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Abstract—Textures in images can often be well modeled using
self-similar processes while they may at the same time display
anisotropy. The present contribution thus aims at studying jointly
selfsimilarity and anisotropy by focusing on a specific classical
class of Gaussian anisotropic selfsimilar processes. It will first be
shown that accurate joint estimates of the anisotropy and selfsim-
ilarity parameters are performed by replacing the standard 2D-
discrete wavelet transform by the hyperbolic wavelet transform,
which permits the use of different dilation factors along the
horizontal and vertical axis. Defining anisotropy requires a
reference direction that needs not a priori match the horizontal
and vertical axes according to which the images are digitized, this
discrepancy defines a rotation angle. Second, we show that this
rotation angle can be jointly estimated. Third, a non parametric
bootstrap based procedure is described, that provides confidence
intervals in addition to the estimates themselves and enables to
construct an isotropy test procedure, that can be applied to a
single texture image. Fourth, the robustness and versatility of
the proposed analysis is illustrated by being applied to a large
variety of different isotropic and anisotropic self-similar fields.
As an illustration, we show that a true anisotropy built-in self-
similarity can be disentangled from an isotropic self-similarity to
which an anisotropic trend has been superimposed.

Index Terms—Self-Similarity, Anisotropy, Gaussian Fields,
Hyperbolic Wavelet Transform, Scale Invariance, Rotation In-
variance, Anisotropy Test, Bootstrap

I. INTRODUCTION

Texture classification. In numerous modern applications
(satellite imagery [1], geography [2], biomedical imagery
[3]–[7], geophysics [8], art investigation [9], . . . ), the data
available for analysis consist of images of homogeneous
textures, that need to be characterized. Texture classification
thus consists of classical problems in image processing that
received considerable efforts in recent years (cf. e.g., [3],
[10]–[16] and references therein).

Scale invariance and Self-similarity. Amongst the many
different ways texture characterizations have been investigated,
techniques based on scale invariance, or fractal, concepts are
considered as promising, notably for the application fields

listed above (cf. e.g., [17] for a review). Scale invariance can
be defined as the fact that there exists no specific space-scale
in data that play a preferred role in their space dynamic,
or equivalently that all space-scales are equally important.
Scale invariance in data implies that they are analyzed with
(statistical) models that do not rely on the identification of
specific scales (such as Markov models) but instead with
models that aim at characterizing a relation amongst scales.
Because Self-Similarity is a theoretically well-grounded, and
a relatively simple instance of scale invariance behaviors,
it has often been proposed that Gaussian self-similar fields
are relevant models enabling efficient characterization and
classification of textures (cf. e.g, [15], [16]).

Anisotropy. However, textures are also often characterized
by anisotropy, which may either be deeply tied to self-
similarity itself [18], [19] or exist as an independent property
that is superimposed to an isotropic self-similarity. In
both cases, it is a crucial stake in analysis to disentangle
self-similarity from anisotropy, to discriminate whether
self-similarity and anisotropy are independent properties or if
they are stemming from the same constructive mechanism,
as well as to be able to estimate accurately the self-similarity
parameter H , despite anisotropy. It has already been pointed
out that fractal analysis and estimation is very sensitive
to anisotropy (cf. e.g., [8]). In the literature, anisotropy is
often analyzed from 1D slices extracted from images along
different directions [6] or by making use of local directional
differential estimators [20], [21].

Goals and contributions. In this context, elaborating on
a preliminary attempt [22], the present contribution aims at
proposing an efficient and elegant solution to the joint analysis
and estimation of self-similarity and anisotropy in 2D fields.
Though the procedure proposed here is designed for actual
application to real-world textures, its performance are assessed
by means of Monte Carlo simulation performed on synthetic
isotropic and non isotropic Gaussian textures. While the (dis-
crete) wavelet transform (DWT) is nowadays a classical tool
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for image processing, the key originality of the present work
is to show that the classical discrete wavelet transform fails
at providing a relevant analysis of self-similarity in presence
of anisotropy. Instead, it is proposed here to replace the
2D Discrete Wavelet Transform with the Hyperbolic Wavelet
Transform (HWT) (defined e.g., in [23]). Indeed, the use of
dilation factors that differ along the x and y axes potentially
permits to see the anisotropy, as opposed to the classical 2D
Discrete Wavelet Transform relying on a single and isotropic
dilation factor. The Hyperbolic Wavelet Transform is defined
in Section II-B. Note that the HWT has appeared earlier
in the literature under different names, such as separable
wavelet [24], Tensor-product wavelet [25], anisotropic wavelet
transform [26] or rectangular wavelet transform [27], without
specific exploration despite its benefits to study anisotropy in
textures. Also, redundant (or overcomplete) wavelet represen-
tations (such as M-band, dual tree and Hilbert pair complex
wavelets, cf. e.g., [28], [29] for enlightening reviews) may
be used to analyze images and textures. However, while
they suffer from a larger computational cost, they have been
observed (in preliminary attempts performed by the authors)
to yield little, if not no, practical benefit for the study of scale
invariance and the estimation of the corresponding parameters.
Overcomplete wavelet representations are thus excluded from
the present study.

As representative of 2D model mixing self-similarity and
anisotropy, self-similar Gaussian 2D random fields with built-
in anisotropy, such as those proposed in e.g., [18], [19],
are used here. These fields are defined and illustrated in
Section II-A and their hyperbolic wavelet analysis is detailed
in Section II-C.

Estimation procedures for the parameters characterizing
self-similarity and anisotropy are defined and their perfor-
mance assessed in Section III-A. The definition of anisotropy
involves a rigid definition of reference (orthogonal) axes, that
have no a priori reason to match those of the sensor used to
acquire the image and thus to coincide with the horizontal x
and vertical y axis along which the image is presented for
analysis. Therefore, the model introduced in Section II-A in-
cludes a rotation parameter that accounts for this unknown. An
estimation procedure for this rotation is devised and analyzed
in Section III-B. Therefore, the parameters characterizing
rotation, anisotropy and self-similarity are estimated jointly.

For application purposes, it is crucial to be able to decide
whether textures should be modeled by isotropic or anisotropic
models. Therefore, a procedure for testing the null hypothesis
that the texture is isotropic is constructed and studied in
Section IV. It is based on a non parametric bootstrap procedure
performed on the hyperbolic wavelet coefficients (in the spirit
of the construction devised in [30]) and can thus be applied
to each single analyzed texture independently. Incidentally,
the bootstrap procedures also provide practitioners with confi-
dence intervals for the estimates, a very important feature for
practical purposes.

Finally, the analysis procedures proposed here are applied
in Section V to a variety of isotropic and anisotropic fields that
differ from the precise model used as a reference model (cf.
Section II-A), hence illustrating the robustness and generality

Fig. 1. Sample fields of Xθ0,α0,H0 . Top line : (θ0, α0, H0) = (0, α0, 0.2)
with, from left to right α0 = 1 (isotropic); α0 = 0.7 and α0 = 0.3. Bottom
line : (θ0, α0, H0) = (θ0, 0.7, 0.2) and, from left to right θ0 = π/6, θ0 =
π/4 and θ0 = π/3.

of the tools proposed here. Notably, it is shown that the
proposed analysis enables to potentially distinguish between
a truly anisotropic self-similar field and an isotropic self-
similar field (with same self-similar parameter) to which
directional, hence anisotropic, oscillations, with no relation to
selfsimilarity, have been additively superimposed.

II. HYPERBOLIC WAVELET ANALYSIS OF ANISOTROPIC
SELF-SIMILAR RANDOM FIELDS

A. Anisotropic self-similar random fields

1) Definition: Because of its generic and representative
nature, it has been chosen to work with the class of anisotropic
Gaussian self-similar fields, introduced in [18], [19], referred
to as Operator Scaling Gaussian Random Field (OSGRF)
which can be defined using the following harmonizable rep-
resentation:

Xf,E0,H0(x) =
∫

R2
(ei〈x, ξ〉 − 1)f(ξ)−(H0+1)dŴ (ξ) , (1)

where x = (x1, x2), ξ = (ξ1, ξ2), E0 is a matrix satisfying
Tr(E0) = 2, f a E0–homogeneous continuous positive func-
tion (hence satisfying the homogeneity relationship f(aE0ξ) =
af(ξ) on R2) such that

∫
(1 ∧ |ξ|2)f(ξ)−2(H0+1)dξ < +∞,

and where dŴ (ξ) stands for a 2D Wiener measure.
When f is not a radial function, the Gaussian field is not

isotropic. In this study, it is chosen to use the following 2-
parameter (related to anisotropy and rotation) explicit form:

fθ0,α0(ξ) = (|ζ1|1/α0 + |ζ2|1/(2−α0)),

with ζ = (ζ1, ζ2) = Rθ0ξ and rotation matrix Rθ0 defined as:

Rθ0 =
(

cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

)
.

In this model, E0 =
(
α0 0
0 2− α0

)
, 0 < α0 < 2.

The rotation parameter θ0 has been incorporated by our-
selves into the original definition of [18], [19] to account for
the fact that the rigid axes according to which anisotropy is
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defined need not match a priori the sensor axes according to
which the image is digitalized (for real-world data) or numeri-
cally produced (for synthetic textures). In the sequel, OSGRF
Xθ0,α0,H0 thus refers to the following model, relying on 3
parameters, θ0, α0, H0, characterizing respectively, rotation,
anisotropy and self-similarity

Xθ0,α0,H0(x) =
∫

R2(ei〈x, ξ〉 − 1)fθ0,α0(ξ)
−(H0+1)dŴ (ξ)(2)

2) Properties: With this construction, OSGRF Xθ0,α0,H0

has stationary increments. It possesses a built-in anisotropy
characterized by the parameter α0 ∈ (0, 2). When α0 = 1, the
field is isotropic and the case 1 < α0 < 2 correspond to the
case 0 < α0 < 1 with the axes (x1, x2) permuted.

OSGRF Xθ0,α0,H0 satisfies (where L= denotes equality for
all finite dimensional distributions):

{Xθ0,α0,H0(a
Ex)} L= {aH0Xθ0,α0,H0(x)}. (3)

with E0 = Rθ0ER−θ0 . It is thus exactly self-similar with
parameter 0 < H0 < min (α0, 2− α0) < 1.

Fig. 1 displays realizations of Xθ0,α0,H0(x), obtained from
MATLAB routines written by ourselves and available upon
request. On top row, (H0, θ0) = (0.2, 0) are kept fixed while
α0 takes the values 1, 0.7 and 0.3 (from left to right). The
practical goal is to estimate correctly H0 despite these different
unknown anisotropy strengths α0. On bottom row, a strongly
anisotropic field is shown (α0 = 0.3, H0 = 0.2) with three
different rotation angles θ0 (from left to right θ0 = π/6, π/4
and π/3). Here, the goal is to estimate correctly (α0, H0)
despite such unknown rotation.

This three-parameter OSGRF stochastic process provides a
rich and versatile model for selfsimilar (an)isotropic textures.

3) Numerical simulation: Realizations (or sample fields) of
the synthetic fields defined in Eq. (2) are produced numerically
following the classical procedure, recalled in e.g., [19], relying
on drawing at random realizations of white-noise dŴ (ξ),
followed by standard numerical integration procedures.

B. Hyperbolic Wavelet Transform

The 2D Hyperbolic Wavelet Transform (HWT) differs from
the 2D Discrete Wavelet Transform (DWT) insofar as its
definition relies on the use of two different dilation factors
along the horizontal and vertical axes, as opposed to the 2D-
DWT that makes use of a single and same dilation factor
along both axes. This difference turns out to be crucial for
the analysis of anisotropy.

The collection of functions constituting the orthogonal
basis underlying the HWT is defined as tensor products of
univariate wavelets (cf. e.g., [31]). Let ϕ and ψ denote the
scaling function and the wavelet of a given one-dimensional
multiresolution analysis. The HWT basis of L2(R2) is defined
as (cf. [23]):

ψj1,j2,k1,k2(x1, x2) = ψ(2j1x1 − k1)ψ(2j2x2 − k2),
ψ−1,j2,k1,k2(x1, x2) = ϕ(x1 − k1)ψ(2j2x2 − k2),
ψj1,−1,k1,k2(x1, x2) = ψ(2j1x1 − k1)ϕ(x2 − k2),
ψ−1,−1,k1,k2(x1, x2) = ϕ(x1 − k1)ϕ(x2 − k2),

log2(4fj1/3)
.
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Fig. 2. Hyperbolic Wavelet Transform. Top line : one step of HWT consists
of one step of 2D-DWT (left) (with 1D-DWT performed on each line of
HL and each column of LH subbands (right)). Bottom line : second step of
HWT (left) and locations of the HWT vs DWT (black dots) coefficients in the
frequency domain (right). Black dots correspond to 2D-DWT while for HWT,
white dots indicate subband HH, black triangles indicate LH and HL, squares
correspond to the approximation coefficients). The circle symbols correspond
to the coefficients ψj1,j2 j1, j2 6= 0 and square symbols to the coefficients
ψ0,j2 , ψj1,0, ψ0,0.

for all j = (j1, j2) ∈ N2 and k = (k1, k2) ∈ Z2.
The HWT shares a deep relation with Triebel bases, used
in mathematic literature, to characterize anisotropic functional
spaces (cf. [32]).

The hyperbolic wavelet coefficients of the field X are
defined, ∀j = (j1, j2) ∈ N2, by :

dX(j, k) = 2j1+j2
∫

R2
ψj,k(x1, x2)X(x1, x2)dx1dx2. (4)

Note that a L1-normalization is used (instead of the classical
L2-norm), as it better suits self-similarity analysis (cf. e.g.,
[33]). With these notations, fine resolution scales correspond
to the limit 2j1 , 2j2 → +∞, and index j in the decom-
position corresponds to the actual resolution 2J−j , where
J = log2(N), for an image of size (N ×N ).

Such coefficients dX(j, k) can be computed efficiently,
using a recursive pyramidal filter bank based algorithm com-
parable to that underlying the 2D-DWT. In Fig. 2, the first two
iterations are illustrated, in the Fourier domain. One iteration
of HWT practically consists of the combination of one itera-
tion of the 2D-DWT algorithm, with 1D-DWT performed on
each line of the vertical details (HL) and 1D DWT performed
on each column of the horizontal details (LH). Because the
central frequencies of the dilated scaling function of ϕ(2jx)
and mother-wavelet ψ(2jx) can be approximated as fj = 1

42j

and fj = 3
42j , respectively, the HWT coefficients dX(j, k) can

be located in a (log-) frequency-frequency plane as shown in
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Fig. 2 bottom right, and thus compared to the location of the
2D-DWT coefficients.

In what follows, a 1D-Daubechies-3 multiresolution is used
[34].

C. Analysis of anisotropic self-similar random fields

From Eq. (4), the HWT coefficients can be rewritten, ∀j =
(j1, j2) ∈ N∗2 and ∀k = (k1, k2) ∈ Z2, as stochastic integrals:

dX(j, k) =
∫

R2

(∏2
`=1 e

i2−j`k`ξ` ψ̂(2−j`ξ`)
)

(
|ξ1|1/α0 + |ξ2|1/(2−α0)

)H0+1
dŴ (ξ1, ξ2) .

(5)
Following the methodology in [35], [36], it can be
proven that the HWT coefficients are weakly correlated, i.e.,
∀(j1, j2, k1, k2, k

′
1, k
′
2)

|E(dX((j1, j2), (k1, k2))dX((j1, j2), (k′1, k
′
2)))|

≤ E(|dX((j1, j2, 0, 0)|2)
1 + |k1 − k′1|+ |k2 − k′2|

. (6)

Using the substitution ζ1 = 2−j1ξ1, ζ2 = 2−j2ξ2 in the
rewriting of definition of the wavelet coefficients (cf. Eq. (5)),
we have been able to show that the HWT coefficients typically
behave as [35], [36] :

dX(j, k) ' 2
j1+j2

2

∫
R2

(∏2
`=1 e

ik`ζ` ψ̂(ζ`)
)
dŴ (ζ1, ζ2)(

2
j1
α0 |ζ1|

1
α0 + 2

j2
2−α0 |ζ2|

1
2−α0

)H0+1
,

When j1/α0 > j2/(2− α0), we derive that, for all ζ1, ζ2:

2
j1
α0 |ζ1|

1
α0 ≤ 2

j1
α0 |ζ1|

1
α0 + 2

j2
2−α0 |ζ2|

1
2−α0 ≤

2
j1
α0

(
|ζ1|

1
α0 + |ζ2|

1
2−α0

)
and further

2
−j1H0
α0

1

(|ζ1|
1
α0 + |ζ2|

1
2−α0 )H0+1

≤

1

2
j1
α0 |ζ1|

1
α0 + 2

j2
2−α0 |ζ2|

1
2−α0

≤ 2
−j1H0
α0

1(
|ζ1|

H0+1
α0

)
which enabled us to obtain the following inequality:

C12
j1+j2

2 2−
j1(H0+1)

α0 ≤ E(|dX(j, k)|2)1/2 ≤

C22
j1+j2

2 2−
j1(H0+1)

α0 ,

with C1 =

(∫
R2

∏2
`=1 |ψ̂(ζ`)|2dξ

(|ζ1|
1
α0 + |ζ2|

1
2−α0 )H0+1

)1/2

,

and C2 =

(∫
R2

∏2
`=1 |ψ̂(ζ`)|2dξ
(|ζ1|

H0+1
α0 )

)1/2

.

Combined to similar arguments for the case j1/α0 ≤ j2/(2−
α0), these computations enable us to show that the order of
magnitude of the expectation of the squared HWT coefficients
is, ∀(j1, j2):

E(|dX(j, k)|2)1/2 ' 2
j1+j2

2 2−(H0+1) max(
j1
α0
,
j2

2−α0
) . (7)

−
j 1

(a)
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−
j 1
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.
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log2(S(q = 2, αj, (2− α)j))
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Fig. 3. Illustrations of the estimation procedures. For anisotropic, α0 =
0.7 (a,b, c), and isotropic, α0 = 1 (d,e,f), OSGRF Xθ0,α0,H0 , with θ0 =
0, H0 = 0.7. (a, d) : Structure functions S(q, j1, j2). The solid line indicates
the direction α̂ while the dashed lines correspond to α = 1 and hence the
sole direction actually reachable with the coefficients of 2D-DWT. (b, e) :
Estimation of H(α), based on τ(q = 2, α = α̂) obtained from a linear
regression of log2 S(q, αj, (2 − α)j) versus j (◦). Solid lines correspond
to the theoretical −τ(q = 2, α0). Stars (in (b)) correspond to the (biased)
estimation of H from −τ(q = 2, α = 1), i.e. by using only the 2D-DWT
coefficients. (c, f) : Plots of Ĥ2(α) = −τ(2, α)/2 versus α. The black dot
shows the location of the maximum of H2(α) = −τ(2, α)/2 thus yielding
the estimated α̂ and Ĥ . In (f), as expected for an isotropic image, α̂ = 1.
The mixed line corresponds to the theoretical values of −τ(2, α)/2 (cf. Eq.
11).

Because the fields we deal with are Gaussian, this can straight-
forwardly be extended to any q ≥ −2, cf. [35]–[37]:

E(|dX(j, k)|q) ' 2q
(j1+j2)

2 2−q(H0+1) max(
j1
α0
,
j2

2−α0
) . (8)

These key results constitute the founding ingredient for the
estimation procedures defined below.

III. PARAMETER ESTIMATION

The goal is now to define estimation procedures for the
three-parameters entering the definition of OSGRF Xθ0,α0,H0

and to study their statistical performance. It is assumed, first,
that θ0 is known and equal to θ0 ≡ 0 and estimation is devoted
to parameters α0 and H0. In the second part, θ0 is unknown
and needs to be estimated as well. This is performed by
applying the estimation of α0 and H0 to a collection of rotated
images. It will be shown that the correct estimation angle is
estimated when the estimation of the anisotropy coefficients
reaches its minimum.

A. Self-similarity and anisotropy parameters
In this section, θ0 is assumed to be known and taken equal

to 0 for simplicity.

1) Estimation procedure: By analogy to what has classi-
cally been done for the analysis of self-similarity, or scale
invariance in general, (cf. e.g., [38]), the space averages at
joint scales (j1, j2) (also referred to as structure functions)
are used as estimators for the ensemble averages appearing in
Eq. (8) above:

S(q, j1, j2) =
1

nj1,j2

∑
(k1,k2)∈Z2

|dX(j1, j2, k1, k2)|q, (9)
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where nj1,j2 stands for the number of available coefficients
jointly at scales (2j1 , 2j2).
Let us further define τ(q, α) as a function of the statistical
order q > 0 and of the anisotropy parameter α:

τ(q, α) = lim inf
j

log2(S(q, αj, (2− α)j)
j

. (10)

In essence, Eq. (10) amounts to assuming a power-law behav-
ior of the structure functions with respect to scales, in the limit
of fine scales 2j → +∞, along direction α:

S(q, αj, (2− α)j) ' S0(q)2jτ(q,α).

Eq. (8) above indicates that, on average, and with the specific
choice (j1, j2) = (αj, (2− α)j):

S(q, αj, (2− α)j) ' 2jq
(
1−(H0+1) max( αα0

, 2−α
2−α0

)
)
.

Comparing these two last relations suggests that τ(q, α) =
q
(
1− (H0 + 1) max( αα0

, 2−α
2−α0

)
)

, so that, for a given fixed
q, the anisotropy parameter α0 can be estimated as:

α̂0,q = argminατ(q, α), (11)

and that the self-similarity parameter H can be estimated as:

Ĥq = −τ(q, α̂0,q)/q. (12)

2) Illustrations: The estimation procedure proposed here is
sketched in Fig. 3, for q = 2, for an anisotropic (3a-c) and
an isotropic (3d-e) OSGRF Xθ0,α0,H0 . It can be decomposed
into three steps (for a given q > 0).

Step 1: The HWT coefficients dX(j, k) and corresponding
structure functions S(q, j1, j2) are computed. Examples are
shown in Fig. 3 (left column).

Step 2: The surface log2 S(q, j1, j2), seen as a function of
the variables j1, j2 is interpolated (by nearest neighbor) along
the line αj1 +1 = (2−α)j2 +1. Then, a non weighted least-
square regression of log2 S(q, αj, (2− α)j) versus log2 2j =
j is performed across all available scales, hence yielding an
estimate of −τ(q, α), for each α and each q, as sketched in
Fig. 3-b and 3-e).

Step 3: The estimated −τ(q, α) are plotted for a given q,
as a function of α, and its maximum yields the estimate α̂ of
α0 (cf. Fig. 3-c and 3-f). The estimation of the self–similarity
parameter H0 is further given by Ĥq = −τ(q, α̂)/q.
This procedure calls for the following comments. First, Step 2
is performed for all accessible αs, that is, for all values
of α, that connect at least two pairs of dyadic scales, i.e.,
(a1 = 2j1 , a2 = 2j2) with integers (j1, j2) = [1, 2, . . . , J ]2.
Therefore, the actual resolution of the values of α that can
actually be used depends on the size N ×N of the analyzed
image, and hence so does the resolution of the estimate of
the anisotropy parameter. This discretized resolution can be
observed in Fig. 7.

Second, the structure functions S(q, j, j) (hence for α = 1)
are computed from HWT coefficients that actually correspond
to those of the 2D-DWT (cf. Fig. 3-b, dashed line). For
isotropic fields, it is found that α̂ = 1, and thus that the
coefficients of the HWT that need to be actually used for
the estimate of H0 are those of the 2D-DWT. Conversely, for

EĤ
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Fig. 4. Estimation performance. As functions of the sample size N (image
size N × N ), biases (top row) and standard deviation for Ĥq=2 (a, c) and
α̂q=2 (b, d), obtained as average of estimation performed on 500 realizations
of OSGRF X0,α0,H0 with parameters α0 = 1, H0 = 0.7, 0.5 and 0.3 (◦),
α0 = 0.8, H0 = 0.7, 0.5, 0.3 (∗) and α0 = 0.6, H0 = 0.5, 0.3 (·). In (c)
and (d), dashed lines illustrates the expected 1/sqrtN ×N decrease of the
standard deviations.

anisotropic fields, basing the estimate of H on S(q, j, j) results
into significant biases, as illustrated in Fig. 3-b, dashed line
and Fig. 3-e, where the estimate of H0 for α ≡ 1 significantly
differs from that obtained for α = α̂. This illustrates the major
benefits of replacing the 2D-DWT with the 2D-HWT.

3) Estimation Performance: To complement the theoretical
study reported above and to further assess the performance of
the proposed estimation procedures, Monte Carlo simulations
are now performed further expanding on numerical investi-
gations presented in [22]. Biases and the standard deviations
of α̂q and Ĥq are obtained from averages of estimates com-
puted over 500 independent realizations of OSGRF X0,α0,H0 ,
numerically produced by MATLAB routines designed by our-
selves and available upon request.

Fig. 4 reports biases and standard deviations as a function
of (the log2 of) the sample size N (image size is N × N ),
for various parameters (α0, H0). Fig. 4 essentially shows that
the estimation performance both for α̂ and Ĥ does not depend
on H0, a result that is highly reminiscent of the 1D case (cf.
e.g., [39]). However, dependences on the anisotropy parameter
α0 do exist and are clearly visible on the standard deviation,
which unexpectedly decrease with significant departures of
isotropy.

Estimates are found to be asymptotically unbiased, as
expected from theoretical analysis, and standard deviations
roughly decrease as 1/

√
(N ×N) = 1/N , in agreement with

the weak correlation property of the HWT coefficients. Using
other values of q > 0 (ranging from 1 to 5) yields similar
conclusions.

To conclude this section, let us put the emphasis on the
fact that image sizes vary from small (28× 28) to (very) large
(213×213). This illustrates that both the synthesis and analysis
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Fig. 5. Joint three parameter estimation procedure. Estimations of α̂
(top row) and Ĥ (bottom row) for three differents fields with θ0 = π/3 and
(α0, H0) = (0.7, 0.6) ((a) and (d)); (α0, H0) = (0.3, 0.2) ((b) and (e));
(α0, H0) = (0.7, 0.2) ((c) and (f)). The dashed line illustrates the expected
theoretical behavior of α̂ as a function of θ and the ’circle’ with confidence
intervals to Monte Carlo averages. The estimation of θ̂ corresponds to the
location of the minimum of α̂(θ) and satisfactorily corresponds to θ0 = π/3.
Final estimates for α0 and H0 are obtained as α̂∗ = α̂(θ̂) and Ĥ∗ = Ĥ(θ̂)
and thus show satisfactory agreement with the theoretical values, marked by
∗. Error bars correspond to σĤ (resp. σα̂).

procedures corresponding to the definition of OSGRF and its
analysis can be implemented efficiently and benefits from a
remarkably low computational cost.

Estimation performance were reported here only for q = 2,
as it was found empirically that the use of other values of q
did not improve performance, as can be expected for Gaussian
fields.

B. Rotation parameter

1) Estimation procedure: Let us now consider the case
where, in addition to H0 and α0, the rotation angle θ0 is
unknown. To estimate jointly the three unknown parameters,
it is here proposed to apply the above procedure to estimate
H0 and α0 to a collection of rotated versions of the original
image, with rotation angles θ. The estimation of the anisotropy
direction relies on the following observations, illustrated in
Fig. 5 (top row): i) The estimate α̂(θ) is a π-periodic function ;
ii) it also has the symmetry α̂(θ0 + θ) = α̂(θ0− θ) ; iii) when
θ = θ0, α̂ ' α ; iv) when θ = θ0 + π/2, α̂ = 2 − α ; v)
and when θ = θ0 + π/4, α̂ = 1. Thus, the following joint
estimation procedure for (θ0, α0, H0) can be proposed:

θ̂ = argminθα̂(θ), (13)

α̂∗ = α̂(θ̂) (14)

Ĥ∗q = Ĥq(α̂(θ̂)). (15)

Because the minimum of α̂(θ) is (arbitrarily) picked, this pro-
cedure necessarily implies α̂∗ ≤ 1, there is thus a remaining
indetermination whether the correct choice is α̂∗ or 2−α̂∗ and
therefore of π/2 in θ0. As previously mentioned, this only
amounts to exchanging the roles of the axis x and y. For
isotropic fields, α̂(θ) fluctuates around α = 1, and no clear
minimum (or maximum) is visible. Furthermore, θ̂max− θ̂min
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Fig. 6. Bootstrap versus Monte Carlo Estimates of standard deviations.
(a) Estimations of EσBS(Ĥ)/σMC(Ĥ) as a function of H0, for q = 2, obtained
from R = 100 bootstraps applied to 100 independent copies of OSGRF
X0,α0,H0 (image size (210, 210)), with parameters α0 = 1 (◦), α0 = 0.8
(∗) and α0 = 0.6 (·). (b) Estimations of EσBS(α̂)/σMC(α̂) as a function of
H0, for α0 = 1 (◦), α0 = 0.8 (∗) and α0 = 0.6 (·).

differs from π/2. When θ̂max − θ̂min < π/4, the field is thus
declared isotropic and we set θ̂ = 0.

To practically perform the rotation of θ on the image
of analysis, a nearest neighbor interpolation is applied. The
procedure is totally automated and no human supervision is
needed.

2) Illustrations and performance: To assess the perfor-
mance of the joint three-parameter estimate procedure, Monte
Carlo numerical simulations are conducted, and biases and
standard deviations are computed from average over 100
realizations of OSGRF Xθ0,α0,H0 , for various choices of
(θ0, α0, H0), and with q = 2.

Fig. 5 shows, top row, that the estimation α̂(θ) clearly
follows a piecewise linear variation along θ (modeled by
the dashed line) and displays clear extrema for θ ' θ0 and
θ ' θ0 + π/2. For θ ' θ0, α̂(θ̂) and Ĥ(θ̂) (bottom line
of Fig. 5) provide satisfactory estimates of α0 and H0. For
θ = θ̂ + π/2, the estimations are 2 − α̂ and Ĥ . Table I
displays the biases, standard deviations and mean square errors
for several isotropic and anisotropic OSGRF Xθ0,α0,H0 fields.
It can be observed that Ĥ shows more bias when a rotation
of the original image is performed. This is likely due to the
interpolation procedure that smoothes out data and thus that
distorts self-similarity and thus scale invariance at the finest
scales. Better estimations for H can be achieved by discarding
a few of the finest scales from the linear regression, when
image size permits.

IV. BOOTSTRAP-BASED ANISOTROPY TEST AND
CONFIDENCE INTERVALS

In applications, it is often of crucial importance to be able
to test the isotropy assumption (i.e., whether α0 = 1 or
not) for each single image independently. This theoretically
requires the knowledge of the distribution of α̂. Though it is
found empirically Gaussian, the variance of the distribution
remains unknown and, as suggested in Section III-A and
Fig. 4, it depends not only on the sample size N but also
on the unknown parameter α0 itself. Asymptotic Gaussian
expansions for the computations of the theoretical variance
of α̂, in the spirit of those proposed for fractional Brownian
motion in e.g., [40], have been observed to perform poorly (not
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reported here). Instead, it is proposed to apply non parametric
bootstrap procedure in the HWT coefficient domain, in the
spirit of the procedures developed and assessed in [30], [41]–
[43]. This procedure is detailed in the next section while the
corresponding bootstrapped based isotropy test is defined and
assessed in Section IV-C.

A. Bootstrap resampling schemes

In a nutshell, nonparametric bootstrap makes use of avail-
able samples, many times, by a drawing with replacement pro-
cedure, to yield an approximation of the unknown population
distribution. In turn, this estimated population distribution is
used to construct confidence intervals or test (cf., e.g., [44]
and [45]).

For the present work, following [30], the resampling proce-
dure is applied in the HWT coefficient domain. Because HWT
coefficients do not consist of independent random variables,
but possess a residual correlation, a time-block bootstrap
procedure is used: At each octave j, block of size l of HWT
coefficients are drawn randomly with replacement. This yields
a set of bootstrapped HWT coefficients d∗X(j, k), from which
bootstrap estimates α̂∗ and Ĥ∗ of α0 and H0, respectively,
are obtained.

This procedure is repeated R times, and the population
distribution of α̂ and Ĥ are inferred from the boostrap es-
timates α̂∗,r and Ĥ∗,r, r = 1, . . . , R, notably variances can
be estimated.

B. Bootstrap-based estimates of variance

It has been found empirically that l need not depend on
octave j and can be kept small. As documented in [30], l is
set to twice the size of the support of the mother wavelet (e.g.,
for a Daubechies3 wavelet used here l = 6), as correlations
amongst HWT coefficients is found to remain significant
essentially over a space-scale controlled by the size of the
wavelet support.

Fig. 6 compares the standard deviations of Ĥ (left) and
α̂ obtained from 100 Monte Carlo simulations for anisotropic
fields (of size 210×210) against those obtained by the bootstrap
procedure (with R = 100 for each of the 100 Monte Carlo
simulations). Fig. 6 shows that the ratios σBS(Ĥ)/σMC(Ĥ) and
σBS(α̂)/σMC(α̂) depend neither on α0 nor on H0 and remain
close to 1, with a slight overestimation (from 10 to 20%) for
the former and quasi perfect match for the latter. Equivalent
conclusions are drawn from different sample sizes N . These
results indicate that the bootstrap estimates of the variances
provide valuable approximations of the true variances of Ĥ
and α̂. Together with the Gaussian distribution empirical fact,
this yields very satisfactory confidence intervals for Ĥ and α̂.

C. Test procedure and performance

1) Test procedure: To test isotropy in a given image, the
null and alternative hypothesis respectively read:

H0 : α0 − 1 = 0, and HA : α0 − 1 6= 0. (16)

Let us assume first that θ0 ≡ 0. The test procedure can be
decomposed as follows:
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Fig. 7. Anisotropy test. a) Histogram of α̂MC (light gray) and of α̂BS
(black) for OSGRF X0,α0,H0 (image size (210, 210)), with α0 = 0.75 (a)
and α0 = 1 (b). Right plot (c) shows the rejection level of the test (with
a significance level of 90%) obtained for R = 100 bootstraps, averaged on
100 realizations of X0,α0,H0 , with H0 = 0.3 (◦), 0.5 (M) and 0.7 (O).

- Estimate α̂, as proposed in Section III-A.
- Apply the resampling scheme described in Section IV-A

above to the HWT coefficients of Xθ0,α0,H0 and construct
the bootstrap distribution estimate of α̂ from the boostrap
estimates α̂∗,r, r = 1, . . . R.

- Set the test significance level δ for the test.
- Because when θ0 ≡ 0, there is no reason to decide

a priori that the true α0 will depart from 1 by being
larger or smaller, a bilateral symmetric test is constructed.
Assuming a normal distribution for α̂, the bootstrap-
based standard deviation estimation σ∗ is used to con-
struct the equi-tailed and symmetric acceptance region
[−tδ/2σ∗, tδ/2σ∗], where tδ/2 denotes the δ/2-th quantile
of the zero-mean unit variance Gaussian distribution.

- Alternatively, the p-value of the test can be measured as
the minimum between P (α̂∗ < α̂(θ̂)) and 1 − P (α̂∗ >
α̂(θ̂)), divided by 2.

2) Test performance: To assess the validity and perfor-
mance of the proposed test, it has been compared against
Monte Carlo simulations, based on 100 independent copies of
OSGRF Xθ0=0,α0,H0 with various parameter settings and for
image size 210×210. Fig. 7a) and 7b) compare the histograms
of the estimates of α0 stemming from Monte Carlo simulations
against those obtained from bootstrap estimates α̂∗, from a
single realization, chosen arbitrarily, for anisotropic (a) and
isotropic (b) fields. For both cases, distributions are found to
be in satisfactory agreement. These figures also show that α̂
can only take discretized values, because of the finite sample
size of the image, as discussed in Section III-A2.

In Fig. 7-c, the significance level of the test has been
arbitrarily set to δ = 0.9 and the rejection level of the
bootstrap test (R = 100) has been computed as average
over 100 independant Monte Carlo realizations of OSGRF
Xθ0=0,α0,H0 for various parameter settings. When α0 = 1,
OSGRF is isotropic and the rejection level β is, as expected,
found to satisfactorily reproduce the prescribed significance
level 1 − δ = 0.1: β̂ = 0.13, 0.15 and 0.12 respectively for
H0 = 0.7, 0.5 and 0.3. When α0 6= 1, OSGRF is anisotropic
and the rejection level β measures the power of the test.
Interestingly, it is found that the estimated power does not
depend on H0, is symmetric for α0 above and below 1 and
mostly that it increases sharply when α0 departs from 1. This
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(θ0, α0, H0)
〈θ̂〉 − θ0 〈α̂〉 − α0 〈Ĥ〉 −H0 % rej.(std,MSE) (std,MSE) (std,MSE)

(π/3, 0.7, 0.6)
0.01 0.00 -0.10 100(0.03,0.00) (0.04,0.00) (0.02,0.01)

(π/3, 0.7, 0.2)
0.01 0.01 -0.05 100(0.03,0.00) (0.04,0.00) (0.02,0.00)

(π/3, 0.3, 0.2)
-0.01 0.01 -0.09 100(0.02,0.00) (0.05,0.00) (0.09,0.02)

(0, 1, 0.6)
0.07 0.00 -0.01

(0.31,0.01) (0.08,0.01) (0.03,0.00) 8

(0, 1, 0.2)
0.08 -0.01 -0.01

(0.25,0.01) (0.08,0.01) (0.03,0.00) 11

TABLE I
BIASES, STANDARD DEVIATIONS AND MEAN SQUARE ERRORS OBTAINED

FROM 100 INDEPENDENT COPIES OF OSGRF Xθ0,α0,H0 (IMAGE SIZE
(210, 210)). THE RIGHT COLUMN REPORTS THE CORRESPONDING

REJECTION RATE OF THE ANISOTROPY TEST DESCRIBED IN
SECTION IV-C3, WITH R = 100 BOOTSTRAP SURROGATES. THE

SIGNIFICANCE LEVEL IS SET TO 1− δ = 10%.

is thus indicating a strong potential to detect anisotropy even
for small departure of α0 from 1.

3) Test procedure for θ0 6= 0: When θ0 is unknown and
needs to be estimated, the procedure to test isotropy must be
slightly amended, as follows:

- Apply estimation procedure for θ0, α0, H0 as in Sec-
tion III-B.

- For θ̂, store the estimate α̂(θ̂) and the rotated field X̃θ̂.
- Apply the resampling scheme described in Section IV-A

above to the HWT coefficients of X̃θ̂ and construct the
bootstrap distribution estimate of α̂ from the boostrap
estimates α̂∗,r, r = 1, . . . R.

- Set the test significance level δ for the test.
- Because the estimated α̂ necessarily takes values in [0, 1]

a monolateral test must be constructed and the acceptance
region is thus defined as: [−tδσ∗, 1].

- Alternatively, the p-value of the test can be computed as
P (α̂∗ < α̂(θ̂)).

Table I (right column) reports the rejection rates of the
procedure applied to several anisotropic and isotropic OSGRF
Xθ0,α0,H0 fields of size (210, 210). For isotropic cases, the
rejection rates matches closely the significance level, as ex-
pected. For anisotropic fields, the power of the test is found
very high as soon as α0 departs, even slightly, from 1.

V. OTHER ISOTROPIC AND ANISOTROPIC RANDOM FIELDS

So far, the analysis (estimation and test) procedures pro-
posed here were applied only to the OSGRF Xθ0,α0,H0 ,
defined in Section II-A, and chosen as a convenient reference
model, with three parameters accounting jointly for rotation,
(an)isotropy and self-similarity. However, one can naturally
wonder whether the isotropy test described above would sat-
isfactorily perform to detect anisotropy for other models, i.e.,
whether α̂ = 1 or not. In this section, a number of isotropic
and non isotropic self-similar models commonly encountered
in the image processing and statistics literature are used to test
the level of generality of the approach proposed here.

H1 0.7 0.4
H2 0.5 0.6 0.7 0.2 0.3 0.4

OSGRF 100 84 15 100 99 7
EFBF 42 31 15 49 28 10
FBS 89 78 58 92 87 61

TABLE II
Isotropie test: Rejection rates. OBTAINED FOR THREE DIFFERENT

CLASSES OF FIELDS (FROM R = 100 BOOTSTRAPS ON EACH OF THE 100
1024× 1024 REALIZATIONS, SIGNIFICANCE LEVEL OF δ = 90%).

A. Random fields

1) Another OSGRF: In [46], another interesting instance of
OSGRF has been explored. It is defined from Eq. (1) with:

f(ξ) = (|ξ1|2 + |ξ2|2a)−β , (17)

where β = H1 + (1 + 1/a)/2 and a = H2/H1 for 0 < H1 <
H2 < 1. This process resembles OSGRF Xθ0,α0,H0 , in Eq.
(2), with α0 = 2a/(1 + a), H0 = 2aH1/(1 + a) and θ0 = 0.
It is thus anisotropic as soon as a 6= 1.

2) Extended Fractional Brownian Fields: Another class of
possibly anisotropic Gaussian fields, referred to as Extended
Fractional Brownian Fields, was first introduced in [18]. Its
definition, Xf (x) =

∫
R2(ei〈x, ξ〉 − 1)f(ξ)1/2dŴ (ξ) , relies on

an admissible function f of the form:

f(ξ) = |ξ|−2h(arg(ξ))−2, (18)

where arg(ξ) is the direction of the frequency ξ and h an
even, measurable, periodic function taking values in (0, 1).
Fractional Brownian field is a particular and isotropic case
of EFBF, where h is a constant function, but EFBF, is in
general anisotropic when h is not a constant function. Strictly
speaking, EFBF is not exactly selfsimilar (except in cases
where h is a constant function). However, EFBF shows scale
invariance properties that are empirically close to those of
strictly selfsimilar fields. Fig. 8-a shows a sample field of
anisotropic EFBF, with

h(arg(ξ)) = H2 × (cos(2× arg(ξ)) + ε)2/(1 + ε)2, (19)

where ε = 1 + 2
√
H1/(H2 −H1). Function h is π-periodic

and takes values in [H1, H2]. Fig. 8-c shows one sample-field,
obtained with parameters H1 = 0.2 and H2 = 0.8.

3) Fractional Brownian Sheet : Fractional Brownian
Sheet (FBS), introduced in [47], provides another class of
(an)isotropic self-similar Gaussian field. It can be defined
through its harmonizable representation, for any (H1, H2) in
(0, 1)2 (see [48]) :

BH1,H2(x) =
∫

R2

(ei<x1,ξ1> − 1)(ei<x2,ξ2> − 1)
|ξ1|H1+

1
2 |ξ2|H2+

1
2

dŴξ1,ξ2 ,

(20)
where dWx1,x2 is a Brownian measure on R2 and dŴξ1,ξ2 its
Fourier transform. FBS is a Gaussian field with stationary rect-
angular increments, satisfying the following scaling property
∀(a1, a2) ∈ (R∗+)2

{BH1,H2(a1x1, a2x2)} L= {aH1
1 aH2

2 BH1,H2(x1, x2)} . (21)
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Ĥ
(α

)

(f)

0 0.5 1 1.5 2

0.8 1 1.2

0

0.5

1

1.5

−1

−0.5

0

0.5

1

0.4

0.6

−1

−0.5

0

0.5

1

Fig. 8. Other (an)isotropic selfsimilar Gaussian fields. (a, c, e) sample
fields with (H1, H2) = (0.2, 0.8) for OSGRF (a), EFBF (c), FBS (e).
(b,d,f) : Ĥ(α) obtained for averages over 100 realizations, with H2 = 0.8
and H1 = 0.8 (◦), 0.6 (?), 0.4 (M) and 0.2 (O). Ĥ(α) clearly shows a
maximum for α 6= 1 when fields are anisotropic.

B. Testing anisotropy

The estimation and test procedures described above were
applied to these three classes of fields, for various setting
of [H1, H2]. Estimated function Ĥ(α), averaged over 100
realizations (size 210 × 210), are reported in Fig. 8, right
column. Isotropy rejection rates, obtained from R = 100
bootstrap surrogates for each of the 100 realizations, are
reported in Table II.

For the three classes of fields, when H1 6= H2, it is observed
that Ĥ(α) has a maximum for α that clearly departs from
1 and simultaneously that the isotropy rejection rates are far
larger than the chosen 1 − δ = 10% significance level of the
test. This is the case even for as small discrepancies between
H1 and H2, as H2 − H1 = 0.2. These results clearly show
that the proposed procedures clearly detect anisotropy.

For EFBF, it is reported in [46] that the anisotropy test
proposed therein failed to detect anisotropy (i.e., test reject
in 0% of cases), when H1 = 0.5 and H2 = 0.7. Trying as
careful a comparison as possible, using the same model and
parameter setting, it is found that the bootstrap test described
in Section IV-C, yields rejection of isotropy, with the 1− δ =
10% significance level, in 42% of cases, hence showing a
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Fig. 9. (a) Isotropic self similar field (θ0 = 0, H0 = 0.5, α0 = 1) to which
a sine wave is superimposed along direction π/8; (b) Anisotropic self-similar
fields with (θ0 = π/8, H0 = 0.5, α0 = 0.6). α̂ (c) and Ĥ (d) as function
of the angle analysis θ. The symbols (?) denote the results obtained for the
field in (a) and the (◦) for the field in (b).

much improved power (cf. Table II).
Conversely, for H1 = H2, it is observed for EFBF and

OSGRF that Ĥ(α) has a maximum for α = 1 and si-
multaneously that the isotropy rejection rates reproduces the
targeted significance level, hence confirming that these fields
are isotropic. For FBS, Ĥ(α) remains flat for all αs, while the
rejection rates are higher than the targeted significance level,
this is thus questioning isotropy of FBS, even when H1 = H2,
a theoretically open issue.

C. Anisotropic field with superimposed regular texture

To finish, let us come back to the original issue disentan-
gling self-similar with a true built-in anisotropy from isotropic
selfsimilar processes to which an unrelated anisotropic texture
is additively superimposed. To address this issue, let us com-
pare a truly isotropic OSGRF Xθ0=0,α0=1,H0=0.5, as defined
in Eq. (2), to which a sine waveform trend, with orientation
π/8 is additively superimposed (Fig. 9-a) to a truly anisotropic
OSGRF Xθ0=π/8,α0=0.6,H0=0.5. The estimation and test pro-
cedures described above are applied to 100 realizations of both
fields, and α̂(θ) and H(θ) are displayed in Fig. 9c and d,
respectively. For the truly anisotropic field (◦), α̂(θ) displays
a visible minimum for θ̂ = θ0, with estimated anisotropy
(α̂ = α(θ̂) = 0.66) and selfsimilarity (Ĥ(θ̂) = 0.36)
parameters in satisfactory agreement with the true ones (◦
in 9d). This is thus suggesting a possible anisotropy. For the
isotropic field, to which the directional sine wave trend has
been additively superimposed, α(θ) shows no clear minimum
and instead a rather constant behavior in θ is observed, thus
leading to conclude that anisotropy, clearly visible by eye on
the sample field, is superimposed to rather than built within
self-similarity.
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This example suggests encouragingly that the proposed
procedure can serve to analyze self-similarity in presence of
anisotropy and may also help to disentangle self-similarity
with built-in anisotropy from isotropic self-similarity with
additively superimposed unrelated anisotropic trends.

VI. CONCLUSIONS AND PERSPECTIVES

The present contribution aimed at studying images or fields
where self-similarity is potentially tied to anisotropy. Replac-
ing the standard 2D-DWT with the HWT, thus permitting to
use different dilation factors along horizontal and vertical di-
rections, enabled us first to estimate the rotation and anisotropy
parameters. In turn, this permitted a correct estimation of
the self-similarity parameter along the estimated anisotropy
direction. This direction selection would not be permitted by
the use of the sole 2D-DWT coefficients and thus constitutes
the major benefits of the use of the HWT, and therefore the
key feature of the present contribution.

Additionally, bootstrap based procedures, performed in the
HWT coefficient domain, supply confidence intervals for the
estimates and an isotropy test, that can be applied to a single
image.

Though studied in depth for a specific Gaussian self-similar
model, the proposed analysis is shown to enable the detection
of anisotropy for a large variety of classes of Gaussian
self-similar fields. Also, the proposed procedure can be
used to help discriminating between self-similarity with true
built-in anisotropy and isotropic self-similarity to which an
anisotropic trend is added; this will be further investigated.

Extensions of the applicability of the present method or fur-
ther developments geared towards the analysis of more general
classes of fields modeling will be considered. Textures with
scale invariance, that are not necessarily exactly self-similar
and that may, weakly or significantly, depart from Gaussian
distributions, are under current investigations. Notably, this
study paves the way toward the far more difficult topic of
multifractal analysis and formalism in presence of anisotropy,
to which future efforts will be devoted.

MATLAB routines, designed by ourselves, implementing
field synthesis and parameter estimation and test will be made
publicly available at the time of publication.
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(Diderot), published in october 97. He also is the coeditor of a book entitled
”Scaling, Fractals and Wavelets” (ISTE). He became IEEE fellow in 2011.

His current research interests include wavelet-based analysis and modeling
of scaling phenomena and related topics (self-similarity, stable processes,
multi-fractal, 1/f processes, long-range dependence, local regularity of pro-
cesses, infinitely divisible cascades, departures from exact scale invariance. . . ).
Beyond theoretical developments and contributions, Patrice Abry shows
a strong interest into real-world applications, ranging from hydrodynamic
turbulence to the analysis and modeling of computer network teletraffic. He
also got involved in the study of Heart Rate Variability both for adults and
fetuses, in collaboration with French academic hopitals.


