ADT4HPC:
Algebraic Data Types for High-Performance Computing

Thais Baudon

August 2, 2024

This first page is temporary.

Phd Director Ludovic Henrio (CNRS, Lyon)

Co-advisors Laure Gonnord (Univ. Grenoble Alpes, Valence), Gabriel Radanne (Inria, Lyon)
Reviewers Gabriele Keller (Univ. Utrecht, The Netherlands), Pierre-Evariste Dagand (CNRS, Paris)
Other Jury Members Sandrine Blazy (Univ. Rennes); Sylvain Boulmé (Univ. Grenoble Alpes).

Invited Jury Member Lennart Augusston, (Goteborg, Sweden).

Contents

II

Introduction
The Ribbit Language
Memory Layout Zoo
2.1 My first Ribbit: Red-Black Trees
2.2 A fine layout for a simple ADT: Zarith-likeintegers
2.3 Irregular memory layouts: arithmetic expressions
2.4 Recursive data constructors: simple and packed linked lists
2.5 Mangled primitives: RISC-V instructionset
2.6 Generic representations of ADTs in mainstream languages
2.7 Limits of Ribbit: WebKit-like NaN-boxing
2.8 Conclusion e
The Ribbitulus
31 Syntax e
32 Typingandvalidity
33 Semantics
34 Memotheory L
35 Conclusion L
Compiling Ribbit
Compilation of Pattern Matching
41 Problemstatement
42 Intermediate Representation: Memory Trees
4.3 From Memory Patterns To Memory Trees
44 Metatheory
45 Relatedwork L
46 Conclusion
Compilation of Valuexpressions
51 Motivating Examples L
52 Targetin Destination Passing Style
5.3 Pattern matching compilationinterface
5.4 First Naive Approaches for Valuexpressions
5.5 Compilation of Arbitrary Valuexpressions
5.6 Wrapping up: a complete compilation procedure for Ribbit
57 Metatheory
58 Conclusion

16
19
24
25
30
35
37

38
38
48
58
69
82

IIT The Ribbit Implementation

6 Ribbit compiler implementation
6.1 Running example: arithmeticexpressions
6.2 Intermediate forms and interpreters Lo o oo
6.3 Technical Features
6.4 Visualizing executiontraces e
6.5 Inmemoriam: thelegacy LLVM backend

7 Experimental evaluation of pattern matching compilation

8 Related Work
8.1 Language Approaches to Memory Layout Specification
8.2 Optimized Memory Representations

9 Conclusion and future work

165

167
167
168
173
174
175

178

180
180
181

183

Chapter 1

Introduction

Initially present only in functional languages such as OCaml and Haskell, Algebraic Data Types (ADTs)
have now become pervasive in mainstream languages, providing nice data abstractions and an elegant
way to express functions through pattern matching. Unfortunately, ADTs remain seldom used in low-
level programming. One reason is that their increased convenience comes at the cost of abstracting away
the exact memory layout of values. Yet high-performance ' applications often rely on highly optimized
representations of data in memory, which are hand-tuned by programmers to leverage very fine, low-
level characteristics. For instance, red-black trees in the Linux kernel are a performance-intensive data
structure for which it is crucial to minimize memory usage as much as possible. Their implementation
therefore relies on a clever bit-stealing technique exploiting unused alignment bits in pointers. Such
precise details are usually not exposed to programmers when it comes to ADT values. Even Rust, which
tries to optimize data layout, severely limits control over memory representation.

The goal of this thesis is to let programmers specify highly optimized memory layouts for inductive
data structures in a flexible and expressive way, while still enjoying high-level programming constructs
such as ADTs and pattern matching to manipulate this data.

To this end, we propose a language dubbed Ribbit > which combines a high-level language, consisting
of ADTs, pattern matching and basic manipulation of immutable values, with memory types specifying
the precise memory layout of each high-level type, providing full control over the memory representation
of values. We provide formal semantics of both (high-level and memory) languages which, together with
agreement criteria stating the relationship between an ADT and a suitable memory layout, let us reason
easily about values as they are represented in memory.

Compilation of high-level language constructs is heavily influenced by the memory representation of
data. Traditional pattern matching compilation approaches, which emit a decision tree from a matrix of
patterns, are geared towards a rather uniform data layout. Therefore, they are not suitable for compiling
Ribbit programs, for which data layout is arbitrarily complex and variable. We propose a new pattern
matching compilation approach based on memory trees which follows the specified memory type to
emit an efficient decision tree suited to manipulating values with intricate memory layouts.

Aside from pattern matching, the compilation of data constructors — which is a non-issue for
relatively simple memory layouts — becomes particularly challenging when data pieces are broken and
scattered in memory. Even simple accessors might require constructing new values. This is the case
for many low-level representations such as network packets, instruction sets, database data-structures,
or aggressively packed representations. We propose a compilation algorithm for the Ribbit language
which enables optimized compilation of any morphism between ADTs for arbitrary mangled memory
representations, provides full synthesis of bijections between memory representations of the same type,
and emits CFG-style programs with explicit memory allocation and full support for recursive types.

Our compilation algorithms are implemented in the Ribbit compiler prototype, and proven correct us-
ing the formal agreement criteria and semantics defined for Ribbit as a basis for establishing equivalence
between high-level, memory-level and target programs.

Hn this thesis, we assume a rather liberal interpretation of the term “High-Performance Computing”.
2Named after a metaphor for two key aspects of manipulating data in memory: knitting and frogging. For crochet enthusiasts,
frogging is the action of undoing the stitches: rip it, ripit, ribbit, ribbit. . .

The contents of this thesis are summarized below:

Chapter 2 presents a collection of real-world memory layouts for ADTs, and shows how to use the
Ribbit programming language to model them: by first declaring high-level types, then specifying
their underlying memory representation.

Chapter 3 presents the Ribbitulus, which formalizes Ribbit syntax and provides a simple type
system with formal criteria to define valid memory representations of high-level types. We define
a small-step semantics for both high-level and memory-level aspects of the language and exhibit
a bisimulation between the two.

Chapter 4 covers our pattern matching compilation approach for the Ribbit language, based on
memory trees, which compiles high-level patterns to layout-aware decision trees according to a
given memory type. We prove that our compilation algorithm is correct, i.e., that the emitted
decision tree accurately identifies which pattern matches a value solely from its memory repre-
sentation.

Chapter 5 provides a complete compilation approach for the full Ribbit language, which emits
code in a bespoke intermediate representation in destination-passing style. It handles all of the
delicate situations which may arise during compilation of a high-level language with custom
memory layouts, including implicit casts between different representations (so-called memory
isomorphisms *), and recursive code emission. These algorithms are also proven correct, by showing
that the target program’s behavior is simulated by that of the source program.

Chapter 6 describes some aspects of the Ribbit prototype compiler, which provides a practical
validation of our approach *. In particular, the mutually recursive nature of the compilation
algorithms manifesting memory isomorphisms makes their implementation especially delicate,
and this chapter also details the necessary memoization techniques.

Chapter 7 presents a preliminary experimental evaluation of our approach, with both static and
runtime measurements of the decision trees emitted by our pattern matching compilation algo-
rithm. It also demonstrates some of the performance impact of different memory representation
choices.

Chapter 8 explores related language-based approaches and other optimized memory representa-
tions.

Chapter 9 concludes with some future work ideas.

This thesis includes and subsumes the following publications and research reports:

International Conference Bit-Stealing Made Legal: Compilation for Custom Memory Representations

of Algebraic Data Types, International Conference on Functional Programming, 2023 (Baudon,
Radanne, and Gonnord 2023) — contains a limited version of the Ribbit language presented in
Chapter 2, part of the calculus from Chapter 3, the pattern matching compilation approach de-
scribed in Chapter 4, as well as its experimental evaluation covered in Chapter 7.

National Conference Knit&Frog: Pattern matching compilation for custom memory representations

(doctoral session), french conference AFADL, (Baudon, Radanne, and Gonnord 2022a) — contains
a preliminary version of Chapter 4.

Research reports Compiling Morphisms of Algebraic Data Types (Baudon, Radanne, and Gonnord

2024), to be presented at FProper2024 — contains a preliminary version of Chapter 5.

Tool Ribbit tool on Software Heritage (Baudon, Radanne, and Gonnord 2022b)

3Die-hard portmanteau enthusiasts may prefer the alternative term memorphism.
4 As well as most of the dot graphs appearing in this thesis.

Part1

The Ribbit Language

© ® N W R W N =

Chapter 2

Memory Layout Zoo

As a first introduction to Algebraic Data Types and their memory representations, this chapter is a
collection of exhibits showcasing a variety of real-world memory layouts for inductive data structures.
It also serves as a high-level tour of our Ribbit programming language, illustrating its syntax and
highlighting major features of its compiler.

2.1 My first Ribbit: Red-Black Trees

As our first exhibit, let us consider Red-Black Trees, a widely used inductive data structure. Its purpose
is to demonstrate the use of Algebraic Data Types, some memory representation tricks, and how Ribbit
allows to specify and compile them. We first describe their high-level type, then show various different
memory layouts using the Ribbit language.

2.1.1 Algebraic Data Types for inductive data structures

Red-Black Trees (Wikipedia 2024a) are a classic data structure from the family of search-trees whose
main idea is to maintain an invariant on nodes based on two colors. Exhibit 1 shows a high-level
implementation using Ribbit syntax. In Exhibit 1a, we first define the sum type Color, whose values
are the two constant constructors Red and Black. We then define Red-Black Trees (RBTs) through the
mutually recursive types Node for non-empty nodes, and RBT for trees themselves. A Node is a product
type containing a color, a value of the primitive type of 64-bit-wide integers, and its left and right children.
The type of trees RBT is a sum type with two cases: Empty and Node. This type enables the definition of
RBT values. For instance, the red-black tree depicted in Exhibit 1b corresponds to the following term:

Node({c: Black, v: 13,
1: Node({c: Red, v: 8,
1: Node({c: Black, v: 1,
1: Empty,
r: Node({c: Red, v: 6, 1: Empty, r: Empty})}),
r: Node({c: Black, v: 11, 1: Empty, r: Empty})}),
r: Node({c: Red, v: 17,
1: Node({c: Black, v: 15, 1: Empty, r: Empty}),
r: Node({c: Black, v: 25, 1: Empty, r: Empty})})})

(a) Type definitions for Red-Black Trees. (b) Example of Red-Black Tree.
// Colors for Red-Black Trees
enum Color { Red, Black }

// Nodes for Red-Black Trees

struct Node

{ c: Color, v: uéd, // color and value
1: RBT, r: RBT } // children

// Red-Black Trees
enum RBT { Empty, Node(Node) }

(c) Simple pattern matching: cardinal operation.
fn cardinal(x: RBT) —> uéd {
match x {
Empty => 0,
Node({c:_, v:
}
3

1, r}) => 1 + cardinal(l) + cardinal(r)

(d) Less simple pattern matching: rebalancing operation.
fn balance(x: Node) -> RBT {
match (x.c, x.v, x.1, x.r) {

Black, z, Node({c: Red, v: vy, 1: Node({c: Red, v: x, 1: a, r: b}), r: c}), d

| Black, z, Node({c: Red, v: x, 1: a, r: Node({c: Red, v: vy, L: b, r: c¢})}), d

| Black, x, a, Node({c: Red, v: z, 1: Node({c: Red, v: vy, 1: b, r: c}), r: d})

| Black, x, a, Node({c: Red, v: vy, 1: b, r: Node({c: Red, v: z, 1: c, r: d})})

=> Node({c: Red, v: y, 1: Node({c:Black,v:x,l:a,r:b}), r:Node({c:Black,v:z,l:c,r:d})}),
_ => Node(x)

}
}

(e) Toplevel Ribbit program manipulating RBTs.
let tree : RBT = Node({c: Black, v: 42, 1: Empty, r: Empty});
let card : u6ld = cardinal(tree);
let node : Node = {c: Red, v: card, l: tree, r: tree.r};
balance(node)

Exhibit 1: Algebraic Data Types and pattern matching for Red-Black Trees in ribbit.

Now that data types have been defined, we can write expressions and functions manipulating their
inhabitants. A key language construct for manipulating ADT values is pattern matching. For instance,
the cardinal function defined in Exhibit 1c takes a tree and returns its total number of nodes using
pattern matching. In Ribbit, pattern matching is introduced by the keyword match and inspects a single
value — in cardinal, it is x of type RBT. Pattern matching branches are enumerated in a list of the form
p => e where pis a pattern and e an expression to evaluate when the value under scrutiny matches p. If its
argument is of the same “shape” as the left-hand side of the rule, then the expression of the right-hand
side (body) is evaluated. Moreover, patterns can be nested, and the right-hand-side expression can use
named subterms. In our example, Empty yields a cardinal of 6 and Node({c, v, 1, r}) yieldsa cardinal
of 1+cardinal(1)+cardinal(r).

Red-Black Trees famously rely on a fairly complex balancing step, which redistributes colors depend-
ing on the internal invariant of the data structure. Thanks to nested patterns and “or”-patterns, this step
can be expressed very compactly using the pattern matching shown in Exhibit 1d. This pattern matching
inspects the four record fields of a Node value x: its color x.c, value x.v and left and right subtrees x.1
and x.r. The pattern of its second branch is a wildcard _ which matches all values; it ensures that the
pattern matching expression is exhaustive, i.e., that every possible value matches at least one pattern.

Such complex functions are expressible in a concise and safe way thanks to pattern matching; without
this language construct, writing rebalancing code would be a clumsy and tedious task.

Finally, Ribbit provides basic features of a first-order functional language manipulating immutable
data, namely let-bindings and function calls. Exhibit Te shows a toplevel program which creates an RBT
value, computes its cardinal and stores it in an intermediate ué4 value, builds a new Node value using
the previous tree as its left child, its cardinal as its integer value and its right child as its own right child,
and finally returns the balanced version of this RBT.

2.1.2 A naive memory representation for RBTs

Like most self-balancing trees, RBTs are a performance-intensive data structure. In a naive implementa-
tion, indirections in the memory representation limit locality, result in slow memory loads, cache misses,
and slowdowns of several orders of magnitude. To achieve best possible performance, it is critical to pay
attention to how values of our types are represented in the actual memory of the considered machine.
We would nevertheless prefer to tweak the memory representation of data without mangling its high-
level type, which provides nice data constructors and accessors that are close to intended type semantics.
The Ribbit language provides detailed annotations called memory types to precisely describe the memory
layout of each ADT. This memory layout specification language lets us capture a wide variety of popular
representation techniques including bit-stealing, unboxing, aggressive struct packing, etc.

As our first foray into representation tweaking, we define a naive memory layout for RBTs. For
each of our three ADTs Color, Node and RBT, we specify a memory type introduced by the keyword
represented as. Let us first describe the memory type associated with Color in Exhibit 2.

(a) Graphical representation of memory contents (b) Memory layout specification in ribbit
enum Color { Red, Black } represented as
Red Black split . {
| © from Red => (0)<6uU>
0 i | 1 from Black => (1)<6u>
e pits 7 edpits 7 }

Exhibit 2: A naive memory layout for Color.

The Color type is a sum type with two constructors Red and Black. To manifest the distinction
between these constructors in memory, Ribbit provides the notion of splits. Split types of the form
split mpath {...} indicate a choice between different memory layouts depending on the immediate
stored at position mpath within the memory value. The memory position mpath is known as the split
discriminant position, and consists of a sequence of operations such as pointer dereferences or memory
accesses. In Color, the empty split discriminant position “.” inspects the entire memory value. The
split then contains a list of branches, each containing an integer value dubbed its discriminant value and
a pattern dubbed its provenance on its left-hand side, and a memory type on its right-hand side. Each
branch indicates that high-level values which match its provenance (introduced by the keyword from)
must be represented in memory using the layout on its right-hand side, which contains the specified
discriminant value at the discriminant position. Here, we specify that Red is represented as the constant
0 encoded on 64 bits, denoted (0)<64>, and that Black is represented as the constant 1 encoded on 64 bits,
denoted (1)<6u>. This choice of layout is illustrated in Exhibit 2a using a graphical language consisting
of sized boxes representing memory words. We will reuse this graphical language throughout this
chapter.

(a) Graphical representation of memory contents corresponding to {{€], [/ I, [F]}

c & &
Y64 bits_ 64 bits ' 64/boits '~ 64 bits '
| r
: 128 bits ? : 128 bits ’

(b) Memory layout specification in Ribbit
struct Node {c:Color, v:uéld, 1:RBT, r:RBT} represented as
{{ (.c as Color), (.v as ue6d), &<64>((.1 as RBT)), &<6u4>((.r as RBT)) }}

Exhibit 3: A naive memory layout for Node.

Let us now describe the memory layout used to represent Node values in Exhibit 3. The ADT Node
is a product type which aggregates four fields together. We must represent each of these fields within
the memory representation of their parent Node value. To do so, Ribbit provides the notion of fragments.
Fragment types of the form (path as MemTy) indicate that the subterm at position path within the high-
level value should be represented using the memory type MemTy. In Node, we represent the four record
fields in a struct as follows:

* The color field corresponding to the subterm .c is encoded using the memory layout previously
defined for Color and stored in the first field of the struct with the fragment (.c as Color).

* The integer value corresponding to the subterm .v is encoded as a primitive 64-bit integer with
the memory type uéu. The resulting fragment (.v as uéu) is placed in the second field of the
struct. Each high-level primitive type has a memory counterpart which encodes its values using
a standard encoding for the considered target system and architecture.

e For the left and right subtrees, corresponding to the subterms .1 and .r respectively, we will
use the memory layout defined for their type RBT. As we will see, this memory layout yields
128-bit wide memory values. In order to keep each struct field 64-bit wide, we will store both of
these fragments behind a 64-bit wide pointer denoted &<64>((.1 as RBT)) for the left subtree and
&<64>((.r as RBT)) for the right subtree.

Note that Ribbit struct types do not include any implicit padding, unlike for instance C structs. This
behavior is similar to “packed” struct types in LLVM IR, or to the #[repr(packed)] annotation in Rust.
To ensure a given alignment for struct fields, the user can add explicit padding with uninitialized word
types of a given size 1 denoted _<1>. As seen in Exhibit 3a, our graphical language represents pointers
as sized words containing address bits denoted & and “pointing” to the memory contents stored at this
address.

(a) Graphical representation of memory contents

Empty Node (n)
0 1 &
Y64 bits ' 64 bifs 64 bits ' 64 pits
N
s 256 bifs ’

(b) Memory layout specification in ribbit
enum RBT { Empty, Node(Node) } represented as
split .0 {
| © from Empty => {{ (0)<6uU>, _<6u> }}
| 1 from Node => {{ (1)<6u4>, &<64>((.Node as Node)) }}
}

Exhibit 4: A naive memory layout for RBT.

We can now define the memory layout for the RBT type shown in Exhibit 4. Every tree is represented
in memory as a struct consisting of two 64-bit wide fields. The first field contains a tag which indicates
whether the represented tree is Empty or a Node — we will therefore use its position .0 as a split discrim-
inant. The second field is left uninitialized for Empty trees; for non-empty trees Node({c, v, 1, r}),it
contains a 64-bit pointer to the memory representation of the root node’s contents using the previously
defined Node memory layout. Note that Ribbit allows recursive memory types: here, Node and RBT are
two mutually recursive ADTs represented using two mutually recursive memory layouts.

Memory types allow us to specify the memory layout of each value down to a bit-precise level. In
order to properly manipulate data represented using such custom memory layouts, the Ribbit compiler
follows the structure of each memory type to emit appropriate target code. Two aspects of our input
language require particular attention due to this variability in memory representation: pattern matching
and data constructors. On our example, compiling the pattern matching in the cardinal function results
in the decision tree depicted in Fig. 2.1. It consists of a single switch node which inspects the discriminant
position .0 of the RBT memory type to determine whether a given value x represents the Empty tree or a

non-empty Node.
0

switch(x.0)

Figure 2.1: A decision tree for the pattern matching in the cardinal function.

As for the toplevel expression from Exhibit Te, Ribbit compiles it to the low-level pseudo-code
shown in Fig. 2.2. As before, this target code follows the specified memory layouts: for instance, Ribbit
represents the high-level value tree of type RBT by building a memory value which closely follows
the structure of its associated memory layout. Later on, to build the memory representation of the
node value, whose right child is the previous tree value’s right child, the Tree memory type is used to
determine that the subterm tree.rislocated at position .1.*.3 (i.e., the fourth field of the struct pointed
to by the second field of the root struct) within the memory representation of tree.

10

let tree = {{ (1)<6u>, &<6u>({{ // Node
()<64>, // c: Black
(u2)<e6u>, // v: 42
&<6u>({{ (0)<64>, _<6u4> }}), // 1: Empty
&<6u>({{ (0)<64>, _<64> }}) // r: Empty
[EDREH
let card = cardinal(tree);
let node = {{ (1)<6u>, &<64>({{ // Node
(0)<6u>, // c: Red
(card)<6l>, // v: card
tree, // 1: tree
tree.1.%.3 // r: tree.r
I,

return balance(node);

Figure 2.2: Target code emitted by Ribbit for the source program of Exhibit le following the memory
layouts defined in Exhibits 2 to 4.

Naturally, compiling high-level programs to layout-aware target code is only possible when each
memory type adequately represents its associated ADT: we say that a high-level type must agree with
its memory layout. Here, the memory type specified for RBT in Exhibit 4b is valid and agrees with the RBT
ADT because:

¢ All subterms of the high-level type RBT (here, .Node) are properly accounted for in the memory
type with a fragment (here, (.Node as Node)).

¢ All constructors of the high-level type (here, Empty and Node) are properly accounted for in the
memory type with a split branch.

e Split branches are all distinguishable from each other: their left-hand sides contain different values
(here, 0 and 1), corresponding to distinct constructors (here, Empty and Node).

The formalization of these agreement criteria is also a key contribution of this thesis, which we will detail
in Section 3.2.

2.1.3 OCaml-like representation of RBTs

While correct, the naive memory layout defined in the previous section is not particularly efficient:
every tree takes up 128 bits of memory space, even in the Nil case; in addition, every node introduces
a layer of indirection, with disastrous consequences on performance. Such outrageous memory layouts
are unlikely to be found in real-world languages, even in garbage-collected high-level languages where
performance is not necessarily the main focus.

In this section, we take a first look at such a language, and show that Ribbit is expressive enough to
model its internal memory representation. The memory types defined in Exhibit 5 represent RBTs in
memory similarly to the OCaml runtime (Minsky and Madhavapeddy 2021).

11

(a) Graphical representation of memory values

Empty o |1
Y63 bits” 16

Node ({lc. § I. 'r}) &/—O\ 0 < 1-ll | i

iy

S
)

Y63 bifs’ 1b Y64 bifs ' 63 bits' 1663 bits' 1b° 64 bits ' 64 bits

(b) Ribbit specification with memory types
enum Color { Red, Black } represented as
/* Composite word with two specified bit ranges */
_<6u4> with [0:1] : (1)<1>
with [1:63] : split . {
| © from Red => (0)<63>
| 1 from Black => (1)<63>
}

struct Node {c:Color, v:u63, L:RBT, r:RBT} represented as
&<6u>({{
(0)<6U>,
(.c as Color),
(.v as _<64> with [0:1] : (1)<1> with [1:63] : u63),
(.1 as RBT),
(.r as RBT)
V) with [0:1] : (0)<1>

enum RBT { Empty, Node(Node) } represented as
split .[0:1] {
| 1 from Empty =>
_<64> with [0:1] : (1)<1> with [1:63] : (0)<63>
| © from Node(_) =>
&<6u>({{ (0)<6U>,
(.Node.c as Color),
(.Node.v as _<64> with [0:1]:(1)<1> with [1:63]:u63),
(.Node.1l as RBT), (.Node.r as RBT)
}3) with [0:1] : (0)<1>

Exhibit 5: The OCaml layout for RBTs. Ribbit is also able to automatically generate these memory types from
its generic OCaml representation scheme.

In OCaml, all types are represented uniformly, for instance as 64-bit words on 64-bit architectures.
This uniformity allows for an easier implementation of polymorphism, and keeps the garbage collector
happy. The lowest bit of every memory value is used as a fag to distinguish between unboxed values (i.e.,
not stored in a pointer or other container) and pointers; standard immediates are therefore restricted to
63 bits rather than 64. Since pointers are word-aligned, their lowest bit is always zero; conversely, we tag
every immediate value by setting its lowest bit to one. To avoid needing to box the integer value of each
RBT node, we have slightly altered the high-level type so that nodes carry 63-bit integers of type u63.

This tagging scheme requires us to separately specify the contents of distinct bit ranges within
the same memory word. To express such bit-precise memory layouts, Ribbit provides the notion of
composite words, denoted MemTy with [o:1]:MemTy' with Such composite words consist of a base
memory type MemTy onto which we add an arbitrary number of bit range specifications. Each bit range
specification with [0:1]:MemTy' indicates that the range of 1 bits starting at offset o within MemTy follows
the memory layout MemTy'. Of course, this is only valid if these bits are not already used by the

12

base layout MemTy. For instance, the memory representation of the Empty constructor of RBT is a 64-bit
word whose lowest bit is set to 1 and whose remaining 63 higher bits encode the constant 6, denoted
_<64> with [0:1]:(1)<1> with [1:63]:(0)<63>

In OCaml, unit constructors are represented as tagged immediates corresponding to their unique
identifier among unit constructors of the same type. For instance, Red and Black are represented as
_<6U4> with [0:1]:(1)<1> with [1:63]:(0)<63> and _<64> with [0:1]:(1)<1> with [1:63]:(1)<63>
respectively. Constructors with arguments, on the other hand, are represented as pointers to a struct
whose first field contains their unique identifier among non-unit constructors and whose other fields
encode their arguments. For instance, non-empty trees of the form Node({c, v, 1, r}) arerepresented
as a pointer to a struct whose first field encodes 6 on 64 bits and whose next four fields encode c, v, 1
and r. This adds up to a total of six 64-bit memory words, including the pointer.

Ribbit also provides generic memory representations — such as the OCaml representation — which auto-
matically generate a memory type from a given ADT according to a generic scheme. For our example,
we could have specified the Color, Node and RBT memory layouts of Exhibit 5 with represented by caml
rather than by writing specific memory types by hand. We will detail the available generic representa-
tions in Section 2.6.

2.1.4 Linux-like custom memory layout for RBTs

The OCaml layout removes a layer of indirection compared to the naive representation, but is hampered
by its uniform nature. For instance, a full word is used to store the color, even though it technically
requires only one bit. Let us look at a highly optimized representation of RBTs originally found in the
Linux kernel to model device trees (Torvalds 2023). The representation is hand-tuned to take as little
space as possible by embedding the color in pointer alignment bits. This optimization is known as
bit-stealing. The original type definition in C from the x86-64 Linux kernel source version 6.9.2-gentoo is
shown in Exhibit 6. The general red-black tree type (struct rb_root) does notinclude the values (in our
case, these would be 64-bit integers) carried by each node: instead, users must define their own structs
containing an rb_root and the element type of their choice. The type of RBT nodes struct rb_node is
a struct containing three 64-bit fields. Its two last fields are pointers to the left and right subtrees. Its
first field __rb_parent_color is more unusual: it is a 64-bit word containing both a pointer to the parent
node (or NULL) and the color of the current node stored in its lowest bit. As we can see in Exhibit 6,
many accessors which would be trivial to implement on a uniform memory representation such as that
of OCaml require hand-written code due to the extremely irregular memory layout. Note in particular
the parent pointer access, which requires some careful bit masking before dereferencing.

struct rb_node {
unsigned long __rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;
} __attribute__((aligned(sizeof(long))));
/* The alignment might seem pointless, but allegedly CRIS needs it */

struct rb_root {
struct rb_node *rb_node;

H

Exhibit 6: Type definition — excerpt from /include/linux/rbtree_types.h (Torvalds 2023).

#define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))

Exhibit 6: RBT constructors — excerpt from /include/linux/rbtree.h (Torvalds 2023).

13

https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/include/linux/rbtree_types.h&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c
https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/include/linux/rbtree.h&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c

#define
#define

#define

#define
#define
#define
#define
#define
#define

Exhibit 6: RBT constructors — excerpt from /include/linux/rbtree_augmented.h (Torvalds 2023).

Our goal is now to capture this intricate memory layout in the Ribbit language, without having to
alter the high-level types Color, Node and RBT. Due to the limited scope of the high-level portion of Ribbit
—in particular, we do not handle mutable values and restrict ourselves to ADTs without back-references
to parent values — we eschew the parent pointer of the original version. Instead, we model a possible
version of such an intricate memory layout for immutable data. We combine the clever bit-stealing of
the original memory layout with OCaml-style pointer tagging, using a split with composite words to
model the multi-purpose 64 bits of __rb_parent_color. We also hard-code a 64-bit integer element type
which we store in a struct alongside left and right child trees. The resulting memory layout is shown in

RB_RED
RB_BLACK 1

__rb_parent(pc)

__rb_color(pc)
__rb_is_black(pc)
__rb_is_red(pc)
rb_color(rb)
rb_is_red(rb)
rb_is_black(rb)

Exhibit 7.

Even though we have specified a new, complex memory layout for red-black trees, the original

Node ({'c|. M.

split . {

Empty 1

Led | & [€0

((struct rb_node *)(pc & ~3))

((pc) & 1)
__rb_color(pc)
(!__rb_color(pc))

__rb_color((rb)->__rb_parent_color)

__rb_is_red((rb)->__rb_parent_color)

__rb_is_black((rb)->__rb_parent_color)

(a) Graphical representation of memory values

Y63 bifs’ 1b

32 birs 1816

(b) Ribbit specification with memory types
enum Color { Red, Black } represented as

| © from Red => (0)<1>
| 1 from Black => (1)<1>

}

struct Node { c: Color, v:

r

3

A)

64 bits

ps
[}

64 bits

S
[}

uéd, 1: RBT, r: RBT } represented as

64 bits *

&<64>({{ (.Node.v as uéd), (.Node.l as RBT), (.Node.r as RBT) }})

with [1:1] :

(.Node.c as Color)

enum RBT { Empty, Node(Node) } represented as

split .[0:1] {
| 1 from Empty => _<6uU4> with [0:1]

| © from Node =>

&<6u>({{ (.Node.v as u6l4), (.Node.l as RBT), (.Node.r as RBT) }})

with [0:1] : (.Node.c as Color)

Exhibit 7: The Linux memory layout for red-black trees.

: (0)<1> with [1:1]

: (1)<1>

https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/include/linux/rbtree_augmented.h&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

ADTs Color, Node and RBT are unchanged. As such, the rest of the program shown in Exhibit 1 is
still valid and will work unmodified. A similar change of representation in another context would
often require a significant code rewrite. In particular, writing low-level data manipulation code for
an optimized memory representation is rather painful and error-prone, requiring delicate handling
of memory contents with fine-grained operations for every data access. For instance, the original C
code manipulating red-black trees in the Linux kernel was shown in Exhibit 6 for a selection of simple
accessors. In Exhibit 8, we show one simple case of the rebalancing operation defined in Exhibit 1d. All
case analysis is implemented by hand using masks and manual dereferencing for every manipulation of
the corresponding data. On top of being tedious and error-prone, this also obscures program semantics
compared to pattern matching.

gparent = rb_red_parent(parent);

tmp = gparent->rb_right;

if (parent != tmp) { /* parent == gparent->rb_left */
if (tmp && rb_is_red(tmp)) {
/*

* Case 1 - node's uncle is red (color flips).

* However, since g's parent might be red, and
* 4) does not allow this, we need to recurse
* at g.
*/
rb_set_parent_color(tmp, gparent, RB_BLACK);
rb_set_parent_color(parent, gparent, RB_BLACK);
node = gparent;
parent = rb_parent(node);
rb_set_parent_color(node, parent, RB_RED);
continue;

Exhibit 8: One case of the rebalancing operation — excerpt from /lib/rbtree.c (Torvalds 2023).

Ribbit spares the user the tedious task of writing such low-level code by hand thanks to its compiler,
which automatically emits target code taking into account the specific memory layout of each piece of
data. For instance, given the memory layouts specified in Exhibit 7 and the balance function defined in
Exhibit 1d, the Ribbit pattern matching compiler emits the decision tree shown in Fig. 2.3.

Figure 2.3: Decision tree emitted by the Ribbit compiler for the pattern matching in the balance function
with the Linux-like RBT memory layout.

Decision trees are a common target for pattern matching compilation. Since this pattern matching is

15

https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/lib/rbtree.c&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c

at the core of a performance-sensitive data structure, we naturally want it to be as efficient as possible.
Many pattern matching implementations come with clever techniques to output optimized decision
trees (Kosarev, Lozov, and Boulytchev 2020; Maranget 2008; Sestoft 1996). Unfortunately, these are
designed for terms that directly reflect the structure of their algebraic data types. In the context
of Ribbit, a decision tree consists of switch nodes which inspect locations in memory determined by
the specified memory layout, and of leaves (shown in light green) which return the identifier of the
pattern corresponding to the considered memory contents. For instance, the root node of the decision
tree in Fig. 2.3 is a switch on the memory location x.~[0:2].*.2.[0:1], which indicates whether the
right subtree of x is Empty or a Node. It first masks off the lowest bits (containing the tag and color),
dereferences the underlying pointer, accesses the second struct field to get the representation of x.1,
and finally extracts its lowest bit which corresponds to its tag. The design of new algorithms to compile
pattern matching in the presence of memory types is a second contribution of this thesis, which will be
described in Chapter 4.

2.2 A fine layout for a simple ADT: Zarith-like integers

While complex inductive structures such as red-black trees are an important use case of ADTs and
pattern matching, some simpler data types also benefit from these tools and from custom memory
layouts. We now dive deeper into Ribbit’s compilation process using such an example: Zarith (Leroy
and Miné 2010), an OCaml library for arbitrary-precision integers. To speed up computations, integers
in Zarith are either “small”, represented as unboxed OCaml integers and using usual instructions, or
“large”, stored on the heap and manipulated using the GMP Bignum library. The choice of memory
layout made in Zarith is not expressible in OCaml. Instead, it is implemented using unsafe operations
via the C foreign function interface (FFI). Exhibit 9 shows an excerpt of the Zarith C implementation,
including the conversion function ml_z_of_nativeint.

16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

/*

A z object x can be:

- either an ocaml int

- or a block with abstract or custom tag and containing:
. a 1 value header containing the sign Z_SIGN(x) and the size Z_SIZE(x)
. Z_SIZE(x) mp_limb_t

Invariant:

- 1f the number fits in an int, it is stored in an int, not a block
- if the number is stored in a block, then Z_SIZE(x) >= 1 and

the most significant limb Z_LIMB(x)[Z_SIZE(x)] is not 0

*/

/* a sign is always denoted as 0 (+) or Z_SIGN_MASK (-) */
#ifdef ARCH_SIXTYFOUR

#define Z_SIGN_MASK 0x8000000000000000

#define Z_SIZE_MASK OxT7fffffffffffffff

#else

#define Z_SIGN_MASK 0x80000000

#define Z_SIZE_MASK OxTfffffff

#endif

#1f Z_CUSTOM_BLOCK

#define Z_HEAD(x) (*((value*)Data_custom_val((x))))
#define Z_LIMB(x) ((mp_limb_t*)Data_custom_val((x)) + 1)
#else

#define Z_HEAD(x) (Field((x),0))

#define Z_LIMB(x) ((mp_limb_t*)&(Field((x),1)))

#endif

#define Z_SIGN(x) (Z_HEAD((x)) & Z_SIGN_MASK)

#define Z_SIZE(x) (Z_HEAD((x)) & Z_SIZE_MASK)

/* oo o*/

CAMLprim value ml_z_of_nativeint(value v)
{
intnat x;
value r;
Z_MARK_OP;
x = Nativeint_val(v);
#1f Z_USE_NATINT
if (Z_FITS_INT(x)) return Val_long(x);
#endif
Z_MARK_SLOW;
r = ml_z_alloc(1);
if (x > 0) { Z_HEAD(r) = 1; Z_LIMB(r)[0] = x; 1}
else if (x < 0) { Z_HEAD(r) = 1 | Z_SIGN_MASK; Z_LIMB(r)[0] = -x; }
else Z_HEAD(r) = 0;
Z_CHECK(r);
return r;

Exhibit 9: Zarith's C side — excerpt from caml_z.c (Leroy and Miné 2010).

We can readily describe the memory layout of Zarith integers in Ribbit. In Exhibit 10, we define the
type zint of Zarith-like integers and its memory layout following the previous specification. As Ribbit
does not interface with external libraries (yet), we model the GMP Bignum integer type with 128-bit

primitive integers 1128.

17

https://archive.softwareheritage.org/browse/content/sha1_git:851875a46616cbb36ed51659ef7be143539c0fa5/?origin_url=https://github.com/ocaml/Zarith&path=56fa3bba77ee6c8a40b4230eba576600641a4db1/caml_z.c&revision=e67bccbe69362866d2ce182bb4ba8a1a458cd387&snapshot=3f57262eeea9a011da7b93770318fc6411728b6a&visit_type=git

(a) Graphical representation of memory contents (b) Implementation in Ribbit
enum Zint { Small(ié3), Large(il28), 1}
Small (n) Large (n) represented as
split .[0:1] { // inspect the lowest bit
[1 from Small(_) =>

n |1 & |0 _<6U> with [1:63]:(.Small as i63)
\63 b”sl\lr \63 W\lr | O from Large(_) T>
&<64>(.Large as il128)
}
n
< 128 bits 7 struct Zpair(Zint, Zint); represented as

{{ (.0 as zint), (.1 as Zint)

¢)

Al

iy
A) 4

64 bits 64 bits

Exhibit 10: Memory layouts for Zarith-like integers and their pairs.

A Zint value is represented in the Small case as a 64-bit word with its lowest bit set to 1, and the
higher 63-bits encoding the actual integer. The Large case is represented as a 64-bit pointer to a 128-bit
word encoding its value, with the lowest bit set to 6 to distinguish it from the Small case. As before,
we use fragments to specify the memory representation of the integer subterm in both branches. Note
that we did not explicitly specify the discriminant value in the split’s branches. Ribbit is indeed able
to infer it from the split’s discriminant position . [0:1] and from the constant (0 or 1) associated with
each branch. It will automatically add the bit range specification with [0:1]:(1)<1> to the Small(_)
branch type and with [0:1]:(0)<1> to the Large(_) branch type. We also define the ADT Zpair, which
is a product type grouping two Zint values together. Its memory layout simply represents it as a struct
containing both of its fields’ representations.

Let us now focus on how Ribbit compiles data manipulation code according to this Zarith-like
memory layout. In Fig. 2.4, we define a function leq comparing the two fields of a Zpair value. Using
pattern matching, we determine the head constructors of these two zZint values. For this example, let
us assume that primitive operations i63.<= and i128.<= are available to compare raw 63-bit and 128-bit
integers respectively. If both head constructors are identical, we simply compare their identically-sized
integer values using the appropriate comparison operator. Otherwise, we must extend the Small field’s
integer value to 128 bits in order to compare it with the Large field’s value. We denote this primitive
cast operation with (i128)(n).

fn leq(p : Zpair) —> Bool {
match p {
(Small(n1), Small(n2)) => nl i63.<= n2,
(Large(nl), Large(n2)) => nl il128.<= n2,
(Small(nl), Large(n2)) => (i128)(nl) il128.<= n2,
(Large(nl), Small(n2)) => nl i128.<= (i128)(n2)

Figure 2.4: The leq function on Zarith-like integer pairs.

To compile the leq function, we must emit target code which performs the following tasks:

1. inspect memory contents to determine the head constructor of both Zint fields;

2. extract the raw integer values from both fields;

18

3. perform the operation corresponding to the right-hand side of the matched pattern.

The Ribbit compiler automatically emits low-level code carrying out these tasks, using the specified
memory type to determine the precise location of each piece of data. Its output is shown in Fig. 2.5.
Its general structure is that of a decision tree inspecting each field’s discriminant value, corresponding
to the pattern matching on p. Its leaves contain instructions corresponding to the expression on each
pattern’s right-hand side. In all four cases, we must extract both fields’ raw integer values from their
respective memory locations before comparing them.

(}et nl = p.0.[1563] n1 163. < né:
2= P

let n [1:63]
itch(p.1.[0:1]) !
switch(p.1.[0: let n1 = p.0.[1:63] . .
; 0 let n2 = p.1.% (i128)(n1) 1128.< n2
(%witch(p.e.[0:1]) .
let n1 = p.0.% . . j)
1 n1 1128. < (1128)(n2
switch(p.1.[0:11) ; let n2 = p.1.[1:63] ()(n2)
let N1 = p.0.% .
(iet n2 = p.1.% n 128, < n%j

Figure 2.5: Output of the Ribbit compiler for the leq function.

2.3 Irregular memory layouts: arithmetic expressions

All memory layouts we have seen so far were regular, in that the hierarchy of splits and fragments closely
followed that of the represented ADT. Even in complex layouts such as the Linux-like layout for red-
black trees, each sum type constructor was represented by exactly one split branch and each product
type field by exactly one fragment. In this section, we introduce irregular layouts which rearrange
these components in new ways. As we will see, this irregularity impacts data manipulation code and
compilation.

Consider the type ExpAST of simple arithmetic expressions on 32-bit integers defined in Exhibit 11.
Such an expression is either a variable name Var(str) with the string str modeled as a 512-bit integer,
a 32-bit integer constant Int(n), or a binary operation Bin(op, el, e2) where op is either Plus or Mult.
We specify a naive memory layout reminiscent of abstract syntax trees for the ExpAST ADT. First off, Op
values are represented on 8 bits similar to a C enum. Every expression is represented on 64 bits, using
the two lowest bits as a split discriminant to distinguish between the three possible head constructors
Var, Int and Bin. Assuming a 64-bit architecture with word-aligned machine pointers, the two lowest
bits of pointers are indeed unused, allowing us to use them to store the split discriminant in the var
and Bin cases. We store the 32-bit integer value of an Int expression into the 32 highest bits of its 64-bit
word. Var expressions are simply represented as a pointer to the pseudo-string (i512) argument. Finally,
we represent a Bin expression as a pointer to a struct containing the representations of its operation
identifier and of its two operands. In order to maintain 64-bit alignment, we explicitly pad the first field
with 32 unspecified bits _<32>.

19

(a) Graphical representation of memory contents

Bin(op). et [€2D &/0\“’ o [

“62 bits’ 2 86 56b ' 64 bits ' 64 bifs

Int(n) | " 1
32 bifs30 7

YA

Var (str) & 2\) str
“62 bits' 2

R

s
A

512 bits
(b) Specification in Ribbit

type String = i512; represented as i512
enum Op { Plus, Mult } represented as
split . {

| © from Plus => (0)<8>

| 1 from Mult => (1)<8>
}
enum ExpAST { Var(String), Int(i32), Bin(Op, ExpAST, ExpAST) } represented as
split .[0:2] {

| © from Bin(_) =>

&<6u>({{ (.Bin.0 as Op), _<56>, (.Bin.1l as ExpAST), (.Bin.2 as ExpAST) }})

| 1 from Int() => _<64> with [32:32]:(.I as i32)

| 2 from Var(_) => &<64>((.V as String))
}

Exhibit 11: Arithmetic expressions and their AST-like memory representation.

Even though the ExpAST layout is correct, it is quite wasteful. For instance, consider the expression

Bin (Plus , Int(42) , -). We currently represent it as a pointer to a struct whose fields take
up a total of 192 bits, pictured below.

0| 2| |1
8 Y 56b 7 ‘32b"30b 7 V62 bits” ¥ ° 512 bifs ’

To save space, we could inline the 32-bit integer value into the unused space next to the Op value. By
reducing the remaining padding to 24 bits, we would get a 128-bit-wide struct as shown below.

Y32b” V62 bits 512 bits

More generally, Bin expressions with at least one Int operand can be compressed to save memory
by unboxing their integer values. We define this optimized memory layout ExpOpt in Exhibit 12. The
ADT modeling arithmetic expressions and its auxiliary types String and Op are unchanged from the
previous type ExpAST. The memory representations of standalone Int terms, of Var terms and of Plus

20

expressions with no integer operands are also unchanged. Vertical bars | in split provenances denote
“or”-patterns — for instance, Bin(_) | Var(_) matches Bin and Var values.

(a) Graphical representation of memory contents for the new optimized Plus case

e, . [B

Y62 bits’ 7 8624b°32b" © 64 bits '
Bin(O' e, In‘r(.)) 8(/—3\0 1-1 e
Y62 bits” 7 8624H°32b" " 64 bits *

(b) Specification in Ribbit
type String = ib512; represented as i512
enum Op { Plus, Mult } represented as
split . { 0 from Plus => (0)<8> | 1 from Mult => (1)<8> }

enum ExpOpt { Var(String), Int(i32), Plus(ExpOpt, ExpOpt) } represented as
split .[0:2] {
| © from Bin(_, Bin(_)|Var(_), Bin(_)|var()) =>
&<6uU>({{ (.Bin.0 as Op), _<56>, (.Bin.1 as ExpOpt), (.Bin.2 as ExpOpt) }})
| 1 from Int(.) =>
_<64> with [32:32] : (.Int as i32)
| 2 from Var() =>
&<6U>((.Var as String))
| 3 from Bin(_, Int(),) | Bin(_, _, Int(l)) =>
&<6u>(split .1 {
| © from Bin(_, Int(l),) =>
{{ (.Bin.0 as 0p), (©)<24>, (.Bin.0.Int as i32), (.Bin.1 as ExpOpt) }}
| 1 from Bin(_, Bin(_)|var(.), Int(.)) =>
{{ (.Bin.0 as 0Op), (1)<2u>, (.Bin.1.Int as i32), (.Bin.0 as ExpOpt) }}
3

Exhibit 12: Optimized memory layout for arithmetic expressions.

To model binary expressions with inlined integer operands, we add a new branch to the toplevel split
with the previously unassigned discriminant value 3. These expressions are represented as a pointer
(whose two lowest bits are set to 3) to a struct containing their Op field on 8 bits as before, followed by
a 24-bit tag determining whether the integer operand appears in first or second position, the inlined
32-bit value of said integer operand, and finally the remaining operand encoded on 64 bits.

While the ExpOpt memory layout saves space compared to ExpAST, it pervasively impacts the compila-
tion process. Indeed, Int values are now represented differently depending on the context in which they
appear —either as a standalone expression or as an operand of a Bin expression. Conversely, the memory
representation of a Bin value may follow two different split branches depending on its operands. As a
consequence, seemingly simple patterns and values now require complex code to properly manipulate
data, which is why such optimizations are usually only done by programmers when absolutely neces-
sary (such as extremely performance-sensitive code). Ribbit alleviates this by automatically emitting
layout-aware target code, making such complex layouts completely transparent to client code.

As an example of a program whose compilation is complicated by irregular memory layouts, consider
the eval function shown in Fig. 2.6. It reduces all arithmetic expressions which can be evaluated without
knowing variable operands’ values. When both operands of a binary operation are integers, it computes
the result of the operation and returns an Int expression representing this integer value (lines 6 and 7).

21

fn eval(e : ExpOpt) -> ExpOpt {
match e {
Int(l) | Var(l) => e,
Bin(op, el, e2) => match (eval(el), eval(e2)) {
Int(nl), Int(n2) => match op {
| Plus => Int(nl + n2),
| Mult => Int(nl * n2)
}'
el', e2' => Bin(op, el', e2')
}
11

Figure 2.6: User implementation of eval.

We now give a high-level view of Ribbit’s global compilation procedure, which we formalize in
Chapter 5, and of some intermediate program representations used in its implementation, which we
present in more detail in Chapter 6.

As a first compilation step, we desugar the body of eval to its normalized form shown in Fig. 2.7.
We use an explicitly typed A-Normal Form representation in which patterns contain no variables and
subterms are instead referred to by their positions. For instance, e.Bin.1 accesses the first operand of
the binary expression e. Such accesses are only valid under the right pre-conditions.

The final compiled output is shown in Fig. 2.8 as a Control Flow Graph in Destination Passing
Style (Shaikhha et al. 2017): rather than returning its result, it fills a destination memory location d
with appropriate contents. Corresponding parts of eval in normalized source and final target code are
highlighted in matching colors. As we have seen in previous examples, we compile pattern matching
to a decision tree consisting of switch nodes inspecting relevant parts of memory to determine the
shape of the considered input data. In our general compilation procedure for Ribbit, we integrate each
such decision tree into the output control-flow graph structure. For our eval example, the three source
matches on lines 2, 6 and 11 each correspond to one switch node in the compiled CFG inspecting the
adequate discriminant location.

Beyond pattern matching, the compilation of other elements of the source program, namely data
constructors and accessors, is complicated by the irregular memory layout. Consider the code which

extracts both operands of the Bin head constructor (on line 4). Given our ExpOpt memory layout, this is
not a straightforward memory access: the location of the subterms e.Bin.1 and e.Bin.2 depends on the
precise shape of their parent value e. Furthermore, either of these subexpressions may be unboxed (i.e.,
encoded as their integer value when their head constructor is Int), meaning their data is not necessarily
stored as ExpOpt within e. We must therefore rebuild the ExpOpt representation of both operands from
their pieces extracted from e to be used as arguments to eval calls. To do so, the generated code allocates
64 bits for both el and e2, inspects the discriminant e.*.1 which determines how their various pieces
are laid out within e, and finally fills their contents accordingly. More formally, we have synthesized an
isomorphism between the existing representation of e.Bin.1 (e.g., an inlined integer value within e) and
its desired representation (a standard ExpOpt).

As we have seen, simple accessors at the source level might require us to emit code that allocates

memory and performs various other operations. Consider now line 20 , where we return the value
BinCop, el',e2'). Following the ExpOpt memory layout, it is split into three cases: depending on
whether the head constructor of el' or e2' is Int, we must build this value differently. Note that this
decision is factorized with the previous pattern matching. Again, in all cases, the emitted code allocates
and places every bit in memory. To do so, we once more had to synthesize a morphism from the available
memory representations of el' and e2' as standalone expressions to their representation as operands
of a Bin operation. This novel compilation procedure that can destruct and rebuild values and manifest
isomorphisms between representations is a large contribution of this thesis described in Chapter 5.

Naturally, to reap the full power of our tweaked representation, one would need to unroll the eval
function, allowing to completely skip some intermediate values. We consider such transformations
orthogonal to our contribution, and focus on emitting straightforward code that is easily optimized by
existing state-of-the-art transformations (here, unrolling and constant propagation).

22

10

11

12

13

18

19

20

21

22

23

fn eval(e : ExpOpt) -> ExpOpt {

1}

Figure 2.7: Normalized representation of eval.

23

function eval(e, d)

/% case _ x/
d:=e

success

Figure 2.8: Simplified CFG after compiling
eval. For pedagogic and readability purposes, code has been
simplified (block sinking, variable renaming, simple constant prop-
agation).

20

21

22

23

2.4 Recursive data constructors: simple and packed linked lists

So far, we only considered one memory layout at once for each ADT. However, some situations call for
different memory layouts for the same data at different times. This usually requires converting data
from one layout to the other, which can be quite complex. In particular, some combinations of recursive
memory layouts require the compiler to emit recursive target code. In this section, we show how Ribbit
handles such situations using a list type with two different memory layouts. These types will also be
used in Chapter 3 as a running example to illustrate our formalization of the Ribbit language.

Consider the type of lists of 32-bit integers, which we define as the ADT List in Exhibit 13. We first
define a simple memory layout representing it as simply-linked lists with one level of indirection per
element. Notice how the second field of the struct used to represent the Cons case is not 64-bit aligned:
indeed, Ribbit will pack struct fields together without inserting any padding nor reordering fields. One
way to restore alignment would be to insert explicit 32-bit padding between the two fields. Even so, the
resulting memory layout would not be particularly efficient: each element of a list results in one new
level of indirection and uses 128 bits of memory (32 bits for the u32 value itself, 32 padding bits and 64
bits to represent the next link).

A more efficient way to represent lists of 32-bit integers on a 64-bit architecture would be to pack two
elements per level of indirection. In Exhibit 13, we demonstrate such a layout with the PairList ADT,
whose inhabitants are exactly those of List. Its memory typeis a split with three branches, distinguishing
between empty, single-element and multiple-element lists. Notice how in the Cons(_, Cons(_)) case,
we represent two list elements in the same struct, allowing us to maintain 64-bit alignment without
wasting any space.

enum List { Nil, Cons(u32, List) } represented as
split .[0:1] {
| 1 from Nil => _<6u4> with [0:1]:(1)<1>
| © from Cons(_) =>
&<6u>({{ (.Cons.0 as u32), (.Cons.l as List) }})
with [0:1]:(0)<1>

enum PairlList { Nil, Cons(u32, PairList) } represented as
split .[0:2] {
| © from Nil => _<64> with [0:2]:(0)<2>
| 1 from Cons(_, Nil) =>
_<64> with [0:2]:(1)<2> with [2:32]:(.Cons.0 as u32)
| 2 from Cons(_, Cons(.)) =>
&<e6u>({{
(.Cons.0® as u32), (.Cons.1.Cons.0 as u32),
(.Cons.1.Cons.1l as PairlList)
1) with [0:2]:(2)<2>

fn single_to_double(l : List) —> PairlList { 1}

fn double_to_single(l : PairList) —> List { 1}

Exhibit 13: A recursive ADT for lists and two possible memory layouts.

On their own, neither of these two memory layouts is particularly noteworthy: Ribbit handles value
construction and pattern matching compilation for either List or PairList similar to previous examples.
However, the fact that the List and PairList ADTs describe the same high-level data structure allows us
to convert values from one layout to the other, as is done by the single_to_double and double_to_single
functions.

Such user-level conversion code leverages the same feature of Ribbit that we used in Section 2.3

24

to compile the eval function with the ExpOpt irregular memory layout, that is, its ability to exhibit
isomorphisms between different memory representations of the same data. In this specific case, we are
dealing with two fundamentally different arrangements of the inductive structure of lists: in order to
convert a List to a PairList or vice-versa, we must walk the entire recursive structure to fuse blocks
into pairs. As we will see in Chapter 5, the Ribbit compiler handles such situations by emitting recursive
target code manifesting the isomorphism between the two representations. Figure 2.9 shows the emitted
recursive code for the single_to_double conversion function.

Cast d as ?64 with [0:+2]:?2
Cast d as ?64 with [32:+432]:?32 with [0:+2]:72) |leto ds = d.![0:+2]

leto de = d.[0:+2] leto ds = d.[0:42] ds := alloc(128)

ds 1= 0 de := 1 leto dg = ds.*

success /% Fragment _.Cons.0 in dest d; %/ Cast ds as {{?32,?32,764}}
leto d7 = d.[32:+32] leto do = d.[0:+2]

_ . 1 leti sg = 5.%.0.[0:+32] de := 2)
Leti szo = s.%.1.[0:41] . d7 i= sg /% Fragment _.Cons.@ in dest d,, */
Switch s;o k_/» leto dy = d.%.0

Cast d as 2?64 with [0:+2]:?2

- . .1
Let rec convert = A Lis d. [#{ e Sar = 5.[0:41]
Switch s, u

success leti g = 5.%.0.[0:+32]
dq4 i= Sg

/x Fragment _.Cons.1.Cons.@ in dest d,, */
leto dy, = d.%.1

leti 544 = S.%.1.%.0.[0:+32]

daz 1= Sa4

/% Fragment _.Cons.1.Cons.1 in dest d,; %/
leto dys = d.%.2

leti so = s.%.1

call convert Ll:sg d,;

success

Figure 2.9: Generated code for rebuilding linked lists. s is the input list and d the destination location.

2.5 Mangled primitives: RISC-V instruction set

In this section, we consider a restricted version of the 32-bit RISC-V assembly language. We will use
Ribbit to specify as a memory layout the encoding described in the instruction set (ISA) documenta-
tion (Waterman et al. 2019). A distinctive feature of this memory layout is the way it encodes integer
values: the immediate operand of some instructions is broken down into its individual bits, which are
then scattered across the memory representation of the whole instruction. Here, we show how such
mangled primitive values can be expressed and manipulated with Ribbit.

Before expressing it in Ribbit, let us describe the subset of the RISC-V instruction set we wish to
capture. It consists of four instructions: add, addi, sw, and jal, whose semantics are given in Fig. 2.10.
A RISC-V machine has 32 registers, x@ to x31 (encoded on 5 bits). As shown in Fig. 2.11, RISC-V 32-bit
instructions have different formats based on their addressing mode. Further characteristics of our four
instructions are in Fig. 2.10.

0x13 — | rd = rsl + imm
0x23 — | *(rsl+imm) = rs2
Ox6F | — | — | rd = PC+4; PC += imm

addi | Add Immediate
sw Store Word
jal Jump And Link

v
o]
s & ¥
Inst Name O RS Description (in C)
add Add ox33 | O 0O | rd = rsl + rs2
0
2

Hm’“”_"]jfbe

Figure 2.10: Instruction semantics and encoding, excerpt.

25

31 25 24 20 19 15 14 12 11 7 6 0

funct7 | rs2 rsl funct3 rd opcode | R-type
imm|[0 : 12] rsl funct3 rd opcode | I-type

imm[5: 7] | rs2 rsl funct3 | imm[0: 5] | opcode | S-type
imm[20] | imm[1: 10] | imm][11] imm|[12 : 7] rd opcode | J-type

Figure 2.11: RISC-V Core instruction forrnat, excerpt. “rs1,2” are source registers, “rd” a destination register. “imm[n]”
denotes the n-th bit of imm. “imm[o : £]” means “{ bits starting from o in the binary representation of imm”.

Already, we see complications: in general, instruction characteristics (type, instruction name, in-
volved registers, etc.) are spread over opcode, funct3 and funct7, which are stored non-consecutively.
Moreover, the latter two are sometimes not present in the 32-bit instruction value. Immediates are par-
ticularly mangled, and cannot be readily extracted from the binary representation. For our particular
(simple) subset :

1. the four instructions are distinguishable from their opcode only, stored in bits 0 to 7 inclusive;
2. the destination registers of add and addi are at the same location, bits 7 to 11;

3. the immediate value (imm) for the sw instruction is split and stored in two bit ranges: bits 7 to 11
and 25 to 31;

4. the 20-bit immediate value for the jal instruction can be recovered from bits 12 to 31 but we need
to rebuild this immediate from four separate bit ranges.

We now use Ribbit to model RISC-V registers and instructions with the Reg and Instr ADTs and mem-
ory layouts in Exhibit 14. The Reg ADT is a simple sum type enumerating the 32 available RISC-V regis-
ters, which we wish to represent similarly to a C enum: each register Xi should be represented as the con-
stant i (for instance, X2 is the constant integer “3”). For this purpose, Ribbit provides a predefined repre-
sentation which we request with the keywords represented by C. It will automatically find the minimal
required width to encode each possible value — in our case, 5 bits since there are 32 registers and 2° = 32
—and assign each constructor to its identifier encoded on this width. For the Reg type, this corresponds
to the following memory type: split . { 0 from X0 => (0)<5> | ... | 31 from X31 => (31)<5> }.
Section 2.6 will provide more detail on memory representations predefined by Ribbit.

26

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

/* C-like enum stored on 5 bits */
enum Reg { X0, X1, ..., X31 } represented by C

enum Instr {
Add(Reg, Reg, Reg), // add rd, rsl, rs2
Addi(Reg, Reg, i12), // addi rd, rsi, imml2
Jal(Reg, i20), // jal rd, imm20
Sw(Reg, Reg, i12), // sw rsl, rs2, imml2
} represented as
split .[0:7] { // inspect the opcode stored in the 7 lowest bits
| 0x13 from Addi(_, _, _) =>
_<32> with [0:7] : (0x13)<7> // opcode constant
with [7:5] : (.Addi.® as Reg) // register operand rd
with [12:3] : (0)<3> // funct3 constant
with [15:5] : (.Addi.l as Reg) // register operand rsl
with [20:12] : (.Addi.2 as il2) // immediate operand imm
| 0x23 from Sw(_, _,) =>
_<32> with [0:7] : (0x23)<7> // opcode constant
with [7:5] : (.Sw.2.[0:5] as i5) // 5 lowest bits of immediate operand
with [12:3] : (2)<3> // funct3 constant
with [15:5] : (.Sw.0 as Reg) // register operand rsl
with [20:5] : (.Sw.1 as Reg) // register operand rs2
with [25:7] : (.Sw.2.[5:7] as i7) // 7 highest bits of immediate operand
| ox6f from Jal(_, _) =>
_<32> with [0:7] : (0x6f)<7> // opcode constant
with [7:5] : (.Jal.0 as Reg) // register operand rd
/* scattered pieces of the immediate operand imm */
with [12:7] : (.Jal.1.[11:7] as i7) with [20:1] : (.Jal.1.[10:1] as il)
with [21:10] : (.Jal.1.[0:10] as i10) with [31:1] : (.Jal.1.[19:1] as il)
| 0x33 from Add(_, _,) =>
_<32> with [0:7] : (0x33)<7> // opcode constant
with [7:5] : (.Add.0 as Reg) // register operand rd
with [12:3] : (0)<3> // funct3 constant
/* register operands rsl and rs2 */
with [15:5] : (.Add.1 as Reg) with [20:5] : (.Add.2 as Reg)
with [25:7] : (0)<7> // funct7 constant

Exhibit 14: Ribbit ADTs and memory types for 32-bit RISC-V registers and instructions.

Our Instr ADT for RISC-V 32-bit instructions is a sum type with four constructors corresponding
to the four instructions in our subset. Their operands are either registers or integers of various widths.
Following the RISC-V specification shown in Fig. 2.11, we encode them on 32 bits and distinguish
them using their opcode stored in the 7 lowest bits. The Instr memory type is therefore a split whose
discriminant is the memory location . [0:7] and whose four branches each describe a 32-bit composite
word.

The memory layout of some instructions is relatively simple. For instance, in the Addi branch, we
partition the 32-bit uninitialized word _<32> into five distinct bit ranges. The bit ranges [0:7] and [12:3]
correspond to the opcode and funct3 constants: their contents are set to the adequate constant words
(0x13)<7> and (0)<3> following Fig. 2.10. The three remaining bit ranges each store an operand, as
specified in the S-type line of Fig. 2.11. For both register operands .Addi.0 and .Addi.1 and the 12-bit
immediate operand .Addi.2, we use a fragment to specify the adequate memory type Reg or i12.

Other instructions such as Jal have a more intricate representation. As in the previous branch,
we partition the 32-bit word into several bit ranges, with [0:7] containing the opcode constant and
[7:5] storing the register operand .Jal.0. However, the 20-bit immediate operand .Jal.1 is broken

27

down into four parts which are stored non-consecutively in four separate bit ranges. We ask Ribbit
to represent portions of this 120 integer value separately using fragments with the following syntax:
(.Jal.1.[0:1] as il), where [0:1] denotes the 1 consecutive bits starting from offset o in the “standard”
i20 representation of this immediate.

Now that types and layouts have been defined, we can focus on high-level code manipulating
RISC-V instructions and, most importantly, its compilation to correct target data manipulation code
using Ribbit. Given a 12-bit integer value imm, consider the data constructor Sw(X1, X2, imm). From
a high-level perspective, this is a simple constructor: using a typical representation for such a value,
we would simply allocate an adequate amount of memory, then encode X1, X2 and imm as integers at
their assigned positions. Our representation, however, is not so straightforward: since imm is stored
non-consecutively, we need to break it down into two pieces read from two different positions in its own
memory representation. In essence, we need to synthesize code manifesting the isomorphism between
the previous representation of imm (here, a standard i12) and the representation embedded in Instr (two
pieces at stored at positions . [7:5] and .[25:7] within the instruction). As we have seen in previous
sections of this chapter, such implicit recombination of subterms is common in the context of embedded
and low-level memory representations. A simple struct flattening and reordering already exhibits a
similar behavior.

Given this data constructor, the Ribbit compiler emits the low-level code shown in Fig. 2.12, which
builds the memory representation of Sw(X1, X2, imm) by:

1. allocating enough memory — here, 32 bits — to hold this value in a new memory location x;

2. initializing the parts of x corresponding to constant parts of the desired value — here, its opcode
and funct3 constants and its two register operands;

3. reading both parts (bit ranges [0:5] and [7:5]) of the (non-constant) immediate operand from its
memory location imm, and writing their contents to their adequate positions in x.

let x = alloc(32);

x.[12:3] := 2; x.[0:5] := Ox23;

x.[15:5] := 1; x.[20:5] := 2;

x.[25:71 := imm.[5:7]; x.[7:5] := imm.[0:5];

Figure 2.12: Code building the memory representation of Sw(X1, X2, imm) in the memory location x.

Let us now consider a more complex example of a source program manipulating Reg and Instr values.
The RISC-V instruction set manual contains a standard extension for compressed instructions (Waterman
etal. 2019, chapter RISCV-C) which defines a compressed 16-bit encoding for some instructions. Whether
a given 32-bit instruction can be compressed according to this standard depends on the rules specified
for this operation. Usually, it requires immediate operands to be small enough to fit in reduced space,
and register operands to belong to the eight “most popular” registers X8 to X15 inclusive.

In Exhibit 15, we define the is_compressible function which determines whether a given Instr value
corresponds to a compressible 32-bit RISC-V instruction. Its two companion functions is_nonzero_register
and is_popular_register are predicates on Reg values whose names are self-explanatory. The defini-
tions of these three functions rely on boolean operations (equality, comparison, etc.) which are built into
Ribbit.

28

20

21

22

23

24

25

fn is_nonzero_register(r : Reg) —> Bool {

match r {
X0 => False,
_ => True
}
}
fn is_popular_register(r : Reg) —> Bool {
match r {
X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 => True,
_ => False
}
}
fn is_compressible(x : Instr) —> Bool {
match x {
Jal(X1l, off) => off < U096,
Add(rd, rsl, rs2) => rd == rsl & is_nonzero_register(rsl) && is_nonzero_register(rs2),
Addi(rd, rs, imm) => rd == rs && is_nonzero_register(rs) && imm < 64,

Sw(rbase, roff, imm) =>

is_popular_register(rbase) && is_popular_register(roff) &&
imm.[0:5] == 0 && imm.[10:2] == 0,

=> False,

Exhibit 15: Function determining whether a given 32-bit instruction can be compressed into a 16-bit
one, in Ribbit syntax.

Ribbit’s compilation algorithm, detailed in Chapter 5, can emit the control flow graph depicted in
Fig. 2.13, which:

* inspects the internal representation of an input 0p32 value to determine its head constructor (Add,
Addi, Jal or Sw), as well as the nested register constructor in Jal;

¢ extracts from this representation all subterms that are bound to variables in the matched pattern.
For instance, in the Swcase , the parts of the immediate imm are combined in simm in order to
reconstruct a value that can be used in a mask;

¢ allocates and initialises memory to represent the appropriate values. For instance, the imm value just
mentioned is first allocated as dimm, filled, then promoted to a read-only value simm before being
used.

29

Let rec is_compressible = A o:s d.

v

(/* match o %/ h
leti opcode = s.[0:+7]

Switch opcode
(0x13 | 0x33 | oxeF | ax23)

N

V/\ '/ (/% case Sw(rbase, roff, imm) /)
/% Bindings */

//* case Addi(rd, rs, imm) */\ //* case Add(rd, rs1, rs2) */\ leti rbase = s.[15:+5]
/% Bindings x/ /% Bindings */ leti roff = s.[20:+5]
leti rd = s.[7:+45] leti rd = s.[7:+45] /% Operand imm */
leti rs = s.[15:+45] leti rs1 = s.[15:+5] leto dimm = alloc(12)
leti imm = s.[20:+12] leti rs2 = s.[20:+5] . -\ |dimm.[0:+5] := s.[7:45]
/% Simplified Computation %/ /% Simplified computation */ leti rd = s.[7:45] dimm.[5:+47] := s.[25:+7]
let db0 = rd = rs let b0 = rd = srs1 switch rd Freeze dimm to simm
let b1 =rs = @ let b1 = rs1 = 0 /x Simplified computation */
let db2 = imm < 64 let b2 = rs2 = 0@ let b1 = 8 < rbase < 15
let res = bo & b1 & b2 let res = b0 & b1 & b2 let b2 = 8 < roff < 15
/% Final Write %/ /% Final Write %/ let b3 = simm & 3103 = @
d := res d := res let res = b1 & b2 & b3 %/
/x Final Write */
L success VAR success d := res
L success Y,

//* case Jal(X1, imm) %/ h

/% Bindings */

leto dimm = alloc(20)
dimm.[11:+7] := s.[12:47]
dimm.[10:+1] := s.[20:+1]
dimm.[0:+10] := s.[21:+10]
dimm.[19:+1] := s.[31:+1]
Freeze dimm to simm

d := simm < 4096

/x case _ x/
d =9

success

_ success)

Figure 2.13: Slmphfled CFG for is_compressible. From the input i, it identifies the head constructor using the 7 lowest bits,
then extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw (in bold), and finally stores the result in dest.

2.6 Generic representations of ADTs in mainstream languages

In previous sections, we described a variety of memory layouts for specific ADTs. However, it is
not always possible nor desirable to specify the memory layout of each individual data type. Most
programming languages have their own standard way to represent data in memory, with varying
degrees of flexibility and customization by the user. Similarly, Ribbit provides a (very limited) selection
of predefined representations which follow common rules to represent any given ADT. In this section,
we explore the generic memory representations of several mainstream languages and show how they
can be modeled in Ribbit.

Note that most information presented in this section is potentially incomplete and obtained from a
variety of sources ranging from official language references to folklore knowledge of specific compiler
mechanics. Other sources include unofficial language documentation, various blog posts, as well as
manual inspection of intermediate representations emitted by compilers.

2.6.1 OCaml

OCaml is a garbage-collected, functional programming language. Such languages were the first to
natively support ADTs and pattern matching. Accordingly, OCaml features a rich type system which
includes ADTs in the form of tuples and records for product types and of sum types dubbed “variants”.
For instance, the red-black tree ADTs from Section 2.1 can be modeled as the following OCaml types:

30

type color = Red | Black

type rbt =
| Empty
| Node of (color * int * rbt * rbt)

Exhibit 16: Red-black trees in OCaml.

As OCaml is a quite high-level language, it does not offer users precise control over low-level aspects
such as data layout. Furthermore, garbage collection requires memory contents to follow a somewhat
predictable pattern. The OCaml runtime therefore represents values according to a uniform memory
layout which we describe below, using Minsky and Madhavapeddy (2021) as our main source.

Every OCaml value is either unboxed, i.e., represented on a single machine word whose lowest bit is
set to 1 to tag it as an unboxed value, or boxed, i.e., represented as a pointer (whose lowest bit is always
0 due to address alignment) to a struct containing a header followed by data fields. Exhibit 17 depicts
these two kinds of values in memory for a 64-bit platform.

Unboxed/tagged immediate

63 bits’ ¥

header | field 0 |- [field n-1
Y 64 bits * 64 bits © Y 64 bits ©

Exhibit 17: OCaml generic representation for 64-bit architectures.

More precisely, unboxed values are used to represent small enough primitive values (e.g., 63-bit
integers of type int) and unit constructors of sum types (e.g., Red, Black and Empty constructors from
Exhibit 16).

All other values, such as floating-point numbers, tuples and non-unit value constructors, are repre-
sented using the boxed layout. For instance, consider a value of the type rbt defined in Exhibit 16 of
the form Node(c, v, 1, r). It will be represented as a pointer to a struct whose first field is a header
encoding the head constructor Node (as well as other metadata), followed by the 64-bit representations
of the four fields ¢, v, L and r.

In Ribbit, this generic way of representing any given ADT is available as a generic representation:
writing represented by caml after any ADT definition will automatically generate the corresponding
memory type.

2.6.2 Java Virtual Machine

Let us now focus on another uniform memory representation from a different ecosystem. The Java
Virtual Machine is a platform supporting several languages, providing a common runtime framework
with its own memory model. Like the OCaml runtime, it uses a rather uniform memory representation
scheme to satisfy the demands of its garbage collector. Unlike OCaml, most JVM-based languages are
heavily object-oriented: the basic memory management unit is an object, i.e., an instance of some class.

2.6.2.1 ADTs in JVM-based languages

The canonical JVM-based language is of course Java. Its type system is almost exclusively geared towards
an object-oriented programming paradigm, with the majority of data being stored in class attributes. In
this context, product types are easy to model as classes whose data attributes represent different fields,
as seen in Exhibit 18.

31

(a) In Java (b) In Scala (c) In Ribbit

class Node { class Node(struct Node {
Color color; val color: Color, c: Color,
int value; val value: int, v: uél,
RBT left; val left: RBT, 1: RBT,
RBT right; val right: RBT r: RBT

}) }

Exhibit 18: Product type for red-black tree nodes.

However, sum types are more delicate to model. Java provides an enum construct similar to C enums,
which is sufficient for sum types whose constructors are all argument-less. For more complex sum
types, a typical design pattern would be to create an abstract class from which every sum constructor
inherits, adding its own data attributes. Data manipulation code may then use overloaded methods or
a visitor pattern !, Exhibit 19 shows how Java enums and inheritance can be used to model red-black
trees and their colors.

(a) In Java (c) In Ribbit
(b) In Scala
enum Color { RED, BLACK; }; enum Color { enum Color { Red, Black }
enum RBT {
case Red;
abstract class RBT {} case Black: Empty,
} ! Node(Node)
class EmptyRBT extends RBT {}; enum RBT { }
class NodeRBT extends RBT { case Empty:
. 1
}-Node node; case Node(Node);
1
}

Exhibit 19: Sum types for red-black trees and their colors.

In addition to Java, the JVM also supports other languages which support richer types and different
programming paradigms, most notably Scala. Specifically, Scala 3 introduces an enum feature > which
a offers a more natural syntax for ADTs. We illustrate it on red-black tree types in Exhibits 18 and 19.
Note that this feature is mostly syntactic sugar around advanced object-oriented features °.

2.6.2.2 Internal representation of JVM objects

Now that we have described how to model ADTs in JVM-based languages, let us focus on their internal
representation as JVM memory contents. All information about internal memory structures of the
JVM was obtained by examining test Java programs (using OpenJDK 21 for x86-64 with compressed
references enabled) with the JOL (Java Object Layout) tool * and is coherent with the analysis provided
in https://shipilev.net/jvm/objects-inside-out.

Broadly speaking, every toplevel object is represented as a pointer to a block, similar to OCaml
“boxed” values. The first 64 bits of this block are used by the mark word, which contains various
metadata about the object itself, such as information used by the garbage collector. Next to the mark
word, the 32-bit class word indicates which class this object is an instance of. After this 96-bit header, the
block contains the memory representation of each field of the object. In order to minimize space usage
while maintaining 64-bit alignment, the JVM may reorder fields so as to pack smaller fields within larger
fields” alignment gaps (so-called “field packing”). Primitive fields such as integers are unboxed within
their parent object’s representation.

An interesting feature of many JVM implementations is the ability to compress object references °. This

1See for instance https://garciat.con/posts/java-adt for a practical example.
2https://github.com/lampepfl/dotty/issues/1970

3https://docs .scala-lang.org/scala3/reference/enums/desugarEnums.html
4https://openjdk.org/projects/code-tools/jol/
Shttps://shipilev.net/jvm/anatomy-quarks/23-compressed-references

32

https://shipilev.net/jvm/objects-inside-out
https://garciat.com/posts/java-adt
https://github.com/lampepfl/dotty/issues/1970
https://docs.scala-lang.org/scala3/reference/enums/desugarEnums.html
https://openjdk.org/projects/code-tools/jol/
https://shipilev.net/jvm/anatomy-quarks/23-compressed-references

optimization applies in situations where the host platform is a 64-bit machine, yet the size of the Java
heap does not exceed 2% bytes. In these situations, all pointers to Java objects (allocated on the heap)
will necessarily be between 0 and 232 — 1. The 32 highest bits of a machine pointer to any Java object will
therefore always be zero and can be discarded, enabling a significant reduction of memory usage.

The diagrams in Exhibit 20 show the memory representation of instances of two simple Java classes,
illustrating both field packing and alignment gaps.

class C { long n; };

&/-\) mark |class n

S on “e4bits '32bté32 b 64 bits

class D { int m; long n; C o; };

&/-\) mark |class| m | & n

ST S 64 bifs ' 32 bitd 32 bité 32 bité ©_ 64 bits

iy

4

~

Exhibit 20: Objects in JVM memory.

In Ribbit, we would model an object’s header and fields using ordinary structs and word types,
including explicit padding. For compressed references, we must model the following semantics: “take
only the 32 lowest bits of a 64-bit machine pointer, which contain all address bits”. This is exactly the
meaning of a Ribbit 32-bit pointer type (on a 64-bit platform), denoted &<32>(. . .).

263 C

In contrast to OCaml and to JVM-based languages, the C programming language does not support
high-level notions such as ADTs. Instead, C data types are directly expressed as their memory layout
using constructs such as structs and unions.

This has a number of drawbacks. As C is a relatively low-level programming language, all data
manipulation code must be written with its precise memory layout in mind, sometimes resulting in
significantly obfuscated code, as we have seen in Section 2.1.4 with red-black trees in Linux. Furthermore,
such low-level data types do not necessarily reflect intended type semantics, that is, the data structure
the user actually had in mind, as opposed to its concrete implementation. As a result, none of the safety
guarantees provided by ADTs are available: it is up to the user to write data manipulation code which is
exhaustive, non-redundant and keep memory contents “well-typed” w.r.t. the intended high-level data
structure.

Despite all these drawbacks, many performance-intensive applications are still written in C. Indeed,
such programs often rely on manually specified, finely optimized memory layouts, whose specifica-
tion requires total control over low-level details. This ability to precisely specify the desired memory
representation of data is only afforded to users by C and a handful of other languages.

Here, we compare the language of C data types with Ribbit’'s memory types, highlighting their
common features and key differences. All information presented in this section comes from the precise
implementation of C data types. More precisely, our sources are the C17 standard and, for ABI-
dependent aspects, the System V generic ABI v4.1 ® and its processor supplement ABIs for x86_64 ” and
ARM32 © (these two ABIs do not differ on aspects which are relevant to us here).

Primitive data types C provides a variety of primitive data types (int, char, long, double, etc.), which
are used both to actually encode a primitive of this type and as a way to get a raw word of
this size. Ribbit separates actual primitive types (in practice, uint) from other usages of words:

6https ://refspecs.linuxbase.org/elf/gabidl.pdf
“https://refspecs.linuxbase.org/elf/x86_6U-abi-0.99.pdf
8https ://9ithub.com/ARM-software/abi-aa/blob/main/aapcs32/aapcs32.rst

33

https://refspecs.linuxbase.org/elf/gabi41.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://github.com/ARM-software/abi-aa/blob/main/aapcs32/aapcs32.rst

uninitialized /unspecified contents _<1>, constants (c)<1>, composite ... with [o:1]:.... InC,
the intended contents of, say, an int are not encoded in its type.

Pointers C understands machine pointers to any given data type, as well as opaque pointers void=*. In
Ribbit, pointer types indicate both a specific pointee type and a width. If this width is different from
that of a native pointer, it designates pointers whose higher bits have been extended or removed.
Of course, this is only possible if shrinking the pointer in this way does not eat into address bits.
For an example of such resized pointers, see JVM compressed references in Section 2.6.2.

Structs According to the C standard, the C compiler does not reorder struct fields, although it does
automatically insert padding to meet alignment constraints. The contents of any padding are
unspecified and may change when copying the struct. It is up to programmers to reorder fields to
minimize the amount of space lost to alignment gaps; this technique is known as struct packing °.
On the other hand, Ribbit does not reorder fields nor add any padding: the actual contents of a
struct follow exactly its user-provided specification. This allows Ribbit to model arbitrarily weird
encodings such as {{(0)<7>, (1)<u>}}, which will indeed be 11-bit wide.

Enums can be seen as very simple sum types with only unit constructors, each represented as a value
of a char or any suitable signed or unsigned integer type — the actual primitive type used to store
enum values is implementation-defined. Note that there is no guarantee that the concrete contents
of any value of a given enum type actually represent one of its inhabitants (i.e., any integer of
the right width can be casted to a (possibly non-sensical) enum value). In Ribbit, C-like enums
correspond to a sum type with only unit constructors represented as a split in which each branch
represents one constructor as a constant word. The predefined representation represented by C,
which only works on such ADTs, will automatically find the minimal width necessary to encode
all constructors (not necessarily a power of 2, for instance we encode RISC-V registers on 5 bits in
Section 2.5) and generate such a split.

Unions can be seen as degenerate splits without an explicit discriminant. Similar to structs, the C
compiler will automatically add padding at the end of smaller variants to meet the alignment of
the largest variant. A possible representation of a sum type in C is a fagged union, i.e., a struct
which aggregates an explicit enumerated tag with its union payload. This pattern is captured and
generalized in a safe way by Ribbit split types.

Bit-fields are an alternative way to specify members of a struct or an union. They are rarely used by C
programmers in practice. C structs containing bit-fields resemble “packed” Ribbit-like structs, but
also rely on a notion of “storage units” (usually machine words). Whether bit-fields can straddle
storage unit boundaries is implementation-defined; as such, using bit-fields to specify precise
layout details is rather unreliable.

2.6.4 Rust

Rust is probably the most promising mainstream language when it comes to combining ADTs with
optimized memory layouts. Like Ribbit, Rust aims to offer as much low-level control as C while still
providing nice and safe abstractions such as ADTs and pattern matching. The syntax of Ribbit for
ADTs and pattern matching is heavily inspired by (and thus basically identical to) that of Rust. Here,
we focus on the memory representation of ADT values in Rust as described in its documentation (The
Rust Reference 2023; The Rustonomicon 2023), and on the (limited) ways in which Rust programmers can
customize this representation.

Every ADT defined in Rust can carry an annotation of the form #[repr(. . .)] which specifies one of
four possible memory representation schemes, optionally modified with packed or align attributes to
customize object alignment. We describe each of them below.

C representation As its name implies, the C representation aims to closely follow the memory layout
defined by the C standard, which we described in Section 2.6.3. Rust enums (a.k.a. sum types),
which have no native C equivalent, are represented as “tagged unions”. It is useful for interfacing

Shttp://www.catb. org/esr/structure-packing

34

http://www.catb.org/esr/structure-packing

with C (and other cooperative languages) through Rust’s Foreign Function Interface, but also for
providing a mostly predictable representation of values. As we will see, the main other available
representation (Rust representation) is highly variable and purposefully unspecified.

Primitive representation The primitive representations (for instance, #[repr(u8)]) only apply to sum
types. Essentially, they allow the user to choose which primitive type backs the representation of a
C-like enum. For instance, #[repr(u8)] will guarantee that the given enum will be represented as
an unsigned 8-bit integer. For sum types with non-unit constructors, the given primitive type in-
stead specifies the type of the “tag” within the “tagged union” representation. This representation
is easily specified in Ribbit, similarly to the C language’s enums.

Transparent representation The transparent representation applies to product types with a single field,
and to sum types with only one constructor which itself contains a single field. It represents
values of such a type as their unboxed field, similar to the unboxed OCaml attribute '’. Again, this
representation is easy to express as a Ribbit memory type.

Rust representation Unlike the three previous representations, the Rust reference states that the (de-
fault) Rust representation makes no data layout guarantees, except those required for soundness
(e.g., the fields of a struct do not overlap each other). According to the Rustonomicon, struct
fields may be reordered by the compiler, and padding is inserted as needed to meet alignment
constraints. On the other hand, the memory layout of enums is purposefully left unspecified.
Indeed, the Rust compiler reserves itself the right to apply arbitrary data layout optimizations,
without any explicit input from the programmer. A well-known example is the popular niche
optimization, which takes advantage of unused values to represent extra sum constructors. For
instance, consider an option type wrapping pointer values: Option<Box<...>>. Since 0 is not a
valid address, the Rust compiler will use this value to represent the None value, whereas values of
the form Some(p) will be represented as their unboxed pointer value p. Doing so saves space —no
extra space is used for the tag — and improves performance by removing any overhead associated
with the Some wrapper. This particular optimization, although expressible in Ribbit syntax, is not
currently handled in its formal version nor by its implementation.

2.7 Limits of Ribbit: WebKit-like NaN-boxing

As the final section of our Memory Zoo, we describe a representation that models the memory layout
used in the JavaScriptCore engine (built into WebKit) to encode JavaScript values on 64-bit platforms,
which uses an optimization dubbed NaN-boxing. In doing so, we will expose some of Ribbit’s limitations.

Our description is based off the implementation of WebKit NaN-boxing (2023). According to the
ECMAScript Language Types (2023), JavaScript values consist of:

e four constants: undefined, null and the boolean values true and false;
* numbers, which consist of 32-bit integers and double-precision (64-bit) floating-point numbers;

* arbitrary-precision integers, character strings, symbols and objects, which we collectively refer to
as cells. Every cell value is represented behind a pointer; here, we ignore other representation
details.

We define the type of Javascript values in Ribbit as the Jsval ADT shown in Exhibit 21, Line 5. The
memory type that represents JSVal values according to the layout used in JavaScriptCore is based on
the double-precision binary encoding defined by the IEEE 754 standard and takes advantage of unused
NaN values to represent all JavaScript values as 64-bit words.

More precisely, the IEEE 754 double-precision binary format consists of one sign bit (most significant
bit, numbered 63), 11 exponent bits (numbered 52-62) and 52 significand bits (numbered 0-51). NaN
values are defined as values whose exponent bits are all set, with quiet (as opposed to signaling) NaN
values flagged by setting the most significant bit of the significand (i.e., bit 51). The sign bit is irrelevant.

Onttps://ocaml.org/manual/5.2/attributes . html

35

https://ocaml.org/manual/5.2/attributes.html

The space of 64-bit words whose top 13 bits are set (i.e., quiet NaNs with the sign bit set) is therefore
available to encode non-double values in the 51 remaining payload bits (excluding the zero payload,
reserved for NaNs originating from hardware or C library functions). Conversely, valid double-precision
encodings are necessarily within the range from 0 inclusive to @xfff8000000000000 exclusive.

The JavaScriptCore implementation also takes advantage of the fact that no current x86-64 imple-
mentation uses more than 2% bytes of virtual address space, that is, 48 bits are sufficient to store any
machine pointer. In order to keep pointer dereferencing unencumbered by extra decoding operations,
pointers are assigned the range from 0 inclusive to 2%® exclusive. The four constants (Undef, Null, True
and False) are mapped to values in this range, using the fixed invalid pointer values 0xa, 0x2, 8x7 and
0x6 respectively.

We model this encoding as a Ribbit memory type in Exhibit 21. As seen on line 6, three main
categories of values are distinguished based on their 16 high bits. Lines 8 to 14 cover all non-numeric
values (constants and cells).

type Cell = i256 repr as i256;
enum Num { Int(i32), Double(fé6u) }

enum JSVal { Undef, Null, Bool(Bool), Num(Num), CellRef(Cell) 1}
represented as split .[u48:16] {
| © from (CellRef(_) | Undef | Null | Bool) =>
split .[0:48] {
| 6 from Bool(False) => _<6u4> with [0:48] : (6)<u8>
| 7 from Bool(True) => _<6u4> with [0:48] : (7)<us>
| 10 from Undef => _<6u4> with [0:48] : (10)<u8>
| 2 from Null => _<64> with [0:48] : (2)<us>
| _ from CellRef(_) => _<64> with [0:48] : &<u8>(.CellRef as Cell)
} with .[48:16] : (0)<le6>
| oxfffe from Num(Int()) =>
_<64> with [0:32] : (.Num.Int as i32) with [32:16] : (0)<16> with [48:16] : (Oxfffe)<l6>
| _ from Num(Double(_)) =>
_<6u4> with [0:48] : (Cu48)(.Num.Double.[0:48]) as uu8)
with [48:16] : ((ul6)(.Num.Double.[48:16]) + 1 as ul6)

Exhibit 21: Javascript values and memory layout using NaN-boxing, in Ribbit syntax.

32-bit integer values are assigned the range from 0xfffe000000000000 to Oxfffe@0OOffffffff inclu-
sive, and are distinguished by their 16 higher bits (exfffe), as seen on line 15. We then use the standard
32-bit integer encoding on the 32 lowest bits.

Finally, the range of double-precision numbers is offset by 2%, making its exclusive upper bound
0xfffa000000000000, so that it lies outside both pointer and integer value ranges. It corresponds to the
default split branch line 17. As the binary encoding of 2* contains only zeroes as its 48 lowest bits, we
only need to add this arithmetic offset to the 16 highest bits of the Num(Double(_)) representation. On
Line 19, we take the 16 highest bits of the féu representation of .Num.Double, cast them to an unsigned
16-bit integer u16 and finally add 1 (which is 2% shifted right by 48 bits) to obtain the desired value.

While our syntax is expressive enough to describe the JSVal memory layout, some of its features are
not supported by Ribbit beyond its syntax. They fall outside of the scope of the Ribbitulus (formalization
of the Ribbit language described in Chapter 3) and are not handled by the ribbit compilation algorithms
(which we describe in Chapters 4 and 5). These unsupported features are:

¢ Primitive types beyond integers — for our example, double-precision floats. For simplicity, the
current formalization and implementation of Ribbit only support integer primitives.

¢ Complex primitive encodings in which reversible operations are applied to raw primitive values.
In our example, we use bitcasts (from portions of an féu to unsigned integers ut8 and ul6) and

36

constant integer addition (+ 1). Currently, Ribbit only supports the extraction of specific bit ranges
from integer values (e.g., .Num.Double. [0:48]).

* Wildcard discriminant values in splits, indicating that a given split branch applies to memory
values whose contents at the discriminant position are not matched by other branches. The
current formalization of Ribbit requires split branches” memory types to explicitly contain their
discriminant value as a constant at the appropriate position.

¢ Awareness of low-level details regarding the contents of machine pointers and primitive encodings.
Currently, pointers and primitives are treated as “opaque” values in memory whose contents are
completely unpredictable. However, depending on the considered system and architecture, some
information is in fact available. For instance, the Rust compiler exploits the fact that valid pointers
are never zero to encode pointer options on the same width as a pointer, by using the value 0 to
represent None. Such layout optimizations are known as niches. In our example, checking that the
split type is indeed valid would require Ribbit to “know” that 6, 7, 10 and 2 are not valid addresses,
and that the 16 upper bits of a double-precision float are always between 0 inclusive and 0xfff8
exclusive.

The first three features would probably be reasonably easy to fit into the existing Ribbit formalism
and implementation. However, properly modeling niches would most likely require a formalization
of the precise details of numeric encodings and of memory address allocation for a given system and
architecture. Ideally, such a formalization could then be integrated into Ribbit to allow for target-specific
layout optimizations; however, it is outside the scope of this thesis.

2.8 Conclusion

In this chapter, we have explored ADTs and their memory representations in a wide variety of contexts.
We used this opportunity to introduce our Ribbit language, which combines high-level, safe abstractions
- namely ADTs and pattern matching — with a memory description language allowing for precise
specification of data layout by the user.

In the next chapter, we will go beyond this surface-level description and fully formalize the Ribbit
language, including its safety properties.

37

Chapter 3

The Ribbitulus

This chapter presents a formalization of the ribbit language presented in Chapter 2 dubbed the Ribbitulus.
In Section 3.1, we define a formal syntax which captures both high-level and memory elements of our
language, along with tools to manipulate these syntactic constructs. Section 3.2 introduces various
typing and validity judgments which characterize well-formed ribbit programs. Section 3.3 defines
a two-tiered formal semantics for the ribbit language, with high-level and memory-level evaluation
judgments. Finally, we state and prove the soundness of our semantics and establish an equivalence
between high-level and memory-level behavior of ribbit programs in Section 3.4. Figure 3.34 provides
an index of notations introduced in this chapter.

3.1 Syntax

We first formalize our input language. As in Chapter 2, we present a two-tiered view: high-level types
used for programming and following a common presentation of ADTs, and memory layout specifications
detailing how to represent them in memory. We also detail the grammar of programs we consider for
our formal semantics and compilation algorithms.

3.1.1 High-level language

The high-level syntax of the Ribbitulus consists of Algebraic Data Types and their values, as well as
other objects, all sharing common syntactical constructs. In definitions that apply to different kinds of
objects, for instance to types, values and patterns, we will use the meta-variable 6 to denote any such
object.

3.1.1.1 Types
T € Types ==t € TyVars (type variable)
| I ({-bit wide unsigned integer primitive type)
| (To,..., Tn-1) (tuple/product type with n fields)
| Ko(to)|”-..“|"Kn-1(Tth-1) (enum/sum type with n constructors)
A : TyVars — Types (type variable environment)

Figure 3.1: Algebraic Data Types in the high-level language.

Our source language features simple (monomorphic, immutable) algebraic data types whose grammar
is presented in Fig. 3.1. We denote types using t and type variables with t. We restrict primitive types
to unsigned integers of a given width ¢ (in bits), denoted I;. We denote all tuples with angle brackets,

38

for instance (Is4, Iga) for the type of pairs of 64-bit integers. Constructors of sums are marked with a
capital letter, for instance “Some(t) | None” is an option type. In examples, we use K as a shortcut for
K((}). In addition, we use A to denote type name environments, i.e., maps from type variables t to types
7, which we use to model recursive types.

Example 3.1 (Running example: lists). Consider the type Tjist = Nil | Cons((Isy, tiist)) in the type variable
environment Ajig; = {tiist — Tiist }, which formalizes the List ADT from Section 2.4. In the remainder of
this chapter, we will regularly refer to T and Ay from this example to illustrate various notions. A

3.1.1.2 Patterns and Specialization

Patterns, denoted p and defined in Fig. 3.2, describe the “shape” of a value with tuples, constructors,
primitive constants and wildcards denoted _. P denotes a set of patterns.

p € Patterns ::= _ (wildcard)
| ¢ (primitive constant)
| (pOr ce e rPn—l) (tuple)
| K(p) (constructor)

Figure 3.2: Patterns.

For instance, given the type None | Some(T), the pattern Some(_) matches values whose head
constructor is Some. We will formally define the semantics of pattern matching in Section 3.3.1.

The specialization operation, denoted T/ p and defined in Fig. 3.3, restricts the type T to values match-
ing the pattern p by filtering out constructors that do notappear in p. For instance, (None | Some(t)) / Some(_) =
Some(T).

t/_=n1 I;/c=1 (t0,-+ ., Tn-1) | {0, -+, Pn-1) = (T0/Po, - -, Tn-1/Pn-1)

Ko(to) | +++ | Kn-1(tn-1)/Ki(p) = Ki(ti/p)
Figure 3.3: Specialization of a type according to a pattern.

Given two patterns p and p’, their intersection p M p’ captures values that match both p and p’,
as defined in Fig. 3.4. If p M p’ is undefined, then p and p’ are said to be incompatible. For instance,
MSome() = Some(_), and None is incompatible with Some(_).

Ap=pn=p chc=c (Pos -+, Pr-1) (PG -+ Play) = (POTIPY, - Pt TPl _y)

K(p) MK(p’) =K(pnp’)
Figure 3.4: Intersection of two patterns.

3.1.1.3 Paths and Focusing

Paths, denoted 7t and defined in Fig. 3.5, indicate a position within a type, pattern or valuexpression
(defined later, in Fig. 3.8). Given a path 7tand 0 € Types U ValuExprs U Patterns, we denote focus (7, 0)
the subterm at position 7 within 6. In addition to field and constructor accesses, which focus within
a product or sum type respectively, a path may contain a bif range, denoted r, as its last operation to
focus on individual bits within integers. More precisely, [o : {] designates { contiguous bits from offset

39

o inclusive. For instance, in the type T = Some((Is, t)) | None, the least significant bit of the I is located
at 7t = .Some.0.[0 : 1] and we have focus (7, T) = I;. Focusing also unfolds type variables as necessary.
The full focusing operation is defined in Fig. 3.6.

ra=lo:{] (bit range)

m € Paths == ¢ (empty path)
| v (integer bit range extraction)

| A (tuple field access)

| K.t (constructor access)

Figure 3.5: Paths indicating a position within a high-level term.

focus{
I3 , 0 — 0
Jo], Iy, — focus (71, 1;) wheno+1{ < {
Jo:{]m, c — focus (7, ¢’) wherec¢’ = (c >> o) A (2¢ = 1)
At , (00,0, 0n0-1) —> focus (71, 0;)
Kimr , Ko(to) | -+ | Kn-1(tn-1) — focus (7, 1)
X , K(6) —> focus (7, 0)
T , t — focus (71, A(t))
s , X.T0y —> x.(719.77)
T , — _
}

Figure 3.6: Focus on the subterm at position 7t within 6 € Types U ValuExprs U Patterns, using the
type variable environment A to dereference type variables. >> denotes the bitwise logical right shift
operation and A the bitwise logical and operation; their combination allows us to extract the desired
range of bits from an integer c.

Similar to specialization by a pattern, t/7 defined in Fig. 3.7 restricts T to values v for which
focus (7, v) is defined. Note that unlike focusing, this does not return a subterm of T. For instance,
(None | Some(t)) / .Some = Some(T).

o+ <t

m (T0,+ -+, Tn-1) /.i.7r = (TO,--.,Ti—eri/ﬂ,Twl,.-.,Tn—1>

t/e=1

Ko(to) | -+ | Kn-1(tn-1)/ Kim = Ki(ti / 70)

Figure 3.7: Specialization of a type according to a path.

40

3.1.1.4 Source programs

ADT valuexpressions

u € ValuExprs == x.1t (variable subterm accessor)
|ceN (unsigned integer constant)
| (ug,...,un-1) (tuple)
| K(w) (constructor)

v e Values =:=c | (vg,...,vn-1) | K(v)
Full expressions

e€ Exprs :=(u:tas7) (pivot expression)
|letx:TasT=eine (value binding)
| £(x) (function application)
| match(x){po — €o ... Pn-1 — €en-1} (pattern matching)

Figure 3.8: Source expressions and values.

We formalize input programs as simplified expressions (shown in Fig. 3.8) where every expression is let-
bound, akin to A-normal form (Sabry and Felleisen 1993). Full expressions include function applications
f(x), pattern matching, and let-bindings. We assume that all function definitions have been processed
into an environment denoted X binding each function symbol f to a term of the form Ax.e. Pattern
matching constructs, as introduced in Section 2.1.1, consist of rules which filter value shapes with
a pattern on their left-hand side and return the expression on their right-hand side. Let-bindings are
annotated with both a type T and a memory type T, which corresponds to the memory layout specification
part of our language and will be explained in Section 3.1. Finally, pivot expressions, of the form (u : Tas7),
describe a concrete value of type T whose representation in memory should follow the memory type
T. The type and memory type in pivot expressions may be omitted when they are immediate from
context (for instance, let x : Tas T = u in e is a syntactic shorthand for let x : Tas T= (u: TasT) in e).
Valuexpressions, denoted u, have a syntax reminiscent of types, consisting of tuples and constructors,
along with integer constants ¢ € N. They also introduce accessors of the form x.7, representing the
subterm located at 7t within the value bound to x. For simplicity, we do not support recursive values
(even though types might be recursive). ADT values are the subset of valuexpressions that do not
contain any accessors.

Both valuexpressions and patterns can be focused on at a specific position, using the same focusing
operation defined in Fig. 3.6 as types. For instance, focus (.K.0, K(x)) = x.0.

Example 3.2 (Full expression with lists). Given a memory type T, the following expression:

~ Ay Nil — (0:1Izpasl
let x : Tyt @as T = Cons({42, Nil)) in match(x) { Cons((_,_)) — EX.C(?;S.O :322 as) }

1. builds the value Cons((42, Nil)) of type T, assigns the memory layout T to it and binds it to x;
2. matches this value against two patterns;

3. returns a value of type I3, (represented as a standard 32-bit integer in memory), either the constant
0 or the subterm at position .Cons.0 in x.

A

3.1.2 Layout specification with memory types

We now formalize the second part of our language, which consists of user-specified memory layouts in
the form of memory types. As seen in Fig. 3.8, each high-level expression is associated with a memory

41

type, denoted T, which specifies its memory layout. As a convention, all memory objects are given a hat.
For instance memory types, denoted T and defined in Fig. 3.9, describe how values of a given ADT t
will be represented in memory. At this representation level, we are bit-precise, yet abstract away some
architecture-dependent details such as endianness and machine pointer size and address alignment.
Let us first ignore the “split” alternation, and focus on the rest of the grammar. We extend the codomain
of A so that it now contains both high-level and memory-level type variable bindings — that is, it maps
each type variable to either a high-level type or a memory type.

T € Types = t € TyVars (type variable)
| ¢ (¢-bit wide word of unspecified contents)
| (c)e (¢-bit wide immediate encoding the constant c)
| & (T) (&-bit wide pointer to a T value)
|T DX ri:Ti (composite word type with n extra values stored in unused bits of T)
0<i<n
| {7o,...,Th-1} (n-field struct)
| I (¢-bit wide unsigned integer encoding)
| (masT) (fragment representing the subterm at position 7 as T)

| Spht (7?0,. ..,ﬁN_1) { Ci0,.-.,Ci,N-1 from P; = Ti | 0<i< TL}
(split with N discriminant locations and n branches of provenances P;)

A : TyVars — Types U Types (type variable environment)

Figure 3.9: Memory types — the hat on T distinguishes them from high-level types .

Fragments, denoted (7t as 7), indicate that the subterm at the position 7t in the high-level type will be
represented by the memory type T. As a special case, the “atomic” integer type I; encodes an integer
value using the standard unsigned integer encoding on ¢ bits — it is equivalent to the fragment (¢ as Ip).
The contents of a memory word of a fixed width { (in bits) may be left unspecified with _, set to a
constant ¢ with (c), or filled with the address of a value of another memory type T with the pointer
type & (T). Structure types are denoted by {7, ..., Th-1}-

Example 3.3 (Memory type description). Let us consider the high-level types Igs and Twp = (I32, T, Is)
where T is an arbitrary high-level type associated with some memory type T. We have a straightforward
memory encoding for Ies: Tint = les which encodes a 64-bit integer as “itself”. For Ttup, We choose to
represent the tuple with a “struct”, but we can choose the order of the components: first, we store the
I3 (position .0 in the high-level type), then the Ig (position .2), then some 24-bit padding (with zeroes),
then a 64-bit pointer to the T value represented as T. We group the Ig,I3; and Ip4 padding bits together
and get Trup = {(.0 as I32), (.2 as Ig), (0)24, &e4 (.1 as 7))} A

Some of the memory types we have seen so far contain bits whose contents are unspecified. This is
the case for types of the form _¢, but also for pointers, depending on architecture-specific characteristics.
For instance, if T corresponds to an {-byte aligned structure, then the { lower bits of the address of
any such structure — that is, of any &; (7) value — are always zero. They can therefore be used to store
extra information — this technique, used in C programs such as parts of the Linux kernel described
in Section 2.1.4, is known as bit-stealing. On some systems, the sign bit of user-space pointers may be
reclaimed in a similar way ', as well as bits corresponding to unused virtual address space °.

We capture this notion of extra information stored in the unused bits of a word or pointer with
composite words. Given a memory type T and n pairs (ri, T;) each consisting of a bit range and a memory
type, TP< i< Ti : Ti denotes the type of values consisting of a “base” value of type T where, for each i,
the bits in r; are used to store another value of type T;. We may also denote composite words in extenso
with T 1o : Tp < -+ < Tr_1 : Tn—1 (Observe the priority of " on "’). For instance, as we will see later on,

1See for instance https://docs.rs/ointers/latest/ointers/.
2This is done in the NaN-boxing layout from Section 2.7.

42

https://docs.rs/ointers/latest/ointers/

the memory representation of the Nil list constructor according to the simple linked-list memory layout
is 4 > [0: 1] : (1)1, which denotes an uninitialized 64-bit word whose lowest bit is set to 1.

The memory type constructs described so far are sufficient to specify the layout of virtually any ADT
combining integer and product types. However, none of these constructs are able to capture the notion
of different layouts for distinct constructors of a sum type. To this end, we introduce the split construct.
Splits model constraints of the form “if the value in memory at a given position is equal to some constant
¢, then we use the following memory type”. In split (7, ..., 7in) {B}, the 7; are N discriminant positions
and B is a set of branches of the form ci1, ..., ci,n from P; = T; where P; is a set of constant-free patterns
dubbed the provenances of the branch. It indicates that, if the value at each position 7Tj in memory is
cij, then it represents a value matched by a pattern in the set P; using the memory type Ti;. If Pyis a
singleton, we may write its single element without the surrounding curly braces.

Discriminant positions follow the grammar of memory paths defined in Fig. 3.10. Memory path
operations include pointer dereferencing and struct field accesses, as well as operations that manipulate
words on a smaller scale: extraction of £ bits from offset o, denoted .[o : {], and bitwise “and” with an
arbitrary (appropriately sized) bit mask m, denoted .m.

maz=¢|0m|lm (bit mask)

7 € Paths = ¢ (empty path)
| v (bit range extraction)

| m.7T (bitwise and)

| .+.7T (dereference)

| i (struct field access)

Figure 3.10: Memory paths. Sets of memory paths are denoted 1.

Bit masks are sequences of bits written with the most significant bit on the left; we write 0° (resp. 1¢)
for ¢ contiguous zeroes (resp. ones), and m;..... my for the concatenation of n bit masks. |m| denotes
the total number of bits in m. In practice, we will almost always use bitwise ands to “mask off” a given
bit range from a composite word; to this end, —=[o : {] denotes the bit mask whose total width is evident
from context, whose bits o inclusive to o + { exclusive are set to zero and whose other bits are set to one.
For instance, given the memory type T = _g4 < [0 : 32] : (42)32 < [32 : 32] : (0)3, the bit mask —[0 : 32] is
implied to be 64 bits wide; when applied to T, it designates the type _e4 =< [32 : 32] : (0)3; — that is, the
specification applied to the 32 lowest bits in T has been masked off.

Example 3.4 (Splits in lists). Consider the high-level type Tj;s; in the type variable environment Aj;s from
Example 3.1. We model the two memory layouts described in Exhibit 13 with two different memory
types. We first encode the naive (modulo pointer tagging) layout List as the following memory type:

?zslit([O'l]){lfmmNﬂ = _eux[0:1]: (1) }
o = SPUtLIV: 0 from Cons(_) = &4 ({(.Cons.0 as I3p),(.Cons.1as tc)}) < [0:1]: (0)
As this memory layout is fundamentally recursive, we add a new binding to our type variable environ-
ment:

Ajist = {tist > Tiist, te ?C}

Since there are two possible representations depending on the head constructor, we use a “split” type
with two branches. In the first branch, the single pattern Nil indicates that it represents the Nil high-
level value. Its memory type is _ga < [0 : 1] : (1)1: a 64-bit word whose lowest bit is set to 1. In the
second branch, the provenance Cons(_) encompasses all other Tys values and represents them using
the memory type &q4 ({(.Cons.0 as I3), (.Cons.1 as T¢)}) < [0 : 1] : (0)1, which is a 64-bit wide pointer
whose lowest bit (address alignment bit) is set to 0, pointing to a struct encoding the first element of the
list as a 32-bit integer, followed by the list of remaining elements, itself represented as T.. Finally, the
split discriminant .[0 : 1] indicates how to tell these two cases apart: by looking at the lowest bit, which

43

is 1 in the Nil case and 0 in the Cons case, as enforced in both memory types with a composite word
specification ([0 : 1]).

Another possible choice of representation for the same ADT is the “packed” layout PairList, which
we model with the following memory type:

Tp = split ([0 : 2]){
0 from Nil = _g1 = [0:2]:(0)
1 from Cons({_, Nil)) = g4 [0:2]:(1)2<[2:32]:(.Cons.0 as I3)
2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I3;), (.Cons.1.Cons.1 as tp)}})
=<[0:2]:(2)2
}

Again, we add a new binding to our type variable environment for this recursive memory type:
Ajist = {tlist = Tiists te = Te, tp & ?p}

We fit up to two elements per level of indirection, using a three-branch split whose first two branches
represent empty and singleton lists similarly to the previous layout T., and whose last branch inlines
the two first elements of longer lists into a struct. A

The size of a memory type T, denoted |T] and defined in Fig. 3.11, has a rather straightforward
definition. Note that we only consider memory types whose size can be computed; in practice, this
means that recursive types must always introduce some form of indirection. For instance, in the type
variable environment {t — 7T}, this criterion forbids T = {_g, t} but allows T = {_¢, &¢ (t)}.

[t = [A(L)] |_el =¢ l(c)el = ¢ |&¢ (D) = ¢ T X il = T
0ogi<n
7o, ..., a1}l = 7ol + - + [Tl [Te| = ¢ |[(mras)| = |7]

|split(ﬁ1,...,ﬁN){01,1,...,ci,N from P; = T; \1 <ig n}| = 1r<na<x |Ti
isn

Figure 3.11: Size of a memory type T in the type variable environment A.

We formalize the notion of “memory contents at a given position 7 in a memory type T’ with a
memory focusing operation, denoted focus, (7, 7) and defined in Fig. 3.12. It is similar to focusing on
high-level terms, with the caveat that “focusing below a bitmask” is akin to performing a bitwise “and”,
as explained above.

focus, {
€ , T — T
7 t — focusn (7, A(t))
ARz T . f”o?usA (7,7
.(b|:g|_1 .. .bo).ﬁ , ?D<0<1<n[oi : 81] : :Ei —> fOCllSA (7‘[T D<1€I el] ?1
where [= Osi<n }
Vjie{0,...,¢i—1},bo45 =1

L* T , & (7) —> focusa (7T, T)
Ti.TT , T pcian 15 T — focusa (7T, 7Ty)
17T , {70,..., Tt} —> focusa (T, T;)

Figure 3.12: Memory-level focusing operation on types in type variable environment A.

44

We can now define syntax-based operations on memory types that access parts relevant to the
represented high-level type in a generic way. The shatter operation, defined in Fig. 3.13, gathers all
fragments and primitive types that appear within a memory type, along with their positions.

shattera (7) = {(7? masT) | focusa (7T, T) = (as ?)} U {(7? — easly) | focusp (T, T) = I@}

Figure 3.13: Collect all fragments and atoms of a memory type.

Example 3.5 (Focus and shatter on pair lists). Consider the second split branch from Tp,of Example 3.4,
corresponding to the provenance Cons({_, Nil)): let T=_gs < [0:2]: (1)2<[2:32] : (.Cons.0 as I3). We
can extract all fragments from this memory type with shatter:

shattera, (T) = {(.[2: 32] — .Cons.0 as I3)}

Indeed, we do have focusa,, (.[2 : 32],7) = (.Cons.0 as I3). A

This memory focusing operation is sufficient to destruct concrete memory structures such as pointers
and structs, but is undefined (for non-empty paths) on memory type constructs that refer back to a high-
level type — that is, primitive (integer) encodings, fragments and splits. Fragments should be explicitely
expanded as needed, rather than during focusing, so as to prevent non-termination in the presence of
recursive types. As for splits, we handle them with another syntactical operation: specialization.

Memory type specialization, denoted T/p and defined in Fig. 3.14, handles splits in a memory
type T by filtering out all parts of this type that do not match the pattern p, similar to high-level type
specialization. However, since each split may represent arbitrarily deep provenances in different ways,
it returns a list of branches rather than a single specialized type. Each of these branches consists of a
pattern which matches precisely the high-level values it represents, and of a split-free memory type. In
particular, T/ _ removes all splits from the memory type T and yields the list of all its fully specialized
versions.

t/p=A1t)/p _o/p={p,_0)} ©)e/p = {(p,(0)e)} Le/p={(p,1o)}
& (?) /P = {(p,r & (:E,)) | (Pl,?) € :E/p}

~ ~ (', T)ex/p
(T < TiiTi) [p=3@",TXr:T) (pi,T) eTi/p
0<i<n P’ =p' MpoM...Mpn-1

P =poM...MPpn-1

{{:EO/- . -/:En—l}} /P = {(p,r {{?01 "’?n—l}}) ‘ (pu’?i) © :El/p } (7T as ?)/p = {(pr (7T as a)}

0<i<n
Spht(ﬁo,...,ﬁ]\j_l){Ci,(),...,Ci,N_l from P; = ”C\i |O<i<n} /D=U ?i/pl pi € Py
P =pNpi

Figure 3.14: Specialization of a memory type according to a pattern in the type variable environment A.

Example 3.6 (Specialization of pair lists). Recall the T, memory type with the type variable environment
Ajigt from Example 3.4. Its specialization for non-empty lists, that is, for the pattern Cons(_), is:
T, /Cons(_) = {
(Cons({_, Nil)) , 64 [0:2]: (1)2=[2:32] : (.Cons.0 as I3p),)
(Cons({_,Cons(_))) , &es ({(.Cons.0 as I,), (.Cons.1.Cons.0 as I3,), (.Cons.1.Cons.1 as t,)}}) < [0: 2] : (2),)

}

45

A

At this point, we have defined the main constituents of the Ribbitulus: high-level and memory
types, high-level patterns, valuexpressions and full expressions. Recall that valuexpressions are values
with the addition of path-based variable accessors. Notably, we defined two crucial operations for both
high-level and memory-level objects: specialization by a pattern which returns one or more restricted
types, and focusing on a path which returns a subterm of the given term. An index of all these concepts
and notations is available in Fig. 3.34 at the end of this chapter.

3.1.3 Memory model

Now that the user-visible part of our language has been defined, we provide an abstraction of memory
contents and a low-level representation of ribbit programs.

3.1.3.1 Memory values and expressions

After having defined memory types and their associated tools, we can define their values and expressions
that represent computations on those values. Memory values, denoted v and defined in Fig. 3.15, feature
the same concrete memory structures as memory types (structs, composite words, etc., see Fig. 3.9), but
differ in how pointers are represented. While a pointer memory type directly contains its pointee
memory type, we use a more detailed memory model for values. A pointer memory value instead
contains an address, denoted a € Addrs, whose contents are accessible through a store ¢ which maps
addresses to memory values. Memory valuexpressions, denoted u and defined in Fig. 3.15, in the spirit
of high-level valuexpressions, are similar to memory values but retain some constructs that are yet to
be evaluated. There are two such constructs: pointers of the form & (i) in which the pointee u has
not been stored and assigned an address yet, and pivot expressions of the form (u : T as T). A pivot
expression (u : T as T) expresses that the high-level valuexpression u of type T must be represented
using the memory layout T. Within a memory valuexpression, a pivot expression acts as a placeholder
for a memory value that has not been computed yet.

Memory valuexpressions

G € ValuExprs == (u: Tas) (pivot expression)
| _¢ (uninitialized {¢-bit wide word)
| (c)e (£-bit wide constant)
| &¢ (W) (¢-bit wide pointer to)
| & (a) (£-bit wide address)
[DX o (composite word)

0<i<n
| {uo, ..., Un-1} (n-field struct)
Memory values
V€ Values := _¢ | (c)e | &¢ ()| ¥ re Bl T Bar)
<1<n
¢ : Addrs — Values (memory store)

Figure 3.15: Memory values and valuexpressions.

Similar to the memory focusing operation defined on memory types, we define a memory focusing
operation on memory valuexpressions in Fig. 3.16. It differs from memory focusing on types in that it
depends on a store ¢ to allow for focusing below addresses.

46

focusc (¢, W) =1 focus. (.ri.ﬁ,ﬁ X i ﬁi) = focus. (7T, 1) focus. (.1'“' T, ﬁ) = focus (7, 10)
0<i<n

m = b|ﬁ|_1 bo I= {l

0<i<n
Vie{0,..., i =1}, bo45 =1

LT U D< [oi: ¢i]: ﬁi) = focusc (ﬁ,ﬁ D< [0 : 4] :ﬁi)

iel

(amV)ec

focusc (. * .7, & (1)) = focus. (7, W) —— — ——
focus (. * .7, &¢ (a)) = focusc (7, V)

focus (1.7, {Up, ..., Un-1}) = focusc (7T, 1)

Figure 3.16: Memory-level focusing operation on valuexpressions in the store ¢.

Example 3.7 (Pair list memory valuexpression). Recall the memory type T}, defined for the tjit ADT from
Example 3.4. The following memory valuexpression is a pivot expression that requests the representation
of the high-level value Cons(42, Nil) according to the layout Tp:

(Cons(42,Nil) : Tjist as Tp)

After evaluation (which will be defined in Section 3.3.2), we would obtain the following memory value
(and an empty store):
V= _64 X [0 : 2] : (1)2 =< [2 : 32] : (42)32

This memory value follows the structure of the specified memory type T, with each fragment instanci-
ated with the supplied concrete value. Focusing on it with the memory path .[2 : 32] yields the encoded
integer value of the first element:

focusy ([2:32], 61 [0:2]: (1)2 < [2:32] : (42)32) = (42)3
A

We can now define full memory expressions, which capture all stages from a source program down
to its fully evaluated form, that is, a memory value. To this end, full memory expressions, denoted €
and defined in Fig. 3.17, include all high-level full expressions, all memory valuexpressions, as well as
hybrid let-expressions that fit neither existing grammar but may arise during evaluation.

€€ Exprs == e € Exprs (high-level expression)
| T e ValuExprs (memory valuexpression)
|letx:TasT==¢ine (intermediate let-bind form)

Figure 3.17: Full memory expressions.

Example 3.8 (Full memory expression for pair lists). The following memory expression binds x to the
memory value vV from Example 3.7 and accesses its integer value encoded on 32 bits using the pivot
expression (x.Cons.0 : I3z as Isp).

e=letx: Tlist AS :C\p =_a X [0 : 2] : (1)2 o8 [2 : 32] . (42)32 in (X.COI’IS.O 1 I3 as 132)

47

3.1.3.2 Memory patterns: shapes of memory contents

P € Patterns == _ (£-bit wide wildcard)
| (c)e (¢-bit wide constant)
| &¢ () (&-bit wide pointer)
[P X 1i:p: (composite word)

0<i<n
| {po,..., Pn-1} (struct)

Figure 3.18: Memory patterns. Sets of memory patterns are denoted P.

Similarly to high-level patterns, we define a notion of memory patterns, denoted p and defined in Fig. 3.18,
which describe the shape of a given memory type of valuexpression. Empty word memory patterns act
as (sized) wildcards, in that _y matches any memory contents of size £. The function shape_of, defined in
Fig. 3.19, returns a memory pattern corresponding to the shape of a memory type or valuexpression; it
mostly follows the syntax of memory constructs. For constructs that refer to parts of a high-level type or
value — that is, primitive types, fragments, splits and pivot expressions — we use an appropriately sized
wildcard. Indeed, we consider such constructs as “black boxes” whose size is known but whose precise
contents are not determined yet.

h f
shape_of , { shape_of {
t — shape_of , (A(t)) =t — -t
¢ — Pea (c)e — (c)e
(©)e — (c)e & (1) — & (shape_ofc(ﬁ))
?S iR fﬁa(sl‘affe‘%@ P — & (shape_of,(<(a)
O<ion pe_ota O<ion Lipi u P ri:Uy — shape_of (1) PX vi:p;
{:EO ?n—l}} — HEO ﬁn—l}} 2§i<n . N _ 0<i<n
where p; = shape_of 5 (T;) (o, Uk — {po"'lpf_l}} ~
= o A where p; = shape_of (11;)
! - (u:TasT) — _q
¥

(a) Shape of a memory type in the type variable environment A
(b) Shape of a memory valuexpression in the store ¢

Figure 3.19: Memory pattern capturing the shape of a memory type or valuexpression.

Example 3.9 (Shapes of pair lists). The shape of the memory type T}, from Example 3.4 is shape_of(Ty,) =
_e4. Itfits all possible values: due to the toplevel splitin T, the only available information is the maximal
size of its values — here, all of its values are necessarily 64 bits wide.

On the other hand, the shape of the memory value v from Example 3.7 is more precise since all
elements that were unevaluated in T, are now fully determined:

shape_of(V) = 1< [0:2]:(1)2 %< [2:32]: (42)32

3.2 Typing and validity

To ensure the correctness of a given memory specification, we consider two complementary notions:
intrinsic validity and well-kindedness of a memory type, and agreement between high-level and memory

48

types.

3.2.1 Kinding and validity of memory types

The intrisic validity of memory types relies on two judgments. The notion of well-kindedness, denoted
A k T, refers to memory types passing both of these judgments. While it would be possible to define
a single judgment, determining a kind and checking validity at the same time, this approach quickly
leads to cycles in derivation trees, which we would rather avoid. Using two separate judgments lets us
break the recursive cycle and still cover the entire structure of a (possibly recursive) memory type.

VTyVar VCoNSTANT VPOINTER
t € dom (A) A(t) € Types 0<c<2t VWorp VPRrIMITIVE A £ Tvalid
- - Ak _g valid Ak I valid _
Ak tvalid Ak (c) valid A £ & (T) valid
VCoMPoOSITE VStruCT VFRAGMENT
A E Tvalid A kT valid i<j=o0i+{ < oj A £ T valid A £ Tvalid
AE ? D< [Oi . Ei] : :E\i valid Ak {?0/ .. -/?n—lﬂ’ valid AE (T[as %) valid
0<i<n
VSpLiT
AE :L'\i valid

3¢, ¥(p,7) € T/ _ focus (75, 7T) = (cij)e Vp € Py, Vp' € Pj,i#j = pnyp’isundefined

A':Spht(ﬁl,...,ﬁ]\]){Ci,],...,Ci,N from P; = 7T |1 < i<n} valid

Figure 3.20: Validity judgment on memory types.

The walidity judgment, denoted A £ Tvalid and defined in Fig. 3.20, explores a memory type by
iterating over its entire inductive structure, stopping at type variables. It ensures that every specified
construct “makes sense” individually. Its main purpose is to check the good formation of memory
type constructs: the VTYVAR rule checks that each type variable is bound to a memory type, while the
VCowmrosrtE rule ensures that composite word bit ranges do not overlap. For splits (VSpLiT rule), we
check that each branch indeed contains the specified discriminant values at their respective positions
and that branch provenances do not overlap each other. In order to fully check the validity of a recursive
type, we simply iterate over each memory type bound in the type variable environment and check their
validity.

Example 3.10 (Invalid memory type: C unions). This validity judgment already rejects non-trivial user
mistakes. Let us emulate a traditional C union layout for the T 4t type defined in Section 2.2 which
takes up as much space as the largest variant (Large):

Thad = _128 < [0 : 63] : (.Small as Is3) > [0 : 128] : (.Large as I12g)

Thad is not valid: the VComposite rule does not apply because [0 : 63] and [0 : 128] overlap. Since it lacks
distinguishing data to use as a discriminant, this layout is not expressable as a split. A

Example 3.11 (Valid memory type for lists). Recall the following memory type from Example 3.4, in the
type variable environment Aj;g:

Tc = split ([0 : 1]){ 1 from Nil = _6a=[0:1]: (1) }

0 from Cons(_) = &4 (Ts) = [0:1]:(0)

where
Ts = {(.Cons.0 as I3;), (.Cons.1 as t¢)}

49

We show that T, is a valid memory type:

(te > T)EA Tc € Types

VTyVar
VPrimiTive A E I3 valid A E t. valid
VFRAGMENT - VFRAGMENT -
A E (.Cons.0 as I3p) valid A E (.Cons.1 as t.) valid
VStruCT =
A E T¢ valid
VCoNsTaNT VPoinTER VCoNsTANT
VWoRD 0<1<2 A E T, valid 0<0<2
A E _gy valid A E (1)1 valid A E & (Ts) valid A E (0)1 valid
VCoMPOSITE - — - VCoMmPoOsITE
AE _ga<[0:1]: (1) valid A E &g (Ts) =< [0:1] : (0); valid
focus ([0:1], _ea =< [0:1]: (1)) = (1) focus ([0 : 1], &e4 (Ts) =< [0: 1] : (0)1) = (O)
Nil 11 Cons(_) is undefined
VSpLiT

A kT, valid
A

The kinding judgment, denoted A F T : k and defined in Fig. 3.21, checks that parts of a memory
type “make sense” in relation with each other. For instance, KComprosITE ensures that composite word
bit ranges indeed fit within unused bits of the base memory type and do not overlap each other. To
this end, it assigns a kind, denoted X, to each memory type. A kind is either Block, which represents
structs and can never appear inside a composite word, or Word(m) representing words of the same
width as m, where m is a bit mask in which zeroes indicate bits that are necessarily free (not used for
storing data by the memory type). The kinding judgment, unlike the validity judgment, follows type
variables but does not recursively explore pointers. Indeed, only the address alignment (as opposed to
the full kind) of a memory type is needed to determine the kind of a pointer to this type. In the actual
judgment, we only informally state this address alignment criterion: since the actual set of available
bits in pointers is highly architecture/OS-dependent, we leave this information out of the validity and
kinding judgments. For now, this means that the validity of such optimizations is left up to the user; a
more satisfactory solution would be to develop architecture/OS-specific extensions for ribbit to check it
automatically.

K == Word(m) | Block

KTyVar

AEA®):K KConstanT KWorp KPriMITIVE
T AE ()¢ : Word(1%) AE_¢: Word(0Y) AE I : Word(1Y)
1K
KPoIiNTER SusKiNDING
m sets the address bits of any (-bit wide T pointer A e T:Word(m.0.m’)
A E & (T) : Word(m) A £ 7T:Word(m.1.m’)
KCowmrosite
|7] bits

A ET: Word(m) A ET; : Word(m,) m,=0...0 m; 0...0
[A—|

1
¢; bits 0 bits

AT P& [0 : 4] : T : Word(m vV m) v ---vm/ _,)

KStrUCT

AE {:E\(),. . .,:E\nflﬂ : Block

0<i<n
KFrRAGMENT KSrLiT
AET:K AET: K
At (masT):K Al:split(ﬁl,...,ﬁN){ci,l,...,ci,N from P; = T, |1<i<n} i K

Figure 3.21: Memory kinds k and kinding judgment A k T : k, used on valid memory types.

50

Most of the rules are fairly immediate by direct induction. The KComposite proceeds by checking
non-overlapping of masks. The SuKinpING rule lets us relax a Word kind that has been assigned to a
memory type, by “forgetting” that a given bit is unused. This is useful to unify the kinds of all branches
in the KSpuit rule.

Example 3.12 (Well-kinded memory type for lists). Recall the following memory type from Example 3.4,
in the type variable environment Ay

7. = split ([0 : 1]){ 1 from Nil = _ea=[0:1]: (1) }

0 from Cons(_) = &4 (Ts) = [0:1]:(0)

where
Ts = {(.Cons.0 as I3;), (.Cons.1 as t¢)}

We have |Ts| = |Is2] +|Tc| = 32 + 64 = 96. Assuming that the address alignment of a struct is equal to its
size in bytes, we can assert that the two lowest bits of any pointer to a 96-bits-wide struct are free to use.
Using the KPoiNTER rule, we can therefore assign the following kind to &4 (Ts):

A E &4 (Ts) : Word(16%00)

We can now show that T is of kind Word(1°201). Note how the last KComposiTe rule on the right marks
the last bit in the kind as used, manifesting the bit-stealing.

KWorp KConstanT
A E _gs - Word(0%%) Ak (1) : Word(1) KConstant
KCowmposiTE = . 6
AE _gg><[0:1]:(1); : Word(0>1) A E &g4 (Ts) : Word(1°°00) A E (0); : Word(1)
SuBKinDING = — = KComrosiTE
XS AE _gg<[0:1]:(1); : Word(1°01) AE &gy (Ts) < [0: 1] : (0); : Word(1°-01)
PLIT

A E T : Word(1%%01)
A

We can now define well-formed type variable environments, in which every bound type is valid and
well-kinded.

Definition 3.1 (well-formed type variable environments). A type variable environment A is well-formed,
and we write k A, if and only if every memory type is valid and well-kinded and all type variables that
appear in high-level (resp. memory) types are bound to a high-level (resp. memory) type, i.e.:

® V(t—> T) € AVt € TyVars, Vr € Paths such that focus (71, t) = t/, 31" € Types, (t' = 1T') € A

e Vit~ T eAAETvalid ATK,AET: K

3.2.2 Agreement between ADTs and memory layouts

Now that we have defined validity criteria for memory types on their own, we can state the relationship
between ADTs and their memory layout specifications — that is, whether a given memory type properly
represents, or agrees with, a given high-level type. This agreement relation is based on four criteria,
which we formally state in Definition 3.2. Coverage ensures that every piece of data from the high-
level type appears within the memory type, as an arbitrary combination of fragments and primitive
encodings. Note that it is acceptable to split a subterm into any number of pieces and scatter them
arbitrarily across the memory type, as long as every piece appears somewhere within the memory
type. Distinguishability ensures that the precise provenance of any given high-level value is always
identifiable from its memory representation, by inspecting a combination of split discriminant locations.
Again, any configuration of split locations, values and branch provenances is acceptable, as long as
every provenance is distinguishable from incompatible other provenances. The two remaining criteria
(fragment and branch coherence) simply propagate coverage and distinguishability through the entire
inductive structures of both high-level and memory types.

51

Definition 3.2 (Agreement). Let T a high-level type and T a memory type considered in a type variable
environment A. We say that T represents T, or agrees with T, and we write agree , (T, 7), if either T and T
are identical primitive types (i.e., T = T = 1) or all of the following conditions hold:

All fragments bind subterms to their valid representation. (Fragment Coherence)
For all (7t — 7 as T) € shattera (T), T = focusa (7, 7) is defined and T agrees with .

Split branches are valid representations of high-level subtypes. (Branch Coherence)
For all 7 such that focusa (7, 7) = split(...) { ... from P; = 7T |0 <i< n}, for each branch

i€ {0,...,n—1} and each p € P; such that A + p : 7, T; agrees with T / p. Furthermore, for every
pattern p of type T, there exists a branch i € {0,...,n — 1} and p’ € P; such that p M p’ is defined.

All data from the high-level type is represented within the memory type. (Coverage)
For every high-level path 7t that leads to a single bit in T (i.e., focusa (7, T) = I1), T covers m: every
memory type T € T/ contains a fragment (or primitive type) for a position 7y prefix of 7. More

precisely, there exist high-level and memory paths 7y and 7t such that focusa (7, T) = (79 as T)
and either 7t = 7p.m" or t = 7'.[o : £], o = W.Jop : dp]land og K o< o+ L < og+ly(orm=¢,T=1I
and focusa (7, T) = 1¢).

Memory types provide a way to tell incompatible patterns apart. (Distinguishability)
For every high-level path mthatleads toasumin T (i.e., focusa (7, T) = Ko(to) | - - - | Kn=1(Tn-1)), for
every pair of distinct constructors in this sum (K3, Kj) (with 0 < i # j < n), Tdistinguishes between K;
and K;. More precisely, T/ m.K; # @, T/ nK; # @ and forany (p;, Ti) € T/ mKiand (pj, Tj) € T/ 7K;j,
there exists a memory path 7t such that either focusa (7, T1) = focusa (7"?, ?j) = (mg as T') with g a
prefix of 71, or focusa (7, T;) = (ci)e, focusa (7T, Tj) = (¢j)¢ and ci # c;.

As a first example, we show that our memory layout specification for lists agrees with their ADT.

Example 3.13 (Agreement for lists). Recall Ay, Tiist and T from our running example:

Alist = {tiist = Tiist, te = Te, tp ?p} Tiis¢ = Nil | Cons((I32, tiist))

% = split ([0 : 1]){ 1 from Nil = _ex[0:1]: (1) }

0 from Cons(_) = &g ({(.Cons.0 as I3p), (.Cons.1 as te)}) =< [0:1]:(0)

To establish agreement between Tjit and T, we first show that both branches agree with their specialized
ADT counterparts. As Tjist is a recursive type, we admit that the type variables forming the recursive
node agree with each other, i.e., agree At (tiist, te)-

¢ Nil branch: we show that agree Alist(Nil, _64><[0:1]:(1)1). All criteria are immediate, since there
are no fragments or splits in this memory type and the high-level type Nil contains no primitive
data and only has one constructor.

e Cons(_) branch: let Tcons = &es ({(.Cons.0 as I3;), (.Cons.1 as tc)}) < [0 : 1] : (0);. We show that
agreeAhst (COHS(< I32/ tlist))r ?Cons)'

Fragment coherence: agree(Is;, Is;) is immediate from the base case of Definition 3.2. The second
fragment corresponds to the recursive node: agree Am(tlistr te).
Branch coherence: immediate since there are no splits in this memory type.

Coverage: the primitive data in this high-level type consist of the I3, subterm at position .Cons.0,
which is covered by the fragment (.Cons.0 as I3), and of all primitive contents of the tj;s
subterm at position .Cons.1, which is covered by the fragment (.Cons.1 as t).

Distinguishability: immediate since there are no sums with more than one constructor in this
type, except below the recursive node.

We can now show that we have agree A (Tiist, Tc)-

52

Fragment coherence: immediate since there are no fragments or primitive types outside of the toplevel
split (i.e., shattera (T¢) = @).

Branch coherence: asshownabove, we have agree A (Nil, _64<[0: 1] : (1);) and agree At (Cons({Isp, tiist), TCons)-
Coverage: the coverage criterion for the full type follows from coverage for the Cons(_) branch.

Distinguishability: T, distinguishes between Nil and Cons, thanks to its split discriminant at position
[0 : 1]. Indeed, we have focus (.[0: 1], s> [0:1]:(1)1) = (1)1, focus (.[0 : 1], Tcons) = (0)1 and
1#0.

A

The rest of this section is dedicated to counter-examples, with memory types that disagree with Tjg.

Example 3.14 (Unit representation). Consider a primitive high-level type I, and the constant memory
type (42);. This memory type does not meet the coverage criterion for I, because no fragment nor
primitive type appears in it. Indeed, this type represents all high-level values as the constant 42 on {
bits. Therefore, the memory type

. . 1 from Nil = _p4 X [0 : 1] : (1)1
split(0: 1) { 0 from Cons(_) = &g4 ({(.Cons.0 as (42)¢),(.Cons.1as t)})<[0:1]: (0) }

does not meet the fragment coherence criterion for Tj;s, because it does not encode its primitive subtype
focus (.Cons.0, Tjist) = I3p. A

Example 3.15 (Non-coverage: tags without payload). A simple tag without payloads, similar to C
enums, is not sufficient to encode arbitrary sum types with non-unit variants, as it does not meet the
0 from Nil = (0)32
1 from Cons(_) = (1)3;
its subterms at positions .Cons.0 and .Cons.1. A

coverage criterion: split (¢) { } does not cover Tt since it does not represent

Example 3.16 (Non-distinguishability). Let T = {(.Cons.0 as Is;), &3 ((.Cons.1 as t))} with the type
variable t mapped to T. It includes the Cons constructor’s subterms in distinct struct fields but provides
no way to distinguish Nil from Cons values. T does not meet the distinguishability criterion for Tjs: we
have T/Nil = {(Nil,7)} and T/Cons(_) = {(Cons(_), 7)}; it lacks a discriminant that differs between Nil
and Cons(_). A

3.2.3 Typing for high-level objects
3.2.3.1 High-level typing judgment

We now define a typing judgment for high-level valuexpressions and patterns, which are accordingly
typed by high-level types (ADTs). Even though this judgment only deals with high-level values and
types, its environments include both high-level and memory-level bindings, so as to ease the definition
of a typing judgment for full expressions which we cover in Section 3.2.3.2. In the following definitions,
the meta-syntactical variable 6 denotes a high-level object which is either a pattern or a valuexpression,
i.e., 0 € ValuExprs U Patterns. The type variable environment A : TyVars — Types U I?p;s maps each
defined type variable to either a high-level or memory type, although we will only use bindings to
high-level types here. Similarly, the typing environment I" : Vars — Types X "fy—\pes maps each defined
variable to a pair of a high-level and a memory type, although we will only consider the former here.
The actual high-level typing judgment is denoted A,T" + 0 : T and defined in Fig. 3.22. For patterns,
which by definition never contain variables, we may omit the typing environment and write A+ p : T.

53

HLTTypPeEVAR HLTVARIABLE HLTConstanT

(t—1)€eA ATHO:T (x:tasT) €T ELITWILDCARD 0<c<2t
TR 1 _—
ATrHO:t A, T+ x.t: focus (71, T) ATre:],
HLTTurLe HLTConsTtr
ATEO T 316{0,...,n—1},K=Ki ATEO: T
A/r F <90/--~/en—1> : <T0r---/Tn—1> A,F F K(e) : KO(TO) I I Kn—l(Tn—l)

Figure 3.22: Typing judgment for patterns and valuexpressions (6 € ValuExprs U Patterns).

Example 3.17 (High-level typing for lists). Recall the high-level type Ty in the type variable environment
Ajigt from Example 3.1: 1 = Nil | Cons({I3p, tiist)). Consider the high-level value Cons({42, Nil)). We
show that this value is of type Tjist, using the HLConstr, HLTurLE, HLTTYPEVAR and HLConsTaNT typing
rules.

Now consider the valuexpression x.Cons.0 in the following typing environment: I' = {x : Tyt as T },
where T, is one of the two memory types defined in Example 3.4 (here, it does not matter which layout
we pick as long as it agrees with Tjit). We type the valuexpression x.Cons.0 by applying the HLTVARIABLE
rule; since focus (.Cons.0, Tjist) = tiist, we have Ajigt, I' F x.Cons.0 : tyjg. A

Definition 3.3 (well-typed value environments). Let A a well-formed type variable environment and I’
a well-formed typing environment in A. A value binding environment o is well-typed in A and T', and
we write A, T + o, if and only if dom (0) = dom (I') and for each (x : TasT) € T, we have A, T F o(x) : T.

We finally state some early results on high-level typing, which will be used for proving type sound-
ness in Section 3.4. In the following, we assume A, T, o, T € Types and 0 € ValuExprs U Patterns such
that:

EA AET ATEC ATED:T

Lemma 3.1 (Focusing traverses high-level typing). For any path , if focus (m, 0) is defined, then focus (7, T)
is defined and we have A, T + focus (7, 0) : focus (7, 7).

Proof. Immediate by induction. |

Lemma 3.2 (Accessors and their bound values have the same high-level type). Let x € dom (o) and
7t € Paths. We have A, T + x.7t : T if and only if focus (7, 0(x)) is defined and A, T + focus (7, 0(x)) : T.

Proof. Immediate. O

3.2.3.2 Typing for source programs

We can now type expressions, which represent full-fledged ribbit programs. By design, each value
introduced in our language is associated with both an ADT and its memory layout. Our typing
judgment for full expressions therefore checks an expression e against both a high-level type T and a
memory type T, and we write A,T" + e : T as T. Its rules are defined in Fig. 3.23. Note that in order to
type function calls, I' now also contains bindings of the form (f : Tas T — T’ as T') which indicate that
the function bound to f € FunVars takes an argument of type T represented as T, and returns a value of
type T’ represented as T

54

THLTYVAr TMTyVar

(t—T1€eEA ATre:TasT (t—TeA ATre:tasT
ATre:tasT ATre:Tast
TPivor TLeTBiND
AET agree,(t1,7T) ATru:T ATre:tasT ATU{(x:tasT)}re :T'asT
ATr(u:TasT):TtasT ATrletx:tasT=eine :TasT
TFunCarLL

(f:tasT—> T asT)eml (x:tasT) el

ATHf(x):T asT

TMatcu
(x:tasT) el Arpi:T ATrei:TasT {po,---,Pn-1} is exhaustive for t

AT+ match(x){po = € ... Pn-1 = en-1}: T asT

Figure 3.23: Typing judgment for full expressions.

Pivot expressions are precisely where memory types are introduced in an expression. The TPvor
rule ensures that the high-level and memory types of every pivot agree with each other, and that all
memory types are well-kinded. The following immediate result propagates this property to every
well-typed expression:

Lemma 3.3. IfA,T + e:TasT, then A £ Tand agree (T, 7).
Proof. Immediate by induction on e.]

The TMarcH rule types a pattern matching expression by checking that the left-hand side pattern and
right-hand side expression of each branch are well-typed. It also checks pattern matching exhaustivity:
if the patterns are all of type T, then every possible value of type T must be matched by at least one of
these patterns, using the pattern matching evaluation judgment defined in Fig. 3.26. This is similar to,
for instance, the OCaml compiler, in which pattern matching exhaustivity is checked during typing and
the pattern is completed if necessary. The actual procedure for checking exhaustivity in our TMatcH
rule is left unspecified as there is ample literature on the topic (Maranget 2007; Liu 2016).

Example 3.18 (Typing a program on lists). Recall the type variable environment Ay, the high-level type
Tiist and the memory type T, from Examples 3.1 and 3.4. Consider the following expression:

e = let x : Tjigt as Tp = Cons((42,Nil)) in match(x) { il = (0: I asIy) }

Cons(_) — (x.Cons.0: I3 as I3p)

It is immediate from the definitions of validity, kinding and agreement that the memory type Iz, is valid
and well-kinded, and that it agrees with its high-level counterpart I3;. Following the same reasoning as
Examples 3.11 and 3.12, we show that Ty, is valid and well-kinded. We have shown that s and Tp, agree
in Example 3.13. Using HLTTyPeVar, HLTConstr and HLTWiLbcarp rules, we show that both patterns
Nil and Cons(_) are of type tys. Using the results from Example 3.17 and with T' = {(x : ts as Tp)}, we

55

can now type e:

Ayt F :Ep agree, . (Ttist, :Ep) Ajist, @ F Cons({42, Nil)) : Tyt

TPwvot - — =
Alist, @ + (Cons((42, Nil)) : Tiis¢ as Tp) : tiist as Tp

Alist E 132 agreeAhst(Igz, 132) Alistr '+ x.Cons.0: 132

TPwvort —— -
Ajist, ' F (x.Cons.0 : I3p as I37) : I35 as I3

0<0<2%
HLTConSTANT ———M
At F 132 agree, (I, In) Aigt, THO: Inp
TPivor -

(x:tistas Tp) €T
Ajige B Nil : i Ajist F Cons(_) : tiist
Ajist, T F (x.Cons.0 : I3 as I3p) : I3 as Iz Nil > Nil A Vv, Cons(_) > Cons(v)
Nil — (O . 132 as 132)
Cons(_) — (x.Cons.0: I3 as I3p)

TMAaTcH

Ajist, T F match(x) { } :I3p as Isp

Atist, @ + (Cons((42, Nil)) : Tiist as Tp) : tiist as Tp

_ . —~ Nil - (O . 132 as 132) .
= {(x : tiist as Tp)} Ajist, T F match(x) { Cons() — (x.Cons.0: Iy as Isp) | ° I35 as Iz
TLerBinp
Alist, @ + e : Isp as I3n
A

In order to define an evaluation judgment for expressions (in Section 3.3.2), we need a notion of
function environments, usually denoted L, which bind function symbols to lambda-expressions of the
form Ax.e. Such an environment is well-typed iff. each bound expression is well-typed:

Definition 3.4 (well-typed function environments). Let A a well-formed type variable environment and
I' a well-formed typing environment in A. A function binding environment X is well-typed in A and T,
and we write A, T + Z, if and only if dom (X) = dom (') and for each (f : Tas T — 7’ as T) € I with
Z(f) = Ax.e,wehave A\TU{x:TasT}re:T asT.

3.2.4 Typing for memory-level objects

The last typing judgment we need to define in order to define a semantics for our language and prove
its soundness is memory typing. This judgment, denoted A, T, ¢ + e : T and defined in Fig. 3.24, assigns a
memory type T to a memory expression ¢ in the context of a memory store ¢.

As defined in Fig. 3.17, a memory expression e € ETprs is either a memory valuexpression u €

V@E\xprs (whose grammar also covers memory values and patterns), a high-level expression e € Exprs,
or an intermediate let-binding form let x : Tas T = € in e with'e ¢ Exprs. The two latter forms — high-level
expressions and let-bindings — are handled by MemTHLExp and MemTLET respectively, which rely on
the previously defined typing judgment for high-level expressions.

Memory valuexpressions require a store ¢ mapping addresses to memory values, in addition to the
usual type variable and typing environments. We use it in the MeMTADDREss rule, to type pointer
memory values (of the form & (a)) which, unlike pointer expressions (of the form &;¢ (1)), do not
embed the memory value they point to and instead only contain its address. Most of the other rules
are straightforward, defined by induction on T. Note that we ignore the parts of memory types that
are related to the high-level type they represent: for instance, MeMTSpLIT assigns a split type to any
expression which is accepted by the right-hand side of a branch, regardless of whether it actually
represents a value of the adequate provenance. Additional constraints on splits and fragments are
enforced by agreement criteria (Section 3.2.2) and high-level typing judgments (Section 3.2.3).

56

MemTHLExp MemMmTLET

ATre:tasT AT,cre:T agree(t,T) ATU{(x:tasT)}re:(TasT)
ATGCre:T AT, Chletx:TasT=¢ine:T

MEeMTTYPEVAR

(t—TeA Al cre:T MEeMTPrvITIVE

AT, ck(c)e: 1

AT, cre:t

MemTFission
op=0 on1+l1=14 0i = 0i-1 + {11 AT, Cr ﬁi I,

AT, Sk g K[Oiiei]tﬁi:le

MemTWorD
AT, CF_g:_y

0<i<n
MeMmTADDRESS MEeMTPOINTER
I\A/IEF/[TCOIEIS;ANT() a ¢ dom (<) ATCrEY:T AT, crUu:T
s, E(C)e s (C)e P =
AT,cU{a V& (a): & (T) AT, Ck & () : & (T)
MemMTComPoOSITE MeMTStrRUCT
AT, cru:T AT, cru Ty AT, cru Ty
A,F/q FU D< Ti :ﬁi T D< Ty :Ei A/r/g F {{ao,...,ﬁn_1}} : {?Or“-r?n—l}
0<i<n 0<i<n
MEeMTFRAGMENT MeMTSpLIT
AT, cre:T T = split(...) Ap,T)eT/_ AT, cre:T
AT, cre:(masT) AT, cre:T

Figure 3.24: Memory-level typing judgment. Environments appearing in gray in a rule are irrelevant to
its application.

Example 3.19 (Typing list memory values and expressions). Recall the memory type T, and the memory
value V from Example 3.7:

Tp = split ([0 : 2]){
0 from Nil = _gx[0:2]:(0)
1 from Cons({_, Nil)) = _ea>[0:2]:(1)2=[2:32]:(.Cons.0as I3)
2 from Cons({_,Cons(_))) = & ({{(.Cons.O as I33), (.Cons.1.Cons.0 as I3;), (.Cons.1.Cons.1 as tp)}})
<[0:2] : (2)

v= _64 X [0 : 2] H (1)2 X [2 . 32] . (42)32
We show that Vis of type Tp:

MEeMTPRrIMITIVE

MemMTWOoRD MeMTCONSTANT At F (42)32 s
MeMTFRAGMENT
Alist F _64 © _64 Ajist F (1)2 : (1)2 Ajigt + (42)32 = (.Cons.0 as I32)
MeMTCoMPOSITE —
Ast FV: _ga=<[0:2]: (1) =< [2:32]:(.Cons.0 as I3p)
(Cons({_,Nil)), _es>[0:2]: (1)2<[2:32]: (.Cons.0as Ip)) € Tp / _
MemMTSpLIT

Ajist FV : Tp

Using results from Example 3.18 and the MemTLer rule, we can then show that the memory expres-
sion from Example 3.8'¢ = let x : Tjigt as Tp =V in (x.Cons.0 : I3; as I3) is of type I3,. A

57

The MemTFission rule is slightly unusual, in that it assigns a primitive type I; to a composite memory
value. Its purpose is to allow the interpretation of “mangled” integer values — that is, words which
are entirely filled with integers on disjoint bit ranges — as integers, even though their shape (composite
word) does not immediately match that of a primitive type.

Example 3.20 (Mangled integer value). Consider the high-level primitive type of 64-bit integers I¢4,
together with the following memory type which splits it into two 32-bit pieces:

_6a =< [0:32]:(.[0:32] as I3p) =< [32:32] : (.[32:32] as I3p)
Using this layout, the high-level value 0x111100002222 is represented as the following memory value:
_64 < [0:32] : (0x2222)3; < [32: 32] : (0x1111)3;

The TFission typing rule lets us assign the type g4 to this value to reinterpret it as the direct 64-bit
integer encoding (0x111100002222)e4. A

In practice, this rule lets us capture memory layouts that split primitive values into multiple pieces
scattered across the memory type, such as the RISC-V layout presented in Section 2.5.

Now that we have defined well-typed memory values and expressions, we can extend this judgment
to their environments. We define well-formed typing environments which, similar to well-formed type
variable environments, apply agreement criteria to every bound type pair.

Definition 3.5 (well-formed typing environments). Let A a well-formed type variable environment. A
typing environment ' is well-formed in A, and we write A & T, if and only if:

e foreach (x: Tas T) € I', we have A £ T and agree , (1, 7);
e foreach (f: TasT— v asT) € I, we have A k£ T, agree , (1,7), A E T and agree (7', 7).

Similar to high-level variable binding environments, a memory value binding environment © : Vars —
Values is well-typed iff. every bound value is well-typed.

Definition 3.6 (well-typed memory environments). Let A a well-formed type declaration environment,
I' a well-formed typing environment in A and ¢ a memory store. A memory value binding environment
0 is well-typed in A, T and ¢, and we write A, T, ¢ + 0, if and only if dom (0) = dom (') and for each
(x:tasT) €T, wehave A, T, ¢+ 0(x): T

We finally state an immediate result on memory typing which will be used for proving type soundness
in Section 3.4.

Lemma 3.4 (memory focusing traverses memory typing). Let A a well-formed type declaration environment,
I a well-formed typing environment in A and ¢ a memory store. Let Vv € Values and T € Types such that
A,T, ¢ +V:7T. Forall @ € Paths such that focus (7, T) is defined, we have A, T, < + focusc (7, V) : focus (7, T).

Proof. Immediate by induction. O

3.3 Semantics
Now that syntactical constructs and their typing and validity judgments have been formalized, we are

finally able to define a two-tiered operational semantics for our language that takes both high-level and
memory constructs into account.

58

3.3.1 High-level expression evaluation

The small-step evaluation judgment for high-level programs, defined in Fig. 3.25 and denoted
Z+T,0,e = 1T",0', ¢, operates on triples consisting of a typing environment I, a binding environment
o mapping variables to valuexpressions, and an expression e € Exprs. It is deterministic and its normal
forms are pivot expressions of the form (u : T as T). The function environment £ maps function names
f € FunVars to lambda-expressions of the form Ax.e. We assume that variables have been renamed in e
so that they are bound at most once, regardless of scope.

HLEFunCarL
(x:tasT)eT (f:tasT—> T asT)eTl (x—ueo f—>A.e) el
YrT,0,f(x) > TU{x :tasT}hoU{x — u},e
HLELETSTEP

ST, oe > T,0,¢

YT, o,letx:TtasT=einey =T, 0 ,letx:TtasT=¢ ineg

HLELETBinD
S+l o,letx:tasT=(u:TasT)ine—TU{x:tasT},oU{x+ u}e

HLEMATtcH
x € dom (o) 3, 0k pi > o(x) Vj <i,0Fp; ¥ o(x)

Y+, 0,match(x){p1 = €1 ... pn m en} —T,0,¢€;

Figure 3.25: High-level expression evaluation.

Note that reducing an expression with < until a normal form is reached does not yield a value,
but a (typed) valuexpression which may be reduced further by applying substitutions from the bind-
ing environment o. These two layers of evaluation are separated so that it is possible to establish a
correspondence between high-level and memory-level evaluation, shown in Section 3.3.2.

The HLEMatcH rule relies on an ancillary big-step pattern matching judgment, denoted > and
defined in Fig. 3.26. Given a pattern p, a valuexpression or pattern 6 of the same type and a binding
environment o, we write o +- p > 0 if p matches 8 using o to substitute variables, and o + p % 0 otherwise.
o may be omitted if 0 is a value or a pattern.

o+ p > focus (7, V) o Fpi > 6 orp>6
oF_>0 orc>cC
oU{x—Vv}Fppxm o F{po,---,Pn-1) > (B0, ..., 0n-1) o FK(p) > K(0)

Figure 3.26: High-level pattern matching judgment with 6 € ValuExprs U Patterns and a binding envi-
ronment o

Example 3.21 (High-level evaluation with lists). Consider the following expression, taken from Exam-
ple 3.18:

let x : Tyt as Tp = Cons((42,Nil)) in match(x) { Nil — (0:Inasly) }

Cons(_) — (x.Cons.0: I3 as I3p)

It creates a value of type Tiii represented using the Tp, layout defined in Example 3.4. It then matches it
against patterns and extracts its first element. We reduce it to a pivot expression with the two following
high-level evaluation steps. We omit the empty function environment, merge typing and binding
environments, and indicate which elements are affected by a reduction step by highlighting them in the

59

corresponding color.

0 =9, let x : Ts as Tp = Cons((42,Nil)) in match(x) { Nil — (0:Ipasly) }

Cons(_) — (x.Cons.0: I3, as I3p)
< (HLELETBIND)

- . Nil — (0 : 132 as 132)
o={ x : T as Tp — Cons ((42,Nil)) }, match(x)

Cons(_) — (x.Cons.0: I3 as Isp)
—(HLEMATcH)

o = {x : Tiist as Tp — Cons((42,Nil))}, (x.Cons.0 : I, as I3)

The second step (HLEMarch) leads to the expression on the right-hand-side of the Cons(_) pattern
matching branch, since we have Nil % Cons({42, Nil)) and Cons(_) > Cons({42, Nil}). A

We now state and prove the soundness of our semantics w.r.t. the high-level typing judgment defined
in Section 3.2.3.

Theorem 3.1 (high-level type soundness). Let A, X, T, o, T, T and e such that:
EA AET ATFEFZ ATroO AET agree 5 (T, 7) ATre:TasT
We have the two following properties:

Preservation: forall 7, o/, ¢’ suchthat L+ T,0,e — [”,0’,¢’, we have:
AET’ AT FE AT Fo AT e :TtasT

Progress: either e is a pivot expression (normal form) or there exist I/, o’ and €’ suchthat Z+ T, 0,e — I, 0/, €.
Proof. By inductionon A, T'+e:TasT.

e If T or Tis a type variable t, we refer to the case corresponding to A(t).

e If e = (u: T as7),itis a normal form w.r.t. <.

e If e = lef x = ¢ in ey, there exist T and T’ such that agree(t’,7), A,T + e’ : T asT and A, Ty F g :
tasTwherelp =TU{(x: T as T)}.

- Ife’ = (u: v as T), we have agree(t’,7) and A,T + u: 7. Let 0p = 0 U {x > u}. We have
A, Ty + og and exactly one evaluation rule applies: I', o, e < T, 09, €.

— Otherwise, we use the induction hypothesis for I', 0 and e’.

Progress: since e’ is not in normal form, there exist [, ¢’ and e” such that Z + T, 0,¢’ —
I",0’,e” and wehave Z+T,0,e <— [7,0’,let x = e” in ey.

Preservation: the only applicable evaluation rules are of the form X + ', 0,e < [, 0’, lef x =
e’ inewithX+T,0¢ —>1T1,0,¢”. Wehave AT/, AT+ X, AT+ 0o and A, T +
e” 7 asT. LetIJ = I"U{(x : T as T)}. Assuming that all variable symbols are
unique, since we never remove bindings from I', we have A, T + ey : T as T, hence
AT/ Fletx=¢"iney:TasT.

e If e = f(x), there exist T, and Ty such that agree(tx, Tx), (x : Tx as Tx) € ['and (f : (Tx as Tx) —
(tasT) €T. Let(AW.¢)) = Z(f), " = TU{(X' : Tx as Ty)} and ¢’ = o U {x’ > o(x)}. We have
(well-typed environments) A, TV + ¢ : Tas T, A, T + o(x) : T(x), hence A, T + ¢/, and exactly one
evaluation rule applies: L + T, 0,f(x) — I, 0’, €.

e If e = match(x) {pi — e —>| 0<i<g n}, there exist T4 and Ty such that agree(ty,Tx), (x :
TxasTx) €, AT Fpi:txand A, T + e; : Tas T for each i, and at least one pattern matches o(x).
Let i = argmin{p; > o(x)}. Exactly one evaluation rule applies: I',0,e < T, 0, e; and we have
ATFrei:TasT

60

high-level
steps

3.3.2 Memory-level evaluation

The evaluation judgment defined in the previous section reduces all high-level language constructs,
but completely ignores memory-related elements, stopping at pivot expressions. We now formalize
a memory-level semantics for our language, which handles high-level constructs (matches, let-bindings
and function calls), but also reduces pivot expressions to memory values. By doing so, we also define
which memory values “properly represent” a high-level value according to a given memory layout —
they correspond to the result of fully evaluating this initial pivot expression. For instance, we reduce
the following pivot expression to its representation as a memory value in 6 memory-level steps:

(Cons((42,Nil)) : Tjist as Tp) H?n 64> [0:2]:(1)2<[2:32]:(42)32
Let us first informally introduce some key evaluation steps on our running example.

Example 3.22 (Memory-level evaluation on lists). Consider the following memory-level evaluation
sequence, which reduces the expression e from Example 3.7 to a memory value:

@, let x : Tyt as Tp = (Cons((42, Nil)) : Tiist as Tp) in match(x) { Nil = 0:lpasly) }

Cons(_) — (x.Cons.0: I3 as Isp)
>, (ESpLIT)
let X : Tjist @S Tp =
@, (Cons((42,Nil)) : Cons((Is,Nil)) as _¢s < [0:2]: (1)2 =< [2:32]: (.Cons.0as I3))
in match(x){...}
+3_(EComposiTE, EWORD, ECONSTANT)
let X : Tyigt @S Tp =
@, _ea=<[0:2]:(1)2 < [2:32]: (Cons({42,Nil)) : Cons((I32,Nil)) as (.Cons.0 as I3))
in match(x){...}
%>, (EFRAGMENT)
@, let x : Tiist as Tp = _ea < [0:2] : (1)2 < [2: 832] : (42 : I33 as I3p) in match(x){...}
>, (EAToM)
@, let x : Tjist as Tp = _pa =< [0: 2] : (1)2 < [2:82] : (42)3 in match(x){...}
s>, (ELETBIND)
(< T a5 Ty > _gam [0:2]: (L2 = [2:32] : (42)s2}, match(x) { ggns(_) - ((?CCIZ; :‘5011322 -

1 (EMaTcH)
{m: st as T = _a =< [0:2] : (1)< [2:32]: -}, (X'Cons.0 : I3, as I3p)
+ ., (EVARFGETS)

{x: .. RETSASIRESIE2)5), (MERTsRas 1)
+ m (EVARACEESS)

{x:... % 00) E@2)8

Our memory-level evaluation judgment, denoted s, defines a traditional call-by-value semantics
for high-level constructs. For instance, we evaluate let-binding expressions by first reducing the let-
bound expression to a normal form, then binding it in a value environment and continuing eval-
uation. However, unlike <, the normal forms of +» are memory values, rather than pivot ex-
pressions. Pivot expressions are precisely where their behaviors begin to diverge. The + reduc-
tion steps from a pivot expression to a memory value are local to this particular expression; we
temporarily “forget” about high-level constructs and instead create concrete memory structures, us-
ing the memory type as a guide, until a memory value is reached. We label these memory-level
evaluation steps with an m. On this example, we first evaluate the let-bound pivot expression
(Cons((42,Nil)) : Tjist a5 Tp). Its informal meaning is “produce a memory value that represents the
high-level value Cons((42, Nil)) (which is of type Tjs) according to the memory layout T, ”. Its evalua-
tion is driven by its memory type Tp and yields the memory value _gg &< [0: 2] : (1)2 = [2: 32] : (42)3; in
six &>y, steps (ESprit, EComrosite, EWoRD, EConstanT, EFRAGMENT, EATOM) Which we will detail in the
rest of this section.

61

}

Once the expression is fully reduced, + resumes evaluation of the surrounding high-level constructs,
going back and forth between memory- and high-level evaluation until a single memory value is reached.
On our example, we bind the previously computed memory value to x in the environment with a
ELeTrBIND step, then evaluate the pattern matching expression by selecting the appropriate branch with
a EMartcH step. Both of these rules have a direct counterpart in the high-level semantics <. We label
these high-level reduction steps with an h.

Finally we reach the pivot expression (x.Cons.0 : Iy as Isz). Once again, we must reduce it to a mem-
ory value. Unlike the previous pivot expression, which contained a high-level value (Cons({42, Nil}))),
this pivot contains an accessor x.Cons.0 instead. Its informal semantics is “retrieve relevant data from
the memory representation of x to encode its subterm at position .Cons.0 as a 32-bit integer”. As hinted
in Section 2.5, even though this task is trivial in many situations, such accessors can present significant
challenges with some combinations of layouts. Here, we must bind an intermediate value x” and perform
two +>., steps to get the desired piece of data. The final result is the memory value [@2)53.

Intuitively, we can see that this reduction strategy is “coherent” with the result of the < evaluation
sequence from Example 3.21, which is the pivot expression (x.Cons.0 : I3, as I3») with x bound to
Cons((42,Nil)): (42)3, is indeed the memory representation of focus (.Cons.0, Cons({(42,Nil))) = 42
according to the memory layout I3;. Section 3.4 will formalize and prove this equivalence between
high-level and memory evaluation results. A

A memory-level evaluation state consists of a type environment I', a memory value environment o,
a memory store ¢ and a memory expression to evaluate e. We denote an evaluation step in the type
variable environment A and function environment ¥ with: A, L + T,0,¢,€ = 7,0/, ¢’,¢. When A and
L are immediate from the context, they may be omitted from the judgment.

As shown in Section 3.1, memory expressions include both high-level constructs — pattern matching,
let-bindings and function calls — and memory-level structures. A “full” + evaluation sequence reduces
a high-level expression to a memory value; memory expressions capture all intermediate stages that
may appear during this process.

The full evaluation judgment + is the union of +>1,, which handles high-level constructs in e, and
%>m, which follows memory types to create concrete memory structures. Its normal forms are memory
values. <« rules, defined in Fig. 3.27, are similar to <= and reduce arbitrary expressions to pivot
expressions, while +, rules, defined in Fig. 3.30, reduce pivot expressions to memory values. In both
definitions, environments appear in gray in a rule when they are unchanged and unused by this rule.
Note that the semantics defined by s is not equivalent to the sequence of < and +,,; high-level (+1,)
steps may be interleaved with memory-level (+,) steps (on different subexpressions). While defining
+> as the sequence of — and +, is possible, this behavior is not coherent with that of the compiled
program, which we describe in Chapter 5. Furthermore, +, is non-deterministic, so that it is flexible
enough to easily match the behavior of compiled programs.

3.3.21 From high-level constructs to pivot expressions

The subset of + handling high-level constructs, denoted >y, and defined in Fig. 3.27, is mostly similar to
the high-level evaluation judgment <. The only major difference between the two is pattern matching
evaluation. In =, variables are bound to high-level valuexpressions, and we use the high-level pat-
tern matching judgment > to determine whether a given pattern matches a high-level valuexpression.
However, in +, variables are bound to memory values, which cannot be directly compared to high-level
patterns.

The rule EMarcH relies a notion of memory-level pattern matching, based on memory patterns as
defined in Section 3.1. The main idea is to first process each high-level pattern into a list of memory
patterns matching exactly those memory values that properly represent a high-level value matched by
the high-level pattern. We then use a memory-level big-step pattern matching judgment to determine
whether one of these memory patterns matches the memory value under scrutiny.

Let us first focus on the pat2mem function defined in Fig. 3.28, which lowers a high-level pattern to
an equivalent list of memory patterns according to a given memory layout °.

3pat2menm is also the first component of pattern matching compilation; see Chapter 4.

62

ELETSTEP
A/ z }_r/ 0,GC, € Pn r// OJ/ g,/?

AT, 0,¢letx:tasT=¢einewn 7,0/, letx:tasT=¢ ine

ELerBinD
AL HD,0,cCletx:tasT=vinewr TU{x:TasT},oU{x >V}, e

EFunCALL
(x—>v)eo f—>AeeX

ANZFT, 0, f(x) »nTU{X :Tx)},oU{x >V}, ce

EMartcH
(x:tasT)eT
3, 3(p, p) € pat2mem (T, pi). <+ p » 0(x) Vi <i,V(p’,P’) € pat2mem , (T, p;), < + p’ ¥ 0(x)

A, 2T, 6, ¢, match(x){p1 = €1 ... pn = en} ©n T1,0,¢ e

Figure 3.27: Memory-level expression evaluation, high-level constructs . Environments appearing
in gray in a rule are irrelevant to its application.

pat2mem , {

_, T — {Ca}

c, I — {(c, (©)0)}

p.,t — pat2mem , (p, A(t))

P, E— {(p/_E)}

P, (©)e — {(p,(©)0)}

P, & (%) - {(Pl/ & (ﬁ)) | (P// 6) € PatzmemA(pr %)}

(p’,P) € pat2mem (p, 7)
P, T D<o<1<n T — (PP ><0<i<n Ti:pi)| (pi,Pi) € patzmem , (p, Ti)
P =p ' MpoM...Mpn-1

- - , = - (p1,Pi) € pat2mem , (p, Ti) }
, {7, ... T — AP0, ., P ,
P, {% n-1} {(P {ro,- .-, Pn-1}) D = pol... Mpns
p, (mas7T) — {(p[m—7],p) | (¢p’,P) € patzmem 4 (focus (7, p), D)}

(pv,To) €T/ _ }

, T=split(... — at2mem , (p’, T ,
2 plit(...) U{p AP’ To) = pFipy

Figure 3.28: From high-level to memory patterns, using the type variable environment A: pat2mem

Given a high-level pattern p and amemory type Tin the type variable environment A, pat2mem , (T, p)
produces a set of branches (p’,p) consisting of a refined high-level pattern p’ and of its equivalent
memory pattern p. The goal is to decompose the pattern into finer (memory) branches. Each branch
characterizes a subset of values matched by p by the shape of their memory representation according
to T. Informally, pat2mem satisfies the following specification: for any high-level value v matched by
p, Given (p’,p) € pat2mem,, (T, p), p’ is a more precise version of p and there exists exactly one branch
(p’,P) such that p’ matches v and p matches its memory representation according to T. We state and
prove the correctness of pat2mem w.r.t. this specification in Section 3.4. More precisely

e If p is a wildcard pattern, or T is a constant or empty word type, all values should be accepted. We
return a single branch (p, p) where p matches all memory values of type T.

¢ Primitives and fragments are straightforward by replicating their intended semantics. Exactly one
memory pattern matches memory values of type I; that represents c: (c),. For a fragment (r as 7),

63

we capture memory values representing the subterm at .7t of a value matched by p according to 7.

e Struct and composite word types aggregate multiple fields together. We recursively explore each
of these fields, yielding a list of branches for each of them. Possible shapes for the memory values
we want to capture correspond to a struct or composite word of the same general shape, with
the same number of fields, in which each field belongs to its branch but also all branches in this
combination must be compatible with each other. To this end, we use pattern intersection and only
keep branches for which the intersection between all fields’ refined patterns is defined.

e Splits are where p may be forked into multiple subpatterns. Indeed, a high-level pattern may
match valuexpressions whose provenances are incompatible — for instance, Cons(_) matches both
Cons({x, Nil)) and Cons({x, Cons(_))). In this case, we must explore all branches of the split whose
provenance set contains at least one provenance matched by p, yielding multiple incompatible
branches/refined patterns. Actually, we process all splits at once in the definition: we specialize T
according to p in which constants have been replaced with wildcards, to obtain provenances, and
thus branches.

Example 3.23 (Memory patterns for lists). Our running example features two patterns of type Tyt
Nil and Cons(_). According to the memory layout T,, Nil translates to a single memory pattern,
while Cons(_) yields two memory patterns corresponding to the two branches Cons({_,Nil)) and
Cons({_, Cons(_))) in the toplevel split. In Example 3.22, we first compute the following patterns to
evaluate the pattern matching construct:

pat2zmem, (Nil, 7p,) = {(Nil, _gs > [0: 2] : (0)2)}

(Cons({_, Nil)) ;e [0:2]: (1) = [2:32] : _32) }

pat2mem, (Cons(_),Tp) ={ (Cons({_,Cons(_))) , &es ({_32, 32, _64}) = [0:2] : (2)2)

A

We can now define the big-step semantics of memory patterns with the relation » in Fig. 3.29. We
write ¢ + P » V if the memory pattern p matches the memory value v considered in the store ¢, and
< F P ¥ Votherwise. Similarly to the high-level pattern matching judgment >, it proceeds by induction
on p and v, with wildcards accepting any (appropriately sized) memory value. The only subtlety is the
MFission rule which, similarly to the TFission typing rule, allows recognizing mangled primitive values
as integer values. Such cases arise from memory types with particularly mangled primitives such as the
RISC-V layout.

MWILDCARD MPOINTER
V] < ¢ MConsTANT a ¢ dom(c) SHEP»V

S Sk (c)e ™ (c)e = —

Ch_¢»V cU{am v} & (p)» & (a)
MFission

{ bits
I 1 —~

00=0 On-1+ln-1=1¢ 0i = 04-1 + i1 ci=cA0...01...10...0 Cl—(Ci)(iPVi

£; bits oy bits

cr(c)ew _¢ P&L [oi: 4] :

0<i<n
MCoMPOSITE MSrtrUCT
CFEPpP»V CEPiP» Vi CEPiP» Vi
(I—ﬁ D< T{ :5'1 >V D< T{ :Vi (o {{ﬁOrn-rﬁn—l} > {’\70/-“,371—1}

0<i<n 0<i<n

Figure 3.29: Memory-level pattern matching judgment.

64

Example 3.24 (Memory-level pattern matching for lists). Recall the following expression from our
running example:

_ . ~ Y Nil — (0: I3 as I3p)
e = let x : Tjis¢ as Tp = Cons((42,Nil)) in match(x) { Cons() — (x.Cons.0 : Isp as Is)
Its reduction sequence, shown in Example 3.22, contains the following EMarcH step:

~ Nil — (0:Izpasl
{x:Tistas Tp > _ea =< [0:2]: (1)2 < [2:32] : (42)32}, match(x) { Cons() — EX - ;; i .332 - }

L {x S Tist @S Tp > _ea =< [0:2] 1 (1)p < [2:32] : (42)32} ,(x.Cons.0 : I3 as I3p)

To apply the EMarcH rule here, we first compute the memory patterns obtained with pat2mem in
Example 3.23. We then take the first pattern matching branch for which a memory pattern matches
the memory value bound to x. Here, we take the second (Cons(_)) branch. Indeed, the only memory
pattern associated with Nil does not match the memory value under scrutiny, while the one associated
with the first subpattern of Cons(_) (Cons({_, Nil))) does:

64 [0:2]:(0)2 ¥ _6a < [0:2]: (1)2<[2:32] : (42)32

ea=[0:2] ()2 [2:32] 1 3o > _ea < [0:2] 1 (1)< [2:32] : (42)32

3.3.2.2 From pivot expressions to memory values

Let usnow focus on %, rules, which define the actual memory representation by actually lowering pivot
expressions down to memory values. The difficulty of this lowering is that we must purposefully break
type preservation during evaluation, as we are in the middle of building the memory representation of
a given high-level value. This yields complex rules with intermediate steps where the local structure
seems broken, but makes sense in the context of the global memory representation. In particular, for
pivot expressions (u : T as T), we do not necessarily have agreement between t and T. To keep track of
such global invariants and aid the proofs later on, we will add additional artifacts in purple, which do
not affect the outcome of evaluation. The first proof artifact is an additional environment o. It is only
used in accessor-related rules, which we will detail later.

The main artifacts appear in pivot expressions: in % rules, they are of the form (u : T as T= T,.7),
rather than (u : T as T). The fourth element T,.7 keeps track of the latest well-typed state in the current
evaluation sequence, starting with T.e which is well-typed at the beginning of evaluation. For instance,
if T is a pointer type &¢ (T'), we progress to a pivot which focuses on the pointee while keeping the
same high-level valuexpression and type, resulting in an ill-typed state. We keep track of this step by
appending a pointer dereference to 7, yielding the following pivot expression: (u : T as T'= T,.7.%). The
appearance of ill-typed states in inevitable, given that we define our semantics as a sequence of tiny
steps, which by design model unfinished memory values. We reset T.7 at fragments, which correspond
to explicit synchronization points between high-level and memory types. More generally, we maintain
the following invariant: in every pivot expression (1 : T as T= T4.7), we have focusa (7, T) = T and
agree (T, Ty).

We now look at each rule in Fig. 3.30 one by one, starting with the two in Fig. 3.30a. Memory
contexts, denoted C indicate the position of a hole O within a memory expression. They are only used to
state the ESusStep rule, which covers evaluation steps on nested sub-expressions, both within memory
structures and as let-bound expressions. Note that contexts do not mandate an evaluation order. The
rule EAppress finalizes the construction of memory values by lifting inlined pointer contents outside of
the memory valuexpression and into the store, using a fresh address.

65

(a) Memory contexts and non-pivot rules
Clo]z=o| & (C[O]) | ClO]xb:u|Uuxb:ClOo]]| {,..., 1, ClO],u,...,u}|letx:tasT=C[O] ine

ESuBStEP EADDRESS
AL+, 0,0,¢,Uem IV, 0,0,¢, 0 a ¢ dom(c)
AL +T,0,0,¢ ClU] »om I, 0,0, ¢, C[UW] AT, 0,0¢& W) onl,o0,0,cU{a— v} & (a)

(b) Memory structures

ETyrPeEVAr
(t—TeA AY+T,0,0,¢,(W:TasT= Tu.) ©m 17,07,0,¢,€

AY+T,0,0,¢,(u:Tast=T,.7) »q I,0,0,¢, €

EConNsTANT
AT, 0,0,¢(u:Tas(C)=TeT) ©m [,0,0,¢,(c)e

EWorp
AT, 0,0,c(W:Tas ¢=TyT) ©m |,0,0,<,_¢

EPOINTER
AT, 0,0,¢(u:Tas& (T)=Te.7) om [,0,0, & (U : TasT= Ty. 7))

EComprosiTE

T =TTy... " Thot T = Ty
AL+T,0,0,¢c(u:tasT D< TLITi= Ty.7T) P [,0,0,¢,(W: Tas T= Ty) D< Ti:(W:TasTi= Tu.7i)
0<i<n

0<i<n

EStruct
Ui = (U: Tas Ti= Ty.7T1)

AT, 0,0,¢c(u:tas {To,..., Tna1)} = T.7) ©m ,0,0,¢, {Uy,..., Un1}

(c) Synchronization between high-level and memory types

ESpLiT
T=split(...) 3Ip,T)eT/_ATruit/p T, =T [T T]

AT +T,0,0,¢,(w:TasT= T,.7) ©m ,0,0,¢,(w: T/p as T= T,.7)

EFRAGMENT

’

focus (71, 1) if defined
any inhabitant of the type focus (71, T) otherwise

ALZET,0,0,¢(u:Ttas(masT)=Tx.7) ©m I, 0,0,¢,(u : focus (7, T) as T= T.¢)

Figure 3.30: Memory-level expression evaluation, computation of memory values. Environments ap-
pearing in gray in a rule are irrelevant to its application. Purple elements are only useful for stating and

proving type soundness.

66

(d) Subterm extraction

EVARrRACcESs
(x:1txasT)eT

AZET,0,0,¢,(x.e:TasT= Ty) ©m I, 0,0,<,0(x)

EVarFocus
(x:TxasTy) €T (Pv, To) € Tx/ _ AT, cro(x):Tp
(7t > 7t as Tr) € shatter(Ty) Tt = focus (77, Ty) v = focusc (7t5, 6(x)) x¢ fresh symbol

A L+, 0,0, ¢, (x.(5.7) : T as T= Ty.7)

ol U{(xs:TrasTr)}, 0 U{xs — x.716}, 0 U {x > Vi}, G, (X577 T as T= Ty.7)

(e) Primitive types
EATtom
AT rT,0,0,¢(c:Tas (= Te7) »>m [,0,0,,(c)

EFission
Ti = [0; :] 00 =0 Oon-1+dn1=1¢ 0i-1 +{i—1 = 04

ASET,0,0,¢(u:tas = Te.) ©m [,0,0,¢,_4 D< 11 : (focus (.1, u) : focus (.ri, T) as ¢, = Tu.70.11)

0<i<n

Figure 3.30: (continued). Memory-level expression evaluation, computation of memory values. Envi-
ronments appearing in gray in a rule are irrelevant to its application. Purple elements are only useful
for stating and proving type soundness.

The goal of all remaining rules is to reduce a given pivot expression (u : T as T) to a memory value
representing u using the layout T. This task relies on four kinds of rules.

* The most straightforward rules process memory structures such as structs, composite words or
pointers. These rules, defined in Fig. 3.30b, inspect the shape of T and distribute u (and T) over
its components. The result is a memory valuexpression in which the root memory construct has
been lifted from the type to the value itself. We then proceed by induction on each component of
the memory structure.

¢ As seen before, memory types do not only consist of memory structures. Some key constructs act
as synchronization points between an ADT and its memory layout, namely fragments, splits. We
handle such memory types with ESpLitT and EFraGMENT, defined in Fig. 3.30c.

— For splits, we proceed by specializing the memory type, then selecting the branch whose
provenance matches the considered valuexpression. There always exists exactly one such
branch if the valuexpression is well-typed.

— The semantics of a fragment type (7 as T) is “represent the subterm at position 7t within
the high-level value according to the memory layout T”. Accordingly, EFRAGMENT creates
a new pivot expression by focusing the high-level valuexpression and type on 7t and using
the specified memory type T. While focus (7, 7) is always defined owing to the fragment
coherence agreement criterion, focus (7r,1) may not be. Indeed, it is technically possi-
ble for fragments to refer to any high-level constructor T, even outside of a split branch
that specifically restricts possible values to this constructor. For instance, the memory type
{{split(a) { (1) ZZE BA z E(l)iz },(.A as I33),(.B as 132)}} is well-kinded and agrees with the
high-level type A(I3) | B(Is2), yet the subterm at position .B is undefined for values of the
form A(v) and vice-versa. In this case, we simply use any inhabitant of T as the new val-
uexpression — given our ADT grammar, it is easy to find such a value for any high-level

type.

67

¢ Unlike high-level values, for which we can build a memory value by induction on the memory
type using the previous two kinds of rules, evaluating an accessor x.7 according to the memory
type T involves a combination of two tasks:

- extracting the parts relevant to 7t from the memory representation of the value bound to x;

- rearranging these parts to fit the desired layout 7.

The first task is performed by two bound value extraction rules, defined in Fig. 3.30d. In the simplest
case (handled by EVarAccEss), 7 is empty and the existing memory representation of x follows 7.
In this case, the desired memory value has already been computed and stored as o(x). Otherwise,
we use the EVarFocus rule to inspect the layout of x, denoted Ty, in order to find the parts of o(x)
that are relevant to x.7t. More formally, we are looking for a fragment (or a primitive type) which
represents the subterm at position 7 (or a prefix of 7) within x. To this end, we use the shatter
operation defined in Fig. 3.13 to gather all fragments and primitive types in Ty, then filter these to
keep prefixes of 7. Before using shatter, we must remove splits from Ty by specializing it for the
wildcard pattern _, yielding a set of branches consisting of a more precise pattern and a split-free
memory type. Assuming that (x) is of type T, there exists at least one branch (py, Tp) such that
0(x) is of type Tp (and the original high-level value represented by o(x) matches py). Conversely,
no memory value can belong to more than one specialized type, owing to the distinguishability
agreement criterion. Therefore, there exists a unique branch that matches o(x); we select this
branch and shatter its memory type to search for a suitable fragment (or primitive type). If such a
fragment exists, the EVarFocus rule applies: we create an intermediate value binding this part of
0(x) and attempt to extract the desired piece of data from this new memory value. We keep also
track of this intermediate value in the high-level binding environment o, which will only be used
for proofs.

The second task is performed when neither of these two rules apply: we have to break down T
using other rules. Termination relies on the coverage agreement criterion: Ty must represent the
subterm .7tin some form, although it may break it down into smaller pieces represented at different
locations. Therefore, this process will eventually lead to an accessor for which the EVARAccEss
rule applies. The same problem is encountered during compilation of valuexpressions, and we
solve it in a very similar way in our compilation approach, as we will see in Chapter 5.

¢ Primitive (integer) types I; are handled by two different rules, defined in Fig. 3.30¢, depending
on the high-level valuexpression. EAtom handles primitive constants by encoding them on ¢ bits.
While primitive types are usually “atomic”, in that there is usually no need to decompose them
further, this is not always the case. For instance, consider the pivot expression (x.¢ : Igs as Igs)
with the typing environment {(x : Iss as {(x.[0 : 32] as Is2), (x.[32 : 32] as I32)})}. Here, x refers to
a 64-bit integer whose two 32-bit halves are represented as separate fields in a struct. Since x.¢ is
not a constant, EAtom does not apply, and since no toplevel primitive type or e-fragment appears
in the memory type used for x, neither do EVarRAccess and EVarFocus. Instead, we must extract
both 32-bit fragments and recombine them into a single 64-bit integer. EFission lets us break
down the primitive type Is4 into a combination of two I3; parts, yielding the following expression:
64> [0:32] 1 (x.[0:32] : Inp as I3p) =< [32 : 32] : (x.[32 : 32] : I3z as I3p). Both of the two new pivots
that appear in it can be reduced with EVarFocus. More generally, EFission allows to partition a
primitive type into any number of consecutive bit ranges, so as to rebuild an integer value piece
by piece when necessary. Its counterpart is the memory typing rule TFission, which interprets the
resulting composite words as proper integers.

Example 3.25 (Legal, but temporarily ill-typed expression). Recall the memory-level evaluation sequence
from Example 3.22. We focus on the first let-bound pivot expression, and extend it with a fourth field
initialized with Ty,.¢ since this pivot is well-typed:

(Cons((42,Nil)) : Tjist as Tp = Tp.€)

Let
To = _ea><[0:2]: (1)2<[2:32] : (.Cons.0 as I35)

68

The evaluation sequence for this pivot is:

(Cons((42,Nil)) : Tjist as Tp= Tp.€)
> (Cons({(42,Nil)) : Cons({Isp, Nil)) as Tp= Tp.¢) (ESpLiT)
s> (Cons({(42,Nil)) : Cons({Is2, Nil}) as _g4= Tp.—[0 : 2].=[2 : 32])

=<[0: 2] : (Cons({42,Nil}) : Cons({I3», Nil}) as (1),= Tp.[0 : 2])

=<[2:32] : (Cons({42,Nil)) : Cons({I35, Nil}) as (.Cons.0 as I3y)= Tp,.[2 : 32])

(EComPoOsITE)
> m_ea < [0:2] : (Cons({42,Nil)) : Cons({Iz, Nil)) as (1)2= Tp.[0 : 2])
=[2 : 32] : (Cons({42,Nil)) : Cons({I32,Nil}) as (.Cons.0 as I3;)= Tp,.[2 : 32])
(EWorD)
m_es =< [0:2]: (1)
=<[2:32] : (Cons({42,Nil)) : Cons({Is,, Nil)) as (.Cons.0 as I33)= Tp.[2 : 32])
(EConsTaNT)
S _ea™<[0:2]: (1)a = [2:32]: (42 : I3 as I3p= I5p.¢€) (EFRAGMENT)
S _ea™<[0:2]: (1) = [2:32]:(42)3 (EATtom)

Notice how several pivot expressions that appear within this sequence are not well-typed when we only
consider their first three components. For instance, the ECompositE step introduces the two following
pivots:

(Cons({42,Nil}) : Cons({I33,Nil)) as _g4= Tp,.—[0 : 2].=[2 : 32])
(Cons({42,Nil}) : Cons({I32,Nil)) as (1),= Tp.[0 : 2])

Neither _g4 nor (1), agree with the high-level type Cons({I3p, Nil)) that appears in these pivots; therefore,
they are not well-typed according to the original high-level typing judgment. However, their fourth
component keeps track of the original memory type Ty, of which _g4 and (1), are subterms, which does
agree with Cons((Is, Nil)). A

3.4 Memotheory

We now state and prove properties of our semantics to ensure that the memory-level and high-level
behaviors of ribbit programs are coherent. The most important result of this chapter is a proof of
branching bisimulation (Glabbeek and Weijland 1996; De Nicola and Vaandrager 1995) between < and
&> (Theorem 3.3). This concept is illustrated in Fig. 3.31. For this bisimulation, each step of the high-
level reduction sequence using the < rule labelled 1; has a counterpart in the memory-level reduction
sequence which uses the corresponding + rule labelled h, 1; (the h indicates that this is indeed a “high-
level” step). Between these synchronized steps, the memory-level reduction sequence may go through
%y, steps, which correspond to & -transitions 4 ie., silent transitions which have no equivalent in the
high-level reduction sequence but preserve the bisimulation relation R with the current high-level
expression. In essence, we show that the traditional high-level semantics is replayed exactly during
low-level evaluation, with some additional steps interspersed to build memory values.

High-level e =, e =y e =L e

R ﬂ R : R\\\ R\‘, R

1 1
1 1
1 1
1 1
1 ! N < 1

Memory—level () q_)h,lo e q_)h,ll C[ﬁ] P m N e Sm ' C[’\;] q_)h,lz e

Figure 3.31: Diagram showing branching bisimulation between high-level and memory reduction se-
quences of the same source expression.

4Usually denoted T-transitions in most other contexts. However, as the T symbol is rather overloaded in this thesis, we use the
Japanese hiragana character & (pronounced [to]) to denote silent transitions.

69

We first extend evaluation and typing, along with some notations, to help with the proofs (Sec-
tion 3.4.1). In Section 3.4.2, we define a simulation relation between evaluation states by combining the
typing judgements with a new notion of a memory value accurately representing a high-level value
according to a given memory layout. Finally, in Section 3.4.4, we leverage the previously defined tools
to show our results:

¢ correctness of pattern matching (Theorem 3.2);
* progress and preservation of memory evaluation (Lemmas 3.13 and 3.14);

¢ the branching bisimulation between < and + (Lemma 3.15 and Theorem 3.3).

3.4.1 Expanded Judgements and notations
3.4.11 Labelled Transitions

We aim to show preservation of evaluation between high-level evaluation steps. We must thus equip
our transitions with labels that will be preserved by bisimulation. In the rest of this section, we label
high-level evaluation steps with the name of their rules: foreachl € {EFunCaLL, ELETBinD, EMaTcH}, we
write < for high-level evaluation steps which use the rule HL1 and +1,; for memory-level evaluation
steps with use the rule . On the other hand, +», steps do not carry any additional label.

3.4.1.2 Typing judgment extension

As seen in Section 3.3.2, some intermediate stages reached by memory evaluation are not well-typed
w.r.t. the current memory typing judgment, even though they always eventually reach a well-typed
state. In order to reason on these ill-typed expressions, we must relax the well-typed criterion while still
constraining expressions enough to ensure correctness. To this end, we annotated each pivot (u : T as 7)

with a parent memory type T, and a memory path 7 such that focus (7, Tx) = T and which represents
“the latest well-typed state”. Formally, we have F (u : T as T4) : Tx, but not necessarily + (u: TasT) : T.
We use T, for typing and T for evaluation. We broaden the TPivor rule of the typing judgment for
expressions defined in Fig. 3.23:

TPivor
agree , (T, Ty) ATrFu:T

AT E(:TasTy): (Tas Ty) focus (7, T,) = ©

AT, cr(W:TasT=T,.mM):TasT

3.4.1.3 Notational relief

We define the following notational shorthands for well-formed and well-typed environments, expres-
sions and pivots. Each combines an existing judgement, such as typing, with validity of all its premises.

EATFO & EAANAETAATEO (Validity of evaluation contexts)
EAT,CFO e EAANAETAAT,CFO (Validity of memory evaluation contexts)
EATFe: T &= FEAANAETAATFe:T (Validity and typing)

EAT,CHe:T S EAANAETAAETAAT,CHE:T (Validity and memory typing)
ATr(u:TasT) & AETAagree,(T,T)AATFuU:T (Validity of pivot expression)

ATFU:TasT=T,.7T) & ATFU:TasT) AAETAfocus (T, Ty) =T
(Validity of annotated pivot expr.)

70

3.4.2 Simulation and representation relations

We now define our simulation relation denoted R in Fig. 3.32, which underpins our branching
bisimulation theorem. We first introduce a relation between high-level expressions e and memory
expressions e defined in Fig. 3.32a and denoted A,T,0,¢ + e R €. We then extend it to high-level

evaluation states S = (I',, o, e) and memory evaluation states S= (Fm, Om, 0, G, €) in Fig. 3.32b.

AT,0,creRe

AT, o¢creRe — . —
AT,o,¢crletx:TtasT=eineyRletx:TasT="¢in ey

A, ¢ Fuf[o] reprs (u[[o] : Tas T = T.¢)

AT,o,¢cr(u:tasT)RU

(a) Relation between expressions
EATHhFon AThEZ Th CTm EA,Tm, G+ oreprs (on U om)
agree (T,7) EAThFe:TasT EA T, CHe:T AT, 0hlUom,cFeRe
A/ Z/ T, ? - (rh/ Oh, e) R (rm/ Om, 8/ C/,é)

(b) Relation between full states

Figure 3.32: Simulation relation between high-level and memory evaluation states.

The first cases (Fig. 3.32a) apply to memory expressions that contain high-level constructs. They
ensure that these constructs are exactly the same as those found in the high-level expression e. The case
of Fig. 3.32bis more complex: it describes the memory-level stage of evaluation, when e has reached
a normal form for < (that is, a pivot expression (u : T as T)) and memory-level evaluation (i.e., ->m
steps) of e is underway. It requires the notion of a memory value representing a given high-level value
according to a memory layout. This is captured by the reprs relation defined in Fig. 3.33. It is a
syntactical characterization of memory valuexpressions which are reachable via -, steps from a given
pivot (u : T as T = Tyx.71). We write A, ¢ + U reprs (v : T as T = T,.7) when the memory valuexpression
u represents the high-level value v of type T according to the memory type T, which is at position 7@
within the latest well-typed layout T,. The reprs relation is defined for normalized valuexpressions: we
assume that v, as well as the first component of every pivot appearing within U, are values (as opposed
to valuexpressions containing variables). Given a high-level binding environment o, u[c] denotes
the substitution of every variable in u with its bound value in o, and u[[c] denotes U in which the
valuexpression of every pivot has been normalized in this way. Thanks to this relation, we capture all
intermediate stages of the s>, reduction sequence from (v : Tas T = T,.7) to a memory value. The base
case is RIDENTITY; all other rules correspond to a +,, evaluation rule. Most rules are straightforward
syntactical translations of their evaluation counterparts, with some simplifications (as they simply relate
existing expressions and do not need to construct a new state).

71

RTyPEVAR

RIpentrry A, < Fureprs (v:Tas A(t) = Ty.7)

A, CF(V:TasT =T, reprs (v:TasT = Ty.7)

A, < Fureprs (v:Tast = Ty.m)

RADDRESS
aé¢c A, ¢+ &g (V) reprs (v:Tas T = Ty.7) RATom L
— — A, <k (c)ereprs (c: Tas Iy = Ty.70)
A,cU{a >V} F & (a) reprs (v:Tas T = Ty.7)
RFission
0p=0 Oon-1+dn1=1¢ 0{ = 01 + {11
A, < F uy reprs (focus (.rq,v) : focus (ri, T) as Iy, = Ty.70.13)
Ack_o P& rii i reprs (v: Tas I = Ty.7)
0<i<n
RFRAGMENT
A, < F ureprs (focus (71, v) : focus (7, 7) as T = T.¢)
A, ¢ Fureprs (v:Tas (masT) = Ty.7)
RSpLIT

T=split(...) 3Ip,T)eT/_Arv:it/p AckUreprs(v:T/pasT =Ty [T« T].7)

A, < Fureprs (v:TasT= Ty.m)

RWorp RCoNsTANT
A, ¢k _greprs (v:Tas _¢ = Ty.M) A, <k (c)greprs (v:Tas (¢)¢ = Tu.T0)
RPoINTER
A,CrHureprs (v:TasT= Ty.T*)
A, <+ &g (U) reprs (v : T as &¢ (T) = Ty.70)
RComPOSITE
A,cFureprs (v:TasT = Ty —“Th-1) A, < F Uy reprs (v:Tas Ti = Tx.7L.Ti)
Acra P ol reprs (v:TasT X v T =77
0<i<n 0<i<n

RStrUCT
A, < kU reprs (v: Tas Ty = Ty i)

A<k {Uo,..., Un-1} reprs (v:tas {To,..., Tn-1} = Ta.70)

Figure 3.33: Representation relation between normalized (i.e., variable-free) pivot expressions and mem-
ory valuexpressions.

Finally, we extend this relation to environments. Given high-level and memory-level binding envi-
ronments o and 0, we write A, T, ¢ + © reprs o if we have dom (6) = dom (o) = dom (I') and for each
(x:tasT) €T, A ¢+ o(x)[o] reprs (o(x)[o] : Tas T = T.¢).

As before, we also define the following syntactical shorthands for the representation relation with a
well-typed pivot expression in well-formed and well-typed environments:

EACHUreprs(V:TasT=Ty.T) &= AF (V:TasST=Tw. M AACFUreprs (v:TasT = Ty.7)

(Validity and reprs)
EAT,cF0reprs 0 & dom (o) = dom (o) = dom (') A

V(x:tasT) €T, EA cFo(x)[o] reprs (o(x)[o] : TasT = T.e)
(Validity and Environment reprs)

72

3.4.3 Results on high-level and memory-level pattern matching

As a prerequisite for our main results on < and +, we first establish an equivalence between high-
level and memory-level pattern matching through pat2mem and our reprs relation. The main result
of this section is Theorem 3.2. To prove it, we will use alternative characterizations of both high-level
(Lemma 3.5) and memory-level (Lemma 3.6) pattern matching judgments. Along with agreement
criteria between high-level and memory types, these will allow us to show that every part of a given
high-level pattern corresponds to specific parts of its memory counterparts obtained with pat2mem.

In this section, several results will be proven by induction on a pair (p, T) consisting of a high-level
pattern and a memory type. To ensure this induction is well-founded, we assume that all fragments of
the form (¢ as Tf) appearing in memory types have been replaced with T¢. This unrolling of epsilon-
fragments always terminates for the memory types we consider (indeed, memory types containing
cycles of such epsilon-fragments have limited practical interest: such types do not have a computable
size or shape, nor any finite inhabitant).

We also relax the typing judgment for memory patterns to allow for (adequately sized) wildcards. In
this section, preconditions and conclusions of the form A + p : T may use the following rule in addition
to existing memory typing rule:

MeMTWIiLDCARD

It < ¢
ATk iR
Lemma 3.5 (Characterization of high-level pattern matching). Let A, T, p and v such that
EArp:T EArv:T
We have p > v if and only if both of the following conditions hold:

Each individual bit of every primitive matches:

V7t € Paths, (focusa (7, T) = I1 A focus (1, p) = ¢ A focus (r,v) =c¢’) = c=¢’

Each head constructor matches:

V7t € Paths, | focusa (71, T) = |Ki(”ci) A focus (71, p) = K(p) A focus (7,v) = K'(V)| = K=K’

0o<i<n

Proof. Immediate by induction. |

The following result states that a memory pattern matches a memory value of the same type if and
only if both belong to the same specialized branch of this type and all of their parts corresponding to a
fragment or primitive in their type (as gathered by shatter) match.

Lemma 3.6 (Characterization of memory-level pattern matching). Let A, ¢, T, p and v such that
EAFD:T EACFV:T
We have ¢ + p » V if and only if there exists a branch (pyv, Tv) € T/ _ such that

AFD:Ty ACHV: Ty V(7T — 1 as T) € shattera(Ty), < + focus (7, p) » focus. (7T, V)
Proof. Immediate by induction on 7. o

Through Lemma 3.5 (resp. Lemma 3.6), we have established a correspondence between high-level
(resp. memory-level) pattern matching and specific locations within high-level (resp. memory) types
consistent with agreement criteria. In order to use this correspondence to prove our main result
(Theorem 3.2), we need to be able to “reach” these locations within values and patterns. We do so using
the following Lemmas 3.7 to 3.10, which let us synchronize the exploration of memory types with that
of memory patterns obtained through pat2mem and of memory values representing a given high-level
value.

73

Lemma 3.7 (Matching type branches for pat2mem). Let A, T, pv, Tv, p, p’ and p such that
AET (p’,P) € pat2mem (p,T) (Po, To) €T/ _ ArP:T
The pattern intersection py M p’ is defined and we have
(p’,p) € patzmem, (p, Tv)
Proof. Immediate by induction on (p, 7). O
Lemma 3.8 (Memory focusing and pat2mem commute). Let A, T, p, p’, p and 7 such that
AET (p’,p) € pat2mem (p, 7) focusa (7T, 7) is defined

Either p is a wildcard pattern _ or there exists p” such that
(p”, focus (T, 5)) € pat2mem , (p, focusa (7, 7))

Proof. Immediate by induction on (p, 7). O

Lemma 3.9 (Matching type branches for value memory representations). Let A, G, T, T, Ty, Tlx, Pb, Tb, V
and v such that

EA,CHVTeprs (V:TasT= Ty.7lx) (Po, o) €T/ _ ACFV: Ty
We have
Arv:t/py Py >V A,CrVreprs (v:T/pp as Ty = T [T < Tb] . Tx)
Proof. Immediate by induction on (v, 7).]

Lemma 3.10 (Memory focusing and reprs commute on memory values). Let A, G, T, T, Tx, Ty, V, Vand 7t
such that

EA,CHVreprs (V:TasT= Ty.Tlx) focusn (7, 7) is defined
We have
A, < + focusc (7T, V) reprs (v : T as focusa (7T, T) = Ty.T4.70)
Proof. Immediate by induction on (v, 7). |

We can now state our main result on pat2mem.

Theorem 3.2 (pat2mem correctness). Let A, ¢, T, T, p, v and V such that

EA,CHVreprs (v:TasT= T.e) Arp:tT
We have
p>v < 3(p’,p) € pat2mem, (p,T), CHP >V
Proof. We prove each direction of the equivalence in the following Lemmas 3.11 and 3.12.]

Lemma 3.11 (High-level matching implies memory matching). Let A, G, T, T, Ty, 7, p, v and V such that
EA,CFVreprs (v:TasT= Ty.7) ACHV:T Arp:T P>V

There exist p’ and p such that

<)
v
<)

(p’,p) € pat2mem , (p, 7) P>V Arp:T Sk

Proof. Let us proceed by induction on (p, T).

74

Wildcard: p = _. Immediate: we have

pat2mem A(p,’a ={(, 4 ﬂ)} _D>v Ar_57: T (MEMTWILDCARD) Sk_q ™ vV (MWILDCARD)

Primitive constant: p = c and T = [;. We have
pat2mem , (p, T) = {(c, (c)e)} A+ (c)e : Ig (MEMTPRIMITIVE)

According to the fragment coherence criterion of agreement between T and T4, we necessarily have
T =1y, hence v = ¢’ and Vv = (¢’)¢. Finally, ¢ > ¢’ implies ¢ = ¢/, hence (c)¢ » (¢’)¢ (MCONSTANT
rule).

Type variable: T =t € TyVars. Suppose that the result holds for (p,A(t)). From the definitions of
memory typing and of reprs, we immediately have

pat2mem , (p, T) = pat2mem , (p, A(t)) A, CHV AL A, ¢ Fvreprs (v:Tas A(t) = Ty.7)
and our result is immediate from the induction hypothesis.
Constant word: T = (c)¢. SinceV is of type T, we necessarily have v = (c); and we conclude with
pat2mem , (p, T) = {(p, (c)e)} A+ (c)e : (¢)¢ (MEMTCONSTANT) <+ (c)e » (c)¢ (MConsTanT)
The same reasoning applies if T is an empty word type _g.

Struct: T = {To, T1}. Suppose that the result holds for (p, 7o) and (p, T1). We have

(po, Po) € pat2mem , (p, Tp)

patzmem,, (p, T) = § (po M p1, {Po, P1}) | (P1,P1) € pat2mem,, (p, T1) v = {vo,v1}
Po M p1 is defined

ACHV Ty A, < FVireprs (v:Tas Ty = Ty.Tl1)

According to our induction hypotheses, for both fields i € {0, 1}, there exists (pi, pi) € pat2mem , (p, Ti)
such that

Pib>vVv Al-’ﬁi:?i §I—51>vi
Since pg and p; both match the same value v, they are compatible and their intersection also

matches v: pg Mp; > v. We conclude with

ArPpi:Ti CFPL PV
— ——— (MemTStrUCT) _—
A+ {po,p1} : {70, T} <k {po,pi}r>v

(MStruUCT)

The same reasoning applies if T is a struct with any other number of fields, a pointer or a composite
word type.

Fragment: T = (mas 7). According to the fragment coherence criterion between t and 7T, since 7 is
a fragment that appears within T,, T = focusa (7, 7) is defined and agrees with 7. Let p’ =
focus (71, p) and V' = focus (71, v). Suppose that the result holds for (p’, 7). We have

pat2mem , (p,T) = pat2mem(p’,T) p'>Vv A crVv:T A crvreprs(V :TasT =7T.¢)
According to our induction hypothesis, there exists (p”,p) € pat2mem 4 (p’, T) such that
P>V Arp:T SHPPV

and we conclude with

Arp:T
—————— (MeMTFRAGMENT)
T

Arp:

75

Split: T = split(...). Let {(p;,Ti) | 0 < i < n} = T/_. According to the branch coherence criterion
between T and T, since T is a split that appears within Ty, there exists a branch i € {0,...,n — 1}
such that p; > v. Since p also matches v, the pattern intersection p’ = p Mp; is defined and matches
v. Let ¥ = t/p’ and T, = Ty [.7T < Ti]. Suppose that the result holds for (p’,7;). We have

pat2mem , (p’, T;) € pat2mem,, (p, T) P>V Arp' 1 Arv:T Acrv:T
A, crvreprs (v:T asT =T,.7)
and according to our induction hypothesis, there exists (p”,p) € pat2mem , (p’, T;) such that
v Arp: T CHP»V

We conclude with

—~ o~

Arp:T
—————— (MemTSpLiT)
Arp:T

Lemma 3.12 (Memory matching implies high-level matching). Let A, ¢, T, T, p, p’, v, p and V such that

EACHVreprs (v:TasT= T.e) ACHV:T Arp:tT Arp:T (p’,p) € pat2mem (p, 7)

CHP»V
We have p > v.
Proof. Let us proceed by induction on (p, 7).
Wildcard base case: p = _. Immediate:
patzmem, (_,7) = {(_, =)} >V

Primitive bit constant base case: p = c and T = I;. We have pat2mem/(c,I;) = {(c,(c)1)}, hence p =
(¢)1. According to the fragment coherence criterion of agreement between T and T, we necessarily
have T = Ij (or a type variable which we unroll to I;), hence v = ¢’ and vV = (¢/);. Finally, since
¢k (c)1 » (¢/)1, we have ¢ = ¢’ (MConstanr rule), hence ¢ > ¢’.

Induction step. Here, we finally use the various intermediate results stated earlier. According to
Lemma 3.6, since ¢ + P » v, there exists a branch (py, Tp) € T/ _ such that

AFD: T ACHY: T V(7 > mas T) € shattera(Ty), < F focus (7, p) » focus. (7, V)
LetTp = T/pb. From Lemmas 3.7 and 3.9, we have
po M p’ is defined (p’,p) € pat2mem (p, Tv) Pp >V AFv:Ty
A,cFVreprs (v: Tp as Tp = Tp.€)

Induction hypothesis: suppose that for every (7 — m as T') € shattera(Ty), the result holds for
(focus (7, p), 7). We use Lemma 3.5 to show that p > v.

Each individual bit of every primitive matches: Let 7t € Paths such that
focusp (7, T) = 11 focus (71,p) = ¢ focus (71,v) = ¢’

We show that ¢ = ¢’. According to the coverage criterion of agreement between T and T,
there exist 7y, 7/, T and Tf such that m = 7r.7v’ and (T — 7; as Tr) € shattera(Ty). Let

T = focusa (7T, Tp), Pr = focus (7, p) and V¢ = focusc (7T, V). We have:

CHDpr» Ve Ip”, (p”,pr) € pat2memA(p,:E’) (Lemma 3.8)

A, G FVsreprs (v:Tp as T = Tp.7) (Lemma 3.10)

76

Let ¢ = focusa (7tr, Tv), pr = focus (¢, p), p} = focus (¢, p”) and v¢ = focus (77, v). Since
T is a fragment or primitive type representing the piece of data at position 7t¢ as Ty, from the
definitions of pat2mem and reprs, we have:

(p%, Pr) € patzmem , (ps, Tr) A, < F Ve reprs (Ve & Tf as Tr = Tr.€)

According to our induction hypothesis, we have ps > vy, therefore focus (7’, pf) &> focus (7, v¢),
and we conclude that ¢ = ¢’ with

focus (7, ps) = focus (71,p) = ¢ focus (7', v¢) = focus (7, v) = ¢’ c>c
Each head constructor matches: Let 7t € Paths such that
focusa (71, T) = Ko(to) | -+ | Kn-1(th-1) focus (7, p) = Ki(p”) focus (7, v) = K;(v')

We prove by contradiction that K; = K;. Suppose that K; # K;. According to the branch
coherence criterion of agreement between T and T, T, agrees with Tp. According to the
distinguishability criterion of agreement between T, and T, and because Ty is already a

specialized memory type, there exists a memory path 7 such that either focusa (%, Tp) =
(ci)e = (c¢j)¢ with ¢y # ¢; — which is impossible — or there exists 7t¢, ' and Tf such that
7t = .70 and (7T 77 as Tf) € shattera(Ty). Let t¢ = focusa (7tf, Tv), pr = focus (7, p),
p} = focus (77, p”) and v¢ = focus (17, v). Since T’ is a fragment or primitive type representing
the piece of data at position 7t¢ as T, from the definitions of pat2mem and reprs, we have:

(p%, Pr) € patzmem , (ps, Tr) A, < F Ve reprs (Ve & Tf as Tr = Tr.€)

According to our induction hypothesis, we have ps > v¢, therefore focus (7', pf) > focus (7, v¢).
Since focus (7, pr) = focus (7, p) = Ki(p”) and focus (7', v¢) = focus (7, v) = K;(V'), this im-
plies K; = Kj.

3.4.4 Results on — and +

We are now ready to state and prove our main results. Most of our proofs proceed by induction on
memory types, or on R (defined in Fig. 3.32) derivation trees. Even though types may be recursive,
expressions are finite, ensuring that typing and representation derivation trees are always finite.

Lemma 3.13 (3>, preserves R on memory valuexpressions). Let A, X, T, T, S = (Th, on, (un : Th as Th)),
S=(m,0om,0,¢,u)and S’ = (I, 0%, 0,<, W) (note that W, W' € ValuExprs) such that

A X, TasTFSRS ArSes, S

We have _
AY,TasTFSRS

Proof. From now on, we omit A and X from judgments. Let 0 = o, Lo, 0/ = on U0}, and vy, = up[[o].
Note that since +»,,, does not affect existing bindings in o, we always have un [0’]] = vi.

Without loss of generality, we assume that T, = T and Thn = T. Indeed, our typing hypothesis
M F (un @ Th as Th) : T as T necessarily involves the following TPivor step:

ETh agree(Tn, Th) Th FUn : Th
TPivor

Th F (Up : Th @S Th) : Th @S Th

after which only TMTYVaRr, MEMTTYPEVAR, MEMTSPLIT and MEMTFRAGMENT rules are applicable to reach
the type pair T as T. — meaning that T is essentially a more general version of Tn.

77

Some preconditions of our goal tas T+ S R S are unchanged from our hypothesis tas T+ S R S.
We only need to prove the four following properties to prove preservation:

BT T (31)
I, <"+ 0 reprs o (3.2)
rm,dru:T (3.3)

<" FU o] reprs (Vi : Th as Th = Th.€) (3.4)

We proceed by induction on u. For each case, we show that every possible +, step preserves the
relation. Most +>, rules apply to pivots, which are our main base case.

Pivot: U = (U : T a8 Tm = Tx.7) (and T, isnota type variable). Without loss of generality, we assume
that T,, = T and Ty, = T, using the same reasoning as above for T, = T and Th = T. Our typing
hypothesis becomes:

T, CF(Wm : TasST=TeT) : T

and implies (since we have to use the TPrvor and MemTHLEXp rules):

agree(T, Ty) MTmFUm:T focus (7, T,) =

Using a similar reasoning, we also assume that u, [o] = vi,. Indeed, the representation relation
between two pivots is restricted to RIpentiTy and to RTypEVAR, RFrRaGMENT and RSprit, which do
not depend on the pivot value. Our representation hypothesis becomes:

CF (VR :TasT=T,.m) reprs (vp : Tas T = T.¢)
Let us proceed by case analysis on the s, rules. We start with subterm extraction rules.

EVARAccEss: there exists (x : Tx as Tx) € ' such that
U = X.€ Tx =T S = (Mm, 0m, 0, <, 0(x))

We prove our result for S

Eq. (3.1) and Eq. (3.2) are immediate from preconditions.

Eq. (3.3): T, G F 0(x) : T follows from the environment typing hypothesis 'y, ¢ + 0.

Eq. (3.4): ¢+ 0(x) reprs (Vi : Tas T = T.¢).
Since we have v, = x.e[[o]] = o(x)[o], this is implied by our environment representation
hypothesis I'y, ¢ + 0 reprs o.

EVarFocus: there exist

(x 1 Tx as Tx) € Tm 7 € Paths (Pb, Tv) € Tx/ _ (7tf > 7¢ as Tr) € shatter(Ty)

x¢ € Vars \ dom (')
such that
Um = x.(715.77) Tm, S F0(x) : T I =Tm U{(x¢ : focus (7, Tx) as T¢)}

00y = Om U {x¢ — x.71¢}

- ’

0’ =0 U {x¢ — focusc (75, 0(x))} J=c
U= (xf.T:TaAST = Ty.7)
We prove our result for S

Eq. (3.1): E Ty, agree(focus (7, Tx), Tf) and I, < F foc’EsC (7ts, 0(x)) : focus (7t¢, Ty) as Ts.
E Ty follows from E Ty (implied by our environment typing hypothesis); agree(focus (7t¢,), T)
follows from the fragment coherence agreement criterion between Ty and Ty, which is
also implied by our environment typing hypothesis. The last result is immediate from
our environment typing hypothesis, which implies 'y, ¢ F 0(x) : T as Ty, using struc-
tural and fragment or primitive memory typing rules to descend into the memory value,
high-level type and memory type.

78

Eq. (3.2): ¢’ + focusc (7tf, 0(x)) reprs (x.mi¢[[0] : focus (7, Ty) as Tf = Tr.€).
Our environment representation hypothesis implies:

< F O(x) reprs (x.e[0] : T as Tx = Ty.€)

We destruct the reprs derivation tree leading to this conclusion, and show that it necessar-
ily involves a rule whose conditions lead to our result. Since 0(x) is a memory value, the
rules RIpenTiTY and RAppress will never be used. Starting from the conclusion and going
backwards in reprs deduction steps, we go through structural rules before encountering
the first split in Ty at some position 7t,, which is derived from the following RSpLit step:

Fx.elo]l : Tx/po
¢ + focusc (7, 0(x)) reprs (x.e[o] : Tx/Pb as To = Tx [T < To] -7b)

RSpLIT — ——
¢ + focusc (7T, 0(x)) reprs (x.e[o] : Ty as focus (TTy, Tx) = Tx.Tp)
From there, we continue to descend into the memory type until we reach the position

7. We have (7i; — 77 as Tr) € shatter(Ty,), which means that focus (7, Ty) is either a
fragment or a primitive type. If it is a fragment, we go through the following RFRAGMENT
step:

CF f;c\usg (7, 0(x)) reprs (focus (1¢, x.e[0]) : focus (7¢, Tx /Pv) as Tf = Tr.€)

RFRAGMENT ——— — —— ———
¢ + focusc (7t¢, 6(x)) reprs (x.e[[o] : TX/pb as (7t¢ as Tf) = Ty [Tl < Tp] .7¢)

and our result is immediate from the precondition of this step. Otherwise, it is a primitive
type: Tr = Iy and 7y = ¢. We go through either a RAtom or a RFission rule. Here, we
only cover the RATom case (the RFission case is similar to a combination of RFRAGMENT
and RArtowm cases). This rule does not have any preconditions, but restricts the possible
shapes for our expressions:

focusc (7, 5(x)) = (c)e xelol =¢

RATOM ——— ——— ——
¢ + focusc (7t¢, 6(x)) reprs (x.e[[o] : Tx/pb as Iy = Ty [Ty < Tp].7T¢)

We use these constraints to prove our result using the RAtom rule:
RAtoMm G F (c)¢ reprs (¢ : Tx as Ip = Ig.¢)

Eq. (3.3): T/, ¢'F (x.7T: TAS T = Ty M) : T.
We only have to prove Iy, + x¢.71: T, which is immediate from the definition of I'7,,.

Eq. 3.4): ¢’ + (x¢m[0’] : Tas T = Ty.m) reprs (vp : T as T = T.¢) is immediate from our
representation hypothesis since x¢.mt[0’]] = x.7t¢. [0] = vh.

Other rules are specific to a given memory type — either a primitive type, a synchronization point
with the high-level type or a memory structure. We destruct T, and prove the result for each case.

EAtrom: we have
Vh=¢C ? = Ie §, = (rm/ Om, 8/ <, (C)E)

Our result is immediate: we do have ', ¢ F (¢)¢ : Ig and ¢ + (c)¢ reprs (c : Tas Iy = Ip.¢).

All other rules: similar to EAtomMm, each evaluation rule restricts U/, T, T and vy, so that our result
is immediate from the corresponding typing and representation rules.

Type variable pivot: U = (W : Tm aS ty = Ty.7) with ty, € TyVars. The only applicable +, rules are
subterm extraction rules, which we treated in the previous pivot case, and ETypEVAR. Suppose
that the property holds for (um : Tm as A(tm) = Tx.7). In the ETYPEVAR case, we have:

(M, 0m, 0,C, (Wi 2 T @S A(tm) = Tw.T) ©m S’

and our result is immediate from the induction hypothesis.

79

Pointer expression: U = &¢ (v). The only applicable +, rule is EAppress. We have
§' = (T, om, B¢ U {a > 9}, & (a))

with a ¢ dom (¢), and our result is immediate using MeMTADDREss and RADDREss rules.

Other expression: U = C[uy] where C is a memory context. The only applicable +, rule is ESusStep.
Without loss of generality, we assume that there exists a memory type To such that T = C[7o].

Suppose that the result holds for T, Ty, So = (T'h, on, (un : T as To)) and So = (M, 0m, 0,<, Ug). The
precondition T as Tp F So R So is immediate from Tas T+ S R S. We have

§' =My, 00,0, ¢, C[ﬁé]) So Pm S(,) = (M, om0, <1 A(/)

From the induction hypothesis, we get Tas Tp + So R §6, from which our conclusion tas T+ SR S’
is immediate.

O

Lemma 3.14 (s>, progresses on memory valuexpressions). Let A, T and S = (T, 0,5,c,1) (note that
u € ValuExprs) such that

AET EAT,CHO EAT,cHU:T
There exists at least one state S’ = (M7, 040,07, <", W) such that A v S LR S
Proof. Immediate by induction on . o
Lemma 3.15 (s simulates <). Let A, Z, T, T, S = (Th, o, €) and S= (T, Om, 0, <, €) such that
AL, tasTFSRS
From now on, we omit A and ¥ from judgments. One of the three following conditions holds:
* Both expressions are in normal form: e = (w:TasT)and e € Values;

S steps and remains bisimilar to S: there exists S = (7., 0%, 0,¢",€) such that S Som S’ and (tasT) +
SRS

e both Sand §step and remain bisimilar to each other: thereexist S" = (T] , o7, e’)and S = (7,04, 0,¢,€)
such that S < S, S o>y, S and (tasT) F S’ R S

Proof. Let 0 = op Ll 04n. We proceed by induction on 'y, 0,c Fe R e:

Function call: e =e¢ = f(x). Since f(x) is of type (T as T), there exist " and T such that (x : T as T) € I,
and (f : 7 asT — TasT) € M. Let X’ and e’ such that Z(f) = Ax’.e’. We assume that x’ is a unique
symbol. We have

HLEFunCaLL = A hEFunCaALL = Um/ m/A Y
S S'=(7,o0,¢€) S S =T ,0m,0,¢,¢€)
where
M =ThU{(x': 7 asT)} o}, = op U {x" = on(x)} o= U{(x': T asT)}
-/

=oU{x' - o(x)}

Using hypotheses on S and S, we immediately have tas T+ S’ R s

80

Pattern matching: e = € = match(x) {pi — e | 0<i< n}. Leti € {0,...,n — 1} the smallest branch
such that on F pi > on(x). Since e is well-typed, such a branch always exists. Let T and T such
that (x : T as T) € . According to Theorem 3.2, iis also the first branch that matches o(x) at the
memory level, that is, the smallest i € {0, ..., n—1} for which there exists (p’, p) € pat2mem(p;, T')
such that ¢ + p » 0(x). We have

S “>HLEMaren S” = (Th, O, €1) S —heMaren S’ = (T, Om, G, S, €1)
and Tas T+ $’ R S’ is immediate from hypotheses on S and s.
Let-binding: there exist x, T/, T, eo, ¢’ and €’ such that
e=letx:TasT =¢ in ey e=letx:TasT =¢ in eg M,0,cFe’ Re

Let S’ = (T, on, €’) and S = (Mm, 0m, 0, G, €). Since e and e are well-typed, and using hypotheses
onSand S, we have T as T + S’ R S’ and use the induction hypothesis:

e If both bound expressions are in normal form, i.e.,, e’ = (W : T asT)and e =V € Values, then
both expressions go through a let-binding step: we have

S “SHLELeBino S0 = (r},l/ 0—;1/ eo) S S RELerBivo S0 = (r—:n/ Om,0,¢, eo)
where
M =ThU{(x:7asT)} o, =opU{x—u} M =TmU{(x:17asT)}

o' =0U{xm—V}

and Tas TF So R Sp is immediate from hypotheses on S and S.

o« If S steps and remains bisimilar to S’, i.e., there exists S” = (I, 0%, 0,¢’,€") such that
S" e §S”and T as T + S’ R S”, then S goes through the same step using the ESusStep rule
and remains bisimilar to S: we have

’

Se S*=(T,00,0,¢ letx: T asT =€ in ep)

and Tas T+ SR S* is immediate from hypotheses on S, Sand S”.

e Ifboth S’ and S’ step and remain bisimilar, i.e., there exist a rule label 1, $” = (I7 , G;L, e”) and

S” = (I, 00,0 ,¢’,€) such that S’ < S”, S’ a5 S”and T as T + S” R S, then both S and
S go through the same step using the (HL)ELerStep rule and remain bisimilar: we have

S S*=(I7, 01, let x: T asT =e” in eg)
S s S* = (I, 0%, 0,¢ letx: T asT =€ in ep)
and Tas T+ S* R S* is immediate from hypotheses on S, S,S”and .
Pivot: there exist u, U, 7" and T’ such that
e=(u:tas7) e=1u Mm,0,¢Fureprs (u: T asT = T.¢)

According to Lemma 3.14, there are two possible cases:

e Uisin normal form, i.e., U € Values. The first condition holds: e is a pivot and € is a memory
value.

e There exists S’ = (., o4, 0,¢’, W) such that S S s According to Lemma 3.13, since
TasTFSRS,wehavetas T+ SR S/, therefore the second condition holds.

81

O

At last, we can state our final branching bisimulation theorem, which formalizes the intuition given
by the diagram shown in Fig. 3.31.

Theorem 3.3 (R is a branching bisimulation). Let S and S such that SR S, we have:
® if S < S, then there exist S"and S” such that S T S/ Shl §”, SRS and S’ R §”;
. 1f§ L - §', then S R §';
. 1f§ Shy §’, then there exists S’ such that S <1 S’ and S’ R S

Proof. Immediate from Lemma 3.15.]

3.5 Conclusion

In this chapter, we have formalized the Ribbitulus, whose syntax includes a formal version of the user-
visible language presented in Chapter 2 — ADTs and their inhabitants, and memory types — as well
as a model of memory contents. For both high-level and memory-level components of the language,
we defined their semantics through a combination of a typing judgment and a small-step evaluation
judgment. Perhaps most importantly, we formally defined the notion of agreement between high-level
and memory types, and used it to show that high-level and memory semantics of a given program are
always coherent with each other. Although Ribbit currently only supports programs operating on finite
data, the choice of a small-step style to define the semantics of the Ribbitulus independently of program
(non-)termination could potentially allow us to consider infinite values (e.g., streams of data) in the
future. Of course, this would still require a significant extension to some aspects of its core design, and
probably some form of coinductive proofs.
In the next part of this thesis, we provide a formal compilation scheme for the Ribbitulus.

82

Syntax

Envs.

Typing Operations

Semantics

High-level Memory-level
. . (variables) x € Vars (type variables) t € TyVars
identifiers
(function symbols) f € FunVars (addresses) a € Addrs
e € E C Exprs Fig.3.8 | e€ Ec Exprs 2 ers U Exprs
exzressions u € U C ValuExprs telc V@?xprs C Exprs Fig. 3.17
an — N
values v eV C Values C ValuExprs v €V C Values ¢ ValuExprs
(pivot expressions) (u : Tas T) € Exprs N VMrs
patterns p € P C Patterns Fig.3.2 | P € P C Datterns Fig. 3.18
paths 7€ 11 C Paths Fig.3.5 | €Tl C Paths Fig. 3.10
types teTC Types Fig.3.1 | Te T C Types Fig. 3.9
(kinds) K € {Word({0,1}*), Block}
typing A : TyVars — Types U Types I': Vars — Types X Types
value o : Vars — ValuExprs 0 : Vars — Values
other (function definitions) X : f — Ax.e (store) ¢ : Addrs — Values
focusing focus (7, 0) Fig. 3.6 | focus (71, T) € Types Fig. 3.12
focusc (7, u) € ValuExprs Fig. 3.16
specialization | T/p € Types Fig. 3.3 | T/p C Patterns X Types Fig. 3.14
misc. M : Patterns X Patterns — Patterns Fig. 3.4 | shape_of A,C(’B\) € Patterns Fig. 3.19
shattera (T) & PathsxPathsxTypes Fig. 3.13
Typing and | A, THO: 7 Fig.322 | AeT Figs. 3.20 and 3.21
Validity ATre:(tasT) Fig.3.23 | A,T,cre:T Fig. 3.24
agreement agree (T, 7) Definition 3.2
pattern oFp> U Fig.326 | cHPPV Fig. 3.29
matching
expression IrS—=¥ Fig.3.25 | A,Z+ S S Figs. 3.27 and 3.30
evaluation S = (I, 0,e), normal form iff. e = (U : | S = (I, 5, ¢, ¢), normal form iff. ¢ € Values

Tas7T)

Figure 3.34: Index of Ribbitulus notations.

83

Part 11

Compiling Ribbit

84

In the previous part of this thesis, we introduced the Ribbit language and its formalization (the
Ribbitulus). We now focus on compiling this source language to low-level target code which precisely
manipulates memory contents.

A central component of the Ribbitulus is the use of memory types to link high-level values to their
desired memory representation. These custom memory layouts significantly impact the compilation
of two aspects of the source language, namely pattern matching and data constructors with variable
accessors. We will cover their compilation in Chapter 4 and Chapter 5 respectively.

As we will see, the compilation technique we develop in Chapter 4 for pattern matching is also a
key component of our global compilation approach for the full Ribbitulus presented in Chapter 5. As
such, we will wrap our pattern matching compiler in a Destruct interface which will be used both by
the toplevel compilation function CompIiLe and by the specific procedures for data constructors REBUILD
and Seex. The following diagram gives an overview of our global compilation chain:

Typed input program

Chapter3 A L e 1 T

|

(N
CoMPILE
Chapter 5 Resuno 5 DestrUCT
apret - SEEK Chapter 4

Chapter 5 Output in Destination Passing Style

As shown in the previous diagram, our compilation target is a custom program representation
in Destination-Passing Style, for which we also define a formal execution model. We will prove our
compilation algorithms correct by showing that they emit target code whose behavior is simulated by
the source program’s memory-level semantics.

85

Chapter 4

Compilation of Pattern Matching

This chapter covers pattern matching compilation for the ribbit language. Our goal is to compile a list of
high-level patterns to low-level code with equivalent semantics, that is, which inspects a memory val