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Though internal waves cannot propagate vertically through weakly stratified fluid, if the
depth of the weak stratification is sufficiently shallow, these waves can partially reflect from
and transmit through it. In this paper, we quantitatively extend the results of Sutherland and
Yewchuk [J. Fluid Mech. 511, 125 (2004)] on Cartesian internal wave tunneling to the case
of axisymmetric wave fields and discuss their tunneling through a weakly stratified layer. A
simple three-layer model allowing for the computation of transmission coefficients for the
velocity fields is proposed and tested on a case study. We notably show that there exists
a smooth transition between the fully propagating and the tunneling regimes. We further
reflect on the challenges set by the measurement of internal wave mode amplitudes in
confined domains, and we discuss an innovative method to measure said amplitudes in this
experimental and numerical context.

DOI: 10.1103/PhysRevFluids.9.124801

I. INTRODUCTION

Internal gravity waves propagate in density-stratified fluids such as the atmosphere and the
oceans. The linear regime of these waves has been extensively studied in nonrotating linearly
stratified Boussinesq fluids, i.e., in fluids of constant vertical density gradient ∂zρ and thus of
constant buoyancy frequency N . Recently, pioneering works have shown the crucial interplay
between internal wave propagation and nonlinear stratifications for energy transfer purposes [1–4].
This is particularly relevant for oceanic stratifications comprising weakly stratified regions (as
mentioned in [5–7]), from isolated layers to intricate staircase stratifications [8]. Examples of such
stratifications have been observed both in warm regions (e.g,. in the Tyrrhenian Sea [9,10] and in
the Caribbean Sea [11–13]) and cold regions (for instance, in the Arctic Ocean [8,14–17]). The
latter example is of primary relevance as the shrinking ice coverage of the Arctic leads to enhanced
generation of internal waves by wind-driven events at the ocean surface, which can propagate
through the stratification [14,18,19], and transport energy toward the abyss.

While most of these studies have been focusing on Cartesian plane waves, they have been
quantitatively extended in laboratory experiments to an axisymmetric geometry over the past few
years, for example, in the case of internal waves generated by plumes [20], or using an axisymmetric
wave generator [21–23]. Some differences between the axisymmetric and the Cartesian case have
been noted in the nonlinear dynamics, for example, regarding the generation of super-harmonics
[24,25]. But the linear regime is similar in that the dispersion relation remains unchanged and
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naturally introduces a cutoff frequency for the waves, meaning that if their frequency is larger than
the buoyancy frequency N , they are evanescent and cannot vertically propagate.

Transmission of internal waves across sharp and smooth interfaces between two layers of
uniform N has been studied both in Cartesian [5,26] and axisymmetric [21] settings. Experimental
measurements of velocity amplitudes have shown that, close to the transition region, the velocity is
still nonzero although the wave frequency ω is above N . Propagating waves impinging on a weakly
stratified layer of fluid sandwiched between two strongly stratified regions can get through this layer,
in which they are evanescent, by a phenomenon known as tunneling [7,27].

In the present paper, building on a series of recent works on axisymmetric internal waves
[8,21–23], we extend the previous study of Sutherland and Yewchuk [7] on Cartesian internal
wave tunneling to the case of axisymmetric wave fields. We first investigate whether this change of
geometry affects the tunneling phenomenon, and we then propose a quantitative investigation of the
associated transmission coefficients. The theory of internal wave tunneling is developed in Sec. II
with a simple three-layered model that allows for the computation of transmission coefficients and
that can be further generalized. After describing the experimental and numerical methods in Sec. III,
the theory is tested in Sec. IV with both qualitative and quantitative results. This section also puts
the emphasis on the challenges set in accurately and reliably measuring internal wave amplitudes,
especially in confined domains. We present a robust innovative method to reach this goal. Our
conclusions and discussion are presented in Sec. V.

II. THEORY

A. Governing equations

Under the Boussinesq approximation, the linear internal wave equation in a nonrotating, inviscid
density stratified fluid in an axisymmetric geometry is [21]

∂2

∂t2

(
∂2ψ

∂z2
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(
1

r

∂ (rψ )
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where ψ is the stream function and N (z) = (−g/ρ0dρ̄(z)/dz)1/2 the buoyancy frequency, which is
assumed to be a function of z only, with g the gravity constant, ρ̄ the background density, and ρ0

the reference density. The vertical and radial velocities, vz and vr , respectively, are given by spatial
derivatives of the stream function ψ as follows:

vz = 1

r

∂ (rψ )

∂r
and vr = −∂ψ

∂z
. (2)

Over parts of the stratification with constant buoyancy frequency N and considering a finite domain
with a cylindrical boundary at a radius R, the analytical solution of Eq. (1) is a superposition of
vertically propagating, radially standing, waves individually defined as

ψ (r, z, t ) = ψ0J1(lr)ei(mz−ωt ), (3)

in which ψ0 is a constant amplitude, l and m are the radial and vertical wave numbers, ω is the wave
frequency, and J1 is the first-order Bessel function of the first kind [22]. The radial wave number l is
then imposed by boundary conditions at r = R [22,23]. Inserted in the wave equation, this solution
yields

m2 = l2

(
N2

ω2
− 1

)
, (4)

which implicitly defines the internal wave dispersion relation relating the frequency ω to the
wave numbers l and m. This describes two kinds of waves: either ω < N and the waves are
propagating (m real-values); or ω > N and the waves are evanescent (m is purely imaginary) in
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FIG. 1. Tunneling of a horizontal axisymmetric Bessel mode across a weakly stratified layer, represented
by the hatched region between 0 and −L: (a) schematic of the phenomenon, where the blue pattern represents a
Bessel-shaped wave field in the horizontal, with a free incident wave stream function ψ I reaching the interface,
leading to a reflected wave ψR and a transmitted wave ψT ; (b) density profile of the stratification; (c) squared
buoyancy frequency profile modeled using two hyperbolic tangents.

which case, according to Eq. (3), the wave amplitude decays exponentially in the vertical direction.
The buoyancy frequency N therefore acts as a cutoff frequency.

B. Three-layered problem

We examine the transmission of a single axisymmetric wave [defined as in Eq. (3)] incident from
above upon a three-layered piecewise-constant N (z) profile given by

N (z) =
⎧⎨
⎩

N1 z̃ � 0
N2 −L < z̃ < 0
N3 z̃ � −L

, (5)

as depicted in Fig. 1. The vertical coordinate z̃ is defined such that the top interface is located at
z̃ = 0. We consider that the intermediate layer of buoyancy frequency N2, for z̃ ∈ [−L; 0] (i.e.,
vertical extension �z̃ = L) is weakly stratified (N2 < N1, N3). Henceforth, L refers to the thickness
of this weakly stratified layer.

In a model case of sharp interfaces between the N1, N2, and N3 regions, this equation can be
solved independently in each layer and interrelated using interface conditions at z̃ = 0 and z̃ = −L
[7,21,28]. For z̃ in a given region of Ni, the stream function is ψi = ψ̂i(z̃)J1(lr)e−iωt where ψ̂ is
the stream function amplitude. Considering downward propagating modes, the continuity of the
pressure and vertical velocity fields implies that l and ω are conserved while transmission occurs
across the sharp interfaces between the three regions [21].

Although each value of Ni is arbitrary, it is assumed in this study that the incident wave
has a frequency smaller than N1 and N3, so that transmission is possible (i.e., the wave field is
always propagating in the top and in the bottom layers, but not necessarily in between). The
stream function amplitude in the top layer is a superposition of an incident and reflected wave:
ψ̂1 = AI exp(ım1z̃) + AR exp(−ım1z̃), in which m1 = l (N2

1 /ω2 − 1)1/2. In the bottom layer, the
stream function is composed of a downward propagating wave alone since this layer is assumed
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to have infinite depth: ψ̂3 = AT exp(ım3z̃), in which m3 = l (N2
3 /ω2 − 1)1/2. In the middle layer,

two cases are considered:
(1) If ω < N2, the stream function amplitude is given by ψ̂2 = B1 exp(ıγ+z̃) + B2 exp(−ıγ+z̃),

in which γ+ = l (N2
2 /ω2 − 1)1/2. Waves can propagate in this layer.

(2) If ω � N2, the stream function amplitude is given by the linear combination ψ̂2 =
B1 exp(γ−z̃) + B2 exp(−γ−z̃), in which γ− = l (1 − N2

2 /ω2)1/2. Waves are evanescent in this layer,
with exponentially varying amplitudes.

Continuity of the pressure and vertical velocity fields at the interfaces at z̃ = 0 and −L require
continuity of the stream function amplitude and its derivative. This then gives four equations in
the five unknown amplitudes AI , AR, AT , B1, and B2. Applying the interface conditions thus gives
the transmitted amplitude AT in terms of the incident amplitude AI . A fraction of the wave energy
is reflected back into the upper domain (amplitude AR) [21], depending on how much energy is
transmitted through the layer.

C. Transmission coefficient

For both of the aforementioned cases, we now try to quantify how much of the wave field can
be transmitted through the weakly stratified layer of buoyancy frequency N2. As discussed in a
previous study [21], it is possible to relate the transmitted, reflected, and incident wave fields using
transmission and reflection coefficients. These coefficients are ratios that can be computed using
different quantities, notably the vertical velocity, the radial velocity, or the energy of the wave field.
The vertical and radial velocities are used here since they give complete access to the wave field
while being the most practical to measure experimentally.

For the vertical velocity field vz, the transmission coefficient Tvz is given in terms of the ratio of
∂rψT to ∂rψI , i.e., Tvz = (l3/l1)|AT |/|AI |. The radial wave number is conserved across interfaces in
such configurations, thus l1 = l3 and the transmission coefficient is directly given by the ratio of the
stream function amplitudes AT to AI , explicitly Tvz = |AT |/|AI |. We find the following coefficient:

Tvz =
{

2m1γ+
[(

m2
1 − γ 2

+
)(

m2
3 − γ 2

+
)

sin2 (γ+L) + γ 2
+(m1 + m3)2

]−1/2
, if ω < N2,

2m1γ−
[(

m2
1 + γ 2

−
)(

m2
3 + γ 2

−
)

sinh2 (γ−L) + γ 2
−(m1 + m3)2

]−1/2
, if ω � N2.

(6)

Interestingly, in the particular case N3 = N1, the square of Tvz obtained here is analogous to the
transmission coefficient for energy found by [7]. As for the radial velocity field vr , which is
computed using the negative z derivative of the stream function, the appropriate transmission
coefficient is given by Tvr = (m3/m1)|AT |/|AI |, or more explicitly, for ω < N1 and N3,

Tvr =
(

N2
3 /ω2 − 1

N2
1 /ω2 − 1

)1/2

Tvz . (7)

In Eq. (6), the solution for ω < N2 corresponds to waves propagating in all layers, while the other
expression for ω � N2 describes the tunneling case.

These transmission coefficients depend on various parameters that can be tuned in the experi-
ments: the buoyancy frequencies N1, N2, and N3, the forcing frequency ω, the radial wave number
l , and the vertical extent of the evanescent region L. Taking N3 to be approximately equal to N1,
these parameters collapse into three dimensionless variables ω/N1, N2/N1, and L × l . We can study
their influence by plotting colormaps of the transmission coefficient, similarly to [7,21]. They are
shown in Fig. 2 with Tvz as a function of (a) ω/N1 and N1/N2 at a given L × l = 0.76, and (b)
ω/N1 and L × l at a given N2/N1 = 0.45. Both plots are produced using N3 = 1.1N1, as obtained
experimentally in the next section. The choice of L × l = 0.76 [in Fig. 2(a)] and of N2/N1 = 0.45
[in Fig. 2(b)] is also justified by the experimental conditions detailed below.

Three regions can be identified in the colormaps of Fig. 2, separated by a white dotted line and by
a white dashed line. The leftmost part of the colormap corresponds to the resonant regime in which
peaks of increased transmission amplitudes appear when ω/N comes closer to particular values, for
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FIG. 2. Colormaps of the predicted transmission of vertical velocity Tvz as: (a) a function of ω/N1 and
N2/N1 with L × l = 0.76; and (b) of ω/N1 and L × l with N2/N1 = 0.45. In both cases we set N3/N1 = 1.1.
The white solid lines show the cuts at (a) N2/N1 = 0.45 and (b) L × l = 0.76. The white dashed lines separate
the evanescent (ω > N2) and the propagating (ω < N2) cases. The white dotted curves bounding the peaks
to the leftmost part show the approximate limit between the resonant (with peaks in transmission) and the
propagating cases.

example, when ω/N1 → 0.2 for L × l = 0.76 in Fig. 2(b). As evident in Fig. 2(a), these peaks are
shifted to lower frequencies ω when the ratio N2/N1 or L × l decrease. This regime is characterized
by resonances in the weakly stratified layer that form a cavity for the waves that behaves like
a wave resonator [21,29], i.e., their successive reflections at the top and bottom interfaces lead
to constructive or destructive interference in this layer. Since exact resonances (corresponding to
the peaks in Tvz ) are obtained when the size of the layer (the cavity) is an integer multiple of the
half-vertical wavelength [21,22], this regime exists only for vertical wavelengths smaller than 2L.
Considering 2L as the largest vertical wavelength allowed defines a lowest-order resonance relation
that can be written either as

L × l = 4π√
N2

2
ω2 − 1

at fixed N2/N1 [in Fig. 2(a)], (8)

or

N2

N1
= ω

N1

√(
4π

L × l

)2

+ 1 at fixed L × l [in Fig. 2(b)], (9)

materialized in each panel of Fig. 2 by a white dotted curve. These equations were however obtained
with a sharp interface model, which underestimates the size of the weakly stratified region compared
to an effective size in the case of smooth interfaces. For this reason, this dotted curve represents a
bounding limit of the actual resonance region.

The central region corresponds to the fully propagating regime: waves can propagate in all three
layers, and no resonance effect is observed in the weakly stratified layer. The rightmost region,
delimited by the white dashed line at ω/N1 = N2/N1, corresponds to the tunneling regime, in which
waves cannot propagate in the weakly stratified layer. As can be seen in Fig. 2, increasing either
the thickness of the weakly stratified layer L or the radial wave number l (i.e., L × l) broadens
the resonant region and reduces the propagating one. The frequency range corresponding to the
tunneling regime (ω/N1 ∈ [N2/N1; 1]), remains unchanged since its definition only depends on the
buoyancy frequencies.
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FIG. 3. (a) Schematic of the experimental apparatus in a vertical cross-section showing a cylindrical tank,
inside a square tank, that confines the waves produced by the generator located at the surface, leading to a radial
Bessel mode propagating downwards. The vertical dimension of the generator on this schematic is not to scale.
(b) Density and (c) buoyancy frequency profiles from experiment 1 (solid blue line), piecewise-constant profile
in the model (solid yellow line), and profile used in the simulations as given by Eq. (15) (dotted orange line).
The hatched region between z = −23 cm and z = −33 cm corresponds to the weakly stratified layer identified
from the density profile ρ(z).

III. METHODS

A. Experimental apparatus

We conducted a set of experiments using the apparatus described in [21,22], adapted from the
setup of Maurer etal. [23]. A general schematic of the experimental device is presented in Fig. 3.
Throughout our study, we are using natural cylindrical (r, z) coordinates whose origin is taken at
the water surface at the center of the tank. The z axis is thus redefined compared to z̃ used in the
previous theoretical section.

The wave generator is made of 16, 12 mm thick, concentric PVC cylinders periodically oscil-
lating, each of them being forced by two eccentric cams. The eccentricities can be configured to
introduce a phase shift between the different cylinders, and the oscillating amplitude can be set for
each individual cylinder. As a result, the vertical displacement of the nth cylinder can be described
by

an(t ) = An cos(ωt + αn), (10)

with An its vertical displacement amplitude, ω the forcing frequency, and αn a phase shift. For a
smooth motion of the PVC cylinders, a 1 mm gap is kept between each cylinder and the total radius
of the wave generator is then R = 201 mm. The generator is mounted at the surface of the water to
force downward propagating internal waves. The wave field is forced using a mode 1 profile in the
horizontal direction, i.e., the radial wave number l satisfies J1(lR) = 0, so that the radial velocity
is zero at the imposed cylindrical boundary, with lR being equal to the first zero of the Bessel
function J1, ξ0 � 3.83. We thus use l = ξ0/R � 19 m−1. The corresponding amplitudes of each cam
are presented in Table I. This profile is efficient for generating axisymmetric Bessel-shaped wave
fields [22].
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TABLE I. Amplitudes of the different cams of the generator for a mode 1 radial profile. The first cam is
located at r = 0.

Cams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mode 1 amplitudes (mm) 2.5 2.4 2.3 2.1 1.9 1.6 1.3 0.9 0.6 0.2 −0.1 −0.3 −0.6 −0.8 −0.9 −1

Experiments were conducted in a cylindrical acrylic tank of the same inner diameter as the
generator. This transparent cylindrical tank was set into a square acrylic tank to reduce distortions
that would occur due to the curved interface created by the cylinder. Both tanks were filled with
salt-stratified water with the same density profile. We adapted the double-bucket method [30,31] to
fill the experimental tank with a layered stratification, using a stop-and-go method [21]. The density
profile ρ(z) was measured from the free surface to within a couple of centimeters of the bottom of the
tank, using a calibrated PME conductivity and temperature probe mounted on a motorized vertical
axis. The buoyancy frequency was estimated from the mean value of the N (z) profile obtained
from ρ(z), smoothed over 2 cm. The wave generator was immersed at a depth of 2 cm into the
stratification. The error on the buoyancy frequency was estimated using the standard deviation of
this N profile, which was about 4% of the estimated N value (see [22] for more details).

As shown in Figs. 3(b) and 3(c), with the density and the buoyancy frequency profiles, re-
spectively, we managed to create a nonlinear stratification that can be split into three regions,
with N1 = 0.89 ± 0.04 rad s−1 (top layer), N2 = 0.40 ± 0.02 rad s−1 (intermediate, weakly stratified
layer), and N3 = 0.94 ± 0.04 rad s−1 (bottom layer) yielding N3/N1 = 1.1 and N2/N1 = 0.45 (as
mentioned in the previous section). Given that N1 and N3 have similar values but with N1 < N3, we
will then normalize all frequencies by N1 which is the relevant parameter for waves propagating
both in the top and bottom layers.

The density profile (similar to the one presented in Sutherland and Yewchuk [7]) shows a weakly
stratified layer between z =−23 and −33 cm [hatched region in Figs. 3(b) and 3(c)] but, due
to its smoothing, the buoyancy frequency profile rather suggests a thinner transition layer. In the
theoretical model as well as in the design of the experiment, we consider infinitely sharp interfaces
between the different layers but, experimentally, we can only obtain interfaces smoothed over 2 to
4 cm. We will thus retain a smaller characteristic thickness of L = 4 cm for the buoyancy frequency
profile used in the model [yellow curve in Fig. 3(c)] and for plotting the theoretical curves. While
discussing the experimental and numerical data, however, we should keep in mind that the weakly
stratified layer is smoother and of a larger vertical extent. The relevant dimensionless quantity we
will use is then L × l = 0.76.

Because the tank is 60 cm tall, the vertical extent of each of the three layers of fluid is necessarily
limited. The top and bottom layers in which a good visualization is required to measure the
amplitudes should be significantly larger than the weakly stratified layer, partly in order to avoid
disturbances introduced by the wave field reflected at the upper and lower boundaries of the domain.
In the profile presented in Fig. 3, the weakly stratified layer extends over 7% to 17% of the available
height (L = 4 cm and L = 10 cm, respectively). In this layer, the amplitude of the wave field decays
if waves are evanescent (ω/N1 > N2/N1 = 0.45). The layer being relatively thin, we only expect a
small decay of the velocity field amplitude when tunneling occurs. In fact, as shown in Fig. 2(b),
increasing L × l (i.e., increasing the thickness of the weakly stratified layer at a fixed radial wave
number l) would give a more significant decay and thus lower transmission coefficients. A useful
consequence of this experimental limitation is the existence of a wide range of frequencies in
the fully propagating case, nicely separating the resonant regime (with peaks in Fig. 2) from the
tunneling one (obtained for ω such that N2 < ω < N1). Since our interest lies in the tunneling regime
and in its transition with the fully propagating one, we restrict our study to forcing ω/N1 ∈ [0.2; 1].

Velocity fields were obtained via particle image velocimetry (PIV). A laser sheet was created by
a laser beam (Ti:sapphire, 2 watts, wavelength 532 nm) going through a cylindrical lens. It could be
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oriented either horizontally (to measure the radial and orthoradial velocity) or vertically (to measure
the vertical and the radial velocity). For the purpose of visualization, 10 µm diameter hollow glass
spheres of volumetric mass 1.1 g cm−3 were added to the fluid while filling the tank. To obtain
good-quality velocity fields near the bottom of the tank and while imaging in a horizontal plane,
10 µm silver-covered spheres of volumetric mass 1.4 g cm−3 were added when needed in some
experiments. Images were recorded at 4 Hz and data processing of the PIV raw images was done
using the CIVx algorithm [32]. Velocity fields were then filtered around the forcing frequency
to improve the quality of the visualization. This processing was not applied while measuring
amplitudes in order to prevent any loss of information.

B. Direct numerical simulations

A nonlinear model was used to simulate the transmission and reflection of axisymmetric waves
from a localized region of relatively weak stratification. The code is adapted from that used by
[33]. In particular, the axisymmetric Navier-Stokes equations in the Boussinesq approximation were
numerically solved for the perturbation density, ρ, and the azimuthal component of vorticity, ζ =
∂zvr − ∂rvz. The governing equations are

∂ζ

∂t
= −vrr

∂

∂r

(
ζ

r

)
− vz

∂ζ

∂z
+ g

ρ0

∂ρ

∂r
+ νD1ζ , (11)

∂ρ

∂t
= −vr

∂ρ

∂r
− vz

∂ρ

∂z
− vz

∂ρ̄

∂z
+ κD0ρ, (12)

in which vr and vz are the radial and vertical velocity, respectively, and g is gravity. The background
and reference densities are denoted by ρ̄(z) and ρ0. Fn are forcing operators, described below, and
Dn is the Laplacian operator, given explicitly in axisymmetric cylindrical coordinates by

Dn f = 1

r

∂

∂r

(
r
∂ f

∂r

)
− n2 f

r2
+ ∂2 f

∂z2
, (13)

for n = 0 or 1, denoting the corresponding order of the Bessel function associated with the field,
f . Here, we take ν = 0.01 cm2 s−1 and κ = 0.0001 cm2 s−1. For reasons of numerical convergence,
the diffusivity of density, κ , is chosen to be an order of magnitude larger than that of salt water.
However, it is sufficiently small to ensure that diffusivity plays a negligible role in influencing the
tunneling dynamics.

Given the vorticity at some time, the stream function ψ is found by inverting the vorticity
equation

D1ψ = −ζ . (14)

This was done by representing ψ and ζ as a discrete Fourier sine transform in the vertical and a
discrete Bessel transform in the radial direction. The resulting algebraic equation was solved to find
the transform coefficients for ψ , and these were then used to compute ψ in real space. The radial
and vertical velocities, vr and vz, were then found using Eq. (2).

The governing equations are discretized and solved on a regular staggered grid with a second-
order finite-difference scheme. The radial resolution and vertical resolution are both set to be
�0.2 cm. Free-slip, no-normal flow conditions are imposed at the top and bottom boundaries and
at the outer radius. To transform and invert (14), the first 50 J1 Bessel modes are used in the radial
direction and a fast Fourier sine transform is used in the vertical. A fourth-order exponential wave
number cutoff filter is used to suppress ringing in the transforms (see [33]). The prognostic equa-
tions are advanced in time using a leap-frog scheme in which time-splitting errors are minimized by
performing an Euler backstep after 20 steps, with each step being 0.01 s. Simulations run with half
the grid spacing and one quarter the time step confirmed that the dynamics were sufficiently well
resolved.
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At the start of a simulation, ζ and ρ are both set to zero everywhere, and the background stratifi-
cation is prescribed through hyperbolic tangent functions, designed to approximate the stratification
in the experiments. Explicitly,

N2(z) = 1

2

(
N2

1 − N2
2

)
tanh

(
z − z1

σ1

)
+ 1

2

(
N2

3 − N2
2

)
tanh

(
z − z2

σ2

)
+ 1

2

(
N2

1 + N2
1

)
, (15)

in which N1 and N3 are the buoyancy frequencies, respectively, above and below the region of
reduced stratification, and N2 captures the minimum buoyancy frequency (N2 < N1, N3). The strati-
fication is reduced for z2 � z � z1 < 0, with the transition from strong to weak stratification taking
place over distances σ1 (above) and σ2 (below). Applying this modeling to experimental data, for the
measured stratification shown in Fig. 3(c) (solid line), we set N2

1 = 0.79 s−2, N3
2 = 0.89 s−2, N2

2 =
0.16 s−2, z1 = −23.5 cm, z2 = −31.5 cm, σ1 = 2.5 cm and σ2 = 0.5 cm (dotted curve). Given N2,
the background density ρ̄ is found by numerically integrating and setting the density to be ρ0

at z = 0.
The effect of the forcing by the wave generator is established by prescribing the time change

of ζ and ρ at z = 0. To ensure that the no-normal flow surface boundary condition prescribed at
the top of the domain does not conflict with the imposed forcing, we extended the vertical size of
the domain to z = H and imposed the forcing at z = 0. If the vertical extent of the experiment
spans −H � z � 0, the simulated domain thus has a vertical range −H � z � H . We then set
N (z) = N1 for z � 0, which allows waves to propagate upward while delaying reflections at the
top and resonance effects in the upper layer beyond the total simulation time. At z = 0 and at each
time t , the vertical displacement is taken to be ξ = A0 sin(ωt )J0(lr), in which A0 is the vertical
displacement amplitude, ω is the forcing frequency and l is the radial wave number giving the
mode’s radial structure. From the polarization relations, the consequent time change of vorticity is
prescribed by

ζ̇ f = −A0lN2
1 sin(ωt )J1(lr), (16)

and the time change of the perturbation density is prescribed by

ρ̇ f = A0ω
(
ρ0N2

1 /g
)

cos(ωt )J0(lr). (17)

Away from z = 0, the vorticity and perturbation density fields evolve in time according to (11) and
(12), respectively. This leads to downward propagating waves below z = 0 and upward propagating
waves above z = 0. During the simulation, the waves ultimately reflect from the top and bottom
boundaries returning toward the source superimposed on the waves emanating from the source. The
simulation is stopped before these reflected waves return to z = 0.

IV. RESULTS

In this section, we first present qualitative results providing evidence that axisymmetric internal
waves can tunnel through the weakly stratified layer while conserving their modal shape; we
then detail a method to accurately measure the amplitudes of the velocity fields associated to the
waves and present quantitative measurements of the transmission coefficients for both the radial
and vertical velocities, over a range of frequencies corresponding to both fully propagating and to
tunneling waves.

A. Qualitative results: Wave fields

Figure 4 presents experimental velocity fields obtained via PIV. These show evidence of internal
wave tunneling in the case of axisymmetric modes at sufficiently high frequencies. In the three
cases, we see that the radial modal structure is established both in the top and bottom regions,
indicating the presence of internal waves. The wave field at ω/N1 = 0.34 propagates through the
three layers (frequency smaller than the buoyancy frequency of the weakly stratified region); those at
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FIG. 4. Examples of experimental velocity fields for, from left to right: ω/N1 = 0.34, ω/N1 = 0.52, and
ω/N1 = 0.70. The forcing amplitude is 2.5 mm at r = 0, yielding forcing vertical velocities of 0.76 mm s−1,
1.16 mm s−1, and 1.56 mm s−1, respectively. The first row is the vertical velocity and the second row is the
radial velocity, from PIV fields filtered at the forcing frequency. Fields are taken 120 s after the generator has
been started, when the wave field is fully established. The leftmost plots show the stratification (density profile,
in solid blue) and the intermediate layer (hatched region) for reference; we have N2/N1 = 0.45.

ω/N1 = 0.52 and ω/N1 = 0.70 are tunneling through (frequency larger than the buoyancy frequency
of the weakly stratified region, N2/N1 = 0.45). The velocity amplitudes are higher in the top region,
partly because of the successive reflections.

As predicted by the theory, we see that, qualitatively, the radial modal structure is preserved in
each layer but the amplitudes have decreased in the bottom layer due to the partial transmission
across the weakly stratified region. Figure 5 presents horizontal profiles of the vertical and radial
velocity fields above and below this layer, in the experiment at ω/N1 = 0.70, corresponding to the
rightmost column of Fig. 4. On the profiles, taken at z � −10 cm and at z � −40 cm for the above
and below cuts, are superimposed the fits from the expected Bessel functions, respectively, J0(lr)
for the vertical velocity and J1(lr) for the radial velocity, with l = 19 m−1 as set by the generator.
Qualitatively, the fits agree well with the experimental profiles in both the top and bottom layers,
confirming that the modal structure is well preserved while tunneling occurs. Some discrepancies
can be noted, but are mostly due to reflections on the walls of the tank (e.g., for the peaks at 10 cm
in the radial velocity profiles (c) and (d), also clearly visible in Fig. 4).

Similar qualitative results are obtained in the numerical simulations. Figure 6 shows snapshots
of the velocity fields obtained in the DNS for ω/N1 = 0.34, ω/N1 = 0.52, and ω/N1 = 0.70. Once
again, these snapshots show the existence of a velocity field both in the upper and in the lower layers,
while showing the influence of the intermediate weakly stratified layer. This layer can be seen, in
particular, in the radial velocity field at ω/N1 = 0.34 in which we note a velocity almost equal to
zero around 30 cm deep. The snapshots at ω/N1 = 0.52, and ω/N1 = 0.70 indicate that waves are
indeed tunneling through the weakly stratified layer, in agreement with the experimental data shown
in Fig. 4. The qualitative comparison between Figs. 5 and 6 is, however, limited by a key difference
in the setup: at the top boundary (z = 0), the wave field is reflected back in the experiment, yielding
higher velocity amplitudes, whereas waves are damped in the upper part of the domain (z > 0) in
the simulations, to avoid these reflections. This effect is enhanced for small values of ω/N1 since
the lower group velocity delays the tunneling effect.
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FIG. 5. Experimental profiles and fits by Bessel functions for ω/N1 = 0.70, with: (a) vertical velocity in
the top layer, at z � −10 cm; (b) vertical velocity in the bottom layer, at z � −40 cm; (c) radial velocity in the
top layer, at z � −10 cm; (d) radial velocity in the bottom layer, at z � −40 cm. Profiles are taken 70 s after
the generator was started, before reflections fully established the cavity-modal structure.

B. Quantitative results: Amplitude measurements

To investigate in more detail the effect of the low buoyancy frequency region on the amplitude
of the waves and to validate our transmission model, we run a set of experiments for forcings from

FIG. 6. Examples of numerical velocity fields for, from left to right: ω/N1 = 0.34, ω/N1 = 0.52, and
ω/N1 = 0.70. The first row is the vertical velocity and the second row is the radial velocity. Fields are taken at
t f = 120 s after the generator has been started, when the wave field is fully established. The leftmost plots show
the stratification (buoyancy profile, in dotted orange) and the intermediate layer (hatched region) for reference.
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FIG. 7. Results from a numerical simulation for ω/N1 = 0.34, with the top row showing values for the
radial velocity vr and the bottom row showing values for the vertical velocity vz. Steps 1 to 4 are explicited in
the text. From left to right: (a) and (f) are snapshots of the radial and vertical velocity fields; (b) and (g) are
space-time plots of the amplitude of the velocities; (c) and (h) are the corresponding Hilbert-transform-filtered
time series showing only downward propagating waves; plots (d) and (i) show the time series constructed from
the root-mean-square of the Hilbert-transformed time series shown in (c) and (h), respectively; and the graphs
in (e) and (j) correspond to the values of the amplitudes from (d) and (i) computed for incident (blue) and
transmitted (orange) waves at the levels indicated by the correspondingly colored horizontal dashed lines.

ω/N1 = 0.18 to ω/N1 = 0.86, which includes both frequencies for waves propagating in the entire
stratification (i.e., smaller than N2/N1 = 0.45) and for waves evanescent in the weakly stratified
layer (i.e., larger than N2/N1). According to the results of Fig. 4, waves are detected in the bottom
region for all tested frequencies, both in the propagating and in the evanescent regimes. Our goal
now is to estimate the transmission coefficients for vz and vr and compare them to the theoretical
prediction of Eq. (6).

We developed an innovative technique to reliably perform amplitude measurements. We first
tested this method with our DNS before applying it to our experimental data set. The principle of
the whole process is detailed in Fig. 7 for the simulation at ω/N1 = 0.34, in which the different
steps 1 to 4 are the following:

(1) We start by converting the series of snapshots of the vertical and radial velocity fields into
a time series of the velocity field amplitudes. This is done by using the values of vz and vr at the
expected maxima of the Bessel profiles giving the theoretical shape of the modal wave field, as
shown in Fig. 5 (explicitly, at r = 0 cm for vz (J0(lr)) and at r = 12.7 cm for vr (J1(lr))). Snapshots
of vz and vr at t = 120 s are reproduced in panels 7(a) and 7(f), respectively. We only show the
domain 0 � r � 20 cm (half cylinder) for −60 � z � 0 cm (full vertical size of the domain), as the
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other part for negative r can be obtained by symmetry. The space-time diagrams of the magnitudes
of the velocities are shown in panels 7(b) and 7(g).

(2) These diagrams are then Hilbert transformed [34] to separate the downward propagating
waves from the upward propagating ones. We retain the time series corresponding to downward
propagating waves (with positive vertical wave number), which are shown in panels 7(c) and 7(h).

(3) From the Hilbert-transformed time series of downward propagating waves, a root-mean-
square running average is computed over a time window T of duration equal to one period of the
waves (T = 2π/ω). The result is then multiplied by

√
2 so that values represent the half peak-to-

peak amplitude of the fields as they depend on time and vertical location. The output, computed
from panels 7(c) and 7(h), is shown in panels 7(d) and 7(i).

(4) By extracting horizontal slices through these images 7(d) and 7(i) just above and just below
the weakly stratified region (as indicated by the dashed lines), we thus estimate the amplitude of the
incident and transmitted waves as they vary in time. The temporal evolution of these amplitudes
is shown in panels 7(e) and 7(j). The transmission coefficient is thus computed as the ratio of
the maximum (in time) of the transmitted wave amplitude to the maximum of the incident wave
amplitude for both the radial and vertical velocity fields, taken before a given time t f . Computed
using the group velocity in the top layer, this returning time is an estimate of the time after which
waves have been reflected at the bottom and at the top of the tank. Such reflections introduce
additional components in the raw velocity fields that cannot be straightforwardly isolated and that
therefore disturb the measurement process.

The same processing is applied to the experimental data set. In Fig. 8, we present an example
with the same frequency ω/N1 = 0.34 (which is more explicit than at higher frequencies), showing
steps 1 to 4 from the raw velocity fields to the incident and transmitted wave amplitudes. Note that
we see, in the second half of the experiment in panels 8(c) and 8(h), the appearance of nonlinear
effects. To better estimate the velocity amplitudes, we use 10 consecutive horizontal cuts around the
upper boundary of the weakly stratified layer, and 10 consecutive horizontal cuts around its lower
boundary (i.e., cuts over about 2 cm above and below), giving 10 × 10 = 100 different combinations
of cuts and as many transmission coefficients over which we take the mean value and the standard
deviation. The final estimate thus becomes independent of the precise location and provides a
confidence interval.

Measurements of the transmission coefficient are presented in Fig. 9 for both the vertical and
radial velocities, Tvz and Tvr , with blue and orange circles, respectively. For each frequency, the
value displayed is the mean over the 100 transmission coefficients computed, and the error bar is
the standard deviation. Numerical data are superimposed for comparison (diamond symbols). The
solid lines show the theoretical curves, obtained thanks to Eq. (6). The theoretical curve for the
transmission coefficient of the vertical velocity, Tvz (in blue), corresponds to the cuts indicated by
dashed lines in the colormaps of Figs. 2(a) and 2(b). The parameters for the theoretical curves have
been set to N1 = 0.89 rad s−1, N2 = 0.40 rad s−1, and N3 = 0.94 rad s−1 and L = 4 cm, in agreement
with the stratification presented in Fig. 3. A vertical dotted line indicates the separation between
the resonant and the fully propagating regimes; a vertical dashed line shows the cutoff frequency
N2/N1 = 0.45 that separates the fully propagating from the tunneling regimes (as in Fig. 2). We note
an excellent agreement between the numerical and experimental measurements. The same trend
is observed for both radial and vertical velocity transmission, with a slightly larger transmission
coefficient in the case of the horizontal radial velocity. Interestingly, our measurements confirm that
there is a smooth transition between the fully propagating and tunneling cases around N2/N1.

V. CONCLUSIONS AND DISCUSSION

In this study, we have presented both experimental and numerical evidence of a tunneling effect
for internal wave modes in axisymmetric geometry. This work notably extends the findings on
Cartesian internal wave tunneling [7], in which 2D plane waves were considered, by focusing
on three-dimensional, axisymmetric modes. This work is also complementary to the surveys on
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FIG. 8. Results from the processing of an experiment run at ω/N1 = 0.34, with the top row showing values
for the radial velocity and the bottom row showing values for the vertical velocity. Panels (a) through (j)
correspond to the steps 1 through 4 aforementioned and previously described in the caption of Fig. 7. In (e)
and (j), the returning final time t f is indicated by a vertical dashed line.

the transmission of axisymmetric internal wave modes across buoyancy interfaces (e.g., [21]),
showing that such waves are indeed capable of tunneling through weakly stratified layers (or
even homogeneous layers), similarly to plane waves. As such, it contributes to broadening our
understanding of the complexity of highly stratified oceans, such as the Arctic, and of the possible
impacts of energy transfers on their (re)stratification. Here, we first derived a simple model of
transmission across a three-layered stratification in the case of a low buoyancy frequency inter-
mediate layer and provided numerical and experimental measurements of internal wave amplitudes
in such framework. Qualitatively, we have shown that downward propagating axisymmetric internal
waves can tunnel through a weakly stratified layer while conserving their radial modal structure.
This behavior is similar to the observed tunneling effect in Cartesian geometry, meaning that
the change of geometry and energy distribution does not impact the linear dynamics of the
waves. Quantitatively, we have found that these measurements of the transmission coefficients
in vertical and radial velocity agree well with the theoretical prediction. Notably, our detailed
measurements show that there exists a smooth transition between the fully propagating and the
tunneling situations in terms of transmission coefficients. This suggests that internal waves are
ultimately weakly affected by the presence of variations of relatively short vertical extension in the
stratification.

Validating the theoretical model requires accurate measurements of the wave amplitudes both
above and below the transition layer, in order to compute the transmission coefficients in velocity
by taking the ratio of amplitudes. These measurements are usually challenging to obtain in internal
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FIG. 9. Predicted transmission of vertical (solid blue) and horizontal (solid orange) velocities, compared
to measurements of the transmitted vertical (blue circles) and horizontal (orange circles) velocities from
experiment 1. Numerical data obtained with the same stratification are also indicated (diamond symbols).
The theoretical curves correspond to the cuts indicated by the solid white lines in the colormaps of Figs. 2(a)
and 2(b) and are computed for an intermediate layer of thickness L = 4 cm.

wave studies and even more in the present context due to the highly confined geometry and the short
time window available. We thus developed and tested a technique based on nonlocal measurements,
Hilbert filtering, and root mean square averaging. This innovative method proved to be very robust
and allowed us to extract transmission coefficients from both the numerical and the experimental
datasets, with very similar results, and therefore constitutes an interesting tool for future studies on
internal waves.

Further work can be undertaken to complement this study. Direct numerical simulations such
as those presented in Fig. 4 can be used to provide additional measurements of the transmission
coefficients at various frequencies, using the same method, to check the relevance of the model.
Possible resonant interference in the weakly stratified layer could be studied to determine whether
they contribute significantly to the transmission coefficient (as was the case for a buoyancy fre-
quency interface, see [21]). The transition between the intervals ω < N2 < N1 and N2 < ω < N1

could also be explored in more detail in the case of a finite top region, with a theory involving
doubly confined layers and constructive-destructive interference behaviors in the top two layers of
the stratification.
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