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Abstract. We apply the 2D wavelet transform modulus maxima (WTMM) method to high-
resolution LANDSAT satellite images of cloudy scenes. The computation of the and
multifractal spectra of the radiance fields confirms the relevance of the multifractal description to
account for the intermittent nature of marine stratocumulus clouds. This analysis reveals that with
the available set of experimental data, there is no way to discriminate between various phenomeno-
logical cascade models recently proposed to account for intermittency and their log-normal approx-
imations. We emphasize the log-normal random -cascade model on separable wavelet orthogonal
basis introduced in (N. Decoster, S.G. Roux, A.Arneodo, Eur. Phys. J. B 15, 739(2000)), as a very
attractive model (at least as compared to the models commonly used in the literature) of the cloud
architecture. Finally, we comment on the multifractal properties of marine stratocumulus radiance
fields comparatively to previous experimental analysis of velocity and temperature fluctuations in
high Reynolds number turbulence.

INTRODUCTION

The problematic of nonlinear variability over a wide range of scales has been considered
for a long time with respect to the highly intermittent nature of turbulent flows in fluid
dynamics [1, 2]. Special attention has been paid to their asymptotic and possibly univer-
sal behavior when the dissipation length goes to zero, i.e., when the Reynolds number
goes to infinity. Besides wind-tunnel and laboratory (grid, jet, ...) experiments, the atmo-
sphere is a huge natural laboratory where high Reynolds number (fully developed) turbu-
lent dynamics can be studied. Clouds, which are at the source of the hydrological cycle,
are the most obvious manifestation of the earth’s turbulent atmospheric dynamics [3, 4].
By modulating the input of solar radiation, they play a critical role in the maintenance
of the earth’s climate [5]. They are also one of the main sources of uncertainty in current
climate modeling [6]. During many years, the lack of data hindered our understanding
of cloud microphysics and cloud-radiation interactions. Until quite recently, the internal
structure of clouds was probed by balloons or aircrafts that penetrated the cloud layer,
revealing an extreme variability of 1D cuts of some cloud fields, e.g. liquid water content
(LWC) [7, 8]. Indeed, during the past fifteen years, vast amounts of data on the distribu-
tion of atmospheric liquid water from a variety of sources were collected and analyzed in
many different ways. All these data contain information on spatial and/or temporal cor-



relations in cloudiness, enabling the investigation of scale invariance over a range from a
few centimeters to hundred of kilometers. An attractive alternative to in situ probing is to
use high-resolution satellite imagery that now provides direct information about the fluc-
tuations in liquid water concentration in the depths of clouds [9, 10, 11, 12, 13, 14, 15].
These rather sophisticated remote sensing systems called “millimeter radars” are actu-
ally sensitive not only to precipating rain drops but also to suspended cloud droplets.
Spectral analysis of the recorded 2D radiance field [12, 13, 14, 15] confirms previous
1D findings that make it likely that cloud scenes display scaling over a wide range of
scales.
Fractal analysis of atmospheric data has gained considerable momentum since Love-

joy’s seminal paper [3] on the area-perimeter relation for clouds and rain. Since then,
such morphological studies have become rather popular, following a path open by Man-
delbrot in his famous books [16]. Starting from the middle eighties, high-resolution
cloud liquid water data became available, confirming the fractal nature of the cloud
structure. Most preliminary analysis of these complex 1D signals focused on the char-
acterization of scale invariance in Fourier space [7, 8, 9, 10, 11, 12, 13, 14, 15]. In
particular, the fluctuations of liquid water density in clouds were shown to have power-
law energy spectra, , over a large range of scales, from tens of meters to
tens of kilometers. Let us point out that the estimated spectral exponent , is
close to the prediction of Corssin [17]-Obukhov [18] phenomenology for a pas-
sive scalar in fully developed 3D turbulence as well as to Kraichnan [19] prediction for
2D turbulence. But as discussed in Ref. [20], power-spectral analysis has been heavily
criticized for its intrinsic inability to capture multifractal scaling. From the measure-
ment of the spectral exponent , one gets some estimate of the so-called Hurst
exponent, , from which one learns that the fluctuating field is singular
and non stationary ( ). Unfortunately, the intermittent nature of the recorded
liquid water data required new concepts and more elaborated technical tools. Again,
one has to give credit to Lovejoy and co-workers [21, 22, 23, 24, 25] for applying the
multifractal description to atmospheric phenomena. Using the trace moment and double
trace moment techniques, they have brought experimental evidence for multiple scaling
(or in other words, the existence of a continuum of scaling exponent values) in various
geophysical fields. More recently, Davis and co-workers [8, 26] have used the structure
function method to study LWC data recorded during ASTEX and FIRE programs. Both
these analyses converge to the conclusion that the internal marine stratocumulus (Sc)
structure is multifractal over at least three decades in scales. Quite similar multifractal
behavior has been reported by Wiscombe et al [27] when analazing liquid water path
(LWP) data (i.e., column integrated LWC), from the Atmosperic Radiation Measure-
ment (ARM) archive. Even though all these studies seem to agree, at least as far as their
common diagnostic of multifractal scaling of the cloud structure, they all concern 1D
data. To our knowledge, the stucture function method has been also applied to 1D cuts
of high-resolution satelitte images [15], but we are not aware of any result coming out
from a specific 2D analysis.
In this paper, our first goal is to take advantage of the 2D wavelet transform modu-

lus maxima (WTMM) method introduced in Ref. [20] and further tested on synthetic
multifractal surfaces in Ref. [28], to carry out a multifractal analysis of high-resolution
satelitte images of Sc cloudy scenes [29, 30, 31]. Our objective is not only to extend



previous analysis of 1D profiles to full 2D image processing, but also to remedy to the
insufficiencies of the structure function method which, as pointed out in Ref. [32], fails
to achieve complete multifractal characterization. The 2D WTMM method is likely to
provide reliable quantitative estimates of the entire and multifractal spectra,
within the perspective of confirming the intermittent nature of the internal cloud struc-
ture. Although this result would not be a surprise in such a highly turbulent environment,
the possibility of comparing quantitatively the statistical scaling properties of the optical
depth or the radiance fields with those of the velocity or temperature fluctuations in high
Reynolds turbulent flows, might be very instructive as far as the influence of atmospheric
dynamics on the liquid water distribution in clouds.

AMULTIFRACTAL FORMALISM BASED ON THE 2D WAVELET
TRANSFORM

Analyzing wavelets for multi-scale edge detection

In recent years, there has been increasing interest in the application of the continuous
wavelet transform to image processing [33, 34]. The edges of the different structures
that appear in an image are often the most important features for pattern recognition.
Hence, in computer vision [35], a large class of edge detectors look for points where the
gradient of the image intensity has a modulus which is locally maximum in its direction.
As originally noticed by Mallat and collaborators [36, 37], with an appropriate choice of
the analyzing wavelet, one can reformalize the Canny’s multi-scale edge detector [38]
in terms of a 2D wavelet transform. The general idea is to start by smoothing the
discrete image data by convolving it with a filter and then to compute the gradient on the
smoothed signal.
Let us consider two wavelets that are, respectively, the partial derivative with respect

to and of a 2D smoothing function :

and (1)

We will assume that is a well localized (around ) isotropic function that
depends on only. In this work, we will mainly use the gaussian function:

(2)

as well as the isotropic mexican hat:

(3)

The corresponding analyzing wavelets and are illustrated in Figure 1. They have
one and three vanishing moments when using respectively the gaussian function and the
mexican hat as smoothing function.



FIGURE 1. The analyzing wavelets and defined in equation (1). First-order analyzing wavelets
obtained from a gaussian smoothing function (Eq. (2)): (a) ; (b) . Third-order analyzing wavelets
obtained from the isotropic mexican hat smoothing function (Eq. (3)): (c) ; (d) .

For any function ( ), the wavelet transform with respect to and can
be expressed in a vectorial form:

(4)

Then, after a straightforward integration by parts, one gets:

(5)

If is simply a smoothing filter like the Gaussian function (Eq. (2)), then equation
(5) amounts to define the 2D wavelet transform as the gradient vector of smoothed
by dilated versions of this filter.
In the following, we will mainly use the representation involving the modulus and the

argument of the wavelet transform:

(6)



with

(7)

and

Arg (8)

Singularity detection and processing with the wavelet transform
modulus maxima

The multifractal formalism accounts for possible fluctuations of the local regularity of
a rough surface as defined by the Hölder (local roughness) exponent of the function

whose graph defines the rough surface under study [20] :

(9)

for (we refer the reader to Ref. [20] for a more rigorous definition of the
Hölder exponent). The so-called singularity spectrum is defined as the Haussdorf
dimension of the set of points where the local roughness exponent is . As
pointed out in Ref. [20], a very efficient way to perform point-wise regularity analysis is
to use the wavelet transform modulus maxima.
In the spirit of Canny edge detection [38], at a given scale , the wavelet transform

modulus maxima (WTMM) are defined as the points where the wavelet transform
modulus (Eq. (7)) is locally maximum along the gradient direction given
by the wavelet transform argument (Eq. (8)). These modulus maxima are
inflection points of . As illustrated in Figure 2, these WTMM lie on connected
chains hereafter called maxima chains [20, 29, 30]. In theory, one only needs to record
the position of the local maxima of along the maxima chains together with the value
of and at the corresponding locations. At each scale , our wavelet analy-
sis thus reduces to store those WTMMmaxima (WTMMM) only. They indicate locally
the direction where the signal has the sharpest variation. This orientation component is
the main difference between 1D and 2D wavelet transform analysis. These WTMMM
are disposed along connected curves across scales called maxima lines [20, 28, 30]. We
will define the WT skeleton as the set of maxima lines that converge to the -plane
in the limit . This WT skeleton is likely to contain all the information concerning
the local Hölder regularity properties of the function under consideration. Indeed one
can prove [20] that, provided the first moments of are zero, then :

(10)

along a maxima line pointing to the point in the limit , where ( ) is
the local Hölder exponent of . Moreover, along this maxima line, the wavelet transform



argument evolves towards the value :

(11)

in the limit , where is nothing but the direction of the largest variation of
around , i.e. the direction to follow from to cross the maxima line at a given (small)
scale. From the maxima line , one thus gets the required amplitude as well as
directional informations to characterize the local Hölder regularity of at .

The 2D wavelet transform modulus maxima method

The WTMM method consists in defining the following partitions functions directly
from the WTMMM that belong to the wavelet transform skeleton [20]:

(12)

where . As compared to classical box-counting techniques [39, 40], the analyzing
wavelet plays the role of a generalized “oscillating box”, the scale defines its size,
while the WTMM skeleton indicates how to position our oscillating boxes to obtain a
partition (of ) at the considered scale. Without the “sup” in equation (12), one
would have implicitely considered a uniform covering with wavelets of the same size .
As emphasized in Refs [41, 42, 43], the “sup” can be regarded as a way of defining a
“Hausdorff like” scale-adaptative partition which will prevent divergencies to show up
in the calculation of for .
Now, from the deep analogy that links the multifractal formalism to thermodynam-

ics [42, 43], one can define the exponent from the power-law behavior of the parti-
tion function:

(13)

where and play respectively the role of the inverse temperature and the free
energy. The main result of the wavelet-based multifractal formalism is that in place
of the energy and the entropy (i.e., the variables conjugated to and ), one has the
Hölder exponent (Eq. (9)) and the singularity spectrum . This means that the

singularity spectrum of can be determined from the Legendre transform of the
partition function scaling exponent :

(14)

From the properties of the Legendre transform, it is easy to convince oneself that
homogeneous (monofractal) fractal functions that involve singularities of unique Hölder
exponent , are characterized by a spectrum which is a linear function of
. On the contrary, a nonlinear curve is the signature of nonhomogeneous functions
that display multifractal properties, in the sense that the Hölder exponent is a



fluctuating quantity that depends upon the spatial position (in other words the local
roughness exponent is fluctuating from point to point). Let us note that the scaling
exponent has well-known meaning for some specific values of : (i) is
the fractal dimension of the set of singularities of ; (ii) is related to the fractal
dimension of the rough surface ( ): ; (iii)
is related to the scaling exponent of the spectral density with

.

TEST APPLICATIONS OF THE 2D WTMMMETHOD TO
SYNTHETIC ROUGH SURFACES

Isotropic fractional Brownian surfaces

Since its introduction by Mandelbrot and Van Ness [44], the fractional Brownian
motion (fBm) has become a very popular model in signal and image processing [16, 45].
In one dimension, fBm has proved useful for modeling various physical phenomena with
long-range dependence, e.g., “ ” noises. The generalization of Brownian motion to
more than one dimension was first considered by Levy [46]. The generalization of fBm
follows along similar lines. A 2D fBm indexed by , is a process with
stationary zero-mean Gaussian increments that can be used to generate random self-
affine surfaces with known statistical properties :

(15)

By Legendre transforming according to equation (14), one gets the following
expression for the singularity spectrum :

if
if (16)

Thus fBm surfaces are the representation of homogeneous stochastic monofractal func-
tions characterized by a singularity spectrum which reduces to a single point.
We have tested the 2D WTMM method described in the previous section, on

realizations of a 2D fBm process with . We have wavelet transformed
( ) images of with an isotropic first-order analyzing wavelet. To
master edge effects, we then restrain our analysis to the central part of the
wavelet transform of each image. In Figure 2 is illustrated the computation of the max-
ima chains and the WTMMM for an individual image at three different scales. In Figure
2b is shown the convolution of the original image (Fig. 2a) with the isotropic gaussian
smoothing filter (Eq. (2)). According to the definition of the wavelet transform modu-
lus maxima, the maxima chains correspond to well defined edge curves of the smoothed
image. The local maxima of along these curves are located at the points where the
sharpest intensity variation is observed. The corresponding arrows clearly indicate that
locally, the gradient vector points in the direction (as given by ) of maximum change
of the intensity surface. When going from large scale (Fig. 2d) to small scale (Fig. 2c),
the characteristic average distance between two nearest neighbour WTMMM decreases



FIGURE 2. 2D wavelet transform analysis of . is a first-order radially symmetric analyz-
ing function (see Fig. 1). (a) grey-scale coding of the central portion of the original image.
In (b) , (c) and (d) , are shown the maxima chains; the local maxima of

along these chains are indicated by ( ) fromwhich originate an arrowwhose length is proportional to
and its direction (with respect to the -axis) is given by . In (b), the smoothed image

(Eq. (5)) is shown as a grey-scale coded background from white ( ) to black ( ). (pixels)
is the characteristic size of at the smallest resolved scale.

like . This means that the number of WTMMM and in turns, the number of maxima
lines, proliferates across scales like . The corresponding wavelet transform skele-
ton is shown in Figure 3. As confirmed just below, when extrapolating the arborescent
structure of this skeleton to the limit , one recovers the theoretical result that
the support of the singularities of a 2D fBm has a dimension , i.e., is
nowhere differentiable [16, 45, 46].



FIGURE 3. Wavelet transform skeleton of the 2D fBm image shown in Figure 2a. This skeleton is
defined by the set of maxima lines obtained after linking the WTMMM detected at different scales. Same
analyzing wavelet as in Figure 2.

In Figure 4 are reported the results of the computation of the and spectra
using the 2D WTMM method. As shown in Figure 4a, the average partition function

(over images of ) displays a remarkable scaling behavior over more
than octaves when plotted versus in a logarithmic representation (Eqs. (12) and (13)).
Moreover, for a wide range of values of , the data are in good agreement with
the theoretical spectrum (Eq. (15)). When proceeding to a linear regression fit of
the data over the first two octaves, one gets the spectra shown in Figure 4b for three
values of the fBm index , and . Whatever , the data systematically
fall on a straight line, the signature of homogeneous (monofractal) scaling properties. In
Figure 4c are reported the corresponding estimates of , from Legendre transforming



FIGURE 4. Determination of the and spectra of 2D fBm with the 2D WTMMmethod [20].
(a) vs ; the solid lines correspond to the theoretical predictions (Eq.
(15)) with . (b) vs for ( ), ( ) and 2/3 ( ); the solid lines correspond to
linear regression fit estimates of . (c) vs . Same analyzing wavelet as in Figure 2. These results
correspond to averaging over ( ) fBm images. is expressed in units.

the data (Eq. (14)). The results obtained for both the and spectra are thus
in remarkable agreement with the theoretical predictions given by equations (15) and
(16) respectively. The 2DWTMMmethod can thus be considered as having successfully
passed the test of homogeneous fBm rough surfaces.
When further investigating the joint probability distribution function as

computed from the wavelet transform skeleton of ( ) images of ,
one can check that this pdf actually factorizes , where

and are shown in Figure 5 for



FIGURE 5. Pdf’s of the WTMMM coefficients of as computed at different scales , ,
and (in units). (a) vs . (b) vs . is the first-order analyzing wavelet shown in
Figure 1. These results correspond to averaging over ( ) fBm images.

four different values of the scale parameter. This factorization means that the scale-
invariance properties are statistically independent of the angular information contained
in . As seen in Figure 5a, decreases fast to zero at zero. This explains
that when concentrating on the wavelet transform skeleton, the integral in the r.h.s. of
equation (12) does not diverge when considering negative values. This remark is at the
heart of the 2D WTMMmethod; by allowing us to compute the spectrum for nega-
tive as well as positive values, the 2DWTMMmethod is a definite step beyond the 2D
structure function method which is intrinsically restricted to positive values. The corre-
sponding pdf’s are represented in Figure 5b. clearly does not evolve across
scales. Moreover, except some small amplitude fluctuations observed at the largest scale,

is a flat distribution as expected for statistically isotropic scale-invariant
rough surfaces.

Isotropic multifractal synthetic rough surfaces

In Figure 6 is illustrated the computation of the maxima chains and the WTMMM
for an individual image of a multifractal rough surface generated with the log-normal
-cascade model described in Ref. [28]. This model has two parameters which are

fixed at the value and . From the WT skeletons of 32
( ) images like the one in Figure 6a, one computes the average of the partition
functions . As shown in Figure 7a, when plotted versus the scale parameter in a
logarithmic representation, these average partition functions display a rather impressive
scaling behavior over a range of scales of about 4 octaves (i.e., , where

pixels). Let us point out that scaling of quite good quality is found for a rather
wide range of values of : . When processing to a linear regression fit of



FIGURE 6. 2D wavelet transform analysis of a multifractal rough surface generated with the log-
normal -cascade model with the parameter values and [28]. is the
first-order radially symmetric analyzingwavelet shown in Figure 1. (a) 32 grey-scale coding of the original
( ) image. (b) Maxima chains and WTMMM for the central ( ) part of the original
image (dashed square in (a)) as computed at the scale . The smoothed image is shown
as a grey-scale coded background from white ( ) to black ( ).

the data over the first four octaves, one gets the spectrum ( ) shown in Fig. 7b. For
the range of values where scaling is operating, the numerical data are in remarkable
agreement with the theoretical nonlinear spectrum [28] :

(17)

Similar quantitative agreement is observed on the singularity spectrum in Figure
7c which displays also a parabolic shape as predicted theoretically :

(18)

The multifractal rough surfaces under study, display intermittent fluctuations corre-
sponding to Hölder exponent values ranging from min to max . Un-
fortunately, to capture the strongest and weakest singularities, one needs to compute the

spectrum for very large values of . This requires the processing of many more
images of much larger size, which is out of our current computer capabilities. Note
that with the statistical sample studied here, one has ,
which allows us to conclude that the rough surfaces under consideration are singular
everywhere. The results reported in Figure 7 demonstrate that the 2D WTMM method
is a very efficient tool to resolve multifractality.



FIGURE 7. Determination of the and spectra of multifractal rough surfaces generated with
the log-normal random -cascade models ( ), using the 2D WTMM method [28]. is the first-order
radially symmetric analyzingwavelet used in Figure 6. (a) vs ; the solid lines correspond
to linear regression fit of the data over the first four octaves. (b) vs as obtained from linear regression
fit of the data in (a) over the first four octaves. (c) vs , after Legendre transforming the curve
in (b). In (b) and (c), the solid lines represent the theoretical log-normal spectra (Eqs (17) and (18)).



APPLICATION OF THE 2D WTMMMETHOD TO LANDSAT
IMAGES OF STRATOCUMULUS CLOUDS

Landsat data of marine stratocumulus cloud scenes

Over the past fifteen years, Landsat imagery has provided the remote sensing com-
munity at large with a very attractive and reliable tool for studying the Earth’s environ-
ment [9, 10, 11, 12, 13, 14, 15]. One of the main advantages of high-resolution satellite
imagery is its rather low effective cost as compared to outfitting and flying research
aircraft. Moreover, this very well calibrated instrument offers the possibility to reach
unusual high spatial, spectral and radiometric resolutions [15]. Indeed, the five-channel
Multi-Spectral Scanning (MSS, Landsat 1-3) radiometer resolves features down to m
with bits of dynamic range. The seven-channel Thematic Mapper (TM, Landsat 4-
5) camera does even better with a resolution of m and a dynamic range of bits.
Both these instruments are essentially proportional to nadir-viewing radiance at satel-
lite level ( km). Scores of Landsat completely or partially cloudy scenes have
thus been acquired, mainly for the purpose of characterizing cloud morphology. Mainly
two types of statistical analysis have been applied so far to Landsat imagery: spectral
analysis of the 2D radiance field [12, 13, 14, 15, 47] and joint area and perimeter dis-
tributions for ensembles of individual clouds [9, 10, 11] defined by some threshold in
radiance. One of the most remarkable properties of Landsat cloud scenes is their statis-
tical “scale-invariance” over a rather large range of scales, which justifies why fractal
and multifractal concepts have progressively gained more acceptance in the atmospheric
scientist community [4].
Off all cloud types, marine stratocumulus (Sc) are without any doubt the ones which

have attracted the most attention, mainly because of their first-order effect on the Earth’s
energy balance [4, 15, 47]. Being at once very persistent and horizontally extented,
marine Sc layers carry considerable weight in the overall reflectance (albedo) of the
planet and, from there, command a strong effect on its global climate [5]. Furthermore,
with respect to climate modeling [6] and the major problem of cloud-radiation inter-
action [13, 15, 48, 49], they are presumably at their simplest in marine Sc which are
relatively thin ( - m), with well-defined (quasi-planar) top and bottom, thus
approximating the plane-parallel geometry where radiative transfer theory is well devel-
oped [15, 48, 49, 50]. However, because of its internal homogeneity assumption, plane-
parallel theory shows systematic biases due to the huge internal variability of marine
Sc [8, 26].
Figure 8 is a grey-scale rendering of a small part of the entire ( km )

original cloudy Landsat 5 scene captured with the TM camera ( pixel m) in the
- m channel (i.e. reflected solar photons as opposed to their counterparts emitted

in the thermal infrared) during the first ISCCP (International Satellite Cloud Climatology
Project) Research Experiment (FIRE) field program [51], which took place over the
Pacific Ocean off San Diego in summer 1987. In order to master edge effects in the 2D
WT computation, we actually select 32 overlapping pixels subscenes in
this cloudy region. The overall extend of the explored area is about km . Figure
8a shows a typical ( ) portion of the original image where the eight-bit grey
scale coding of the quasi-nadir viewing radiance clearly reveals the presence of some



FIGURE 8. 2D wavelet transform analysis of a Landsat image of marine Sc clouds [31]. is
the first-order radially symmetric analyzing wavelet shown in Figure 1. (a) 256 grey-scale coding of
a ( ) portion of the original radiance image. In (b) , (c) and (d)

(where pixels m), are shown the maxima chains; the local maxima of
along these chains are indicated by ( ) from which originates an arrow whose length is proportional
to and its direction (with respect to the -axis) is given by ; only the central ( ) part
delimited by a dashed square in (a) is taken into account to define the WT skeleton. In (b), the smoothed
image is shown as a grey-scale coded background from white (min) to black (max).

anisotropic texture induced by convective structures which are generally aligned to the
wind direction.
The computation of the power spectral density reveals a rather nice power-law

behavior from km up to km, with . This value
of the spectral exponent is quite compatible with previous estimates obtained for 1D
LWC data [7, 12, 13, 14, 15, 47], namely - D .



Numerical computation of the multifractal and spectra
using the 2D WTMMmethod

In Figure 8 is illustrated the computation of the maxima chains and the WTMMM
for the studied marine Sc [31] scene. In Figure 8b is shown the convolution of the
original radiance field (Fig. 8a) with the isotropic gaussian smoothing filter (Eq.
(2)). According to the definition of the WTMM, the maxima chains correspond to
well defined edge curves of the smoothed image. The local maxima of along
these curves are indicated by ( ) from which originates an arrow whose length is
proportional to and its direction (with respect to the -axis) is given by . After
linking these WTMMM across scales, one constructs the WT skeleton from which
one computes the partition functions (Eq. (12)). As reported in Figure 9a, the
partition functions averaged over the overlapping ( ) images ( ), display
some well-defined scaling behavior over the first three octaves, i.e. over the range of
scales m m, when plotted versus in a logarithmic representation.
Indeed the scaling deteriorates progressively from the large scale side when one goes to
large values of . As reported in Ref. [31], besides the fact that we are suffering
from insufficient sampling, the presence of localized Dirac like structures is likely to
explain the fact that the observed cross-over to a steeper power-law decay occurs at a
smaller and a smaller scale when one increases . Actually for , the cross-
over scale m becomes significantly smaller than the so-called integral scale
which is approximately given by the characteristic width 5-6 km of the convective
rolls (Fig. 8a). When processing to a linear regression fit of the data in Figure 9a over
the first octave and a half (in order to avoid any bias induced by the presence of the
observed cross-over at large scales), one gets the spectrum ( ) shown in Figure
9b. In contrast to the previously studied fractional Brownian rough surfaces, this
spectrum unambiguously deviates from a straight line.When Legendre transforming this
nonlinear curve, one gets the singularity spectrum reported in Figure 9c. Its
characteristic single humped shape over a finite range of Hölder exponents is a clear
signature of the multifractal nature of the marine Sc radiance fluctuations.
In Figure 9 are also shown for comparison the results ( ) obtained when applying the

2D WTMM method with a third-order ( ) radially symmetric analyzing wavelet
(the smoothing function being the isotropic 2D mexican hat). As seen in Figure 9a,
the use of a wavelet which has more zero moments seems to slightly improve scaling.
But the estimate of the and spectra yields consistent results in the range

. Moreover these spectra are very well fitted by the theoretical quadratic
spectra (Eqs (17) and (18)) predicted for log-normal -cascades [31].

WTMMM probability density functions

In Figures 10a and 10b are respectively shown the pdf’s and for three
different values of the scale parameter (480 m), (960 m) and
(1920 m). First let us concentrate on the results shown in Figure 10b for . This
distribution is clearly scale dependent with some evidence of anisotropy enhancement



FIGURE 9. Determination of the and spectra of radiance Landsat images of marine Sc [31].
The 2D WTMM method is used with either a first-order ( ) or a third-order ( ) radially symmetric
analyzing wavelet (see Fig. 1). (a) vs ; the solid lines correspond to linear regression
fits of the data over the first and a half octave. (b) vs as obtained from a linear regression fit of
the data in (a). (c) vs , after Legendre transforming the curve in (b). In (b) and (c), the solid
lines correspond to the theoretical multifractal spectra for log-normal -cascades with parameter values

and (Eqs (17) and (18)).

when going from small to large scales, in particular when one reaches scales which
become comparable to the characteristic width of the convective structures (i.e., a few
kilometers wide). Two peaks around the values and become more and
more pronounced as the signature of a privilegied direction in the analyzed images. As
one can check from a visual inspection of Figure 8a, this direction is nothing but the
perpendicular to the mean direction of the convective rolls that are generally aligned to



FIGURE 10. Pdf’s of the WTMMM coefficients of the 32 ( ) radiance Landsat images
as computed with a first-order radially symmetric analyzing wavelet: (a) vs ; (b) vs
; the symbols correspond to the following scales m ( ), m ( ) and

m ( ).

the wind direction.
However, as seen in Figure 11, when conditioning the pdf of by the argument ,

the shape of this pdf turns out to be independent of the considered value of , as long
as the value of the scale parameter remains small as compared to the characteristic
width of the convective structures. The observation that the joint probability distribution
actually factorizes, i.e., , is the signature that and are
likely to be independent [30, 31]. This actual decoupling of and means that the
multifractal properties of the marine Sc radiance fluctuations are contained in the way
the shape of the pdf of evolves when one decreases the scale parameter . In other
words the anisotropy induced by the wind direction does not affect the multifractal
scaling properties of the cloud structure.

DISCUSSION

To summarize, we have reported the results of the experimental application of the 2D
WTMM method [20, 28] to radiance Landsat images of marine Sc clouds collected
during FIRE program [30, 31]. The computation of the and spectra have
definitely quantified the multifractal scaling properties of the radiance fields. Besides
the presence of rather isolated localized downward spike events [31], the internal cloud
structure is clearly intermittent and displays rather convincing isotropic scaling over
a range of scale that extends from our WT microscope resolution ( pixels

m) up to , where 5-6 km is some integral scale which is apparently
dictated by the average characteristic width of the convective rolls that modulate the
amplitude of radiance fluctuations.
Let us point out that a similar 1D WTMM analysis of the velocity fluctuations in high

Reynolds number turbulence has come to conclusions very close to those of the present
study [52, 53]. Besides the presence of rather localized Dirac like structures that witness



FIGURE 11. Pdf’s of the WTMMM coefficients of the 32 ( ) radiance Landsat images as
computed with a first-order radially symmetric analyzing wavelet. Pdf’s of when conditioned by .
The different symbols correspond to fixing to ( ), ( ), ( )
and ( ). (a) m; (b) m.

to the probing of vorticity filaments [54], the multifractal nature of turbulent velocity is
likely to be understood in terms of a log-normal cascading process which is expected
to be scale-invariant in the limit of very high Reynolds numbers [52, 53]. In Figure
12 are shown for comparison the results obtained in Figure 9 for the singularity
spectrum of the radiance Landsat images together with the data extracted from
the 1D analysis of a turbulent velocity signal recorded at the Modane wind tunnel
( ) [52, 53] (indeed is represented for the latter in order to compare
1D to 2D data). The turbulent velocity spectrum significantly differs from the
results obtained for the marine Sc cloud. They have a common feature, i.e., the Hölder
exponent the most frequently encountered in the radiance field

is undistinguishable from the corresponding exponent
found for the turbulent velocity field. Note that these values

are significantly larger than the theoretical value predicted by Kolmogorov
in 1941 [55] to account for the observed power-spectrum behavior. The main
difference comes from the intermittency parameter which is much stronger for the cloud,

( ) or ( ) than for the turbulent
velocity, . This is the signature that the radiance field is much
more intermittent than the velocity field: the singularity spectrum for the former is
unambiguously wider than the corresponding spectrum for the later. (Let us mention that
insufficient sampling is probably at the origin of the underestimation of the intermittency
parameter when using a third-order analyzing wavelet. This means that one
must not pay too much attention to the decreasing right-hand part of the cloud
data in Figure 12b.) For the sake of comparison, we have also reported in Figure 12,



FIGURE 12. singularity spectrum of the radiance Landsat images as computed with the 2D
WTMM method using a first-order (a) or a third-order (b) radially symmetric analyzing wavelet. Same
computations as in Figures 9c. The solid lines correspond to the log-normal quadratic spectrum with

, (a) and , (b). The singularity spectrum
of velocity (dotted lines) and temperature (dashed lines) fluctuations in fully developed turbulence are
shown for comparison.

the multifractal spectrum of the temperature fluctuations recorded in a
turbulent flow [56]. The corresponding single humped curve is definitely much wider
than the velocity spectrum and it is rather close to the data corresponding to the
marine Sc radiance field. It is well recognized however that liquid water is not really
passive and that its identification with a passive component in atmospheric dynamics
offers limited insight into cloud structure since, by definition, near-saturation conditions
prevail and latent heat production affects buoyancy. So cloud microphysical processes
are expected to interact with the circulation at some, if not all, scales [57]. Nevertheless,
our results in Figure 12 tell us that from a multifractal point of view, the intermittency
captured by the Landsat satellite looks statistically equivalent to the intermittency of a
passive scalar in fully-developed 3D turbulence. The fact that the internal structure of
Sc cloud somehow reflects some statistical properties of atmospheric turbulence is not
such a surprise in this highly turbulent environment.
Finally, with respect to the issue of cloud modeling, it comes out quite naturally from

the WTMM analysis of marine Sc Landsat data, that the 2D random -cascade mod-
els introduced in Ref. [28], are much more realistic hierarchical models than commonly
used multifractal models like the fractionally integrated singular cascade [22, 25, 47]
or the bounded cascade models [58]. We are quite optimistic in view of using the log-
normal -cascade models with realistic parameter values for radiation transfer simu-
lations. To our opinion, random -cascade models are a real breakthrough, not only
for the general purpose of image synthesis, but more specifically for cloud modeling. It



is likely that better cloud modeling will make further progress in our understanding of
cloud-radiation interaction possible.
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