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Abstract

We use the continuous wavelet transform to generalize the multifractal formalism to fractal
functions. We report the results of recent applications of the so-called wavelet transform modulus
maxima (WTMM) method to fully developed turbulence data and DNA sequences. We conclude
by briey describing some works currently under progress, which are likely to be the guidelines
for future research. c© 1998 Elsevier Science B.V. All rights reserved

1. From global to local characterization of the regularity of fractal functions

In many situations in physics as well as in some applied sciences, one is faced to the
problem of characterizing very irregular functions [1–11]. The examples range from
plots of various kinds of random walks, e.g. Brownian signals [12,13], to �nancial time-
series [14–16], to geological shapes [1,9,17], to medical time-series [18], to interfaces
developing in far from equilibrium growth processes [4,6,11], to turbulent velocity
signals [10,19,20] and to “DNA walks” coding nucleotide sequences [21,22]. These
functions can be quali�ed as fractal functions [1,13,23–25] whenever their graphs are
fractal sets in R2 (for our purpose here we will only consider functions from R to
R). They are commonly called self-a�ne functions since their graphs are similar to
themselves when transformed by anisotropic dilations, i.e., when shrinking along the
x-axis by a factor � followed by a rescaling of the increments of the function by a
di�erent factor �−H : ∀x0 ∈R; ∃H ∈R such that for any �¿0, one has

f(x0 + �x)− f(x0)' �H (f(x0 + x)− f(x0)) : (1)
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If f is a stochastic process, this identity holds in law for �xed � and x0. The exponent
H is called the roughness or Hurst exponent [1,3,6]. The graph of f is self-similar
if it is invariant under some isotropic dilations, i.e., when the Hurst exponent H =1.
Let us note that if H¡1, then f is not di�erentiable and the smaller the exponent
H , the more singular f. Thus the Hurst exponent provides indication of how globally
irregular the function f is.
Di�erent methods [6] (e.g., height-height correlation function, variance and power

spectral methods) have been used to estimate the roughness exponent which is sup-
posed to be related to the fractal dimension DF = 2 − H of the graph of the consid-
ered function. But beyond some practical algorithmic limitations, there exists a more
fundamental intrinsic insu�ciency in the fractal dimension and=or roughness exponent
measurement in the sense that DF as well as H are global quantities that do not account
for possible uctuations (from point to point) in the local regularity of f. To describe
these nonhomogeneous functions, one thus needs to change slightly the de�nition of
the Hurst regularity so that it becomes a local quantity [26–29]:

|f(x0 + l)− f(x0)| ∼ lh(x0) : (2)

This “local roughness exponent” h(x0) corresponds to the H�older exponent of f at
the point x0 when h(x0)¡1. The H�older exponent characterizes the strength of the
singularity of f at the point x0 and is de�ned as the largest exponent such that there
exists a polynomial Pn(x − x0) of order n satisfying [30–33]

|f(x)− Pn(x − x0)|6C|x − x0|h ; (3)

for x in the neighborhood of x0. If h(x0)∈ ]n; n + 1[, one can easily prove that f is
n times, but not n + 1 times di�erentiable at the point x0. The polynomial Pn(x − x0)
corresponds to the Taylor series of f around x= x0 up to the order n. Thus the higher
the exponent h(x0), the more regular the function f at the point x0.

2. Statistical analysis of the regularity of fractal functions: the multifractal
formalism

The multifractal formalism [34–43] has been originally established to account for
the statistical scaling properties of singular measures arising in various situations in
physics, chemistry, geology or biology. Notable examples include the invariant prob-
ability distribution on a strange attractor [36,38,43], the distribution of voltage drops
across a random resistor network [2,3,44], the distribution of growth probabilities on
the boundary of a di�usion-limited aggregate [3,4,45] and the spatial distribution of
dissipative regions in a turbulent ow [41,46–48]. This formalism lies upon the de-
termination of the so-called f(�) singularity spectrum [36] which characterizes the
relative contribution of each singularity of the measure: let S� be the subset of points x
where the measure of an �-box Bx(�), centered at x, scales like �(Bx(�))∼ �� in the limit
�→ 0+, then by de�nition, f(�) is the Hausdor� dimension of S�: f(�)= dimH(S�).
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Actually, there exists a deep analogy that links the multifractal formalism with that
of statistical thermodynamics [49–51]. This analogy provides a natural connection be-
tween the f(�) spectrum and a directly observable spectrum �(q) de�ned from the
power-law behavior, in the limit �→ 0+, of the partition function [36]:

Zq(�)=
∑

i

�(Bi(�))q ∼ ��(q) ; (4)

where the sum is taken over a partition of the support of the singular measure into boxes
of size �. The variables q and �(q) play the same role as the inverse of temperature
and the free energy in thermodynamics while the Legendre transform,

f(�)= min
q
(q�− �(q)) ; (5)

indicates that instead of energy and entropy, we have � and f(�) as the thermodynam-
ical variables conjugate to q and �(q) [36–39,52]. Let us mention that the so-called
generalized fractal dimensions Dq [53–57] are nothing else than Dq= �(q)=(q− 1).
In the past few years, the multifractal approach has proved particularly fruitful in

many contexts. However, as pointed out previously, in physics and other applied sci-
ences, fractals appear not only as singular measures, but also as singular functions.
There have been several attempts to extend the concept of multifractal to singular
functions [26,27]. In the context of fully developed turbulence [58], the intermit-
tent character of turbulent velocity signals was investigated by calculating the mo-
ments of the probability density function (pdf) of (longitudinal) velocity increments
�vl(x)= v(x + l)− v(x), over inertial separation [26,58]:

Sp(l)=
〈
�vpl

〉 ∼ l�p : (6)

By Legendre transforming the scaling exponents �p of these structure functions (SF’s)
of order p [59], one gets the Hausdor� dimension D(h) of the subset of R for which
velocity increments behave as �vl ∼ lh [26]:

D(h)= min
p
(ph− �p + 1) : (7)

In a more general context, D(h) will be the spectrum of H�older exponents for the
singular signal under study and thus will have a similar status than the f(�) singularity
spectrum for singular measures (Eq. (5)). However, as discussed in the next section,
there are some fundamental limitations to the SF approach which intrinsically fails to
fully characterize the D(h) singularity spectrum [60].

3. A thermodynamics of fractal signals based on wavelet analysis

The wavelet transform (WT) is a mathematical technique introduced in signal anal-
ysis in the early eighties [61,62]. Since then, it has been the subject of considerable
theoretical developments and practical applications in a wide variety of �elds
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[63–73]. The WT has been recently emphasized as a mathematical microscope that
is well adapted to reveal the hierarchy that governs the spatial distribution of the
singularities of multifractal measures [28,29,71,73–83]. What makes the WT of funda-
mental use in the present study is that its singularity scanning ability equally applies
to singular functions than to singular measures [28,29,71].

3.1. Singularity detection and processing with wavelets

The WT is a space-scale analysis which consists in expanding signals in terms of
wavelets which are constructed from a single function, the analyzing wavelet  , by
means of translations and dilations. The continuous WT of a real-valued function f is
de�ned as [61,62]

T [f](x0; a)=
1
a

+∞∫
−∞

f(x)  
(
x − x0

a

)
dx ; (8)

where x0 is the space parameter and a(¿0) the scale parameter. The analyzing wavelet
 is generally chosen to be well localized in both space and frequency. Usually,  is
required to be of zero mean for the WT to be invertible. The main advantage of using
the WT for analyzing the regularity of a function, is its ability to be blind to smooth
(polynomial) behavior by an appropriate choice of the analyzing wavelet  . Indeed,
let us assume that according to Eq. (3), f has a local scaling exponent h(x0) at the
point x0; then one can easily prove that the local behavior of f is mirrored by the WT
which locally behaves like [30–33]:

T [f](x0; a)∼ ah(x0); a→ 0+ ; (9)

provided n ¿h(x0), where n is the number of vanishing moments of  , i.e.

+∞∫
−∞

xm (x) dx=0; ∀m; 06m¡n : (10)

Thus, one can extract the exponent h(x0) from a log-log plot of the WT amplitude
versus the scale a. Throughout this paper, we will mainly use the class of analyzing
wavelets de�ned by the successive derivatives of the Gaussian function [28,29,84].
In the case of isolated singular behavior, one can therefore use Eq. (9) to determine

numerically the corresponding H�older exponent. The situation is somewhat more intri-
cate when investigating fractal signals due to the existence of a hierarchical distribution
of singularities [28,29,33,74,85,86]. Locally, the H�older exponent h(x0) is governed by
the singularities which accumulate at x0. This results in unavoidable oscillations around
the expected power-law behavior of the WT amplitude [28,29,85–87]. Therefore, the
exact determination of h from log–log plots on a �nite range of scales is somewhat
uncertain [88,89]. Of course there have been many attempts to circumvent these di�-
culties [86,90]. Nevertheless, there exist fundamental limitations (which are not intrinsic
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to the WT technique) to the local measurement of H�older exponents of fractal func-
tions. Consequently, the determination of statistical quantities like the D(h) singularity
spectrum, requires a method which is more feasible and more appropriate than the
histogram method experienced in Refs. [88,89] and which amounts to a systematic
investigation of the WT local scaling behavior.

3.2. The wavelet transform modulus maxima method

A natural way of performing a multifractal analysis of fractal functions consists in
generalizing the “classical” multifractal formalism [36] using wavelets instead of boxes.
By taking advantage of the freedom in the choice of the “generalized oscillating boxes”
that are the wavelets, one can hope to get rid of possible smooth behavior that could
mask singularities or perturb the estimation of their strength h. But the major di�culty
with respect to box-counting techniques [57,84,91] for singular measures, consists in
de�ning a covering of the support of the singular part of the function with our set of
wavelets of di�erent sizes. A simple method would thus rely on the de�nition of the
following partition function in terms of WT coe�cients [28,29,74]:

Z(q; a)=
∫

|T [f](x; a)|qdx ; (11)

where q∈R. This method based on a continuous covering of the real line would be
a rather naive generalization of box-counting algorithms since nothing prevents the
WT from vanishing at some point (x0; a) of the space-scale half-plane. The partition
function may then diverge for q6− 1.
The wavelet transform modulus maxima (WTMM) method [28,29,33,60,92] consists

in building a partition function from the modulus maxima of the WT. The maxima are
de�ned, at each scale a, as the local maxima of |T [f](x; a)| considered as a function
of x. As illustrated in Fig. 1c, these WTMM are disposed on connected curves called
maxima lines. Let us de�ne L(a0) as the set of all the maxima lines that exist at
the scale a0 and which contain maxima at any scale a6a0. An important feature of
these maxima lines is that, each time the analyzed signal has a local H�older exponent
h(x0)¡n , there is at least one maxima line pointing towards x0 along which Eq. (9)
holds [32,33]. In the case of fractal signals, we thus expect that the number of maxima
lines will diverge in the limit a→ 0+. In fact, as emphasized in Refs. [28,29,92],
the branching structure of the WTMM skeleton in the (x; a) half-plane enlightens the
hierarchical organization of the singularities. The WTMM method consists in taking
advantage of the space-scale partitioning given by this skeleton to de�ne the following
partition function [28,29,33,60,92]:

Z(q; a)=
∑

l∈L(a)


 sup
(x; a′)∈l
a′6a

|T [f](x; a′)|



q

: (12)
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Fig. 1. Continuous WT of fully developed turbulence from wind tunnel data. (a) The turbulent velocity
signal over about two integral scales. (b) WT of the turbulent signal; the amplitude is coded, independently
at each scale a, using 32 grey levels from white (|T [v](x; a)|=0) to black (maxx |T [v](x; a)|). (c) WT
skeleton de�ned by the set of all the maxima lines. In (b) and (c), the small scales are at the top. The
analyzing wavelet is a �rst-order (n =1) compactly supported wavelet (see Fig. 2.18 in Ref. [98]).

The sup in Eq. (12) can be regarded as a way to de�ne a scale adaptative partition
which will make the computation of the partition function scaling exponents

Z(q; a)∼ a�(q); a→ 0+ ; (13)

more robust specially for q¡0. Then, by using both the WT scaling behavior (Eq. (9))
along the maxima lines and the de�nition of the singularity spectrum D(h)= dimH{x|
h(x)= h}, one can show that D(h) can be determined by Legendre transforming �(q)
[33,93]:

D(h)= min
q
(qh− �(q)) : (14)

From the properties of the Legendre transform, it is easy to convince oneself that
homogeneous fractal functions that involve singularities of unique H�older exponent
h= @�=@q, are characterized by a �(q) spectrum which is a linear function of q. On
the contrary, a nonlinear �(q) curve is a signature of nonhomogeneous functions that
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display multifractal properties, in the sense that the H�older exponent h(x) is a uctu-
ating quantity that depends upon the spatial position.

Remark. The partition function exponents �(q) are much more than simply some
intermediate quantities of a rather easy experimental access. For some speci�c values of
q, they have well known meaning [28,86]. In full analogy with standard box-counting
arguments, −�(0) can be identi�ed to the fractal dimension of the set of singularities
of f. Similarly, �(1) is related to the capacity of the graph G of the considered function:
dC(G)=max(1; 1 − �(1)). Moreover, �(2) is related to the scaling exponent � of the
spectral density S(k)= |f̂(k)|2∼ k−� with �=2 + �(2).

3.3. The structure function approach versus the WTMM method

It is tempting to relate the exponents �(q), de�ned from the WT partition function
(Eqs. (12) and (13)), to the scaling exponents �p of the structure functions (Eq. (6)).
A simple comparison of Eqs. (7) and (14) gives immediately [28,86]:

�(q)= �q − 1 : (15)

But this relationship does not hold for all values of q; this results from intrinsic limita-
tions of the SF approach [60]. As pointed out in previous studies [60,86,90], the local
increment of a function can be seen as its WT computed at point x0 and scale l, with
the “poor man’s wavelet” �(x)= �(x− 1)− �(x). In this spirit, the SF’s (Eq. (6)) are
analogous to the naive partition functions de�ned in Eq. (11):

Sq(l)=
∫

|�fl(x)|qdx : (16)

However, there are two main di�erences between Eqs. (12) and (16) from which result
the insu�ciencies of the SF method [60].
(1) The continuous integral used to de�ne Sq(l). Indeed, there is no reason, a priori,

that the increment pdf vanishes around �fl=0. Thus the SF Sq(l) may diverge for
q¡0. Consequently, the �q spectrum is not de�ned for q¡0 and from the Legendre
transform properties, only the (increasing) part of the D(h) singularity spectrum corre-
sponding to the strongest singularities is amenable to the SF approach. The �rst crucial
advantage of the WTMM method is that the partition function (Eq. (12)) is computed
using a discrete summation over the WT skeleton where the WT coe�cients do not
vanish (by de�nition of the WTMM); this keeps the calculation of Z(q; a) clear of
divergences for q¡0.
(2) The poorness of the analyzing wavelet �(x). The second main disadvantage of

the SF method is that the “poor’s man wavelet” �(x) [60,86,90] does not satisfy the
criteria to be an e�cient analyzing wavelet. First �(x) is only orthogonal to constants
but not to higher order polynomials (n =1). This precludes the detection of singu-
larities with h¿1. Thus, as demonstrated in Ref. [60], if the maximum value of D(h)
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is reached for some h¿1, the accessible range of singularities is even more truncated
to values h¡hcrit¡1. Moreover, �(x) is a singular analyzing wavelet made of two
Dirac distributions and therefore it cannot generally be integrated against tempered
distributions. When using Eq. (16) to study some distribution which involves singu-
larities with h60, one is generally faced to severe instabilities in the computation of
the SF’s. Therefore, the range of H�older exponents accessible to the SF method is not
only limited from above (h¡hcrit61), but also from below (h¿0). Because one has
the freedom to select an analyzing wavelet  which is smooth and which has enough
vanishing moments (n ¿hmax), the WTMM method does not possess any of these
drawbacks [60].

4. Numerical and experimental applications of the WTMM method

The WTMM method has been tested on pedagogical examples, e.g., generalized
devil’s staircases, synthetic multifractal signals and fractional Brownian motions
[28,29,33,60,92]. It has already been successfully applied to numerical and experi-
mental data from various domains [71,83]. Here we will report on recent results ob-
tained in two apparently unrelated �elds, namely fully developed turbulence and DNA
sequences.

4.1. Fully developed turbulence

It is now well-accepted [47,58,59] that in the fully developed regime, a turbulent
ow is likely to be in a universal state that can be experimentally characterized by
statistical quantities such as the scaling exponents �p of the longitudinal velocity struc-
ture functions or the shape of the velocity increment pdf’s. For more than thirty years,
one of the main features recognized experimentally, is the intermittency of small scales
[10,47,48,58,59]; this phenomenon manifests in a nonlinear behavior of �p that does
not seem to depend on the Reynolds number [19,20,94]. This observation reveals some
departure of the experimental data from the prediction �p=p=3 of Kolmogorov (K41)
[95] based on the assumption that, at each point of the uid, the velocity �eld has the
same scaling behavior �vl(x)∼ l1=3, which yields the well known E(k)∼ k−5=3 energy
spectrum. This nonlinear �p spectrum actually characterizes some evolution of the ve-
locity increment pdf from a Gaussian shape at large scales to stretched exponentials
towards smaller scales in the inertial range [20,96,97]. Our goal here is to go beyond
the SF approach (and its insu�ciencies) and to use the WTMM method to achieve a
multifractal analysis of single point velocity data from high Reynolds three-dimensional
turbulence [28,29,98,99].
The data were obtained by Gagne and collaborators in the large wind tunnel S1

of ONERA at Modane. The Taylor scale based Reynolds number is R� ' 2000 and
the extent of the inertial range following approximately the Kolmogorov k−5=3 law
is about four decades (integral scale L' 7m, dissipation scale �' 0:27mm). Fig. 1
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Fig. 2. WTMM measurement of the �q = �(q)+ 1 and D(h) spectra of the Modane turbulent velocity signal.
(a) �q vs q. (b) D(h) vs h. The solid lines correspond to a �t of the data with the theoretical quadratic
spectra for log-normal random cascade processes. The dotted lines correspond to the predictions of the She
and Leveque’s model [106] when assuming log-Poisson statistics for the energy dissipation (see text). Same
analyzing wavelet as in Fig. 1.

illustrates the WT of a sample of the (longitudinal) velocity signal of length of
about two integral scales, when using the Taylor hypothesis [20,58]. In Fig. 2a are
reported the results of the estimate of the �q= �(q) + 1 scaling exponents of the
partition function Z(q; a) (Eq. (12)), as computed with the WTMM method for an
overall statistical sample of about 28 000 integral scales. As advocated by Benzi et al.
[100,101], we have used the extended self-similarity (ESS) concept to improve scal-
ing: Z(q; a)=Z(0; a)∼ (Z(3; a)=Z(0; a))�q (�xing �3 = 1). Over a range of values of q that
extends from −8 to +8, for which statistical convergence is achieved, the data remark-
ably fall on a nonlinear quadratic curve �q=−mq − �2q2=2 (m=−0:388; �2 = 0:036),
as predicted for log-normal random cascade processes [98,102–104]. In the insert of
Fig. 2a, the deviation of the �q’s from the K41 linear spectrum q=3, is shown to
be signi�cant and quite compatible with a quadratic correction [105]. In Fig. 2a is
also shown for comparison the �q spectrum predicted by She and Leveque [106],
�q= q=9+2[1−(2=3)q=3], when postulating log-Poisson statistics for the local nondimen-
sional energy dissipation [107,108] and assuming the validity of the local Kolmogorov
scaling relation (K62) [102]. This last relation connects the local dissipation �l(x) av-
eraged over a domain of size l and the velocity increment �vl(x): �l(x)=s (�vl(x))3=l,
where the symbol =s means that the two quantities have the same scaling laws (i.e.,
the scaling exponents are the same for the corresponding moments of arbitrary or-
der). This model provides also a rather good �t of the data for �q, even though
some systematic deviation becomes perceptible for |q|¿6. The D(h) singularity spec-
trum obtained by Legendre transforming the experimental �(q) spectrum is shown in
Fig. 2b. Its characteristic single humped shape over a �nite range of H�older exponents,
h∈ [0:12; 0:68], is a clear signature of the multifractal nature of the turbulent signal.
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Its remarkable parabolic shape is an additional evidence for the possible relevance of
log-normal random cascade processes. For q=0, the largest dimension is attained for
singularities of exponent h=0:39 ± 0:01, i.e., a value which is slightly higher than
the K41 prediction h=1=3. Moreover, the corresponding maximum of the D(h) curve,
D(h(q=0))=− �(0)= 0:999 ± 0:001, together with the upper bound hmax = 0:68¡1,
strongly suggests that the turbulent velocity signal is singular everywhere. This ob-
servation is corroborated by the robustness of the D(h) data with respect to changes
in the choice of the analyzing wavelet: similar quantitative estimates of the �(q) and
D(h) spectra are obtained when using �rst-order (n =1), second-order (n =2) and
fourth-order (n =4) analyzing wavelets [98].
From the analogy with thermodynamical potentials [28,29], it is not such a surprise

that the experimental determination of the multifractal spectra �q and D(h) does not
provide a selective test to discriminate between various (deterministic or random) cas-
cade models. In order to go further in the investigation of the velocity uctuations in
turbulent ows, we have computed the pdf’s of WT coe�cients at di�erent scales in
the inertial range [98,104]. Very much like the velocity increment pdf’s, these distri-
butions are nearly centered with a shape that goes from Gaussian at large scales to
more intermittent pro�les with stretched exponential-like tails at smaller scales. But the
wavelet theory tells us that there exists some redundancy in the continuous WT rep-
resentation [61–72]. Indeed, for a given analyzing wavelet, there exists a reproducing
kernel [62,109] from which one can express any WT coe�cient at a given point x and
scale a as a linear combination of the neighboring WT coe�cients in the space-scale
half-plane. As emphasized in Refs. [32,33], a way to break free from this redundancy
is to use the WTMM representation. In Fig. 3a are reported the results of the com-
putation of the WTMM pdf’s when restricting our analysis to the WT skeleton (Fig.
1c) de�ned by the WT maxima lines. Since by de�nition the WTMM are di�erent
from zero, the so-obtained pdf’s decrease exponentially fast to zero at zero, which
makes the estimate of the exponents �q tractable for q¡0 (Eq. (12)). When plotting
ln Pa(ln|T |) vs ln |T |, one gets the remarkable result that for any scale in the inertial
range, all the data points fall on a parabola, which is a strong indication that the statis-
tics of the logarithm of the WT coe�cients is de�nitely Gaussian with a mean and a
variance that depend upon the scale parameters [98,105]. This implies that, along the
line of Castaing et al. ansatz [96,110–116], the WTMM pdf at a given scale a can be
expressed in terms of the pdf at a coarser scale a′ as

Pa(T )=
∫

Gaa′(ln r)
1
r
Pa′

(
T
r

)
d ln r ; (17)

where Gaa′ is a Gaussian kernel that depends upon a and a′ only. The term log-
normal self-similar cascade [98,104,105] can be used since, from the above de�ni-
tion, one can show that there exists a decreasing sequence of scales (a1; : : : ; an) for
which Gana1 =Ganan−1 ⊗ · · · ⊗ Ga2a1 , where ⊗ denotes the convolution product and
Ganan−1 =G is a Gaussian independent of n. Therefore, Gaa′(ln r)=G(ln r; s(a; a′)),
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Fig. 3. Probability density functions of the WTMM of the Modane turbulent velocity signal. (a)
ln(Pa(ln(|T |))) vs ln |T | as computed at di�erent scales a=385� (◦), 770� (�), 1540� (4), and 3080�
(H). (b) The same pdf ’s after being transformed according to Eq. (17) with a Gaussian kernel Gaa′ (x) with
s(a; a′) = (a′−� − a−�)=� where �=0:095. The (+) represent the corresponding velocity increment pdf.
The solid lines correspond to the Gaussian approximations of these histograms. Same analyzing wavelet as
in Fig. 1.

where s(a; a′)= s(a) − s(a′) accounts for the number of steps of the cascade from
scale a′ to scale a [116]. Using Novikov’s de�nition [117], scale invariance amounts
to write s(a; a′)= ln (a=a′), i.e., s(a)= ln a. In Fig. 3b, we have succeeded in collaps-
ing all the WTMM pdf’s, computed at di�erent scales, onto a single parabolic curve
when using Eq. (17) with a Gaussian kernel G(ln r; s(a; a′)) where s(a)= (1− a−�)=�
with �=0:095. This is some unambiguous evidence for scale invariance breaking
[98,104,105,118]. We have reproduced our analysis for other turbulent ows with
a Reynolds number ranging from R� ' 200 to 3000; these studies corroborate the
experimental fact that, with the available statistics, the various log-in�nitely
divisible cascade models proposed in the literature [107,108,113,117], are hardly
distinguishable from their log-normal approximations, at least for the highest Reynolds
numbers investigated. Moreover, when increasing R�, the exponent � is found to de-
crease to zero, which suggests that scale invariance is only reached asymptotically
in the limit R� → + ∞ (in the limit �→ 0, s(a)= (1 − a−�)=� reduces to ln a).
Let us note that, according to these �ndings, one would expect to observe some
departure from scaling of the partition function Z(q; a) at �nite Reynolds number.
Hopefully this breaking of scale invariance does not invalidate the ESS hypothesis
[98,104,105]. This means that the WTMM estimates of the multifractal spectra �q
and D(h) in Fig. 2 are likely to be valid in the in�nite Reynolds number asymptotic
limit.
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Fig. 4. The “DNA walk” representation of genomic sequences based on the purine–pyrimidine distinction. (a)
The human desmoplakin I CDS (L=8499). (b) The largest intron (L=71718) in the human retinoblastoma
susceptibility gene.

4.2. DNA sequences

The possible relevance of scale invariance and fractal concepts to the structural
complexity of genomic sequences is the subject of considerable increasing interest
[22]. During the past few years, there has been intense discussion about the exis-
tence, the nature and the origin of long-range correlations in DNA sequences. Di�erent
techniques including mutual information functions [119], autocorrelation functions
[120,121], power spectra [122], “DNA walk” representation [21,22], Zipf analysis
[123,124] were used for statistical analysis of DNA sequences. But despite the ef-
fort spent, there is still some continuing debate on rather struggling questions. In that
respect, it is of fundamental importance to corroborate the fact that the reported long-
range correlations are not just an artefact of the compositional heterogeneity of the
genome organization [120,125–128]. Furthermore, it is still an open question whether
the long-range correlation properties are di�erent for protein-coding (exonic) and non-
coding (intronic, intergenic) sequences [21,22,119–124,129].
One of the main obstacles to long-range correlation analysis is the mosaic structure

of DNA sequences which are well known to be formed of “patches” (“strand bias”)
of di�erent underlying compositions [130–132]. As illustrated in Fig. 4, these patches
appear as trends in the “DNA walk” landscapes and are likely to introduce some break-
ing of scale invariance [125–128]. Most of the technique used so far for characterizing
the presence of long-range correlations are not well adapted to study patchy sequences.
In a previous work [133], we have emphasized the wavelet transform (WT) as a very
powerful technique for fractal analysis of DNA sequences. By taking advantage of the
freedom in the choice of the analyzing wavelet, one can use wavelets that oscillate
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enough in order to make the WT microscope blind to low frequency trends. With
these adequate �lters one can actually reveal and quantify the scaling properties of
the “DNA walks”. Here we report on recent results obtained by applying the WTMM
method to various genomic sequences selected in the human genome [134,135]. More
precisely, 121 DNA sequences were selected with the requirement that their overall
lengh L¿2000 nucleotides, so that the range of scales available to fractal scaling be
large enough to make the analysis meaningful with respect to �nite size e�ects. We took
the sequences from EMBL data bank and processed seperately 47 coding (individual
exons, CDS’s) and 74 noncoding (individual introns) regions. To graphically portray
these sequences we follow the so-called “DNA walk” analysis [21] which requires �rst
to convert the four letter (A,C,G,T) text into a binary sequence. This can be done, for
example, on the basis of purine (A,G) vs pyrimidine (C,T) distinction, by de�ning the
incremental variable that associates to position i the value �(i)= 1 or −1, depending
on whether the ith nucleotide of the sequence is a purine or a pyrimidine. (We refer
the reader to Refs. [134,135] for similar analysis with the two complementary pair-base
identi�cations). In Fig. 4 are illustrated the “DNA walk” graphs corresponding to a
protein coding sequence, namely the human desmoplakin I CDS (Fig. 4a) and to a
non coding sequence, namely the largest intron in the human retinoblastoma suscepti-
bility gene (Fig. 4b). The patchiness of the coding sequence in Fig. 4a is patent; one
clearly recognizes three regions of di�erent bias. When applying the WTMM method
to this coding “DNA walk” landscape, one gets a �(q) spectrum (Eq. (13)) which
remarkably falls on a straight line (the hallmark of homogeneous fractal signals) of
slope h= @�=@q=0:50± 0:01, provided the analyzing wavelet has at least two vanish-
ing moments (n =2) in order to be orthogonal to the observed linear trends [134].
A similar result is obtained for the noncoding sequence in Fig. 4b, except that the
slope of the �(q) spectrum h=0:60± 0:02, is now signi�cantly larger than 1=2. These
results are actually quite representative of the results obtained for our statistical sample
of 47 coding and 74 noncoding sequences [134,135]. When averaging the partition
functions over these two statistical samples, we get �ZC(q; a) and �ZNC(q; a) which
both scale with the exponent predicted for homogeneous fractional Brownian mo-
tions, i.e., �(q)= qH − 1 [28,29,134]. The main di�erence which allows us to dis-
tinguish coding from noncoding sequences is the presence of long range correlations
in the latter: �HNC =0:59±0:02, while the former look like uncorrelated random walks:
�HC =0:51± 0:02 [134,135].
One of the most striking results of our WTMM analysis is the fact that the �(q)

spectra extracted for the sets of exons and introns we have considered in the human
genome, are surprisingly in remarkable agreement with the theoretical prediction for
Gaussian processes. Within that prospect, we have studied the probability distribution
function of wavelet coe�cient values P(T (2) (:; a)), as computed at a �xed scale a in
the fractal scaling range [134]. The distributions obtained for both the coding and non-
coding DNA sequences of Fig. 4 are shown in Figs. 5a and 5b, respectively. When
increasing the scale parameter a, the distributions become wider, but when plotting
ln P vs T =�(a), where �(a) is the r.m.s value of T at scale a, all the data computed
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Fig. 5. Probability density functions of wavelet coe�cient values at �xed scale a=22 (•), a=23 (N),
a=24 (�) corresponding approximately to 32; 64 and 128 nucleotides; the analyzing wavelet is the second
derivative of the Gaussian function  (2). ln P is plotted vs T =�(a), where �(a)= �aH is the r.m.s. value. (a)
Human desmoplakin I CDS sequence: H = 0:50. (b) Largest intron in the human retinoblastoma susceptibility
gene: H = 0:60. The dashed lines are parabolas characteristic of Gaussian statistics.

at di�erent scales fall on the same parabola independently of the nature of the se-
quence. Thus, as explored through the WT microscope, the basic uctuations in “DNA
walks” are likely to have Gaussian statistics. The presence of long-range correlations
in the human introns is in fact contained in the scale dependence of �(a)∼ aH where
H =0:60 ± 0:02 as compared to the uncorrelated random walk value H =0:50 ± 0:02
obtained for the coding sequences [134].
In Fig. 6 are reported the results of a similar statistical WTMM analysis when clas-

sifying these DNA sequences into categories that correspond to a given GC content
[134,135]. The idea of looking for a link between the long-range correlation properties
and the GC content of the sequences results from the remark that the WTMM method
indeed fails to distinguish a few introns from actual exons [134]. These introns with an
exponent H close to 1=2, actually correspond to DNA sequences with a low GC content
(from 31% to 36%). When investigating the scaling behavior of a1=2Z(1; a)∼ aH−1=2

for our set of introns, one notices some signi�cant tendancy of the curves to become
steeper when continuously increasing the GC content [135]. The corresponding values
of the roughness exponent H are reported in Fig. 6a. H clearly increases from values
close to 1=2 at low GC content (∼30%) up to values signi�cantly larger than 0.6
at high GC content (¿60%). In Fig. 6a are also shown the estimates of the rough-
ness exponent for the coding sequences. Whether the CDS be poor or rich in GC, it
does not seem to possess strong long-range correlations as indicated by an exponent
H close to 1=2. Because of the “period three” codon structure of coding DNA, it is
natural to investigate separately the three subsequences relative to the position (1, 2
or 3) of the bases within their codons [136]. We have built up these subsequences
from our 35 largest CDS sequences and we have repeated the WTMM analysis [135].
As shown in Fig. 6(b), for the �rst and the second subsequences, one gets results
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Fig. 6. WTMM estimate of the roughness exponent H vs the GC content of the DNA sequence. (a) Introns:
(•) L ' 50 000, (�) L ' 15 000; CDSs: (◦) L ' 50 000. (b) Coding subsequences relative to position
1 (4), 2 ( ) and 3(◦) of the bases within the codons: L ' 20 000. L is the number of nucleotides involved
in our WTMM statistical analysis.

quite consistent with the estimates obtained with the overall CDS sequences: what-
ever the GC content, the exponent H does not signi�cantly depart from the value 1=2.
(Note that the data do not exclude a possible slow increase of HC2.) For the third
subsequence, H is found to increase up to values close to 0.60 at high GC content,
which brings the clue that this subsequence exhibits [GC]-dependent long-range corre-
lations very much like those observed in Fig. 6a for introns. Let us mention that we
have checked that these observations do not result from the exon concatenation in the
CDS’s [135].
The results of our WTMM analysis clearly show that the GC content is likely to be

relevant to the long-range correlation properties observed in both intronic and exonic
DNA sequences. This observation is likely to be of fundamental importance since it
suggests that the long-range correlations are related to the mechanisms involved in
the “isochore structure” formation of the human genome [130–132,137]. The human
genome is well known to be compartimentalized into wide (∼ 105 nucleotides) speci�c
domains with uniform GC content, called isochores; appreciable scatter of the isochore
GC content is actually observed when comparing di�erent domains. Thanks to the
functional constraints acting on coding sequences embedded in the GC rich regions,
these non-equilibrium processes should be less active on exons, with a concomittant
lack of long-range correlations as compared to the surrounding introns. Since these
constraints are less stringent on the third base of the codons (most of the synonymous
in the genetic code are due to the change of the third base in the codon), this would
explain the correlations observed between these nucleotides in high GC containing
exons. In human genes, the frequencies of the third base of codons are highly correlated
with neighbouring intronic GC content [138]. This property favors the hypothesis that
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the exonic correlations are produced by the same mechanisms which lead to intronic
correlations. It is likely that the observations reported here also extend to genomes
of mammals and warmblooded vertebrates. The exploration of genomes of various
organisms including unicellular eukaryotes and prokaryotes is currently under progress.

5. Further developments and perspectives

As we have just seen in the previous section, the application of wavelet analysis
has already produced very promising results in various contexts. Based on this initial
success, we anticipate signi�cant theoretical and experimental developments during the
next few years. In this section, we briey describe some works currently in progress,
which are likely to be the guidelines for future research.
Towards a “grand canonical” description of fractal signals. Even though Eq. (9)

is not directly used for estimating the H�older exponents, it is the cornerstone of the
wavelet based multifractal formalism [28,29,33,60,92]. As this relation holds only for
cusp-like singularities, this formalism is not valid if the fractal function f involves other
types of singularities. Let us consider for example the chirp function [32,139,140]:

f(x)= |x − x∗|hsin
(

1
|x − x∗|�

)
; h¿0; �¿0 : (18)

This function is singular at x= x∗ and its H�older exponent is h(x∗)= h. However, a
direct estimate of this exponent using Eq. (9) would lead to a wrong result. Indeed,
since the function f(x) is in�nitely oscillating around x∗, cancellations appear when
this function is integrated against a smooth function, leading to a function more regu-
lar than expected. Such a singular behavior is referred to as an oscillating singularity
[32,139,140]. Actually, contrary to functions with cusp singularities, the primitive of
the oscillating function in Eq. (18) has an H�older exponent h+ 1+ � 6= h+ 1. Let us
note that a cusp can be seen as an oscillating singularity with �=0. Thus, in order to
fully characterize a singular behavior, one needs two exponents: the H�older exponent
h and the oscillation exponent � which characterizes the local power-law divergence
of the instantaneous frequency [141]. In a recent work [142,143], we have elaborated
on the theoretical foundations of a generalized WT multifractal formalism that de-
scribes statistically the uctuations of both the H�older exponent h and the oscillation
exponent � of a fractal function. More speci�cally, this new formalism allows us to
get the singularity spectrum D(h; �) which corresponds to the Hausdor� dimension of
the set of points x corresponding to the same H�older and oscillation exponents, i.e.,
h(x)= h and �(x)= �. Whereas the partition function used in the classical formalism
[28,29,33,60,92] is indexed by a single parameter (conjugated to the H�older exponent
h), this new description [142,143] is based on a partition function involving two inten-
sive parameters (associated to the exponents h and �). In that sense, it is the analog
of a “grand canonical” formalism whereas the classical formalism (Eq. (12)), can be
identi�ed to a “canonical” description. The application of this uni�ed “grand canonical”
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description to experimental situations previously investigated with the WTMM method
might occasionally lead to very suprising and therefore very interesting results.
Generalization of the WTMM method to multifractal image analysis. Ever since

the explosive propagation of fractal ideas [1] throughout the scienti�c community in the
late 1970s and early 1980s, there have been numerous applications to surface science.
Indeed, a wide variety of natural and technical processes generate complex interfaces
[3–7,9,11]. Assigning a fractal dimension to those irregular surfaces is now become
routine in various �elds including topography, defect and fracture studies, growth phe-
nomena, erosion and corrosion processes and many other areas in physics, chemistry,
biology, geology, meteorology and material sciences. But except some attempts to
extend the structure function method to characterize the roughness uctuations of self-
a�ne surfaces [144], there is a need of a powerful approach to multifractal analysis
in 2D. Very recently, the WTMM method has been generalized to multifractal image
analysis [144,145]. This generalization relies upon the extension of the WTMM repre-
sentation in two dimensions, as proposed by Mallat and collaborators [32,146]. Note
that this representation is actually strongly inspired from Canny’s multiscale edge de-
tectors [147] which are commonly used in computer vision. This isotropic 2D version
of the WTMM methodology [144,145] has been calibrated on deterministic self-similar
interfaces and random self-a�ne surfaces (fractional Brownian surfaces and multifractal
counter-parts). Preliminary applications to high-resolution satellite data and simulated
radiance �elds for stratocumulus clouds have brought a new light in the context of
multifractal analysis of atmospheric data [145]. Future applications of this new numer-
ical technology to rough surfaces that occur in various domains of fundamental as well
as applied siences, look very promising.
From one-point to two-point statistics. The classical multifractal formalism [34–

43] as well as its wavelet based generalization [28,29,33,60,92], are nothing but a
one-point statistical analysis which mainly consists in characterizing the way some pdf
evolves when exploring the scales. Note that one can learn much more from the space-
scale representation provided by the WT. In particular, one can proceed to a two-point
statistical analysis by investigating correlations, not only at the same scale as before,
but also across the scales. Such an analysis has been recently initiated in the context
of fully developed turbulence [148] with the con�rmation and even more the demon-
stration of the existence of a log-normal cascading process underlying the turbulent
velocity uctuations. More surprising are the results of a similar cross-correlation anal-
ysis of �nancial time-series [149]. Underlying the uctuations of the volatility (standard
deviation) of the price variations, there exists a causal information cascade from large
to small time scales that can be visualized with the wavelet representation. Let us em-
phasize that the fact that variations of prices over a one month scale inuence in the
future the daily price variations, is likely to be extraordinarily rich in consequences
and this, not only for the fundamental understanding of the nature of �nancial markets
but also (and maybe more important) for practical applications. Indeed, the nature of
the correlations across scales that are implied by this causal cascade has profound im-
plications on the market risk, a problem of upmost concern for all �nancial institutions
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as well as individuals. There is no doubt in our minds that similar two-point statistical
analysis will lead to signi�cant progress in other �elds than hydrodynamic turbulence
and �nance.
Solving the inverse fractal problem from wavelet analysis. The issue of carrying

out a statistical mechanics of fractal objects has been mainly addressed in the context
of dynamical system theory [36–40,43,52]. In particular, Feigenbaum [150] has shown
that the microscopic information about a deterministic multiplicative dynamical system
and its scaling properties is contained in the so-called scaling function which describes
the scalings or contractions of the various elements of the attractor in time. This scaling
function can be seen as the analog of the Hamiltonian. From the knowledge of this
function, one can use the transfer matrix technique [40,151,152] to compute the ther-
modynamic functions of interest, i.e., the partition function exponent �(q) and the D(h)
singularity spectrum. On a more general ground, for any fractal object that can be ob-
served in nature, there is a need to go beyond simple statistical averages and eventually
to extract some “microscopic” information about their underlying hierarchical struc-
ture. In many cases, the self-similarity properties of fractal objects can be expressed in
terms of a dynamical system which leaves the object invariant. The inverse problem
consists in recovering this dynamical system (or its main characteristics) from the data
representing the fractal object. This problem has been previously approached within
the theory of Iterated Function Systems (IFS) [153–155]. But the methods developed
in this context are based on the search of a “best �t” within a prescribed class of
IFS attractors (mainly linear homogeneous attractors). In that sense, they approximate
the self-similarity properties more than they reveal them. In a recent work [82,156],
we have shown that, in many situations, the space-scale representation provided by
the WT of a fractal object can be used to extract some one-dimensional map which
accounts for its construction process. More concretely, we have developed a wavelet-
based tree matching algorithm that provides a very e�cient tool for solving the inverse
fractal problem. This algorithm has been tested on discrete period-doubling dynamical
systems and shown to reveal the renormalization operation which is essential to the
understanding of the universal properties of this transition to chaos. One of the �rst and
very promising applications of this new technique is the recent discovery [156–159]
of a statistically predominant �ve-fold structural symmetry and of Fibonacci sequences
associated with the branching of fractal aggregates generated by di�usion limited pro-
cesses (examples include viscous �ngering, electrochemical crystals, bacteria colonies,
: : :). We are convinced that further applications of this wavelet-based strategy for solv-
ing the inverse fractal problem will lead to similar major breakthroughs in various
�elds where multi-scale phenomena are ubiquitous.
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