such a steep power spectrum, we
thus need to use the adapted difference statistics proposed
in the previous section.

The power spectrum of η(t), estimated using the Fourier
transform of δ(2)

∆ η [see Eqs. (6) and (7)], is shown in
Fig. 1. It displays two frequency ranges with a power-
law behaviour. In the low-frequency spectrum range
(∼ 7 − 30 Hz) corresponding to the gravity wave turbu-
lence regime, we observe E(ω) ∝ ω−4.3 while the high-
frequency range (∼ 30 − 100 Hz) corresponding to the
capillary regime is characterized by E(ω) ∝ ω−2.7 [7]. The
second-order structure functions S(d)

2 (τ) of η(t) for d = 1,
2, 3 and 4 are shown in Fig. 2b as a function of the time
lag 5 ≤ τ ≤ 100 ms. When considering structure func-
tions S(d)

2 for d ≥ 2 in the time lag range τ . 80 ms
(corresponding to frequencies above the maximal forcing
frequency 6 Hz), we roughly observe two different power-
law scaling behaviours in the gravity regime 15 . τ . 65
ms and the capillary regime 5 . τ . 15 ms [a time lag
τ corresponds to a frequency f = 1/(2τ)]. We will fo-
cus below only to the gravity regime since the transition
between both regimes in Fig. 2b occurs rather smoothly
which significantly reduce the time lag range available to
fit the scaling exponent in the capillary regime. As ex-
plained above, for d = 1, S(1)

2 is dominated by the signal
differentiability and does not display both scaling regimes.
Focusing only on the gravity regime (15 . τ . 65ms),
one consistently finds ζ(3)

2 = 3.3 and ζ
(4)
2 = 3.4 in good

agreement with the spectral exponent n = 4.3. When us-
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ing d = 2, the smoother transition observed between the
scaling regimes leads to a slightly underestimated value
ζ

(2)
2 = 2.9 6= n− 1.
We then look for possible intermittent properties of the

turbulence wave data in the gravity regime. The evolu-
tion of ζ(d)

p with p is shown in Fig. 3b for d = 1, 2, 3 and
4. When using the first-degree increments, ζ(1)

p ' 0.8p
is a linear function of p. As underlined above, in pres-
ence of a steep power spectrum, ζ(1)

p is dominated by the
differential component of the signal masking possible in-
termittency. For d = 2, 3 and 4, we observe a clear non
linear behaviour of ζ(d)

p versus p. We note that while ζ(3)
p

and ζ
(4)
p provide consistent estimates of ζp for all p, ζ(2)

p

estimates are slightly below these latters as already ob-
served above for p = 2. Finally, the coherence between
the estimates of ζp for two successive values of the differ-
ence degree (ζ(3)

p ' ζ
(4)
p ) and with the spectral analysis

(ζ(3, 4)
2 ' n − 1) strongly suggests that these measure-

ments are reliable. We can thus conclude these data of
wave turbulence are intermittent. Fitting of ζ(3)

p with the
polynomial model ζp = c1p − c2p2/2 yields c1 = 1.9 and
an intermittency coefficient c2 = 0.27.

Another way to highlight the wave turbulence intermit-
tency is to observe a shape deformation of the probability
density functions (PDFs) of the signal increments with the
time lag τ . The PDFs of the first and second-degree incre-
ments of the wave amplitudes are respectively plotted in
Figs. 4c and 4d for 6 ≤ τ ≤ 100 ms. When τ is increased,
the PDF’s shape of the second-degree increments changes
continuously up to a nearly Gaussian shape at large τ (see
Fig. 4d). This deformation is a direct signature of inter-
mittency. As predicted above, this intermittency is not
diagnose when using the first-degree estimator: almost no
deformation of the PDF shapes of the first-degree incre-
ments is observed in Fig. 4c.

In this Letter, we have proposed an easily applicable
framework based on high-degree difference statistics to
probe for possible intermittency of a signal with a steep
power spectrum. We applied it to synthetic data and to
wave turbulence data. This has led to the observation of
wave turbulence intermittency [20]. In the same way, it
can be used on previous existing data notably of magneto-
hydrodynamic [4] or two-dimensional turbulence [8], both
showing steep power spectra.
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