
Master research Internship

Internship report

Scheduling data structures with term rewriting techniques

Domain: Formal Languages and Automata Theory - Programming
Languages

Author:
Thäıs Baudon

Supervisors:
Laure Gonnord (CASH, Lyon)
Carsten Fuhs (Birkbeck, Univ.

of London)

Abstract: In this internship, we study the problem of scheduling programs with
complex data structures. As related work, we show that although scheduling
operations on efficient data structures apart from arrays should have a great impact on
performance, there is nearly no work on this topic. However, some related work from
the rewriting community gives us great insights about the link between termination
and scheduling, that we propose to study further. Our contributions as a first step
toward full efficient compilation of programs with inductive data structures are 1. first
algorithms for this parallel evaluation, 2. a code generation algorithm to generate
efficient parallel evaluators, 3. a prototype implementation and first experimental
results.

Contents

1 Introduction 1

2 Instruction and data structures scheduling 2

3 Term rewriting systems and termination 6

4 Termination and scheduling 10

5 Parallel evaluation of term rewriting systems 15

6 A code generator for a parallel evaluator based on partial evaluation 22

7 Prototype and first experimental results 29

8 Conclusion and future work 32

A Full final generated code for tree size 33

1

1 Introduction

General context: CODAS project This internship takes place in the context of
the ANR CODAS project, in which Laure Gonnord and Carsten Fuhs are involved.

The long term objective of the ANR CODAS project is to give a general way to reason
about and manipulate programs with general control flow and complex data structures,
for HPC applications.

In the context of the project, Paul Iannetta is pursuing his PhD studies on the
definition of a general compilation framework that includes trees (in the polyhedral model
spirit, briefly discussed in Section 2), but has not explored the relationship between
inductive data structures and term rewriting.

The goal of this internship was to explore this idea. Indeed, the problem of scheduling
is closely linked to the well-studied topic of termination, and we investigated the benefits
we could encounter from the rewriting community that has come to nice results on
termination in the last twenty years. Term rewriting systems are a core rule-based
programming language that captures inductive data structures via pattern matching
and can express concepts from functional and imperative programming.

Context More precisely, the focus of this internship is static (i.e., compile-time)
scheduling of individual programs containing inductive data structures (such as lists
and trees), as opposed to dynamic/run-time scheduling approaches or coarse-grain task
scheduling. The approach we finally propose is hybrid in the sense that we were able to
statically generate a partial evaluator that delegates some dynamic scheduling choices
to the (OCaml) runtime.

Outline Section 2 reports on related work and states the problem of scheduling pro-
grams operating on inductive data structures. After recalling useful definitions for term
rewriting systems (in Section 3), Section 4 gives first insights into the link between
scheduling and termination proofs.

During the internship, we explored how term rewriting systems (TRS) algorithms
are capable of handling programs on inductive data structures.

We use term rewriting systems as intermediate representations of programs operating
on inductive data structures. From this choice, we propose to exploit the notion of
parallel evaluation of terms to infer parallelism/absence of dependency. This report
describes the following contributions:

• two first algorithms for parallel evaluation of term rewriting systems (Section 5);
• a code generation algorithm that exploits further the notion of structural depen-

dency (Section 6);
• the implementation of the code generation algorithm and a preliminary experi-

mental evaluation (Section 7).

2

2 Instruction and data structures scheduling

In this section, we recall the problem of instruction scheduling, and the global objective
of scheduling programs on inductive data structures.

This section reproduces in great part the bibliography document produced before
the internship 1, but focuses more on the parts directly related to the obtained results.
In particular, we do not cover the details of polyhedral-based imperative scheduling.

Overview Instruction scheduling consists in reordering instructions so as to minimise
execution time and resource usage. It is traditionally done in the compiler’s middle end.
One of its main objectives is to decrease register pressure.

Example 1 (Better schedule means better register allocation: taken from the
Dragon Book [Aho et al., 1986]) The two following versions of the 3-address code of
a given block are semantically equivalent, however the version on the right will generate
a better register allocation since the maximum number of simultaneously alive registers
is 3 (comparing to 4 on the left):

We also note that (d) has been moved backward without breaking the semantics since
it does not use any value provided or invalidated by (b) or (c).

In the last example, we can see two crucial concepts: the notion of scheduling, that
assigns a (logical) date to each statement, and the notion of memory dependencies, that
should not be broken by a rescheduling. These notions will be defined later.

2.1 Scheduling arrays in the imperative world

One of the most well-known algorithms used for scheduling imperative programs with
arrays, such as the one depicted in Example 2 is the one from Karp/Miller/Wino-
grad [Karp et al., 1967], which proposes a way to schedule a set of uniform recurrence

1This document can be found at the following URL: http://perso.eleves.ens-rennes.fr/people/thais.
baudon/biblio.pdf

http://perso.eleves.ens-rennes.fr/people/thais.baudon/biblio.pdf
http://perso.eleves.ens-rennes.fr/people/thais.baudon/biblio.pdf

3

equations. More recent and more expressive algorithms of course exist, but we think that
the program model and the associated schedule provides more evidence of the similarities
with term rewriting systems.

Example 2 (An imperative regular loop with arrays)

for (p = 7; p < N; p++) {

A1[p] = A2[p-1] + A3[p-3];

A2[p] = A1[p-2] * A2[p-6] - A3[p-4] * A3[p-7];

A3[p] = A2[p-5] + 1;

}

The notion of (read/write) dependency is straighforward (thus we do not give a
formal definition of it): in order to safely compute A1[p], the compilation of A3[p − 3]
should have been performed before.

Sets of uniform recurrence equations are proposed to model and reason on these
imperative programs. Example 3 depicts these recurrence equations (fi denote scalar
operations, the enclosing loop is implicit). The equations are called uniform since each
computation (for instance a1(p)), depends on other ones with a constant offset (for
instance a3 with offset 3).

We give the formal notion of uniform dependency, which will later show some sim-
ilarities with the notion of structural dependency. With this definition, we are able to
say that (1, p) depends directly on (3, p− 3).

Definition 1 (Uniform dependency) The notion of uniform dependency is defined
by the existence of a set of m vectors w1, . . . , wm ∈ Zn such that for every i ∈ {1, . . . ,m}
and all p ∈ R:

• (additional constraint, that we do not describe here)

• the computation of ai(p) is uniformly dependent on k other computations indexed
by i1, . . . , ik, that is:
ai(p) = fi(ai1(p − wi1), . . . , aik(p − wik)), where the function fi is not constant
w.r.t. any of its k variables.
Then for each j ∈ {i1, . . . , ik}, (i, p) is said to depend directly on (j, p− wj).

From these recurrence equations and the notion of dependency, a dependency graph
is constructed, which is also depicted in Example 3. Defining such a graph is here
possible since the “distance” between reads and writes are constant. This dependency
distance is depicted on the arrows of the graph.

Example 3 (System of uniform recurrence equations and its dependency
graph, taken from [Karp et al., 1967], that would come from the program
depicted in Example 2)

4

a1(p) = f1(a2(p− 1), a3(p− 3))

a2(p) = f2(a1(p− 2), a2(p− 6),

a3(p− 4), a3(p− 7))

a3(p) = f3(a2(p− 5))

Definition 2 (Scheduling [Karp et al., 1967]) A schedule S is a function from
{1, 2, . . . ,m} × R into the positive integers such that if (k, p) → (l, q) then S(k, p) >
S(l, q). The quantity S(k, p) may be interpreted as the time at which ak(p) is computed
(assuming each such computation requires exactly one unit of time).

Intuitively, assuming each computation requires exactly one unit of time, a sched-
ule S assigns a positive timestamp S(k, p) to every computation ak(p) such that if
(k, p) → (k′, p′), then S(k, p) > S(k′, p′). A schedule may expose potential parallelism
by assigning the same timestamp to two or more independent computations.

A schedule can be seen as a concretisation of the dependencies, and computing a
schedule can be seen as some kind of topologic sort on the dependency graph.

The paper [Karp et al., 1967] proposes to compute a free schedule that maximises
parallelism (i.e., it maximises the number of “common dates of computations”). More
precisely, if it exists (which is shown to be equivalent to termination), the free schedule
is derived from a system of constraints expressing that:

• The schedule is valid: it assigns a positive date to every computation and does not
break any dependency (i.e., (k, p)→ (l, q)⇒ S(k, p) > S(l, q)).

• There is maximal parallelism: for any k, p, the timestamp assigned by the free
schedule is lower than or equal to the timestamp assigned by any other schedule.

Moreover, if the free schedule exists, it can be expressed with the following formulas:

T (k, p) =

{
1 + max {T (l, q) | q ∈ R ∧ (k, p)

1→ (l, q)}
1 if no such (l, q) exists

= 1 + max {t ≥ 0 | ∃(l, q), (k, p) t→ (l, q)}

that imply that such a schedule can be statically computed greedily on the dependency
graph, as we show in Example 4.

Example 4 (Example taken from [Karp et al., 1967]: computation of a new
schedule) Given the dependency graph on the left, the table on the right details the
associated free schedule T . Given the computation dependencies on a2, the computation
a2(1, 1) should be done strictly after a1(1, 1), a3(1, 1), a4(1, 1), that it depends on (for

5

instance a3(1, 1)
(0,0)→ a2(1, 1)). The free schedule is greedily obtained by beginning from

the set of “initial” computations and walking though dependances (and subtracting the
weight of the edges to the current “iteration vector”).

τ T

1 a1(1, 1) a3(1, 1) a4(1, 1)
2 a2(1, 1)
3 a1(1, 2) a3(1, 2) a4(1, 2)
4 a1(2, 1) a3(2, 1) a4(2, 1)
5 a2(2, 1)
6 a2(1, 2)
7 a1(1, 3) a3(1, 3) a4(1, 3)
8 a1(2, 2) a3(2, 2) a4(2, 2)
9 a1(3, 1) a3(3, 1) a4(3, 1)
10 a2(3, 1)

The paper also provides an upper bound on the timestamp assigned to each com-
putation by the free schedule, which is in our knowledge the first mention and usage of
the relationship between termination and scheduling. In [Alias et al., 2010], this rela-
tionship and an adaptation of the algorithm are used to automatically derive ranking
functions, with the aim to automatically prove program termination and bounds on its
maximal runtime (see Section 4.2).

Remark 1 This section was devoted to the study of scheduling recurrence equations that
are classically obtained from (a particular set of) imperative programs, for which the
proposed scheduling strategy achieves the fastest possible schedule. However, such a set
of recurrence equations can also been viewed as rewriting rules; or could be obtained from
recursive programs, as we will show later on.

2.2 Trees and other complex/inductive data structures

The literature of scheduling barely explores the optimised scheduling of programs with
non-affine control flow or complex data structures. [Cohen et al., 1996] proposes a data
flow analysis of imperative programs containing recursive control flow and data struc-
tures, however the approach is considered as too costly.

As [Kannan and Hamilton, 2018, Example 5] and the corresponding discussion show,
such a parallelisation (as a form of scheduling) can be done by hand. This internshp
shows how to obtain such a parallelisation automatically. The paper proposes an au-
tomatic program transformation to parallel programs which introduces new data types,
but according to [Kannan and Hamilton, 2018, Section 4.2] does not lead to noticeable
speedups over the earlier hand-parallelised version. Thus, a benefit of our approach
presented in Sections 6 and 7 is that the result is as readable and understandable as the
hand-optimised version, while achieving similar performance to the (significantly less

6

readable) output of the transformation in [Kannan and Hamilton, 2018].2

Most previous work on program optimisation in the context of the polyhedral model 3

focuses exclusively on programs that perform affine accesses to arrays. Because trees
and other inductive data structures lack this regularity, the framework does not apply to
programs that use these structures. Therefore, few to no efficient scheduling techniques
apply to these programs.

3 Term rewriting systems and termination

Term Rewriting Systems (TRS) are particularly apt to represent programs with complex
data structures, such as lists or trees. As such, they provide a very suitable intermediate
representation for parallelising such programs, in particular with recursion. In this
section we introduce the basic ideas behind term rewriting systems and their termination.
Proof techniques for termination proofs of TRSs give us first insights into what schedules
for programs on inductive data structures may look like.

3.1 Term rewriting systems as intermediate representation

From papers of the literature we borrow the following classic definitions (the research
topic is older [Baader and Nipkow, 1998], however we may decide to cite more recent
papers in which definitions have been stabilised).

Definition 3 (Term, position [Baader and Nipkow, 1998]) A signature Σ is a
set of function symbols with associated arities. T (Σ,V) denotes the set of terms over a
finite signature Σ and the set of variables V.

For a term t, the set Pos(t) of its positions is defined inductively as a set of strings
of positive integers:

• if t ∈ V, then Pos(t) = {ε};

• if t = f(t1, . . . , tn), then Pos(t) = {ε} ∪
⋃

1≤i≤n{iπ | π ∈ Pos(ti)}.

The position ε is called the root position of term t. If t has the form f(t1, . . . , tn), we
write root(t) = f for the root of t.

The prefix order ≤ on positions is the partial order given by: π ≤ τ iff. there exists
π′ such that π.π′ = τ .

For π ∈ Pos(t), we write t|π for the subterm of t at position π and t[s]π for the term
that results from replacing the subterm at position π in t with the term s.

2Since the original focus of the internship was on exploring the links between termination and schedul-
ing, we did not discuss this paper in the initial bibliography.

3An algebraic framework that is capable of efficiently expressing and computing massive parallelism
of computation kernels. The associated bibliographic report details this framework a bit more.

7

Definition 4 (Term Rewriting System (TRS), innermost rewriting, defined
symbols, constructor symbols [Baader and Nipkow, 1998]) A TRS R is a set
of rules ` → r where ` and r are terms. To avoid non-termination, ` must not be a
variable and all variables that appear in r must also appear in `.

A rule ` → r can be applied to a term t if ` matches a subterm u of t with some
substitution σ (namely, u = σ(`)). The rule is applied by replacing the subterm u with
σ(r), resulting in a new term v (a so-called rewrite step, denoted t→R v).

Here, σ is called the matcher and the term `σ is called the redex of the rewrite step.
If `σ does not have a proper subterm that is also a possible redex, `σ is an innermost
redex, and the rewrite step is an innermost rewrite step denoted by s i→R t. A reduction
is a sequence of rewrite steps. A TRS is terminating if all its reductions are finite.

ΣRd = {f | ∃` → r ∈ R, root(`) = f} and ΣRc = Σ \ ΣRd are the defined and
constructor symbols of R. 4 Finally, let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.

Term rewriting systems are thus able to model programs of various paradigms and
their termination:

Example 5 (Tree size) The link between recursive programs with pattern matching
and TRS is immediate, for instance the following “Rust like” program operating on trees:

fn size(&self) -> int {

match self {

&Tree::Tree { v, ref l, ref r }

=> l.size() + r.size() + 1,

&Tree::Nil => 0 , } }

can be modeled by the TRS R given by the following rules:

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

We can easily see that we have

size(Tree(Zero,Nil,Nil)) i→R S(plus(size(Nil), size(Nil)))
i→R S(plus(Zero, size(Nil)))
i→R S(plus(Zero,Zero))
i→R S(Zero)

Morally, “the computation of size(Tree(0,Nil,Nil)) terminates and returns 1”.

4We may omit the superscript and just write Σd and Σc if R is not of importance or clear from the
context.

8

Imperative programs can be represented via TRSs as well. One example are object-
oriented programs with tree-shaped data structures where different node types (leaves
vs inner nodes) are represented by different (sub)classes, such as in Java. Here the
translation from Java Bytecode to TRSs by Otto et al. [Otto et al., 2010] introduces
constructor symbols for different classes and uses pattern matching on the class of the
object at hand to perform dynamic method dispatching via TRSs.

3.2 Proving termination with dependency pairs and polynomial inter-
pretations

One of the most powerful termination methods is the dependency pair (DP) technique
[Arts and Giesl, 2000], implemented in virtually all current termination tools for TRS.
The intuition is to capture the dependencies between function calls, which can then be
used to prove termination via the following reasoning: Every infinite reduction must
have infinitely many function calls. So, if we can show that there cannot be infinitely
many function calls in a reduction, we know that the TRS is terminating.

Definition 5 (Dependency pair, from [Arts and Giesl, 2000]) For a TRS R, the
defined symbols are the root symbols of the left-hand sides of rules. For every defined
symbol f , we extend the TRS with a fresh tuple symbol f] with the same arity as f . If
t = f(t1, . . . , tn) and f is a defined symbol, we write t] for f](t1, . . . , tn). If l → r ∈ R
and t is a subterm of r with defined root symbol, then the rule l] → t] is a dependency
pair of R. The set of all dependency pairs of R is denoted DP (R).

Example 6 (Dependency pairs for Ex. 5) In our example, size and plus are defined
symbols, and we have DP (R) = {(1), (2), (3), (4)}:

size](Tree(v, l, r)) → plus](size(l), size(r)) (1)

size](Tree(v, l, r)) → size](l) (2)

size](Tree(v, l, r)) → size](r) (3)

plus](x,S(y)) → plus](x, y) (4)

Intuitively, dependency pairs define a “happens before” relation between function
calls. This relation is equivalent to the one defined by dependency graphs, as introduced
in Section 2.1.

To prove termination, we have to show that there cannot be infinitely many function
calls in any reduction. More precisely, one has to prove that there is no infinite chain

σ1(u1)→DP (R) σ1(v1)→∗R σ2(u2)→DP (R) σ2(v2)→∗R σ3(u3)→DP (R) σ3(v3) . . .

where ui → vi ∈ DP (R) and σi are substitutions. To this end, the DP method consists
in finding two relations � and % such that:∧

u→v∈DP (R)

u � v ∧
∧

l→r∈R
l % r (5)

9

A popular method to search for relations � and % automatically are polynomial in-
terpretations [Lankford, 1979]. A polynomial interpretation Pol maps each n-ary func-
tion symbol f to a polynomial fPol over n variables x1, . . . , xn with coefficients from
N. This mapping is extended to terms by defining [x]Pol = x for all variables x and
[f(t1, . . . , tn)]Pol = fPol ([t1]Pol , . . . , [tn]Pol).

5

Example 7 Consider Pol1 with ZeroPol1 = 0, NilPol1 = 1, sizePol1(x1) = x1, SPol1(x1) =

size]Pol1(x1) = x1 + 1, plusPol1(x1, x2) = plus]Pol1(x1, x2) = x1 +x2, TreePol1(x1, x2, x3) =

x2 + x3 + 1. Then [size](Tree(v, l, r))] = l + r + 2 and [plus](size(l), size(r))] = l + r.
Let � (resp. %) be the relation such that for all terms u and v, u � v (resp. u % v)

iff. [u] > [v] (resp. [u] ≥ [v]) holds for all instantiations of the variables with natural
numbers. So with Pol1 we obtain size](Tree(v, l, r)) � plus](size(l), size(r)). In fact, all
DPs (1)–(4) are strictly decreasing and the rules are at least weakly decreasing, i.e., the
requirement (5) holds. Thus, termination of the TRS is proven.

More generally, polynomial interpretations are similar to ranking functions for prov-
ing termination of imperative programs (explained in Section 4), in that they expose
a strictly decreasing yet bounded quantity, with the same variables as the considered
terms. An algorithm to compute polynomial interpretations for TRS through parametric
polynomial interpretations is depicted in [Fuhs et al., 2007].

3.3 Using term rewriting termination to prove full program termina-
tion

Progress in automated termination analysis for TRSs has given rise to several powerful
and fully automatic tools over the last years (e.g., AProVE [Giesl et al., 2017], Mu-
Term [Alarcón et al., 2011], TTT2 [Korp et al., 2009]). Two-stage approaches to termi-
nation analysis, harnessing the power of termination tools for TRSs also for programming
languages, have been proposed [Giesl et al., 2011, Otto et al., 2010, Giesl et al., 2012].
In the first stage, symbolic execution and abstraction on programming language level are
used to over-approximate all possible program executions. From this program analysis,
one then extracts a TRS whose termination implies the termination of the original pro-
gram. In the second stage, termination of this TRS is analysed with existing tools. This
approach is currently limited mainly by scalability of the program analysis front-ends.

More recently Fuhs et al. [Fuhs et al., 2009] proposed an extension of term rewriting
by built-in predefined integers, based on the observation that termination, in particu-
lar for imperative programs, often depends on integer variables. This allows existing
techniques for proving termination on integers to be combined with techniques for term
rewriting. Tools for analysis of term rewriting are now successfully applied for ter-

5If the interpretation Pol is clear from the context, we also write [t] instead of [t]Pol .

10

mination analysis (e.g., for Java [Otto et al., 2010, Brockschmidt et al., 2012] and C
programs [Ströder et al., 2017]).

These techniques are implemented in AProVE [Giesl et al., 2017], a tool that au-
tomatically generates termination proofs for TRSs as well as imperative and functional
programs, using built-in predefined integers to convert programs to TRSs and techniques
such as dependency pairs to prove termination of TRSs.

4 Termination and scheduling

In this section we explore how termination and scheduling are linked; this opens doors
to use and adapt termination/complexity bounds synthesis techniques to schedule pro-
grams.

4.1 Ranking functions for termination

Classically, imperative programs are proven to be terminating via the synthesis of a
ranking function, whose concept comes from the seminal paper of Floyd [Floyd, 1967].

To model such programs, we can use a variant of control flow graphs (commonly
used as intermediate representations inside compilers) known as affine integer interpreted
automata.

Intuitively, a program state is a pair (k,x) where k ∈ K is a control point and x ∈ Zn
is a valuation that assigns an integer value to each of the n variables. For any two
control points k and k′, the possible transitions from k to k′ are determined by a guard g
(logical formula expressed with affine inequalities) and an action a (affine function from
Zn to Zn). Then for any valuation x such that g(x) = true, there is a transition from
(k, x) to (k′, a(x)).

Example 8 Program and corresponding automaton (taken from [Alias et al., 2010])
Each control point of the automaton depicts a line in the program, and transitions of the
form condition

action perform guarded transitions on the variables of the program.

Termination of a program may then be proven by finding a function that strictly
decreases along every program transition, yet has a “lower bound” (thus preventing
program transitions from occuring/happening indefinitely). Such a function is called
a ranking function. We provide a formal definition to show the similarity with the
definition of schedule contraints in Definition 2.

Definition 6 (Ranking function for a CFG (from [Alias et al., 2010])) Let R ⊂
K × Zn be the set of reachable states and for each control point k, let Rk = {x ∈ Zn |
(k,x) ∈ R} be the set of the possible variable valuations for the control point k.

11

y = 0;

x = m;

while(x>=0 && y>=0){

if(indet()){

while(y <= m && indet())

y++;

x--;

}

y--;

}

start

lbl4

lbl5

stop lbl6

lbl10

x := m; y := 0

0 6 x ∧ 0 6 yx < 0 ∨ y < 0

true

true

y 6 m

y := y + 1

x := x − 1

y := y − 1

A ranking function is a function ρ : K × Zn → W from the automaton states to a
well-founded set (W,�), whose values decrease at each transition (k, k′, g, a):

x ∈ Rk ∧ g(x) = true ∧ x′ = a(x) =⇒ ρ(k′,x′) ≺ ρ(k,x)

It is affine if it is affine in the second parameter (the variables).

In practice, it is sufficient to find such a ranking function for the head of loops, because
potentially non-terminating imperative constructs are basically always loops. It is also
convenient to compute in the well founded set (Nd,≤d) (vectors of expressions with the
lexicographic order).

Example 9 Two-dimensional ranking function for the previous example A (two dimen-
sional) ranking function for the program depicted in Example 8 is for instance defined
by the following (affine) expressions:

start (2m+ 4,)
lbl4 (2x+ 3, 3y + 3)
lbl5 (2x+ 3, 3y + 2)
lbl6 (2x+ 2,m− y + 1)
lbl10 (2x+ 3, 3y + 1)

For instance, the quantity 2x + 3 in lbl4 is equal to 2m + 3 after the first step of the
program execution; which is stricly less than 2m+ 4 in control point start.

4.2 From scheduling to termination

From the crucial observation that a ranking function should be positive, strictly decreas-
ing on the edges of the CFG, the proposition of the paper [Alias et al., 2010] is to adapt
the Karp/Miller/Winograd algorithm (see Section 2.1) to affine interpreted automata.

12

It computes a multidimensional vector for each control point of the program. It has no
syntactic restriction on the shape of the program (any affine transition function is ok),
however it can fail to find a ranking function.

The result is an algorithm that tries to find a multidimensional ranking function,
dimension by dimension. The algorithm relies strongly on the precision of the invariants
precomputed beforehand. If the invariants were precise enough, then the algorithm
would find the best (in terms of dimension) ranking function.

The n-dimensional ranking function ρ built by the algorithm has co-domain (Nn,�n),
where �n is the lexicographic order on k-vectors. Each iteration determines a one-
dimensional function σ which will become the next dimension of ρ. The function σ is
determined through linear programming techniques, with the following constraints on
each transition t = (k, g, a, k′) that has not been satisfied by a previous dimension, where
Qt is the dependency polyhedron associated with t and Pk is the over-approximation of
Rk provided by invariants:

• ∀x ∈ Pk, σ(k, x) ≥ 0

• ∀(x, x′) ∈ Qt, σ(k, x)− σ(k′, x′) ≥ εt, with εt ∈ {0, 1}

• σ maximises
∑

t εt, i.e., satisfies as many transitions as possible

The algorithm ends when all transitions have been satisfied or when
∑

t εt = 0, in which
case no ranking function has been found.

4.3 From termination to scheduling

The preliminary paper [Alias et al., 2016] further explores this relationship between
schedules and termination proofs and derives an estimation on the parallel complex-
ity of the given programs. This paper can be viewed as the first attempt at using TRS
termination to schedule program with trees.

Example 10 (Maximum element of a tree (taken from [Alias et al., 2016])) The
following program implements the computation of the maximum elements of a tree. On
the right, we depict its call graph that resembles a lot of a “dependency graph”.

13

public class Tree {

private int val;

private Tree left;

private Tree right;

public int treeMax () {

int leftMax = Integer.MIN_VALUE;

int rightMax = Integer.MIN_VALUE;

if (this.left != null) {

leftMax = this.left.treeMax (); // S1

}

if (this.right != null) {

rightMax = this.right.treeMax ();// S2

}

return Math.max(this.val , Math.max(leftMax , rightMax));

}

}

val

le
ft

right

Example 11 (Example of [Alias et al., 2016], cont’) The following dependency
pairs can be derived from the example, and the polynomial interpretation (with max
function) can be used to prove termination and provide a complexity bound:

Pol(dep(x1)) = x1 dep(Tree(val , left , right))→ dep(left)

Pol(Tree(x1, x2, x3)) = max(x2, x3) + 1 dep(Tree(val , left , right))→ dep(right)

Pol essentially maps a tree to its height, recursively defined as the maximum of its
two children’s heights plus one. When interpreted as a bound on parallel complexity,
this means that the two recursive calls on the left and right subtrees can be executed in
parallel, resulting in a runtime6 bounded by the height of the initial tree. In contrast,
the overall runtime of the original sequential program is bounded only by the size of the
input tree, which may be exponentially larger than its depth.

Thus the paper [Alias et al., 2016] suggests a novel view on the analysis of run-
time (parallel) complexity [Hirokawa and Moser, 2008, Noschinski et al., 2013] for term
rewriting. This paper can be thought of as the first attempt in exploring the “less triv-
ial” usage of term rewriting definitions and results into the world of static compilation
and scheduling.

4.4 Synthesis

At that point, we are able to provide a synthesis of the previous bibliographic analysis
in Figure 1.

6on a machine with unbounded parallelism

14

Imperative programs Functional programs Term rewriting systems

program TRS + input term gen + output
term parser

main main defsyms of the input term/input
term gen + output term parser

statement function defined symbol

conditional branch
(not always)

pattern matching branch rule

(inductive) data structure definition constructors

input data (structure) input term without defined symbols

statement in an impera-
tive control structure

recursive function call defined symbol in a term

loop nest nested function calls term with nested defined symbols

? function arguments defined symbol “argu-
ments”/immediate subterms

iteration vector
(i, j)

? position in the input structure
(input term without defined sym-
bols)

iteration domain of a
statement

? set of the positions of all subterms
that appear at least once in the in-
put term as arguments a defined
symbol

array dimensions ? input term shape
or possibly its height if it is “regular
enough”

? recursive function call defsym that appears in the rhs of a
rule (DP)

program termination TRS termination

ranking function ranking function? polynomial interpretation

sequential/parallel complexity bounds sequential/parallel TRS complexity
bounds

sequential/parallel execution sequential/parallel rewriting

Figure 1: Connections between scheduling and termination for TRS and different pro-
grammation paradigms

One limitation of termination and complexity analysis for TRS in general is that
the parametrisation is relatively coarse. In classic settings for scheduling such as the
polyhedral model, the shape of the underlying data structure is completely defined by
n parameters for the sizes of the array dimensions. Thus, one can completely describe

15

the schedule in terms of these parameters. In contrast, complexity analysis tools for
term rewriting tend to provide complexity bounds (e.g., via polynomial interpretations)
parametrised only in a single parameter, the size of the input data. However, there are
many differently shaped trees of the same size, so the input parameter does not uniquely
describe the shape of the data. Having an exact description of the shape of the input
would be a prerequisite for deriving a schedule.

The approach by [Alias et al., 2016] alleviates the issue somewhat by suggesting the
height of the input tree instead of its size as parameter for the analysis. However, also
in that setting, many differently shaped trees have the same height, so also like this,
we do not get an unambiguous schedule. Still, we might over-approximate and derive
a schedule for, e.g., a complete binary tree for a given height and at runtime terminate
computations early if the actual parameter tree has “missing branches”.

However, since going down this path did not seem like the most fruitful approach,
we decided to consider other approaches for scheduling (and parallelising) TRS.

5 Parallel evaluation of term rewriting systems

Following the idea of Section 4.3, we propose to use parallel evaluation of TRS as a
model of parallel execution of programs, and provide first algorithms to rewrite terms
in parallel following/according to an innermost strategy.

Indeed, given a program and a TRS that is equivalent to this program, executing the
program on some input data is equivalent to evaluating the corresponding input term,
that is, rewriting it to a normal form by applying the rules of the TRS.
Furthermore, a rewriting strategy that rewrites independent terms in parallel translates
to a schedule that exposes potential parallelism of the program.

Therefore, given a frontend that is able to produce an equivalent TRS from any
program (along with “conversion” functions from input data to terms and from output
terms to output data), any term rewriting engine that performs some rewrite steps in
parallel functions as a parallel program interpreter. Figure 2 summarises this approach.

The algorithm(s) of this section describe such a parallel term rewriting engine.

5.1 Parallel innermost rewriting

The notion of parallel-innermost rewriting dates back at least to [Vuillemin, 1974]. In-
formally, in a parallel-innermost rewrite step, all innermost redexes are rewritten simul-
taneously. This is equivalent to executing all function calls in parallel on a machine with
unbounded parallelism.

Definition 7 (Parallel-innermost rewriting [Fernández et al., 2005]) A term s
rewrites innermost in parallel to t with a TRS R, written s i−→‖ R t, iff s i−→+

R t, and

16

ProgramInput data Output data

Possibly existent frontend (AProVE?)

TRS

Input term generator

Output term parser

Parallel term
rewriting engine
(TRS interpreter)

Term

Term

Figure 2: Both the TRS and the input term are processed at execution time.

either (a) s i→R t with s an innermost redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn),
and for all 1 ≤ k ≤ n either sk

i−→‖ R tk or sk = tk is a normal form.

Example 12 (size) Consider again the TRS R from Example 5. Here ΣRd = {plus, size}
and ΣRc = {Zero, S,Nil,Tree}. We have the following parallel innermost rewrite sequence,
where innermost redexes are underlined:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil)))
i−→‖ R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i−→‖ R S(plus(Zero, S(plus(size(Nil), size(Nil)))))
i−→‖ R S(plus(Zero, S(plus(Zero,Zero))))
i−→‖ R S(plus(Zero, S(Zero)))
i−→‖ R S(S(Zero))

Note that in the second and in the third step, two innermost steps each are happening
in parallel. An equivalent regular innermost rewrite sequence without parallel evaluation
of redexes would have needed two more steps.

5.2 Implementing parallel-innermost rewriting

In this section, we show how to implement a simple parallel-innermost rewriting engine.

Computation of a single “parallel innermost” rewriting step Let R be a TRS
and let t be a term that we wish to rewrite. Our first task is to find all innermost
redexes, which we will rewrite simultaneously. Potential redexes must have a defined
symbol at their root. Thus, they can occur only at positions in Posd(t). Candidates

17

for innermost redexes are those subterms that occur at positions π ∈ Posd(t) that are
maximal in Posd(t) (i.e., there is no π′ ∈ Posd(t) with π < π′ in the prefix order).
However, t|π might be a normal form (in a TRS, a function need not be defined for all
possible arguments). We obtain the set of all positions of innermost redexes IR using
Algorithm 1.

Algorithm 1 iteratively removes innermost normal forms from the set of innermost
redex candidates IR. Because IR is initialised as Posd(t) and only positions of normal
forms are removed from it during any iteration, IR always contains all (innermost
or otherwise) redex positions. After exiting the while loop, IR only contains redex
positions, and the set of all innermost redex positions is the set of all maximal positions
in IR (a redex is innermost iff. it has no other redex as a strict subterm, iff. its position
is not a strict prefix of any other redex position).

Algorithm 1: Computation of positions of innermost redexes

Function ComputePos(R, t)
Data: R a set of Rewriting Rules
Data: t a term
Result: The set of all positions of innermost redexes
IR = Posd(t)
changed = True
while changed do

changed = False
for π ∈ IR such that π is maximal in IR do

if t|π does not match any rule in R then // Normal Form

IR = IR \ {π}
changed = True

// Delete the non-innermost positions

IR = {π | π is maximal in IR}
return IR

Example 13 (Ex. 5 & 12 continued) For the term

t = S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))

we have Posd(t) = {1, 11, 12}. From this set, Algorithm 1 removes the position 1 since
1 is not an innermost position.

As, starting from the root, all positions need to be visited and checked if they contain
a defined symbol, we immediately obtain:

18

Proposition 1 For a given term t, the cost of computing Posd(t) is linear in the size
|t| of t, that is, the number of positions in t.

Now that we have all the information, we can perform a parallel innermost rewrite
step, thanks to Algorithm 2, which performs the following reduction involving all inner-
most redex positions πi precomputed in IR:

t = t[`1σ1]π1 . . . [`nσn]πn
i−→‖ R t[r1σ1]π1 . . . [rnσn]πn = t′

Here `i → ri is the rule used to rewrite the innermost redex t|π1 with matcher σi.

Remark 2 From now on, we assume that the considered TRS is deterministic, i.e.,
exactly one rule can be used to rewrite a given innermost redex. This is true for TRS
derived from programs consisting of pattern matching and function calls.

Algorithm 2: Computation of one step of parallel reduction

Function ComputeOneParallelStep(R, t, IR)
Data: R, t
Data: IR the set of relevant positions
Result: t the term after one parallel innermost reduction
for πi ∈ IR in parallel do

Let `i → ri ∈ R s.t. t|πi = `iσi
Change t|πi into riσi

return t

Example 14 The parallel-innermost rewrite step
t = S(plus(size(Nil), size(Tree(Zero,Nil,Nil)))) i−→‖ R S(plus(Zero, S(plus(size(Nil), size(Nil)))))
from the previous example can be implemented with:

• Posd(t) = {1, 11, 12}, IR = {11, 12},

• t = t[size(Nil)]11[size(Tree(Zero,Nil,Nil))]12,

• `1 → r1 = size(Nil)→ Zero, σ1 = [] (identity),

• `2 → r2 = size(Tree(v, l, r)) → S(plus(size(l), size(r))), σ2 = [v := Zero, l :=
Nil, r := Nil].

19

Algorithm 3: Computation of all reductions from initial term

Function ComputeAllSteps(R, t0)
Data: R, t0
Result: t the (reduced) term after all rewriting steps
t = t0
IR = ComputePos(t)
while IR 6= ∅ do

t = ComputeOneParallelStep(IR, t)
IR = ComputePos(t)

return t

Computation of the whole parallel reduction of a term From the previous
algorithm we finally obtain the non-optimised algorithm depicted in Algorithm 3 in
which we recompute all positions of “relevant redexes” each time we perform a parallel
innermost step.

However, the new positions to be reduced can be pre-computed from one step to the
next, thanks to the following observations. Let π′ be the position of a redex that appears
in t′ = ComputeOneParallelStep(IR, t).

• If there is πi ∈ IR such that π′ ≥ πi, then the redex t′|π′ occurs in riσi. Because liσi
was an innermost redex, no redex appears in its variables, i.e., no term assigned to
a variable by σi contains any redex. Therefore, any redex in riσi was introduced by
ri and the defined symbol at t′|π′ also appears in ri at some position τ ∈ Posd(ri),
with π′ = πiτ . (Since it depends only on the considered TRS and rule, Posd(ri) is
known statically for each rule.)

• Otherwise, the (defined) symbol at this position was not affected by the parallel
innermost rewrite step (and was already present in t): π′ ∈ Posd(t). More precisely,
t|π′ was a non-innermost redex in t: π′ ∈ NIR.

5.3 An optimised version of the parallel evaluation

This idea is implemented in Algorithm 4, which performs the whole parallel reduction
of a term, and illustrated in Example 15.

Algorithm 4 rewrites each innermost redex in parallel to produce the rewritten term
t′ (which is possible because all innermost redexes are independent). It also computes
the sets of innermost redexes IR′ and non-innermost redex candidates NIR′ of t′ from
the candidates in NIR and the redexes introduced by the rewritten subterms.

For each innermost redex position πi, the redex at this position is rewritten using
the applicable rewrite rule. The rewritten subterm t′|πi = riσi may contain new redexes;

20

however (see previous paragraph), any new redex was introduced by a defined symbol in
ri. Therefore, it is sufficient to check the positions in Posd(ri) to find innermost redexes
and non-innermost redex candidates in the new subterm (line 6).

Innermost redexes (resp. non-innermost redex candidates) of the new subterm are
also innermost redexes (resp. non-innermost redex candidates) of the rewritten term t′

and can therefore be moved from the set of redex candidatesNIR to the set of innermost
redexes IR′ (line 11) (resp. non-innermost redex candidates NIR′ (line 12)).

If at least one redex was found in the rewritten subterm t′|πi , then no term whose
position is a prefix of πi can be an innermost redex: all prefixes of πi in the set of redex
candidates NIR can be moved to the set of non-innermost redex candidates NIR′
(line 10).

Otherwise, the rewritten subterm is a normal form and the prefixes of πi in NIR
may be positions of innermost redexes of t′. Because the term is not completely rewritten
at this point, it is not possible yet to determine whether subterms at these positions are
innermost redexes, non-innermost redex candidates or normal forms. These remaining
redex candidates are examined after rewriting the whole term (line 14).

Compared with Algorithm 3, this approach removes the need to compute and analyse
the set Posd(t) at every step. In particular, normal forms are only seen once before being
removed from the set of redex candidates, whereas the previous approach re-processed
them at every rewrite step.

Example 15 The first and second parallel-innermost rewrite steps from the previous
example:

t = S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i−→‖ R t′ = S(plus(Zero, S(plus(size(Nil), size(Nil)))))
i−→‖ R t′′ = S(plus(Zero, S(plus(Zero,Zero))))

can be implemented with:

• Initialisation: FindRedexes(R, t, Posd(t)); IR = {11, 12}; NIR = {1}

• First iteration/rewrite step:

– t|11 = size(Nil) rewrites to Zero, which is a normal form.

– t|12 = size(Tree(Zero,Nil,Nil)) rewrites to S(plus(size(Nil), size(Nil))). Redexes

may appear at the following positions in the rewritten term:

Posd(S(plus(size(l), size(r)))) = {1, 11, 12}

The rewritten term contains both innermost redexes and non-innermost redex
candidates: IR12 = {11, 12}; NIR12 = {1}, which are added to the global
sets of innermost redexes and non-innermost candidates: IR′ = {1211, 1212};
NIR′ = {121}.

21

Algorithm 4: Computation of all reductions from initial term with incremental
computation of IR

Function FindRedexes(R, t, C)
Data: R a set of Rewriting Rules
Data: t a term
Data: C a set of redex candidates
Result: IR the set of all positions of innermost redexes
Result: NIR the set of all positions of non-innermost redex candidates

1 Rdx = C
2 changed = True
3 while changed do
4 changed = False
5 for π ∈ Rdx such that π is maximal in Rdx do
6 if t|π does not match any rule in R then // Normal Form

7 Rdx = Rdx \ {π}
8 changed = True

9 IR = {π | π is maximal in Rdx}
10 NIR = Rdx \ IR
11 return IR, NIR

Function ParallelInnermostReduction(R, t)
Data: R
Data: t
Result: t′

1 IR,NIR = FindRedexes(R, t, Posd(t))
2 while IR 6= ∅ do
3 for πi ∈ IR in parallel do
4 Let `i → ri ∈ R s.t. t|πi = `iσi
5 Change t|πi into riσi
6 IRi,NIRi = FindRedexes(R, riσi, Posd(ri))
7 IRi = {πiτ | τ ∈ IRi}
8 NIRi = {πiτ | τ ∈ NIRi}
9 if IRi 6= ∅ then

// Do not consider prefixes of new redexes

// as innermost redex candidates

10 NIRi = NIRi ∪ {π ∈ NIR | π is a prefix of πi}

// Merge redex candidates that were processed locally

// into the global sets

11 IR′ =
⋃
i IRi

12 NIR′ =
⋃
iNIRi

13 NIR = NIR \ NIR′
// Scan previously non-innermost redex candidates

// for innermost redexes

14 IR,NIR = FindRedexes(R, t, NIR)
15 IR = IR ∪ IR′
16 NIR = NIR ∪NIR′

17 return t

22

Any strict prefixes of the new redex positions are moved from innermost re-
dex candidates to the set of non-innermost candidates: NIR = ∅; NIR′ =
{121, 1}.

– Innermost redexes and redex candidates for the next step: IR = {1211, 1212};
NIR = {1, 121}.
Rewritten term: t′ = S(plus(Zero,S(plus(size(Nil), size(Nil)))))

• Second iteration/rewrite step:

– t′|1211 = size(Nil) rewrites to Zero, which is a normal form.

– t′|1212 = size(Nil) rewrites to Zero, which is a normal form.

– Rewritten term: t′′ = S(plus(Zero,S(plus(Zero,Zero)))).

– Innermost redexes and redex candidates for the next step: FindRedexes(R, t,
{1, 121}); IR = {121}; NIR = {1}.

• . . .

Conclusion In this section, we have provided a proper definition for the notion of
parallel execution that was informally proposed in [Alias et al., 2016]. Based on the
TRS literature, we were able to provide a definition of it as a rewriting strategy. We
propose, as a first contribution, a parallel evaluator that mimics this rewriting strategy
on a given input term. We also show that we can optimise this algorithm by propagating
additional information (“redex candidates”) from one reduction step to another.

The next section aims to achieve the initial goal of statically scheduling programs
through static generation of a parallel term evaluator.

6 A code generator for a parallel evaluator based on partial
evaluation

The algorithm described in the previous section processes the input term at the same
time as the TRS itself. It is similar to an interpreter, in that fixed parts of the input
program are processed at execution time, rather than compiled away entirely.

In this section, we propose to perform as much of this TRS analysis as possible
statically. The result is a “term interpreter”/parallel term rewriting engine (based on
a kind of partial evaluation, which from a TRS generates a code that is able to process
any input term. In Figure 3 we depict the whole process, which has strong similarities
with “parser generation”.

The generated code, which is then compiled, performs an hybrid schedule during
execution. In other words, some parallelism is exposed in the generated code, however
the computation that is done at runtime is still not fully predicted at compile-time.

23

ProgramInput data Output data

TRS

Possibly existent frontend (AProVE?)

Input term generator Output term parser

Parallel term evaluator

Scheduling
Code generation

Term Term

Figure 3: Flow of the approach. The blue dotted box encompasses the code that would
be generated by the combination of an appropriate frontend with the proposed approach.

Concretely, the code that is generated by our engine is an OCaml interpreter using
pattern-matching and parallel constructors of Multicore OCaml 7.

In this section, we will depict the full process on Example 16 for which we will
generate a parallel evaluator.

Example 16 (Running example) We recall the computation of the size of a given
tree as a TRS (cf Example 5):

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

7An ocaml library and compiler for parallelism https://github.com/ocaml-multicore/ocaml-multicore

https://github.com/ocaml-multicore/ocaml-multicore

24

6.1 Parallel term evaluation through pattern matching

In this section we also assume a deterministic TRS: for any innermost-terminating term,
there is a unique parallel-innermost rewriting sequence from this term to a normal form.
We are looking to generate a program that evaluates its input term, that is, computes
and returns the normal form obtained after applying this parallel-innermost rewriting
sequence on the input term.

For any term, the next rewriting step (if any) depends on whether or not the term is
argument-normalised (we will often just write normalised), that is, whether or not it is
an innermost redex or a normal form. Therefore, the generated term evaluator features
two distinct evaluation functions: the evaluation function for non-normalised terms re-
cursively evaluates any nested redexes, while the one for normalised terms rewrites its
input term according the applicable rule, if any. The input term is initially assumed to
be a non-innermost redex: it is statically unknown and may contain several, possibly
nested redexes.

Example 17 On Example 16, size(Nil) is a normalised term and plus(size(Nil), size(Nil))
is not.

Normalised terms Rewriting an innermost redex can be seen as a form of pattern
matching on terms where each pattern is the left-hand side of a rule, and the associated
branch including the function calls resulting from the application of the rule that need
to be considered first for the next (parallel-)innermost step is the right-hand side of the
same rule.

The evaluation function for normalised terms follows this principle to select the rule
(if any) to apply on the input term. Furthermore, unlike for the input term itself, each
pattern matching branch is known statically, making it possible to define a general way
to evaluate any term that matches this pattern.

More precisely, let `→ r be a rule. Let s = `σ be an innermost redex that matches
` with some matcher σ. The term s rewrites innermost in parallel to t = rσ (first step
of the evaluation of s). The term t then needs to be fully rewritten to complete the
evaluation of s. The positions of potential redexes of t are in Posd(r) (as explained in
the previous section), which is known statically.

Example 18 The normalised term size(Tree(Zero,Nil,Nil)) matches the left-hand side of
the rule size(Tree(x, l, r))→ S(plus(size(l), size(r))). The positions of all potential redexes
of any term that matches the right-hand side pattern are statically known. It rewrites
innermost in parallel to S(plus(size(Nil), size(Nil))). From the statically known potential
redex positions, we immediately know that the potential redexes of this new term are the
underlined subterms.

The next subsection further explains how to statically schedule the evaluation of any
such term s.

25

Non-normalised terms In a similar way, the evaluation function for non-normalised
terms (such as potentially the first term in a (parallel-)innermost reduction) uses pattern
matching to select and apply statically scheduled/pre-computed branches. The root
symbol of the input term is matched against every constructor and defined symbol of
the TRS.

More precisely, let f be a symbol of arity n. Let t = f(t1, . . . , tn) be a non-normalised
term whose root symbol is f . Each subterm ti may contain redexes. The evaluation of
t then consists of two steps:

1. evaluate each subterm ti to a normal form t′i. Since the ti are structurally inde-
pendent, they may be evaluated in parallel.

2. if s is a defined symbol, then the newly normalised term s(t′1, . . . , t
′
n) may match a

rule and should be evaluated as an innermost redex. Otherwise, f is a constructor
and f(t1, . . . , tn) is a normal form.

If n = 0, then the term t = f is in fact already normalised: it is either a constant
(constructor) or an innermost redex (defined symbol).

Example 19 The symbol plus is a defined symbol of arity 2. Any non-normalised term
with plus as its root symbol matches the following pattern: plus(t1, t2), where t1 and t2
are “unknown”, potentially non-normalised terms.

By definition, t1 and t2 ultimately reduce to normal forms t′1 and t′2 after an un-
known number of parallel-innermost rewrite steps. The terms t1 and t2 are structurally
independent subterms of plus(t1, t2) and may be evaluated simultaneously. Therefore,
plus(t1, t2) rewrites innermost in parallel to the normalised term plus(t1, t2).

Since plus is a defined symbol, plus(t1, t2) may match the left-hand side of a rule:
the next step in the evaluation of the initial term is to evaluate this potential innermost
redex as described earlier.

With t1 = t2 = size(Nil), t1 and t2 both rewrite to Zero. The resulting normalised
term is plus(Zero,Zero), which rewrites to Zero.

6.2 Static local scheduling of rules

When generating evaluation code for terms that match a certain pattern, the pattern
provides some information about the shape of the term that is generally statically un-
known. This makes it possible to generate a “local” schedule for each pattern matching
branch. This schedule includes

1. the set of the positions redexes that may appear in the rewritten term, and

2. the order in which these potential redexes should be evaluated.

26

Evaluating a term that matches a pattern then consists in recursively evaluating each of
these redexes according to the schedule.

As explained in the previous section, the positions of the potential redexes of a
normalised term that matches some pattern r are in Posd(r). The evaluation order of
these potential redexes was already (informally) defined in the previous section: the
innermost potential redexes should be evaluated first, then this procedure should be
repeated until no more potential redexes are left and the term is normalised.

More formally, the prefix order on the positions of potential redexes also defines a
partial order on their evaluation: for π, π′ ∈ Posd(r), r|π must be evaluated before r|π′
iff. π′ is a prefix of π. If neither position is a prefix of the other, then r|π and r|π′ are
structurally independent and may be evaluated in parallel.

It is then possible to assign a timestamp T (π) to each potential redex position π ∈
Posd(r)

8:

1. if r|π is an innermost potential redex/π is maximal in Posd(r), then T (π) = 0;

2. otherwise, T (π) = 1 + max{T (π.x) | π.x ∈ Posd(r)}.

6.3 Final code generation algorithm

The remainder of this section describes a code generation algorithm that generates a
pattern matching-based term evaluator from a TRS.

The generated term evaluator consists of the two functions evalNormalised and
evalNonNormalised, which perform pattern matching on their input term to evaluate
normalised and non-normalised terms, respectively.

The right-hand sides of the pattern matching branches consist of the following
pseudo-code expressions:

• term expressions that may include identifiers of newly computed values in addition
to TRS symbols

• assignments of the form id := expr

• evalNormalised(t), evalNonNormalised(t) denote the recursive evaluation of
the normalised/non-normalised term expression t

• parallel expressions of the form Par(e, e’) where the expressions e and e’ may
be computed simultaneously

• sequential expressions of the form Seq(e, e’) where e must be computed before
e’

The “local” schedules described earlier directly translate to these constructs, as
shown in Algorithm 5.

Example 20 The full evaluator generated from the TRS of our running example is given
below:

8This ressembles a lot the free schedule definition of [Karp et al., 1967] described in Section 2.1!

27

Algorithm 5: Scheduling and code generation

Function GenNormalisedSchedule(`→ r)
Data: `→ r a rule
Result: the (pseudo-)code of the pattern matching/evaluation branch for

normalised terms that match `
s = empty expression;
for 0 ≤ i ≤ max |π|, π ∈ Posd(r) do

si = empty expression;
for π ∈ Posd(r) s.t. |π| = i do

r′ = r|π;
for k s.t. π.k ∈ Posd(r) do

Replace r′|k with a fresh identifier xπ.k in r′;

si = Par(si, xπ := evalInnermost(s));

s = Seq(s, si);

return s

Function GenNonNormalisedSchedule(f , a, isDefSym)
Data: f a constructor or defined symbol of arity a
Data: isDefSym, true iff. f is a defined symbol
Result: the (pseudo-)code of the pattern matching/evaluation branch for

non-normalised terms whose root symbol is f
x1, . . . , xa, y1, . . . , ya = fresh identifiers;
lhs = f(x1, . . . , xa);
res = f(y1, . . . , ya);
if isDefSym then

res = evalNormalised(res);

if a = 0 then
// Constant or innermost redex;
return lhs → res;

else
rhs = empty expression;
for 1 ≤ i ≤ a do

rhs = Par(rhs, yi := evalNonNormalised(xi));

return lhs → Seq(rhs, res);

Function GenEvaluator(R, C, D)
Data: R a set of rules
Data: C the set of all constructor symbols of the TRS
Data: D the set of all defined symbols of the TRS
Result: The (pseudo-)code of a parallel term rewriting engine
normEvalFun, nonNormEvalFun = empty pattern matching expressions;
for `→ r ∈ R do

s = GenNormalisedSchedule(r);
Add the pattern matching branch `→ s to normEvalFun;

for f ∈ C do
a = arity of f ;
Add GenNonNormalisedSchedule(f , a, false) to nonNormEvalFun;

for f ∈ D do
a = arity of f ;
Add GenNonNormalisedSchedule(f , a, true) to nonNormEvalFun;

return normEvalFun, nonNormEvalFun;

28

let evalNormalised = function

| size(Nil) -> Zero

| size(Tree(x, l, r)) ->

(* size(l) and size(r) are structurally independent

subterms of the rhs S(plus(size(l), size(r)))

and are thus evaluated in parallel *)

Seq(Par(l’ := evalNormalised size(l),

r’ := evalNormalised size(r)),

(* plus(size(l), size(r)) must be evaluated

after its structural dependencies size(l) and size(r) *)

s := evalNormalised plus(l’, r’),

S(s))

| plus(x, Zero) -> x

| plus(x, S(y)) -> evalNormalised plus(S(x), y)

| t -> t (* normal form *)

let evalNonNormalised = function

(* defined symbols *)

| size(t) ->

Seq(t’ := evalNonNormalised t, evalNormalised size(t’))

| plus(x, y) ->

Seq(Par(x’ := evalNonNormalised x,

y’ := evalNonNormalised y),

evalNormalised plus(x’, y’))

(* constructors *)

| Tree(x, l, r) ->

Seq(Par(x’ := evalNonNormalised x,

l’ := evalNonNormalised l,

r’ := evalNonNormalised r),

Tree(x’, l’, r’))

| Nil -> Nil

| S(x) ->

Seq(x’ := evalNonNormalised x, S(x’))

| Zero -> Zero

Example 21 The input term size(Tree(Zero,Nil,Nil)) goes through the following evalua-
tion steps:

evalNonNormalised(input_term): the non-normalised term size(Tree(Zero,Nil,Nil))
matches the pattern size(t) with t = Tree(Zero,Nil,Nil). Its evaluation consists of two
sequential steps:

1. t’ := evalNonNormalised(t): the non-normalised term t = Tree(Zero,Nil,Nil)
matches the pattern Tree(x, l, r) with x = Zero, l = Nil and r = Nil. Its evaluation
consists of two sequential steps:

(a) parallel evaluation of the following non-normalised terms:

x = Zero matches the pattern Zero, rewrites to x′ = Zero

l = Nil matches the pattern Nil, rewrites to l′ = Nil

r = Nil matches the pattern Nil, rewrites to r′ = Nil

(b) return t′ = Tree(x′, l′, r′) = Tree(Zero,Nil,Nil)

29

2. evalNormalised(size(t’)): the normalised term size(Tree(Zero,Nil,Nil)) matches
the pattern size(Tree(x, l, r)) with x = Zero, l = Nil and r = Nil. Its evaluation
consists of three sequential steps:

(a) parallel evaluation of the following normalised terms:

size(l) = size(Nil) matches the pattern size(Nil), rewrites to l′ = Zero

size(r) = size(Nil) matches the pattern size(Nil), rewrites to r′ = Zero

(b) s := evalNormalised(plus(l’, r’)): the normalised term plus(Zero,Zero)
matches the pattern plus(x,Zero) and rewrites to s = x = Zero

(c) return the normal form S(s) = S(Zero)

7 Prototype and first experimental results

7.1 Prototype implementation

We implemented Algorithm 5 as a first prototype in OCaml based on a publicly available
TRS parser 9 :

• The “assignments” of values to fresh identifiers, recursive calls to eval(Non)Normalised
and sequential expressions directly translate to OCaml expressions.

• The Par expressions from the previous section, denoting the parallel evaluation
of several independent expressions, were implemented as task parallelism: each
expression is evaluated in a separate thread.

For parallel execution, we rely on the use of Domainslib10, a parallel programming
library based on multicore OCaml11, an extension of the OCaml compiler that enables
concurrency and parallelism. Domainslib provides async and await functions, used to
respectively launch the evaluation of an expression in a separate thread and wait for the
thread to finish in order to get the result of the computation (evaluated term).

The parallel evaluation functions (both normalised and non-normalised) are parametri-
sed by a threshold on the depth of the parallel call stack: upon reaching this threshold,
the sequential evaluation functions (in which each Par expression has been replaced with
a Seq expression) are used instead in order to avoid stack overflow.

The input term generator (see Figure 3) is currently hand-written and generates a
term consisting of a defined symbol (equivalent to the main function call of the initial
program) applied to a normal form (which corresponds to an input data structure). It
is parametrised by the height of the generated data structure.

9https://www.lri.fr/∼marche/tpdb/format.html
10https://github.com/ocaml-multicore/domainslib
11https://github.com/ocaml-multicore/ocaml-multicore

https://www.lri.fr/~marche/tpdb/format.html
https://github.com/ocaml-multicore/domainslib
https://github.com/ocaml-multicore/ocaml-multicore

30

After generating an input term, the evaluator spawns a pool of n threads and launches
parallel, then sequential evaluation of this term, while measuring both the total CPU
time and real elapsed time (a.k.a. wallclock time) taken by both computations.

Example 22 The full generated code for tree size can be found in Appendix A. How-
ever we provide here an excerpt to provide additional information on it and comparison
to Example 20.

let threshold = ref 5

open Domainslib.Task

(*[...]*)

let rec par_eval_norm pool depth t =

let rec_eval_fun =

if depth < !threshold then par_eval_norm pool (depth +1) else seq_eval_norm in

let rec_eval_norm_fun = rec_eval_fun in

match t with

| Size(Nil) -> Zero

| Size(Tree(v, l, r)) -> (* parallel eval of required terms *)

let x28 = async pool (fun _ -> (rec_eval_norm_fun (Size(r))))

in let x27 = async pool (fun _ -> (rec_eval_norm_fun (Size(l))))

in (* combine after recovering x27 ,x28 results *)

let x29 = (rec_eval_norm_fun (Plus(await pool x27 , await pool x28)))

in S(x29) (* result *)

| Plus(x, Zero) -> x

| Plus(x, S(y)) -> let x30 = (rec_eval_norm_fun (Plus(S(x), y)))

in x30

(*[...]*)

;;

7.2 First results

Experimental setting We measured the speedup achieved by the parallel evaluation
function over its sequential version, defined as

tseq
tpar

.
For each TRS, we compute the speedups obtained for input terms with different

sizes. We report the average speedup over five evaluations after removing the highest
and the lowest speedup values. The evaluations were run on an Intel i5-2415M CPU
clocked at 2.3GHz with four cores (two physical cores with two threads each); the size
of the thread pool was therefore set to n = 4.

For this evaluation we have written the input term generators by hand, because
we do not have any input front-end at the moment. Similarly, the output terms are
post-processed by hand.

Preliminary results We tested our implementation on our running example (size of
a binary tree) and four other simple examples such as:

• maximal element of a binary tree;

31

• element lookup in a binary tree;
• quicksort of a list;
• identity map on a list.

Some of these examples feature conditional rules, such as if(True, t, f) → t, which are
treated similarly to non-conditional rules: we propagate the tests “as-is” in the pattern
matching guards.
The current parallel evaluation strategy may lead to the undesired, potentially time-
expensive evaluation of the non-taken conditional branch. As future work, it may be
possible to generate code that aborts the evaluation of non-taken conditional branches
as soon as the condition is fully evaluated.

10 12 14 16 18 20 22 24
Tree height

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

(s
eq

/p
ar

)

Wallclock time speedup
Total CPU time speedup

Figure 4: Experimental results for tree-size. speed-ups with respect to sequential evaluation, as a

function of the size of the input tree.

From the generated files we were able to make the following first analyses:
• Initially, as expected, we get poor speedup (for instance, for tree size, in Figure 4),

because of the instrinsic low parallelism of our terms. However these results show
that we successfully captured this low amount of parallelism. Performance de-
creases for large trees, our hypothesis being that cache issues fuzzes a bit the
performance of the OCaml runtime.

• The “optimal” threshold on the parallel call stack height seems highly dependent
on the specific TRS and may be a function of the input term height (e.g. idMap
TRS example).

32

8 Conclusion and future work

The initial goal of the internship was to use term rewriting systems as an intermediate
representation to statically schedule imperative programs on inductive data structures.

Indeed, terms are particularly apt to represent inductive structures, and represent-
ing programs as TRS allows to use the numerous existing techniques to prove certain
properties of TRS (such as termination or complexity bounds, which are closely linked
to scheduling) for programs.

However, unlike arrays, which are the main focus of most existing scheduling algo-
rithms, the shape of a term is not always fully determined by its size or height (whereas
knowing the dimensions of an array allows to iterate over each of its elements).

As an alternative to a fully static parallel scheduling algorithm, the proposed ap-
proach can be seen as the partial evaluation of a parallel term rewriting engine, where
the aspects of a term’s evaluation schedule that only depend on the considered TRS are
computed statically, and the remaining components that depend on the shape of the
input term are determined during execution.

This approach applies to TRS, independently of whether they were generated from
an imperative or functional program.

Future work could include an experimental evaluation of the proposed approach on
different TRS, and a comparison to existing scheduling approaches.

33

A Full final generated code for tree size

Listing 1: ’tree size’
let threshold = ref 5

open Domainslib.Task

type term = Plus of term * term

| Size of term

| S of term

| Tree of term * term * term

| Zero

| Nil ;;

let rec seq_eval_norm t =

match t with

| Size(Nil) -> Zero

| Size(Tree(v, l, r)) -> let x28 = (seq_eval_norm (Size(r)))

in let x27 = (seq_eval_norm (Size(l)))

in let x29 = (seq_eval_norm (Plus(x27 , x28)))

in S(x29)

| Plus(x, Zero) -> x

| Plus(x, S(y)) -> let x30 = (seq_eval_norm (Plus(S(x), y)))

in x30

| Plus(x31 , x32) -> Plus(x31 , x32)

| Size(x33) -> Size(x33)

| S(x34) -> S(x34)

| Tree(x35 , x36 , x37) -> Tree(x35 , x36 , x37)

| Zero -> Zero

| Nil -> Nil

;;

let rec seq_eval t =

match t with

| Size(Nil) -> let x1 = (seq_eval_norm (Size(Nil)))

in x1

| Size(Tree(v, l, r)) -> let x4 = (seq_eval (r))

in let x3 = (seq_eval (l))

in let x2 = (seq_eval (v))

in let x5 = (seq_eval_norm (Size(Tree(x2, x3 , x4))))

in x5

| Plus(x, Zero) -> let x6 = (seq_eval (x))

in let x7 = (seq_eval_norm (Plus(x6, Zero)))

in x7

| Plus(x, S(y)) -> let x9 = (seq_eval (y))

in let x8 = (seq_eval (x))

in let x10 = (seq_eval_norm (Plus(x8 , S(x9))))

in x10

| Plus(x11 , x12) -> let x14 = (seq_eval (x12))

in let x13 = (seq_eval (x11))

in let x15 = (seq_eval_norm (Plus(x13 , x14)))

in x15

| Size(x16) -> let x17 = (seq_eval (x16))

in let x18 = (seq_eval_norm (Size(x17)))

in x18

| S(x19) -> let x20 = (seq_eval (x19))

in S(x20)

34

| Tree(x21 , x22 , x23) -> let x26 = (seq_eval (x23))

in let x25 = (seq_eval (x22))

in let x24 = (seq_eval (x21))

in Tree(x24 , x25 , x26)

| Zero -> Zero

| Nil -> Nil

;;

let rec par_eval_norm pool depth t =

let rec_eval_fun =

if depth < !threshold then par_eval_norm pool (depth +1) else seq_eval_norm in

let rec_eval_norm_fun = rec_eval_fun in

match t with

| Size(Nil) -> Zero

| Size(Tree(v, l, r)) -> let x28 = async pool (fun _ -> (rec_eval_norm_fun (Size(r))))

in let x27 = async pool (fun _ -> (rec_eval_norm_fun (Size(l))))

in let x29 = (rec_eval_norm_fun (Plus(await pool x27 , await pool x28)))

in S(x29)

| Plus(x, Zero) -> x

| Plus(x, S(y)) -> let x30 = (rec_eval_norm_fun (Plus(S(x), y)))

in x30

| Plus(x31 , x32) -> Plus(x31 , x32)

| Size(x33) -> Size(x33)

| S(x34) -> S(x34)

| Tree(x35 , x36 , x37) -> Tree(x35 , x36 , x37)

| Zero -> Zero

| Nil -> Nil

;;

let rec par_eval pool depth t =

let rec_eval_fun =

if depth < !threshold then par_eval pool (depth +1) else seq_eval

and rec_eval_norm_fun =

if depth < !threshold then par_eval_norm pool (depth +1) else seq_eval_norm in

match t with

| Size(Nil) -> let x1 = (rec_eval_norm_fun (Size(Nil)))

in x1

| Size(Tree(v, l, r)) -> let x4 = async pool (fun _ -> (rec_eval_fun (r)))

in let x3 = async pool (fun _ -> (rec_eval_fun (l)))

in let x2 = async pool (fun _ -> (rec_eval_fun (v)))

in let x5 = (rec_eval_norm_fun (Size(Tree(await pool x2, await pool x3, await pool x4))))

in x5

| Plus(x, Zero) -> let x6 = (rec_eval_fun (x))

in let x7 = (rec_eval_norm_fun (Plus(x6, Zero)))

in x7

| Plus(x, S(y)) -> let x9 = async pool (fun _ -> (rec_eval_fun (y)))

in let x8 = async pool (fun _ -> (rec_eval_fun (x)))

in let x10 = (rec_eval_norm_fun (Plus(await pool x8, S(await pool x9))))

in x10

| Plus(x11 , x12) -> let x14 = async pool (fun _ -> (rec_eval_fun (x12)))

in let x13 = async pool (fun _ -> (rec_eval_fun (x11)))

in let x15 = (rec_eval_norm_fun (Plus(await pool x13 , await pool x14)))

in x15

| Size(x16) -> let x17 = (rec_eval_fun (x16))

in let x18 = (rec_eval_norm_fun (Size(x17)))

in x18

| S(x19) -> let x20 = (rec_eval_fun (x19))

in S(x20)

35

| Tree(x21 , x22 , x23) -> let x26 = async pool (fun _ -> (rec_eval_fun (x23)))

in let x25 = async pool (fun _ -> (rec_eval_fun (x22)))

in let x24 = async pool (fun _ -> (rec_eval_fun (x21)))

in Tree(await pool x24 , await pool x25 , await pool x26)

| Zero -> Zero

| Nil -> Nil

;;

References

[Aho et al., 1986] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., USA.

[Alarcón et al., 2011] Alarcón, B., Gutiérrez, R., Lucas, S., and Navarro-Marset, R.
(2011). Proving termination properties with mu-term. In Proc. AMAST ’10, pages
201–208.

[Alias et al., 2010] Alias, C., Darte, A., Feautrier, P., and Gonnord, L. (2010). Multi-
dimensional rankings, program termination, and complexity bounds of flowchart pro-
grams. In Proc. SAS ’10, pages 117–133.

[Alias et al., 2016] Alias, C., Fuhs, C., and Gonnord, L. (2016). Estimation of Parallel
Complexity with Rewriting Techniques. In Proc. WST ’16, pages 2:1–2:5.

[Arts and Giesl, 2000] Arts, T. and Giesl, J. (2000). Termination of term rewriting using
dependency pairs. Theoretical Computer Science, 236:133–178.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term rewriting and all
that. Cambridge University Press.

[Brockschmidt et al., 2012] Brockschmidt, M., Musiol, R., Otto, C., and Giesl, J. (2012).
Automated termination proofs for Java programs with cyclic data. In Proc. CAV ’12,
pages 105–122.

[Cohen et al., 1996] Cohen, A., Collard, J.-F., and Griebl, M. (1996). Data Flow Anal-
ysis of Recursive Structures. In Workshop on Compilers for Parallel Computers,
Aachen, Germany.

[Fernández et al., 2005] Fernández, M., Godoy, G., and Rubio, A. (2005). Orderings for
innermost termination. In Proc. RTA ’05, pages 17–31.

[Floyd, 1967] Floyd, R. (1967). Assigning meaning to programs. In Proc. MACS ’67,
pages 19–32.

[Fuhs et al., 2007] Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann,
R., and Zankl, H. (2007). SAT solving for termination analysis with polynomial
interpretations. In Proc. SAT ’07, pages 340–354.

36

[Fuhs et al., 2009] Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., and Falke, S.
(2009). Proving termination of integer term rewriting. In Proc. RTA ’09, pages 32–47.

[Giesl et al., 2017] Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F.,
Fuhs, C., Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swider-
ski, S., and Thiemann, R. (2017). Analyzing program termination and complexity
automatically with AProVE. Journal of Automated Reasoning, 58(1):3–31.

[Giesl et al., 2011] Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., and
Thiemann, R. (2011). Automated termination proofs for Haskell by term rewriting.
ACM Transactions on Programming Languages and Systems, 33(2):7:1–7:39.

[Giesl et al., 2012] Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., and Fuhs, C.
(2012). Symbolic evaluation graphs and term rewriting: A general methodology for
analyzing logic programs. In Proc. PPDP ’12, pages 1–12.

[Hirokawa and Moser, 2008] Hirokawa, N. and Moser, G. (2008). Automated complexity
analysis based on the dependency pair method. In Armando, A., Baumgartner, P.,
and Dowek, G., editors, Proc. IJCAR ’08, pages 364–379. Springer.

[Kannan and Hamilton, 2018] Kannan, V. and Hamilton, G. W. (2018). Functional
program transformation for parallelisation using skeletons. International Journal of
Parallel Programming, 46(1):152–172.

[Karp et al., 1967] Karp, R. M., Miller, R. E., and Winograd, S. (1967). The orga-
nization of computations for uniform recurrence equations. Journal of the ACM,
14(3):563–590.

[Korp et al., 2009] Korp, M., Sternagel, C., Zankl, H., and Middeldorp, A. (2009). Ty-
rolean Termination Tool 2. In Proc. RTA ’09, pages 295–304.

[Lankford, 1979] Lankford, D. S. (1979). On proving term rewriting systems are Noethe-
rian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA.

[Noschinski et al., 2013] Noschinski, L., Emmes, F., and Giesl, J. (2013). Analyzing
innermost runtime complexity of term rewriting by dependency pairs. Journal of
Automated Reasoning, 51(1):27–56.

[Otto et al., 2010] Otto, C., Brockschmidt, M., von Essen, C., and Giesl, J. (2010). Au-
tomated termination analysis of Java Bytecode by term rewriting. In Proc. RTA ’10,
pages 259–276.

[Ströder et al., 2017] Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C.,
Hensel, J., Schneider-Kamp, P., and Aschermann, C. (2017). Automatically prov-
ing termination and memory safety for programs with pointer arithmetic. Journal of
Automated Reasoning, 58(1):33–65.

37

[Vuillemin, 1974] Vuillemin, J. (1974). Correct and optimal implementations of recur-
sion in a simple programming language. Journal of Computer and System Sciences,
9(3):332–354.

	Introduction
	Instruction and data structures scheduling
	Term rewriting systems and termination
	Termination and scheduling
	Parallel evaluation of term rewriting systems
	A code generator for a parallel evaluator based on partial evaluation
	Prototype and first experimental results
	Conclusion and future work
	Full final generated code for tree size

