
Staging for general purpose languages

Thais Baudon

Univ Rennes

Abstract. Reliable and easy to maintain source code rarely yields effi-
cient target programs. Conversely, efficient code is usually hard to write,
hard to maintain and prone to errors. One way to retain both good
programming practices and optimal performance is to write a high-level
program generator that outputs an efficient, specialized target program.
Staging is an approach that combines code generation and target in-
structions in a single meta-program, by delaying the evaluation of target
expressions. LMS (lightweight modular staging) is a library-based frame-
work that acts as an embedded compiler for such meta-programs. It is
particularly well suited for embedded domain-specific languages, which
can be built on top of the framework. However, general purpose languages
require a different approach, since they are typically not restricted to a
superset of another language. The approach presented in this paper is to
extend LMS with a frontend that maps a small subset of Scala to LMS
intermediate representation, and a backend that generates x86 instruc-
tions from this representation. This allows to effectively use LMS as a
compiler for a restricted general purpose language. Future work could
extend this approach to more expressive general purpose languages.

Introduction

Good programming practices and program performance are often at odds. While
code featuring high-level constructs, abstract structures and generic software
components is easy to write and maintain, it can significantly hinder program
performance. On the other hand, optimized, low-level code yields highly efficient
programs, but is harder to write, to maintain and prone to errors.

In order to maintain both efficient software development and acceptable per-
formance, one can write a high-level program generator that outputs a low-level
target program, rather than the target program by hand. This is known as gen-
erative programming. Lightweight modular staging (LMS) is an approach that
enables generator and target code to be combined in a single staged program.
This approach is particularly well suited to embedded domain-specific languages.
However, general purpose languages require a different approach, since they are
typically built as a separate ‘standalone’language, rather than on top of another
language.

The approach presented in this paper extends the LMS framework with a
frontend and a backend to compile a small general purpose language to LMS
intermediate representation, then to x86 assembly. Section 1 describes the LMS

2 Thais Baudon

framework and the approaches it is based on. Sections 2 and 3 present the
frontend and x86 backend. Finally, section 4 discusses limitations and future
work.

1 Background

LMS (Lightweight Modular Staging) is a library-based generative programming
and compiler framework. It provides a relatively simple and reliable way to
partially evaluate programs.

1.1 Partial evaluation

Partial evaluation generates a specialized version of a program, which is poten-
tially much faster than the general version [1]. Let p be a program that takes two
inputs i1 and i2. Instead of evaluating the application of p to a pair of inputs
(j1, j2) in a single step, it is also possible to evaluate it in two steps: first partially
evaluate p with input j1 to produce a new program r, and then evaluate r with
input j2 to produce the result. r is a specialized version of p for the particular
value j1 of the first input. It is called a residual program and is often much
faster than the general program p. For example, partially evaluating the power

def power (b : Int , n : Int) : Int = {
i f (n == 0)

1
else

b ∗ power (b , n − 1)
}

// Af ter p a r t i a l e va l ua t i on f o r n = 3
def power (b : Int) : Int = b ∗ b ∗ b

function in 1.1 with n = 3 yields a specialized cube function.
Partial evaluation has several useful applications, including multistage pro-

gramming and Futamura projections.

1.2 Generative programming and staging

Writing reliable and maintainable programs often involves using high-level ab-
stract structures and generic code components. However, these usually signif-
icantly hinder program performance. Conversely, highly specialized code with
little or no high-level structures produces efficient programs, but is significantly
more error-prone and difficult to write and maintain [2].

Staging for general purpose languages 3

Generative programming aims to achieve both acceptable performance and
maintainable programs. Its principle is to write a generic high-level program
generator that outputs a specialized and highly efficient target program, rather
than a low-level program directly.

This allows to use high-level, generic programming abstractions when writ-
ing the program generator, yet keep the target program specialized and highly
efficient. Indeed, high-level structures are only used in the generator code, while
the snippets of target code are written in a low-level, efficient style.

One way to write such a program generator is multistage programming (also
known as staging). A multistage program contains some staged expressions,
whose evaluation is explicitly delayed. This allows to express code generation
instructions and target code in a single meta-program, by staging the expres-
sions that are part of the generated code. The target program is generated by
evaluating the code generation instructions in the meta-program, i.e. partially
evaluating it.

1.3 Futamura projections

For most programming languages, writing a compiler is much more complex than
writing an interpreter. However, given a way to partially evaluate any program,
Futamura projections allow to essentially turn any interpreter into an equivalent
compiler [3].

For any program source p, let p∗ be a compiled version of p. Then a compiler
can be seen as a function that maps any program p to its compiled equivalent
p∗:

compiler : p 7→ p∗

First projection An interpreter can be seen as a function that, given a program
p and some dynamic input x, returns the computation described by p applied to
x:

interpreter : (p, x) 7→ p∗(x)

Partially evaluating the interpreter with a particular program p yields a special-
ized interpreter that maps any input x to p∗(x):

interpreterp : x 7→ p∗(x)

In other words, specializing an interpreter for a particular program yields a
compiled version of that program:

interpreterp := p∗

Second projection Let specializer be a program that, given an interpreter and
an object program, outputs a compiled version of that program by specializing
the interpreter, as in the first projection:

specializer : (i, p) 7→ ip = p∗

4 Thais Baudon

Then specializing the specializer for a particular interpreter yields a tool that
maps any program to a compiled version of that program, i.e. a compiler:

specializeri : p 7→ p∗

specializeri = compiler

Third projection A specializer can also be seen as an interpreter interpreter.
Therefore, it is possible to specialize it for itself. This yields a tool that maps
any interpreter to an equivalent compiler:

specializer(specializer, i) = specializeri = compiler

specializerspecializer : interpreter 7→ compiler

1.4 Lightweight modular staging

Overview Staging and Futamura projections can significantly lower the com-
plexity of writing certain programs. However, these techniques require a rela-
tively simple way to stage expressions when writing the program generator and
a tool that can reliably partially evaluate the program.

Lightweight Modular Staging (LMS) [4] is a framework that meets these two
requirements.

LMS uses types to distinguish code generation instructions from staged ex-
pressions, taking advantage of the Scala type system. Staged expressions that
represent the later computation of an expression of type T are of type Rep[T] in
the program generator. For example, staging the base expression in the power
function (1.4) yields a power function specialized for some exponent after partial
evaluation (1.4). LMS acts as an embedded compiler. Unlike a ‘standalone’ com-

def power (b : Rep [Int] , n : Int) : Rep [Int] = {
i f (n == 0) 1
else b ∗ power (b , n − 1)

}

val x : Rep [Int] = someComputation ()
power (x , 5)

piler, it doesnt compile the whole program, but instead provides an implementa-
tion for staged expressions. Instead of evaluating expressions, this implementa-
tion generates graph nodes that represent their computation. Therefore, compil-
ing the staged program yields a graph representation of the partially evaluated
program. Staged expressions are still present in that graph as nodes, whereas
other expressions have been evaluated and define the structure of the graph.

An embedded code generator can then schedule nodes and generate a pro-
gram according to this schedule, in some target language (e.g. Scala or C).

Staging for general purpose languages 5

def power (b : Int) : Int = {
b ∗ b ∗ b ∗ b ∗ b

}
val x : Int = someComputation ()
power (x)

Intermediate representation The intermediate representation of a program
in LMS is a directed graph. Its nodes represent the program statements, while
its edges represent the effect dependencies between these statements.

Effect dependencies are dependencies that result from two statements’ effects
(e.g. accessing a mutable object), as opposed to data dependencies. For example,
in 1.4, the statement s2 has an effect dependency on s1 (‘write after read’),
because they both access the same mutable variable a. In 1.4, s2 cannot be
scheduled before s1 because it uses its result. However, the dependency between
these two statements is a data dependency, rather than an effect dependency.

var a = 0
val b = a + 1 // s1
a = 2 // s2

var a = 0
val b = a + 1 // s1
val c = b ∗ 2 // s2

Unlike a control flow graph, which contains fixed ‘basic blocks’, and similarly to
a ‘sea of nodes’ [5], nesting dependencies are represented as edges from a node
to a block’s effect input, which is a special symbol that ‘anchors’ nodes into
the block. All nodes are in the same graph, regardless of which scope they were
created in. Therefore, a node that was created inside a nested scope but has no
effect dependency has no link to the corresponding block, which means that it is
not forced inside the block and could be scheduled outside of it. A node is forced
inside a block if, and only if, it depends on this block’s effect input or on another
node forced inside the same block. This enables more flexible scheduling than
a control flow graph. However, unlike a ‘traditional’ sea of nodes, the graph
retains the structure of the original program (e.g. loops, functions, etc.). Graph
generation does not involve translation of high-level control structures to lower-
level structures. This enables to apply optimizations and scheduling algorithms
to the graph without carrying out dataflow analysis, since there is no need to
retrieve information about the original program structure.

6 Thais Baudon

var x = 0
while (x < 10) {

val a = 2 // can be moved ou t s i d e the loop
x += a // e f f e c t f u l (reads and wr i t e s x) , must s t ay i n s i d e the loop

}

Fig. 1. LMS graph representation of 1.4

Code motion and scheduling Scheduling each node as a statement in the
target program is done by recursively applying the code motion algorithm to
each block, starting with the global program block [4]. This algorithm, given
a block and a list of unscheduled nodes, determines which of these nodes are
‘toplevel’ in this block, as opposed to nodes that belong in a nested block. Code
motion is then recursively applied to all blocks that belong to toplevel nodes.

The algorithm attempts to schedule each node in a block that will minimize
its frequency of execution. Frequency of execution is determined relatively to a
given source node for each node reachable from it. Reachable nodes include data
dependencies, effect dependencies, and nodes used in blocks that belong to the
source node. Nodes used in a block are its result and the nodes that have been
determined to belong in that block by the effect system (see 2.5).

The frequency map of a source node maps each reachable node to one of
three frequency values: cold, warm and hot. Nodes used in conditional branches
are expected to be executed less often than the conditional node itself, and
are therefore considered cold nodes. Nodes used in loops or functions are, on
average, executed more often than the loop or function node itself, and are
considered hot nodes. All other reachable nodes are assumed to be executed
roughly as often as the source node, and are considered warm nodes. Therefore,
a minimal frequency of execution is achieved by scheduling as many nodes inside
toplevel conditionals and as few nodes inside loops and functions as possible.
The code motion algorithm first determines which nodes are reachable through
a ‘warm’ (resp. ‘cold’) path, that is, a path which doesnt (resp. does) cross any
toplevel conditional. The initial set of reachable nodes contains the nodes used in
the current block, which are toplevel by definition. The algorithm then browses
each unscheduled node (in reverse topological order) and determines whether
their reachable nodes are reachable through a warm or cold path.

The second step of the algorithm schedules the reachable nodes in the current
scope (toplevel) or in a nested scope. Nodes that are part of a warm path,
by definition, cannot be scheduled inside any toplevel conditional. In order to
minimize their frequency, each of these nodes is scheduled in toplevel if it is
available in the current scope, that is if, and only if, it doesn’t depend on any
unbounded variable. Nodes that are part of a cold path but outside any warm
path can be pushed inside a toplevel conditional, and are therefore scheduled in a
nested scope. Some nodes are not reachable through any path. Such nodes are not

Staging for general purpose languages 7

def codeMotion (block , scope , innerNodes) :
newScope = boundSyms (block) ++ scope

warmPath = usedSyms (block)
coldPath = empty

for node in innerNodes . r e v e r s e :
i f node in warmPath :

i f a v a i l a b l e (node) :
for (r , f) in frequencyMap (node) :

i f (f == co ld) , coldPath += r
else warmPath += r

// node w i l l be scheduled i n s i d e a loop
else warmPath ++= node . reachableNodes

i f node in coldPath :
coldPath ++= node . reachableNodes

t o p l e v e l = Ni l
nested = Ni l
for node in innerNodes . r e v e r s e :

i f node in warmPath :
i f a v a i l a b l e (node) , t o p l e v e l = node : : t o p l e v e l
else nested = node : : nested

else i f node in coldPath , nested = node : : nested

for node in t op l ev e l , v i s i t (node , newScope , nested)

Fig. 2. Code motion algorithm

8 Thais Baudon

used anywhere in the block and don’t need to be scheduled. This provides some
amount of dead code elimination during scheduling, with no specific optimization
pass needed.

2 Frontend

Miniscala is a subset of Scala that does not feature ‘advanced’ constructs (e.g.
classes, polymorphism. . .). Although not a very expressive one, it is a general
purpose language and is not embedded in another language. This section details
the implementation of a frontend that generates an equivalent LMS graph from
any Miniscala program.

The Miniscala parser outputs an abstract syntax tree (AST) of the input
program. The frontend then maps AST nodes to graph nodes. It also computes
the dependencies (edges) of each node. The result is a graph representation of
the program.

2.1 Intermediate representation implementation

Each node consists of an uniquely identifying symbol, a label for the type of
statement it represents and a list of inputs that correspond to the statements
arguments. A node input is either an expression (constant or symbol) or a block,
which consists of a list of unbound input symbols, a result expression and an
effect input symbol. Each node also has an effect summary, which carries in-
formation about the nodes dependencies, as well as which effects the node has.
Graph ‘edges’ are represented by the nodes’ effect summaries.

Blocks also have an effect summary, which carries information about the
nested nodes’ effects and is used for computing the effect summary of the node
that contains the block. It also determines which nodes are used in the block.
These nodes must be scheduled exactly in this block to preserve program seman-
tics.

The effect summary of a new node depends on the other nodes in the current
scope. The scope of a block represents the set of nodes that are inside that
block, but outside any nested block. It contains the effect input symbol of the
block, which provides an ‘entry point’ to the block. Each node’s dependencies
are restricted to symbols in the same scope. The current scope is represented
by some metadata that keeps track of the current block, as well as some of its
nodes, depending on the effect system (see 2.5).

2.2 Abstract syntax tree to graph

Constant nodes in the abstract syntax tree (AST) are mapped to constant ex-
pressions. For other AST nodes, the frontend creates a new graph node through
the reflect operation and maps the AST node to the new node’s identifying
symbol. Children AST nodes are mapped to the new node’s inputs.

Staging for general purpose languages 9

Children nodes that can be computed independently from the parent node
are mapped to ‘toplevel’ expressions and evaluated in the current scope. On the
other hand, children nodes whose computation is directed by the parent node
(functions, loops and conditional branches) are mapped to the contents of a new
block and must be evaluated in a new nested scope. This is done by the reify
operation.

2.3 Reflect and reify

The graph is generated through two main operations: reflect and reify.
The reflect operation creates a node and computes its effect summary ac-

cording to the effect system, then adds the new node to the graph.
The reify operation takes two arguments: an arity and a function that, given

arity input expressions, evaluates a tree in the current scope. Its purpose is to
create a new block and reflect its contents in a new scope. It also computes the
block’s effect summary, which depends on the nested nodes’ effects. Depending
on the effect system, some metadata holds information about the effects of the
nodes added to the graph so far. Before applying the block function to the inputs,
this metadata is saved and reset to empty data. It is restored at the end of the
reify operation. Therefore, the block’s effect summary can be computed using
this metadata, which contains precisely the information about the effects of the
nodes that were created by the block function, i.e. the statements nested in the
block. Because the metadata is restored afterwards, the individual statements
nested inside the block do not change the outer scope’s effect information; their
effects will instead be associated with the node that contains the block.

2.4 Language restrictions

Since Miniscala is a somewhat restricted language, it is supported by relatively
simple effect systems and a restricted frontend. In order to map a ‘full’ general
purpose language to LMS, the frontend would likely need to be extended.

The frontend supports all Miniscala features (except the full type system)
with metadata only. For example, mutually recursive functions are supported
through a global map that assigns a placeholder symbol for every undefined
function encountered, so that this symbol is assigned to the function when it is
defined.

However, more advanced features may make it necessary to extend LMS
intermediate representation itself to support a more expressive language.

2.5 Effect systems

The selected effect system determines which effect dependencies (edges) exist be-
tween nodes. Each effect system enforces the necessary dependencies to preserve
program semantics. More fine-grained effect systems add fewer extra dependen-
cies to allow for more flexibility in the scheduling algorithm.

10 Thais Baudon

def p r i n t f (s : S t r ing) : Unit = () ; // e x t e r na l

def echo () : Unit = p r i n t f (” t ext ”) ;
def f (x : Int) : Int = x − 5 ;

var i = 0 ;
var j = 1 ;
var p = 0 ;
while (i < 10) {

j = j ∗ 2 ;
i = i + 1 ;
p = 3

} ;
var a = j − 7 ;
var b = f (2) ;
j = b ;
echo () ;
a

Linearized This effect system schedules each node in the sequential order of
the program: every node depends on the previous node in the current scope, or
on the current block’s effect input if no other node exists in the scope.

Each block carries a dependency to the last node created in its scope; this
ensures that every node in the scope is scheduled inside this block.

Effectful/pure This effect system distinguishes pure statements from effectful
statements. Any statement that creates, reads or writes a mutable variable or
that has a ‘global’ effect (such as input/output operations) is effectful.

Effectful statements are scheduled in sequential order, as in the linearized
effect system. However, pure statements do not have any effect dependency and
can be moved around freely. Each block carries a dependency to the last effectful
node created in its scope, if it exists. As a result, all effectful nodes created in
this scope will be scheduled in this block.

A node may also have a latent effect, if it has effectful block inputs or if
it calls an effectful function. Functions’ effect summaries are retrieved from a
global cache that maps function symbols to associated definitions. Since these
blocks are executed each time the node is executed, if one of them is effectful,
then the node is effectful as well.

Effect keys Effect keys allow to distinguish different effects categories. A state-
ment may be effectful for the following effect keys, possibly simultaneously:

– x where x is an existing mutable object, if it reads or writes x;
– STORE if it creates a new mutable object;
– CTRL if it has ‘global’ effects, such as printing.

Staging for general purpose languages 11

x0 x3 = λ{x1 : () 7→ x2} x1 x2 = printf(‘text’)

x7 = λ{x5 : x4 7→ x6} x5 x6 = x4 − 5

x8 = newvar 0 x9 = newvar 1 x10 = newvar 0

x22 = while {x11 : () 7→ x13} {x14 : () 7→ 0}

x11 x12 = getvar x8 x13 = x12 < 10

x14 x15 = getvar x9 x16 = x15 ∗ 2 x17 = setvar x9 ← x16

x18 = getvar x8 x19 = x18 + 1 x20 = setvar x8 ← x19

x21 = setvar x10 ← 3

x23 = getvar x9 x24 = x23 − 7 x25 = newvar x24

x26 = x7(2) x27 = newvar x26 x28 = getvar x27 x29 = setvar x9 ← x28

x30 = x3() x31 = getvar x25

Fig. 3. Graph generated for 2.5

12 Thais Baudon

A node effectful for some set of effect keys depends on the last effectful node for
each of these keys if it exists, or else on the current block’s effect input.

A global set of local definitions keeps track of variables created in the current
scope. Mutable variables created inside a block are removed from this block’s
effect keys, since these don’t have any effect outside the block.

Read/write keys Effects are further divided into two categories: read and write
effects. A node that writes to a key must be scheduled after the key’s last write
node. It also cannot be scheduled before any of the key’s read nodes that were
created after the last write. However, it does not have to be scheduled after these
nodes, meaning that they can be removed from the scheduled without affecting
the write node. The write node has a soft dependency on each of these nodes, as
opposed to a hard dependency that doesn’t allow the node to be scheduled if it
depends on an unscheduled node.

A node that reads a key only depends on this key’s last write node: as long
as the value of a mutable object is unchanged, the order of its read-only accesses
does not alter program semantics.

Each block carries hard dependencies to the last write node for each of its
write keys.

CTRL and STORE keys are considered exclusively write and read keys,
respectively. Indeed, memory allocations can be reordered without altering the
program’s semantics, which is not the case for global effects (e.g. printing).

3 Backend

This section details the implementation of a backend that compiles the generated
graph to x86 assembly.

3.1 x86 code generation

The x86 code generator is built directly on top of the code motion algorithm. It
generates one or more corresponding x86 statement(s) each time a new node is
scheduled. Blocks are delimited by labels and jumps created by the parent node.
Each function is mapped to its own sequence of statements.

At this point, mutable variables are not mapped to physical memory yet, and
are instead represented by virtual registers. The output also contains placeholders
for sequences of instructions that cannot be generated before assigning physical
locations to virtual registers.

NoSep is inserted between two instructions that must follow each other with
no other instruction in between in order to preserve semantics. For example,
inserting a NoSep between a comparison and a conditional jump prevents
register allocation from altering program behavior with extra instructions
between them.

Staging for general purpose languages 13

def x1 () = {
val x3 = p r i n t f ” t ext ”
x3

}
var x8 = 0
var x9 = 1
var x10 = 0
x22 = while {

val x12 = x8
val x13 = x12 < 10
x13

} {
val x15 = x9
val x16 = x15 ∗ 2
x9 = x16
val x18 = x8
val x19 = x18 + 1
x8 = x19
x10 = 3
0

}
val x23 = x9
val x24 = x23 − 7
var x25 = x24
val x30 = x1 ()
val x31 = x25
x31

Fig. 4. Statement scheduling for 2.5

14 Thais Baudon

x1 :
SaveCal leeSave
ScopeBegin
addq $8 , %rsp
subq $8 , %rsp
SaveCal lerSave
movq $str0 , %r d i
movb $0 , %al
ca l l p r i n t f
RestoreCa l l e rSave
movq %rax , x3
movq x3 , %rax
ScopeEnd
RestoreCal l eeSave
ret

s t a r t :
ScopeBegin
x0 :
movq $0 , x8
movq $1 , x9
movq $0 , x10
ScopeBegin
jmp x11
x14 :

movq x9 , x15
movq x15 , x16
imulq $2 , x16
movq x16 , x9
movq x8 , x18
movq x18 , x19
addq $1 , x19
movq x19 , x8
movq $3 , x10

x11 :
movq x8 , x12
cmp $10 , x12
NoSep
set l %al
movzbq %al , x13

movq x13 , x22
cmp $0 , x13
NoSep
jnz x14
ScopeEnd
movq x9 , x23
movq x23 , x24
subq $7 , x24
movq x24 , x25
SaveCal lerSave
ca l l x1
RestoreCa l l e rSave
movq %rax , x30
movq x25 , x31

movq x31 , %rax
ScopeEnd
ret

Fig. 5. Code generated for 2.5 with read/write effects

Staging for general purpose languages 15

Caller-save registers The contents of some x86 registers, called caller-save
registers, may be modified during a function call. Each caller-save register
that contains a value must therefore be saved before calling any function and
restored after the call. After register allocation, the SaveCallerSave (resp.
RestoreCallerSave) placeholder is replaced with a sequence of push (resp.
pop) instructions that save (resp. restore) each caller-save register used in
the surrounding scope.

Callee-save registers Other x86 registers, called callee-save registers, may not
be modified by a function call. Therefore, any of these registers used in
a function must be saved at the beginning of the function and restored
at the end. After register allocation, save and restore instructions replace
SaveCalleeSave and RestoreCalleeSave placeholders.

Scope delimiters If all physical registers are already assigned to a virtual reg-
ister and a new value needs to be mapped to a physical location, the register
allocation algorithm may evict the contents of a register on the stack and
use the register for the new value. This results in the insertion of a push
instruction before the statement that writes the new value. During execu-
tion, the register will effectively be freed for the new value. However, if these
instructions are executed again, the register’s contents will be evicted again,
even though no new value needs to be stored. As a result, the stack will grow
to an unknown size and it will be impossible to restore it to its original state
(without wasting a register as an accumulator). A better solution is to evict
the register’s contents before entering the innermost surrounding loop, and
to restore them after exiting the loop. If no loop surrounds the instructions,
the beginning and end of the surrounding function are used instead. The
eviction (resp. restore) instructions for all evicted registers are represented
by a ScopeBegin (resp. ScopeEnd) placeholder. Since every loop or function
contains the same number (zero or one) of these placeholders and they both
push or pop the same number of values, the stack is always restored to its
initial size.

3.2 Register allocation

Virtual registers must then be mapped to physical memory locations. The reg-
ister allocation algorithm used in this backend uses a ring buffer of registers as
a cache for the top of the stack.

This algorithm is applied to each function individually. Physical registers that
are already used in the function are excluded from the register buffer. Global
tables keep track of the contents of the stack and the physical registers.

For each statement (or group of two statements separated by NoSep), virtual
register operands are replaced with real operands. If the virtual register has
already been assigned to a physical register or stack location, then it is replaced
with the corresponding register or memory operand. Otherwise, it is assigned to
the next register in the buffer. If the next register is not free, its contents need
to be pushed onto the stack. The register is added to a list of physical registers
that must be saved before the current loop and restored afterwards. The register

16 Thais Baudon

allocation process then has to be restarted from the beginning of the current
loop, since the location of the previous contents has changed.

Most two-operand x86 instructions need at least one register operand. If a
statement ends up with no physical register operand, then some instructions are
added before and after the statement to use the next register as a temporary
location for one the operands, and to save and restore it if needed.

Each remaining placeholder is then replaced by a sequence of push or pop
instructions for each register in the list of emptied registers.

Fig. 6. Code generated for 2.5 after register allocation

4 Evaluation

Miniscala does not support some abstract features such as classes and poly-
morphism. The frontend supports every Miniscala feature with extra metadata
during graph generation (such as an undefined function table for mutually recur-
sive functions). However, supporting a more expressive general purpose language
may require to extend LMS intermediate representation itself, with new node
types or more information attached to nodes.

Even though the Miniscala type system supports many other types, the fron-
tend currently only supports integers, booleans and integer or boolean arrays.
Floating-point numbers would likely require some type information to be added
to LMS nodes, in order to generate floating-point x86 instructions for statements
operating on floating-point values.

LMS intermediate representation already allows optimizations such as dead
code elimination or common subexpression elimination to be applied to the
graph. It may be possible to extend the frontend and the IR so that the graph
contains control-flow information, in order to simplify optimization passes.

In the same way, some information (e.g. variable liveness ranges) could be
added to the graph for use by the register allocation component of the backend,
in order to reduce the amount of program analysis needed. More advanced reg-
ister allocation algorithms, such as linear scan or graph coloring may improve
generated program performance.

Experimental evaluation is needed to compare target program performance
between different effect systems, register allocation algorithms, and between the
backend and general purpose language compilers.

Conclusion

Staging is an approach that can simplify software development while maintaining
optimal performance.

Staging for general purpose languages 17

LMS provides a framework to use this approach in embedded domain-specific
languages. The approach presented in this paper provides an interface to LMS
for a restricted general purpose language.

Future work would allow to target more expressive languages, take advantage
of more LMS features and evaluate target program performance.

References

1. N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall International, June 1993. xii + 415 pages. ISBN
0-13-020249-5.

2. Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs. Commun. ACM 55, 6
(2012), 121130.

3. Yoshihiko Futamura. 1971. Partial Evaluation of Computation Process - An ap-
proach to a Compiler-Compiler. Transactions of the Institute of Electronics and
Communication Engineers of Japan 54-C, 8 (1971), 721–728.

4. Tiark Rompf. 2012. Lightweight Modular Staging and Embedded Compilers: Ab-
straction Without Regret for High-Level High-Performance Programming. Ph.D.
Dissertation. EPFL.

5. Cliff Click and Michael Paleczny. A Simple Graph-Based Intermediate Representa-
tion. In Intermediate Representations Workshop, pages 3549, 1995.

