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Chapter 1

Introduction

Initially present only in functional languages such as OCaml and Haskell, Algebraic Data Types (ADTs)

have now become pervasive in mainstream languages, providing nice data abstractions and an elegant

way to express functions through pattern matching. Unfortunately, ADTs remain seldom used in low-

level programming. One reason is that their increased convenience comes at the cost of abstracting away

the exact memory layout of values. Yet high-performance
1

applications often rely on highly optimized

representations of data in memory, which are hand-tuned by programmers to leverage very fine, low-

level characteristics. For instance, red-black trees in the Linux kernel are a performance-intensive data

structure for which it is crucial to minimize memory usage as much as possible. Their implementation

therefore relies on a clever bit-stealing technique exploiting unused alignment bits in pointers. Such

precise details are usually not exposed to programmers when it comes to ADT values. Even Rust, which

tries to optimize data layout, severely limits control over memory representation.

The goal of this thesis is to let programmers specify highly optimized memory layouts for inductive

data structures in a flexible and expressive way, while still enjoying high-level programming constructs

such as ADTs and pattern matching to manipulate this data.

To this end, we propose a language dubbed Ribbit
2

which combines a high-level language, consisting

of ADTs, pattern matching and basic manipulation of immutable values, with memory types specifying

the precise memory layout of each high-level type, providing full control over the memory representation

of values. We provide formal semantics of both (high-level and memory) languages which, together with

agreement criteria stating the relationship between an ADT and a suitable memory layout, let us reason

easily about values as they are represented in memory.

Compilation of high-level language constructs is heavily influenced by the memory representation of

data. Traditional pattern matching compilation approaches, which emit a decision tree from a matrix of

patterns, are geared towards a rather uniform data layout. Therefore, they are not suitable for compiling

Ribbit programs, for which data layout is arbitrarily complex and variable. We propose a new pattern

matching compilation approach based on memory trees which follows the specified memory type to

emit an efficient decision tree suited to manipulating values with intricate memory layouts.

Aside from pattern matching, the compilation of data constructors – which is a non-issue for

relatively simple memory layouts – becomes particularly challenging when data pieces are broken and

scattered in memory. Even simple accessors might require constructing new values. This is the case

for many low-level representations such as network packets, instruction sets, database data-structures,

or aggressively packed representations. We propose a compilation algorithm for the Ribbit language

which enables optimized compilation of any morphism between ADTs for arbitrary mangled memory

representations, provides full synthesis of bĳections between memory representations of the same type,

and emits CFG-style programs with explicit memory allocation and full support for recursive types.

Our compilation algorithms are implemented in the Ribbit compiler prototype, and proven correct us-

ing the formal agreement criteria and semantics defined for Ribbit as a basis for establishing equivalence

between high-level, memory-level and target programs.

1
In this thesis, we assume a rather liberal interpretation of the term “High-Performance Computing”.

2
Named after a metaphor for two key aspects of manipulating data in memory: knitting and frogging. For crochet enthusiasts,

frogging is the action of undoing the stitches: rip it, ripit, ribbit, ribbit. . .
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The contents of this thesis are summarized below:

• Chapter 2 presents a collection of real-world memory layouts for ADTs, and shows how to use the

Ribbit programming language to model them: by first declaring high-level types, then specifying

their underlying memory representation.

• Chapter 3 presents the Ribbitulus, which formalizes Ribbit syntax and provides a simple type

system with formal criteria to define valid memory representations of high-level types. We define

a small-step semantics for both high-level and memory-level aspects of the language and exhibit

a bisimulation between the two.

• Chapter 4 covers our pattern matching compilation approach for the Ribbit language, based on

memory trees, which compiles high-level patterns to layout-aware decision trees according to a

given memory type. We prove that our compilation algorithm is correct, i.e., that the emitted

decision tree accurately identifies which pattern matches a value solely from its memory repre-

sentation.

• Chapter 5 provides a complete compilation approach for the full Ribbit language, which emits

code in a bespoke intermediate representation in destination-passing style. It handles all of the

delicate situations which may arise during compilation of a high-level language with custom

memory layouts, including implicit casts between different representations (so-called memory

isomorphisms
3
), and recursive code emission. These algorithms are also proven correct, by showing

that the target program’s behavior is simulated by that of the source program.

• Chapter 6 describes some aspects of the Ribbit prototype compiler, which provides a practical

validation of our approach
4
. In particular, the mutually recursive nature of the compilation

algorithms manifesting memory isomorphisms makes their implementation especially delicate,

and this chapter also details the necessary memoization techniques.

• Chapter 7 presents a preliminary experimental evaluation of our approach, with both static and

runtime measurements of the decision trees emitted by our pattern matching compilation algo-

rithm. It also demonstrates some of the performance impact of different memory representation

choices.

• Chapter 8 explores related language-based approaches and other optimized memory representa-

tions.

• Chapter 9 concludes with some future work ideas.

This thesis includes and subsumes the following publications and research reports:

International Conference Bit-Stealing Made Legal: Compilation for Custom Memory Representations

of Algebraic Data Types, International Conference on Functional Programming, 2023 (Baudon,

Radanne, and Gonnord 2023) – contains a limited version of the Ribbit language presented in

Chapter 2, part of the calculus from Chapter 3, the pattern matching compilation approach de-

scribed in Chapter 4, as well as its experimental evaluation covered in Chapter 7.

National Conference Knit&Frog: Pattern matching compilation for custom memory representations

(doctoral session), french conference AFADL, (Baudon, Radanne, and Gonnord 2022a) – contains

a preliminary version of Chapter 4.

Research reports Compiling Morphisms of Algebraic Data Types (Baudon, Radanne, and Gonnord

2024), to be presented at FProper2024 – contains a preliminary version of Chapter 5.

Tool Ribbit tool on Software Heritage (Baudon, Radanne, and Gonnord 2022b)

3
Die-hard portmanteau enthusiasts may prefer the alternative term memorphism.

4
As well as most of the dot graphs appearing in this thesis.
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Part I

The Ribbit Language
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Chapter 2

Memory Layout Zoo

As a first introduction to Algebraic Data Types and their memory representations, this chapter is a

collection of exhibits showcasing a variety of real-world memory layouts for inductive data structures.

It also serves as a high-level tour of our Ribbit programming language, illustrating its syntax and

highlighting major features of its compiler.

2.1 My first Ribbit: Red-Black Trees

As our first exhibit, let us consider Red-Black Trees, a widely used inductive data structure. Its purpose

is to demonstrate the use of Algebraic Data Types, some memory representation tricks, and how Ribbit

allows to specify and compile them. We first describe their high-level type, then show various different

memory layouts using the Ribbit language.

2.1.1 Algebraic Data Types for inductive data structures

Red-Black Trees (Wikipedia 2024a) are a classic data structure from the family of search-trees whose

main idea is to maintain an invariant on nodes based on two colors. Exhibit 1 shows a high-level

implementation using Ribbit syntax. In Exhibit 1a, we first define the sum type Color, whose values

are the two constant constructors Red and Black. We then define Red-Black Trees (RBTs) through the

mutually recursive types Node for non-empty nodes, and RBT for trees themselves. A Node is a product

type containing a color, a value of the primitive type of 64-bit-wide integers, and its left and right children.

The type of trees RBT is a sum type with two cases: Empty and Node. This type enables the definition ofRBT values. For instance, the red-black tree depicted in Exhibit 1b corresponds to the following term:

1 Node({c: Black, v: 13,
2 l: Node({c: Red, v: 8,
3 l: Node({c: Black, v: 1,
4 l: Empty,
5 r: Node({c: Red, v: 6, l: Empty, r: Empty})}),
6 r: Node({c: Black, v: 11, l: Empty, r: Empty})}),
7 r: Node({c: Red, v: 17,
8 l: Node({c: Black, v: 15, l: Empty, r: Empty}),
9 r: Node({c: Black, v: 25, l: Empty, r: Empty})})})

6



(a) Type definitions for Red-Black Trees.// Colors for Red-Black Trees
enum Color { Red, Black }
// Nodes for Red-Black Trees
struct Node{ c: Color, v: u64, // color and valuel: RBT, r: RBT } // children
// Red-Black Trees
enum RBT { Empty, Node(Node) }

(b) Example of Red-Black Tree.

13

8

1

∅ 6

∅ ∅

11

∅ ∅

17

15

∅ ∅

25

∅ ∅

(c) Simple pattern matching: cardinal operation.

fn cardinal(x: RBT) -> u64 {
match x {Empty => 0,Node({c:_, v:_, l, r}) => 1 + cardinal(l) + cardinal(r)}}

(d) Less simple pattern matching: rebalancing operation.

fn balance(x: Node) -> RBT {
match (x.c, x.v, x.l, x.r) {Black, z, Node({c: Red, v: y, l: Node({c: Red, v: x, l: a, r: b}), r: c}), d| Black, z, Node({c: Red, v: x, l: a, r: Node({c: Red, v: y, l: b, r: c})}), d| Black, x, a, Node({c: Red, v: z, l: Node({c: Red, v: y, l: b, r: c}), r: d})| Black, x, a, Node({c: Red, v: y, l: b, r: Node({c: Red, v: z, l: c, r: d})})=> Node({c: Red, v: y, l: Node({c:Black,v:x,l:a,r:b}), r:Node({c:Black,v:z,l:c,r:d})}),_ => Node(x)}}

(e) Toplevel Ribbit program manipulating RBTs.

let tree : RBT = Node({c: Black, v: 42, l: Empty, r: Empty});
let card : u64 = cardinal(tree);
let node : Node = {c: Red, v: card, l: tree, r: tree.r};balance(node)

Exhibit 1: Algebraic Data Types and pattern matching for Red-Black Trees in ribbit.

Now that data types have been defined, we can write expressions and functions manipulating their

inhabitants. A key language construct for manipulating ADT values is pattern matching. For instance,

the cardinal function defined in Exhibit 1c takes a tree and returns its total number of nodes using

pattern matching. In Ribbit, pattern matching is introduced by the keyword match and inspects a single

value – in cardinal, it is x of type RBT. Pattern matching branches are enumerated in a list of the formp => e where p is a pattern and e an expression to evaluate when the value under scrutiny matches p. If its

argument is of the same “shape” as the left-hand side of the rule, then the expression of the right-hand

side (body) is evaluated. Moreover, patterns can be nested, and the right-hand-side expression can use

named subterms. In our example, Empty yields a cardinal of 0 and Node({c, v, l, r}) yields a cardinal

of 1+cardinal(l)+cardinal(r).

Red-Black Trees famously rely on a fairly complex balancing step, which redistributes colors depend-

ing on the internal invariant of the data structure. Thanks to nested patterns and “or”-patterns, this step

can be expressed very compactly using the pattern matching shown in Exhibit 1d. This pattern matching

inspects the four record fields of a Node value x: its color x.c, value x.v and left and right subtrees x.l
and x.r. The pattern of its second branch is a wildcard _ which matches all values; it ensures that the

pattern matching expression is exhaustive, i.e., that every possible value matches at least one pattern.

7



Such complex functions are expressible in a concise and safe way thanks to pattern matching; without

this language construct, writing rebalancing code would be a clumsy and tedious task.

Finally, Ribbit provides basic features of a first-order functional language manipulating immutable

data, namely let-bindings and function calls. Exhibit 1e shows a toplevel program which creates an RBT
value, computes its cardinal and stores it in an intermediate u64 value, builds a new Node value using

the previous tree as its left child, its cardinal as its integer value and its right child as its own right child,

and finally returns the balanced version of this RBT.

2.1.2 A naive memory representation for RBTs

Like most self-balancing trees, RBTs are a performance-intensive data structure. In a naive implementa-

tion, indirections in the memory representation limit locality, result in slow memory loads, cache misses,

and slowdowns of several orders of magnitude. To achieve best possible performance, it is critical to pay

attention to how values of our types are represented in the actual memory of the considered machine.

We would nevertheless prefer to tweak the memory representation of data without mangling its high-

level type, which provides nice data constructors and accessors that are close to intended type semantics.

The Ribbit language provides detailed annotations called memory types to precisely describe the memory

layout of each ADT. This memory layout specification language lets us capture a wide variety of popular

representation techniques including bit-stealing, unboxing, aggressive struct packing, etc.

As our first foray into representation tweaking, we define a naive memory layout for RBTs. For

each of our three ADTs Color, Node and RBT, we specify a memory type introduced by the keyword

represented as. Let us first describe the memory type associated with Color in Exhibit 2.

(a) Graphical representation of memory contents

0

64 bits

Red

1

64 bits

Black

(b) Memory layout specification in ribbit

enum Color { Red, Black } represented as
split . { // empty path: inspect the whole value| 0 from Red => (0)<64>| 1 from Black => (1)<64>}

Exhibit 2: A naive memory layout for Color.

The Color type is a sum type with two constructors Red and Black. To manifest the distinction

between these constructors in memory, Ribbit provides the notion of splits. Split types of the form

split mpath {...} indicate a choice between different memory layouts depending on the immediate

stored at position mpath within the memory value. The memory position mpath is known as the split

discriminant position, and consists of a sequence of operations such as pointer dereferences or memory

accesses. In Color, the empty split discriminant position “.” inspects the entire memory value. The

split then contains a list of branches, each containing an integer value dubbed its discriminant value and

a pattern dubbed its provenance on its left-hand side, and a memory type on its right-hand side. Each

branch indicates that high-level values which match its provenance (introduced by the keyword from)

must be represented in memory using the layout on its right-hand side, which contains the specified

discriminant value at the discriminant position. Here, we specify that Red is represented as the constant0 encoded on 64 bits, denoted (0)<64>, and that Black is represented as the constant 1 encoded on 64 bits,

denoted (1)<64>. This choice of layout is illustrated in Exhibit 2a using a graphical language consisting

of sized boxes representing memory words. We will reuse this graphical language throughout this

chapter.

8



(a) Graphical representation of memory contents corresponding to { c , v , l , r }

c

64 bits

v

64 bits

&

64 bits

&

64 bits

l

128 bits

r

128 bits

(b) Memory layout specification in Ribbit

struct Node {c:Color, v:u64, l:RBT, r:RBT} represented as{{ (.c as Color), (.v as u64), &<64>((.l as RBT)), &<64>((.r as RBT)) }}
Exhibit 3: A naive memory layout for Node.

Let us now describe the memory layout used to represent Node values in Exhibit 3. The ADT Node
is a product type which aggregates four fields together. We must represent each of these fields within

the memory representation of their parent Node value. To do so, Ribbit provides the notion of fragments.

Fragment types of the form (path as MemTy) indicate that the subterm at position path within the high-

level value should be represented using the memory type MemTy. In Node, we represent the four record

fields in a struct as follows:

• The color field corresponding to the subterm .c is encoded using the memory layout previously

defined for Color and stored in the first field of the struct with the fragment (.c as Color).

• The integer value corresponding to the subterm .v is encoded as a primitive 64-bit integer with

the memory type u64. The resulting fragment (.v as u64) is placed in the second field of the

struct. Each high-level primitive type has a memory counterpart which encodes its values using

a standard encoding for the considered target system and architecture.

• For the left and right subtrees, corresponding to the subterms .l and .r respectively, we will

use the memory layout defined for their type RBT. As we will see, this memory layout yields

128-bit wide memory values. In order to keep each struct field 64-bit wide, we will store both of

these fragments behind a 64-bit wide pointer denoted &<64>((.l as RBT)) for the left subtree and&<64>((.r as RBT)) for the right subtree.

Note that Ribbit struct types do not include any implicit padding, unlike for instance C structs. This

behavior is similar to “packed” struct types in LLVM IR, or to the #[repr(packed)] annotation in Rust.

To ensure a given alignment for struct fields, the user can add explicit padding with uninitialized word

types of a given size l denoted _<l>. As seen in Exhibit 3a, our graphical language represents pointers

as sized words containing address bits denoted & and “pointing” to the memory contents stored at this

address.

9



(a) Graphical representation of memory contents

0

64 bits 64 bits

Empty

1

64 bits

&

64 bits

Node ( n )

n

256 bits
(b) Memory layout specification in ribbit

enum RBT { Empty, Node(Node) } represented as
split .0 { // path .0: inspect the tag in the first field of the struct| 0 from Empty => {{ (0)<64>, _<64> }}| 1 from Node => {{ (1)<64>, &<64>((.Node as Node)) }}}

Exhibit 4: A naive memory layout for RBT.

We can now define the memory layout for the RBT type shown in Exhibit 4. Every tree is represented

in memory as a struct consisting of two 64-bit wide fields. The first field contains a tag which indicates

whether the represented tree is Empty or a Node – we will therefore use its position .0 as a split discrim-

inant. The second field is left uninitialized for Empty trees; for non-empty trees Node({c, v, l, r}), it

contains a 64-bit pointer to the memory representation of the root node’s contents using the previously

defined Node memory layout. Note that Ribbit allows recursive memory types: here, Node and RBT are

two mutually recursive ADTs represented using two mutually recursive memory layouts.

Memory types allow us to specify the memory layout of each value down to a bit-precise level. In

order to properly manipulate data represented using such custom memory layouts, the Ribbit compiler

follows the structure of each memory type to emit appropriate target code. Two aspects of our input

language require particular attention due to this variability in memory representation: pattern matching

and data constructors. On our example, compiling the pattern matching in the cardinal function results

in the decision tree depicted in Fig. 2.1. It consists of a single switch node which inspects the discriminant

position .0 of the RBT memory type to determine whether a given value x represents the Empty tree or a

non-empty Node.

0

1 + ...

switch(x.0)
0

1

Empty

Node(_)

Figure 2.1: A decision tree for the pattern matching in the cardinal function.

As for the toplevel expression from Exhibit 1e, Ribbit compiles it to the low-level pseudo-code

shown in Fig. 2.2. As before, this target code follows the specified memory layouts: for instance, Ribbit

represents the high-level value tree of type RBT by building a memory value which closely follows

the structure of its associated memory layout. Later on, to build the memory representation of thenode value, whose right child is the previous tree value’s right child, the Tree memory type is used to

determine that the subterm tree.r is located at position .1.*.3 (i.e., the fourth field of the struct pointed

to by the second field of the root struct) within the memory representation of tree.

10



1 let tree = {{ (1)<64>, &<64>({{ // Node
2 (1)<64>, // c: Black
3 (42)<64>, // v: 42
4 &<64>({{ (0)<64>, _<64> }}), // l: Empty
5 &<64>({{ (0)<64>, _<64> }}) // r: Empty
6 }})}};
7 let card = cardinal(tree);
8 let node = {{ (1)<64>, &<64>({{ // Node
9 (0)<64>, // c: Red

10 (card)<64>, // v: card
11 tree, // l: tree
12 tree.1.*.3 // r: tree.r
13 }})}};
14 return balance(node);

Figure 2.2: Target code emitted by Ribbit for the source program of Exhibit 1e following the memory

layouts defined in Exhibits 2 to 4.

Naturally, compiling high-level programs to layout-aware target code is only possible when each

memory type adequately represents its associated ADT: we say that a high-level type must agree with

its memory layout. Here, the memory type specified for RBT in Exhibit 4b is valid and agrees with the RBT
ADT because:

• All subterms of the high-level type RBT (here, .Node) are properly accounted for in the memory

type with a fragment (here, (.Node as Node)).

• All constructors of the high-level type (here, Empty and Node) are properly accounted for in the

memory type with a split branch.

• Split branches are all distinguishable from each other: their left-hand sides contain different values

(here, 0 and 1), corresponding to distinct constructors (here, Empty and Node).

The formalization of these agreement criteria is also a key contribution of this thesis, which we will detail

in Section 3.2.

2.1.3 OCaml-like representation of RBTs

While correct, the naive memory layout defined in the previous section is not particularly efficient:

every tree takes up 128 bits of memory space, even in the Nil case; in addition, every node introduces

a layer of indirection, with disastrous consequences on performance. Such outrageous memory layouts

are unlikely to be found in real-world languages, even in garbage-collected high-level languages where

performance is not necessarily the main focus.

In this section, we take a first look at such a language, and show that Ribbit is expressive enough to

model its internal memory representation. The memory types defined in Exhibit 5 represent RBTs in

memory similarly to the OCaml runtime (Minsky and Madhavapeddy 2021).
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(a) Graphical representation of memory values

0

63 bits

1

1b

Empty

&

63 bits

0

1b

Node ({ c , v , l , r }) 0

64 bits

c

63 bits

1

1b

v

63 bits

1

1b

l

64 bits

r

64 bits

(b) Ribbit specification with memory types

enum Color { Red, Black } represented as/* Composite word with two specified bit ranges */_<64> with [0:1] : (1)<1>
with [1:63] : split . {| 0 from Red => (0)<63>| 1 from Black => (1)<63>}

struct Node {c:Color, v:u63, l:RBT, r:RBT} represented as
&<64>({{(0)<64>,(.c as Color),(.v as _<64> with [0:1] : (1)<1> with [1:63] : u63),(.l as RBT),(.r as RBT)}}) with [0:1] : (0)<1>
enum RBT { Empty, Node(Node) } represented as
split .[0:1] {| 1 from Empty =>_<64> with [0:1] : (1)<1> with [1:63] : (0)<63>| 0 from Node(_) =>&<64>({{ (0)<64>,(.Node.c as Color),(.Node.v as _<64> with [0:1]:(1)<1> with [1:63]:u63),(.Node.l as RBT), (.Node.r as RBT)}}) with [0:1] : (0)<1>}
Exhibit 5: The OCaml layout for RBTs. Ribbit is also able to automatically generate these memory types from

its generic OCaml representation scheme.

In OCaml, all types are represented uniformly, for instance as 64-bit words on 64-bit architectures.

This uniformity allows for an easier implementation of polymorphism, and keeps the garbage collector

happy. The lowest bit of every memory value is used as a tag to distinguish between unboxed values (i.e.,

not stored in a pointer or other container) and pointers; standard immediates are therefore restricted to

63 bits rather than 64. Since pointers are word-aligned, their lowest bit is always zero; conversely, we tag

every immediate value by setting its lowest bit to one. To avoid needing to box the integer value of each

RBT node, we have slightly altered the high-level type so that nodes carry 63-bit integers of type u63.

This tagging scheme requires us to separately specify the contents of distinct bit ranges within

the same memory word. To express such bit-precise memory layouts, Ribbit provides the notion of

composite words, denoted MemTy with [o:l]:MemTy' with .... Such composite words consist of a base

memory type MemTy onto which we add an arbitrary number of bit range specifications. Each bit range

specification with [o:l]:MemTy' indicates that the range of l bits starting at offset o within MemTy follows

the memory layout MemTy'. Of course, this is only valid if these bits are not already used by the

12



base layout MemTy. For instance, the memory representation of the Empty constructor of RBT is a 64-bit

word whose lowest bit is set to 1 and whose remaining 63 higher bits encode the constant 0, denoted_<64> with [0:1]:(1)<1> with [1:63]:(0)<63>.

In OCaml, unit constructors are represented as tagged immediates corresponding to their unique

identifier among unit constructors of the same type. For instance, Red and Black are represented as_<64> with [0:1]:(1)<1> with [1:63]:(0)<63> and _<64> with [0:1]:(1)<1> with [1:63]:(1)<63>
respectively. Constructors with arguments, on the other hand, are represented as pointers to a struct

whose first field contains their unique identifier among non-unit constructors and whose other fields

encode their arguments. For instance, non-empty trees of the form Node({c, v, l, r}) are represented

as a pointer to a struct whose first field encodes 0 on 64 bits and whose next four fields encode c, v, l
and r. This adds up to a total of six 64-bit memory words, including the pointer.

Ribbit also provides generic memory representations – such as the OCaml representation – which auto-

matically generate a memory type from a given ADT according to a generic scheme. For our example,

we could have specified the Color, Node and RBT memory layouts of Exhibit 5 with represented by caml
rather than by writing specific memory types by hand. We will detail the available generic representa-

tions in Section 2.6.

2.1.4 Linux-like custom memory layout for RBTs

The OCaml layout removes a layer of indirection compared to the naive representation, but is hampered

by its uniform nature. For instance, a full word is used to store the color, even though it technically

requires only one bit. Let us look at a highly optimized representation of RBTs originally found in the

Linux kernel to model device trees (Torvalds 2023). The representation is hand-tuned to take as little

space as possible by embedding the color in pointer alignment bits. This optimization is known as

bit-stealing. The original type definition in C from the x86-64 Linux kernel source version 6.9.2-gentoo is

shown in Exhibit 6. The general red-black tree type (struct rb_root) does not include the values (in our

case, these would be 64-bit integers) carried by each node: instead, users must define their own structs

containing an rb_root and the element type of their choice. The type of RBT nodes struct rb_node is

a struct containing three 64-bit fields. Its two last fields are pointers to the left and right subtrees. Its

first field __rb_parent_color is more unusual: it is a 64-bit word containing both a pointer to the parent

node (or NULL) and the color of the current node stored in its lowest bit. As we can see in Exhibit 6,

many accessors which would be trivial to implement on a uniform memory representation such as that

of OCaml require hand-written code due to the extremely irregular memory layout. Note in particular

the parent pointer access, which requires some careful bit masking before dereferencing.

1 struct rb_node {
2 unsigned long __rb_parent_color;
3 struct rb_node *rb_right;
4 struct rb_node *rb_left;
5 } __attribute__((aligned(sizeof(long))));
6 /* The alignment might seem pointless, but allegedly CRIS needs it */
7

8 struct rb_root {
9 struct rb_node *rb_node;

10 };
Exhibit 6: Type definition – excerpt from /include/linux/rbtree_types.h (Torvalds 2023).

1 #define rb_parent(r) ((struct rb_node *)((r)->__rb_parent_color & ~3))
Exhibit 6: RBT constructors – excerpt from /include/linux/rbtree.h (Torvalds 2023).

13

https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/include/linux/rbtree_types.h&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c
https://archive.softwareheritage.org/browse/revision/a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6/?origin_url=https://github.com/torvalds/linux&path=/include/linux/rbtree.h&revision=a38297e3fb012ddfa7ce0321a7e5a8daeb1872b6&snapshot=afb1fa233696b536a97c7bc9352272a9fa99201c


1 #define RB_RED 0
2 #define RB_BLACK 1
3

4 #define __rb_parent(pc) ((struct rb_node *)(pc & ~3))
5

6 #define __rb_color(pc) ((pc) & 1)
7 #define __rb_is_black(pc) __rb_color(pc)
8 #define __rb_is_red(pc) (!__rb_color(pc))
9 #define rb_color(rb) __rb_color((rb)->__rb_parent_color)

10 #define rb_is_red(rb) __rb_is_red((rb)->__rb_parent_color)
11 #define rb_is_black(rb) __rb_is_black((rb)->__rb_parent_color)

Exhibit 6: RBT constructors – excerpt from /include/linux/rbtree_augmented.h (Torvalds 2023).

Our goal is now to capture this intricate memory layout in the Ribbit language, without having to

alter the high-level types Color, Node and RBT. Due to the limited scope of the high-level portion of Ribbit

– in particular, we do not handle mutable values and restrict ourselves to ADTs without back-references

to parent values – we eschew the parent pointer of the original version. Instead, we model a possible

version of such an intricate memory layout for immutable data. We combine the clever bit-stealing of

the original memory layout with OCaml-style pointer tagging, using a split with composite words to

model the multi-purpose 64 bits of __rb_parent_color. We also hard-code a 64-bit integer element type

which we store in a struct alongside left and right child trees. The resulting memory layout is shown in

Exhibit 7.

(a) Graphical representation of memory values

63 bits

1

1b

Empty

&

62 bits

c

1b

0

1b

Node ({ c , v , l , r }) v

64 bits

l

64 bits

r

64 bits

(b) Ribbit specification with memory types

enum Color { Red, Black } represented as
split . {| 0 from Red => (0)<1>| 1 from Black => (1)<1>}
struct Node { c: Color, v: u64, l: RBT, r: RBT } represented as
&<64>({{ (.Node.v as u64), (.Node.l as RBT), (.Node.r as RBT) }})
with [1:1] : (.Node.c as Color)
enum RBT { Empty, Node(Node) } represented as
split .[0:1] {| 1 from Empty => _<64> with [0:1] : (1)<1>| 0 from Node =>&<64>({{ (.Node.v as u64), (.Node.l as RBT), (.Node.r as RBT) }})

with [0:1] : (0)<1> with [1:1] : (.Node.c as Color)}
Exhibit 7: The Linux memory layout for red-black trees.

Even though we have specified a new, complex memory layout for red-black trees, the original
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ADTs Color, Node and RBT are unchanged. As such, the rest of the program shown in Exhibit 1 is

still valid and will work unmodified. A similar change of representation in another context would

often require a significant code rewrite. In particular, writing low-level data manipulation code for

an optimized memory representation is rather painful and error-prone, requiring delicate handling

of memory contents with fine-grained operations for every data access. For instance, the original C

code manipulating red-black trees in the Linux kernel was shown in Exhibit 6 for a selection of simple

accessors. In Exhibit 8, we show one simple case of the rebalancing operation defined in Exhibit 1d. All

case analysis is implemented by hand using masks and manual dereferencing for every manipulation of

the corresponding data. On top of being tedious and error-prone, this also obscures program semantics

compared to pattern matching.

30 gparent = rb_red_parent(parent);
31

32 tmp = gparent->rb_right;
33 if (parent != tmp) { /* parent == gparent->rb_left */
34 if (tmp && rb_is_red(tmp)) {
35 /*
36 * Case 1 - node's uncle is red (color flips).
37 *
38 * G g
39 * / \ / \
40 * p u --> P U
41 * / /
42 * n n
43 *
44 * However, since g's parent might be red, and
45 * 4) does not allow this, we need to recurse
46 * at g.
47 */
48 rb_set_parent_color(tmp, gparent, RB_BLACK);
49 rb_set_parent_color(parent, gparent, RB_BLACK);
50 node = gparent;
51 parent = rb_parent(node);
52 rb_set_parent_color(node, parent, RB_RED);
53 continue;
54 }

Exhibit 8: One case of the rebalancing operation – excerpt from /lib/rbtree.c (Torvalds 2023).

Ribbit spares the user the tedious task of writing such low-level code by hand thanks to its compiler,

which automatically emits target code taking into account the specific memory layout of each piece of

data. For instance, given the memory layouts specified in Exhibit 7 and the balance function defined in

Exhibit 1d, the Ribbit pattern matching compiler emits the decision tree shown in Fig. 2.3.
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Figure 2.3: Decision tree emitted by the Ribbit compiler for the pattern matching in the balance function

with the Linux-like RBT memory layout.

Decision trees are a common target for pattern matching compilation. Since this pattern matching is
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at the core of a performance-sensitive data structure, we naturally want it to be as efficient as possible.

Many pattern matching implementations come with clever techniques to output optimized decision

trees (Kosarev, Lozov, and Boulytchev 2020; Maranget 2008; Sestoft 1996). Unfortunately, these are

designed for terms that directly reflect the structure of their algebraic data types. In the context

of Ribbit, a decision tree consists of switch nodes which inspect locations in memory determined by

the specified memory layout, and of leaves (shown in light green) which return the identifier of the

pattern corresponding to the considered memory contents. For instance, the root node of the decision

tree in Fig. 2.3 is a switch on the memory location x.~[0:2].*.2.[0:1], which indicates whether the

right subtree of x is Empty or a Node. It first masks off the lowest bits (containing the tag and color),

dereferences the underlying pointer, accesses the second struct field to get the representation of x.l,

and finally extracts its lowest bit which corresponds to its tag. The design of new algorithms to compile

pattern matching in the presence of memory types is a second contribution of this thesis, which will be

described in Chapter 4.

2.2 A fine layout for a simple ADT: Zarith-like integers

While complex inductive structures such as red-black trees are an important use case of ADTs and

pattern matching, some simpler data types also benefit from these tools and from custom memory

layouts. We now dive deeper into Ribbit’s compilation process using such an example: Zarith (Leroy

and Miné 2010), an OCaml library for arbitrary-precision integers. To speed up computations, integers

in Zarith are either “small”, represented as unboxed OCaml integers and using usual instructions, or

“large”, stored on the heap and manipulated using the GMP Bignum library. The choice of memory

layout made in Zarith is not expressible in OCaml. Instead, it is implemented using unsafe operations

via the C foreign function interface (FFI). Exhibit 9 shows an excerpt of the Zarith C implementation,

including the conversion function ml_z_of_nativeint.
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1 /*
2 A z object x can be:
3 - either an ocaml int
4 - or a block with abstract or custom tag and containing:
5 . a 1 value header containing the sign Z_SIGN(x) and the size Z_SIZE(x)
6 . Z_SIZE(x) mp_limb_t
7

8 Invariant:
9 - if the number fits in an int, it is stored in an int, not a block

10 - if the number is stored in a block, then Z_SIZE(x) >= 1 and
11 the most significant limb Z_LIMB(x)[Z_SIZE(x)] is not 0
12 */
13

14

15 /* a sign is always denoted as 0 (+) or Z_SIGN_MASK (-) */
16 #ifdef ARCH_SIXTYFOUR
17 #define Z_SIGN_MASK 0x8000000000000000
18 #define Z_SIZE_MASK 0x7fffffffffffffff
19 #else
20 #define Z_SIGN_MASK 0x80000000
21 #define Z_SIZE_MASK 0x7fffffff
22 #endif
23

24 #if Z_CUSTOM_BLOCK
25 #define Z_HEAD(x) (*((value*)Data_custom_val((x))))
26 #define Z_LIMB(x) ((mp_limb_t*)Data_custom_val((x)) + 1)
27 #else
28 #define Z_HEAD(x) (Field((x),0))
29 #define Z_LIMB(x) ((mp_limb_t*)&(Field((x),1)))
30 #endif
31 #define Z_SIGN(x) (Z_HEAD((x)) & Z_SIGN_MASK)
32 #define Z_SIZE(x) (Z_HEAD((x)) & Z_SIZE_MASK)
33

34 /* ... */
35

36 CAMLprim value ml_z_of_nativeint(value v)
37 {
38 intnat x;
39 value r;
40 Z_MARK_OP;
41 x = Nativeint_val(v);
42 #if Z_USE_NATINT
43 if (Z_FITS_INT(x)) return Val_long(x);
44 #endif
45 Z_MARK_SLOW;
46 r = ml_z_alloc(1);
47 if (x > 0) { Z_HEAD(r) = 1; Z_LIMB(r)[0] = x; }
48 else if (x < 0) { Z_HEAD(r) = 1 | Z_SIGN_MASK; Z_LIMB(r)[0] = -x; }
49 else Z_HEAD(r) = 0;
50 Z_CHECK(r);
51 return r;
52 }

Exhibit 9: Zarith’s C side – excerpt from caml_z.c (Leroy and Miné 2010).

We can readily describe the memory layout of Zarith integers in Ribbit. In Exhibit 10, we define the

type Zint of Zarith-like integers and its memory layout following the previous specification. As Ribbit

does not interface with external libraries (yet), we model the GMP Bignum integer type with 128-bit

primitive integers i128.
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(a) Graphical representation of memory contents

n

63 bits

1

1

Small ( n )

&

63 bits

0

1

Large ( n )

n

128 bits

z1

64 bits

z2

64 bits

( z1 , z2 )

(b) Implementation in Ribbit

enum Zint { Small(i63), Large(i128), }
represented as
split .[0:1] { // inspect the lowest bit| 1 from Small(_) =>_<64> with [1:63]:(.Small as i63)| 0 from Large(_) =>&<64>(.Large as i128)}
struct Zpair(Zint, Zint); represented as{{ (.0 as Zint), (.1 as Zint)

Exhibit 10: Memory layouts for Zarith-like integers and their pairs.

A Zint value is represented in the Small case as a 64-bit word with its lowest bit set to 1, and the

higher 63-bits encoding the actual integer. The Large case is represented as a 64-bit pointer to a 128-bit

word encoding its value, with the lowest bit set to 0 to distinguish it from the Small case. As before,

we use fragments to specify the memory representation of the integer subterm in both branches. Note

that we did not explicitly specify the discriminant value in the split’s branches. Ribbit is indeed able

to infer it from the split’s discriminant position .[0:1] and from the constant (0 or 1) associated with

each branch. It will automatically add the bit range specification with [0:1]:(1)<1> to the Small(_)
branch type and with [0:1]:(0)<1> to the Large(_) branch type. We also define the ADT Zpair, which

is a product type grouping two Zint values together. Its memory layout simply represents it as a struct

containing both of its fields’ representations.

Let us now focus on how Ribbit compiles data manipulation code according to this Zarith-like

memory layout. In Fig. 2.4, we define a function leq comparing the two fields of a Zpair value. Using

pattern matching, we determine the head constructors of these two Zint values. For this example, let

us assume that primitive operations i63.<= and i128.<= are available to compare raw 63-bit and 128-bit

integers respectively. If both head constructors are identical, we simply compare their identically-sized

integer values using the appropriate comparison operator. Otherwise, we must extend the Small field’s

integer value to 128 bits in order to compare it with the Large field’s value. We denote this primitive

cast operation with (i128)(n).

1 fn leq(p : Zpair) -> Bool {
2 match p {
3 (Small(n1), Small(n2)) => n1 i63.<= n2,
4 (Large(n1), Large(n2)) => n1 i128.<= n2,
5 (Small(n1), Large(n2)) => (i128)(n1) i128.<= n2,
6 (Large(n1), Small(n2)) => n1 i128.<= (i128)(n2)
7 }
8 }

Figure 2.4: The leq function on Zarith-like integer pairs.

To compile the leq function, we must emit target code which performs the following tasks:

1. inspect memory contents to determine the head constructor of both Zint fields;

2. extract the raw integer values from both fields;
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3. perform the operation corresponding to the right-hand side of the matched pattern.

The Ribbit compiler automatically emits low-level code carrying out these tasks, using the specified

memory type to determine the precise location of each piece of data. Its output is shown in Fig. 2.5.

Its general structure is that of a decision tree inspecting each field’s discriminant value, corresponding

to the pattern matching on p. Its leaves contain instructions corresponding to the expression on each

pattern’s right-hand side. In all four cases, we must extract both fields’ raw integer values from their

respective memory locations before comparing them.

let n1 = p.0.[1:63]
let n2 = p.1.[1:63]

n1 i63.<= n2

let n1 = p.0.[1:63]
let n2 = p.1.*

(i128)(n1) i128.<= n2
switch(p.1.[0:1])

1

0

let n1 = p.0.*
let n2 = p.1.[1:63]

n1 i128.<= (i128)(n2)

let n1 = p.0.*
let n2 = p.1.*

n1 i128.<= n2

switch(p.1.[0:1])
1

0

switch(p.0.[0:1])
1

0

Figure 2.5: Output of the Ribbit compiler for the leq function.

2.3 Irregular memory layouts: arithmetic expressions

All memory layouts we have seen so far were regular, in that the hierarchy of splits and fragments closely

followed that of the represented ADT. Even in complex layouts such as the Linux-like layout for red-

black trees, each sum type constructor was represented by exactly one split branch and each product

type field by exactly one fragment. In this section, we introduce irregular layouts which rearrange

these components in new ways. As we will see, this irregularity impacts data manipulation code and

compilation.

Consider the type ExpAST of simple arithmetic expressions on 32-bit integers defined in Exhibit 11.

Such an expression is either a variable name Var(str) with the string str modeled as a 512-bit integer,

a 32-bit integer constant Int(n), or a binary operation Bin(op, e1, e2) where op is either Plus or Mult.

We specify a naive memory layout reminiscent of abstract syntax trees for the ExpAST ADT. First off, Op
values are represented on 8 bits similar to a C enum. Every expression is represented on 64 bits, using

the two lowest bits as a split discriminant to distinguish between the three possible head constructorsVar, Int and Bin. Assuming a 64-bit architecture with word-aligned machine pointers, the two lowest

bits of pointers are indeed unused, allowing us to use them to store the split discriminant in the Var
and Bin cases. We store the 32-bit integer value of an Int expression into the 32 highest bits of its 64-bit

word. Var expressions are simply represented as a pointer to the pseudo-string (i512) argument. Finally,

we represent a Bin expression as a pointer to a struct containing the representations of its operation

identifier and of its two operands. In order to maintain 64-bit alignment, we explicitly pad the first field

with 32 unspecified bits _<32>.
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(a) Graphical representation of memory contents

&

62 bits

0

2

Bin ( op , e1 , e2 ) op

8b 56b

e1

64 bits

e2

64 bits

n

32 bits30

1

2

Int ( n )

&

62 bits

2

2
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512 bits
(b) Specification in Ribbit

type String = i512; represented as i512
enum Op { Plus, Mult } represented as
split . {| 0 from Plus => (0)<8>| 1 from Mult => (1)<8>}
enum ExpAST { Var(String), Int(i32), Bin(Op, ExpAST, ExpAST) } represented as
split .[0:2] {| 0 from Bin(_) =>&<64>({{ (.Bin.0 as Op), _<56>, (.Bin.1 as ExpAST), (.Bin.2 as ExpAST) }})| 1 from Int(_) => _<64> with [32:32]:(.I as i32)| 2 from Var(_) => &<64>((.V as String))}

Exhibit 11: Arithmetic expressions and their AST-like memory representation.

Even though the ExpAST layout is correct, it is quite wasteful. For instance, consider the expressionBin ( Plus , Int(42) , Var(0) ). We currently represent it as a pointer to a struct whose fields take

up a total of 192 bits, pictured below.
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8b 56b

42
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2
2

0
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To save space, we could inline the 32-bit integer value into the unused space next to the Op value. By

reducing the remaining padding to 24 bits, we would get a 128-bit-wide struct as shown below.

&
62 bits

0
2

0
8b24b

42
32b

&
62 bits

2
2

0
512 bits

More generally, Bin expressions with at least one Int operand can be compressed to save memory

by unboxing their integer values. We define this optimized memory layout ExpOpt in Exhibit 12. The

ADT modeling arithmetic expressions and its auxiliary types String and Op are unchanged from the

previous type ExpAST. The memory representations of standalone Int terms, of Var terms and of Plus
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expressions with no integer operands are also unchanged. Vertical bars | in split provenances denote

“or”-patterns – for instance, Bin(_)|Var(_) matches Bin and Var values.

(a) Graphical representation of memory contents for the new optimized Plus case

&

62 bits

3

2

Bin ( o , Int ( n ), e ) o

8b

0

24b

n

32b

e

64 bits

&

62 bits

3

2

Bin ( o , e , Int ( n )) o

8b

1

24b

n

32b

e

64 bits

(b) Specification in Ribbit

type String = i512; represented as i512
enum Op { Plus, Mult } represented as
split . { 0 from Plus => (0)<8> | 1 from Mult => (1)<8> }
enum ExpOpt { Var(String), Int(i32), Plus(ExpOpt, ExpOpt) } represented as
split .[0:2] {| 0 from Bin(_, Bin(_)|Var(_), Bin(_)|Var(_)) =>&<64>({{ (.Bin.0 as Op), _<56>, (.Bin.1 as ExpOpt), (.Bin.2 as ExpOpt) }})| 1 from Int(_) =>_<64> with [32:32] : (.Int as i32)| 2 from Var(_) =>&<64>((.Var as String))| 3 from Bin(_, Int(_), _) | Bin(_, _, Int(_)) =>&<64>(split .1 {| 0 from Bin(_, Int(_), _) =>{{ (.Bin.0 as Op), (0)<24>, (.Bin.0.Int as i32), (.Bin.1 as ExpOpt) }}| 1 from Bin(_, Bin(_)|Var(_), Int(_)) =>{{ (.Bin.0 as Op), (1)<24>, (.Bin.1.Int as i32), (.Bin.0 as ExpOpt) }}})}

Exhibit 12: Optimized memory layout for arithmetic expressions.

To model binary expressions with inlined integer operands, we add a new branch to the toplevel split

with the previously unassigned discriminant value 3. These expressions are represented as a pointer

(whose two lowest bits are set to 3) to a struct containing their Op field on 8 bits as before, followed by

a 24-bit tag determining whether the integer operand appears in first or second position, the inlined

32-bit value of said integer operand, and finally the remaining operand encoded on 64 bits.

While the ExpOptmemory layout saves space compared to ExpAST, it pervasively impacts the compila-

tion process. Indeed, Int values are now represented differently depending on the context in which they

appear – either as a standalone expression or as an operand of a Bin expression. Conversely, the memory

representation of a Bin value may follow two different split branches depending on its operands. As a

consequence, seemingly simple patterns and values now require complex code to properly manipulate

data, which is why such optimizations are usually only done by programmers when absolutely neces-

sary (such as extremely performance-sensitive code). Ribbit alleviates this by automatically emitting

layout-aware target code, making such complex layouts completely transparent to client code.

As an example of a program whose compilation is complicated by irregular memory layouts, consider

the eval function shown in Fig. 2.6. It reduces all arithmetic expressions which can be evaluated without

knowing variable operands’ values. When both operands of a binary operation are integers, it computes

the result of the operation and returns an Int expression representing this integer value (lines 6 and 7).
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1 fn eval(e : ExpOpt) -> ExpOpt {
2 match e {
3 Int(_) | Var(_) => e,
4 Bin(op, e1, e2) => match (eval(e1), eval(e2)) {
5 Int(n1), Int(n2) => match op {
6 | Plus => Int(n1 + n2),
7 | Mult => Int(n1 * n2)
8 },
9 e1', e2' => Bin(op, e1', e2')

10 }
11 }}

Figure 2.6: User implementation of eval.

We now give a high-level view of Ribbit’s global compilation procedure, which we formalize in

Chapter 5, and of some intermediate program representations used in its implementation, which we

present in more detail in Chapter 6.

As a first compilation step, we desugar the body of eval to its normalized form shown in Fig. 2.7.

We use an explicitly typed A-Normal Form representation in which patterns contain no variables and

subterms are instead referred to by their positions. For instance, e.Bin.1 accesses the first operand of

the binary expression e. Such accesses are only valid under the right pre-conditions.

The final compiled output is shown in Fig. 2.8 as a Control Flow Graph in Destination Passing

Style (Shaikhha et al. 2017): rather than returning its result, it fills a destination memory location d
with appropriate contents. Corresponding parts of eval in normalized source and final target code are

highlighted in matching colors. As we have seen in previous examples, we compile pattern matching

to a decision tree consisting of switch nodes inspecting relevant parts of memory to determine the

shape of the considered input data. In our general compilation procedure for Ribbit, we integrate each

such decision tree into the output control-flow graph structure. For our eval example, the three source

matches on lines 2, 6 and 11 each correspond to one switch node in the compiled CFG inspecting the

adequate discriminant location.

Beyond pattern matching, the compilation of other elements of the source program, namely data

constructors and accessors, is complicated by the irregular memory layout. Consider the code which

extracts both operands of the Bin head constructor (on line 4 ). Given our ExpOpt memory layout, this is

not a straightforward memory access: the location of the subterms e.Bin.1 and e.Bin.2 depends on the

precise shape of their parent value e. Furthermore, either of these subexpressions may be unboxed (i.e.,

encoded as their integer value when their head constructor is Int), meaning their data is not necessarily

stored as ExpOpt within e. We must therefore rebuild the ExpOpt representation of both operands from

their pieces extracted from e to be used as arguments to eval calls. To do so, the generated code allocates

64 bits for both e1 and e2, inspects the discriminant e.*.1 which determines how their various pieces

are laid out within e, and finally fills their contents accordingly. More formally, we have synthesized an

isomorphism between the existing representation of e.Bin.1 (e.g., an inlined integer value within e) and

its desired representation (a standard ExpOpt).

As we have seen, simple accessors at the source level might require us to emit code that allocates

memory and performs various other operations. Consider now line 20 , where we return the valueBin(op, e1',e2'). Following the ExpOpt memory layout, it is split into three cases: depending on

whether the head constructor of e1' or e2' is Int, we must build this value differently. Note that this

decision is factorized with the previous pattern matching. Again, in all cases, the emitted code allocates

and places every bit in memory. To do so, we once more had to synthesize a morphism from the available

memory representations of e1' and e2' as standalone expressions to their representation as operands

of a Bin operation. This novel compilation procedure that can destruct and rebuild values and manifest

isomorphisms between representations is a large contribution of this thesis described in Chapter 5.

Naturally, to reap the full power of our tweaked representation, one would need to unroll the eval
function, allowing to completely skip some intermediate values. We consider such transformations

orthogonal to our contribution, and focus on emitting straightforward code that is easily optimized by

existing state-of-the-art transformations (here, unrolling and constant propagation).
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1 fn eval(e : ExpOpt) -> ExpOpt {
2 match e {
3 Bin(_, _, _) =>
4 let e1:Exp = e.Bin.1; let e2:Exp = e.Bin.2;
5 let e1':Exp = eval(e1); let e2':Exp = eval(e2);
6 match (e1', e2') {
7 Int(_), Int(_) =>
8 let n1:i32 = e1'.Int;
9 let n2:i32 = e2'.Int;

10 let op:Op = e.Bin.0;
11 match op {
12 Plus =>
13 let n:i32 = n1 + n2;
14 Int(n),
15 Mult =>
16 let n:i32 = n1 * n2;
17 Int(n)
18 },
19 _, _ =>
20 Bin(op, e1', e2')
21 },
22 _ => e,
23 }}

Figure 2.7: Normalized representation of eval.

/* boxed e1 //
e1 := e.*.2

/* let e1' = eval(e1) //
let e1' = alloc(64)
call eval(e1, e1')
/* let e2' = eval(e2) //
let e2' = alloc(64)
call eval(e2, e2')

switch(e1'.[0:2])

1 0,2

/* case (Int(_), Int(_)) //
/* let n1 = e1'.Int //
let n1 = e1'.[32:32]
/* let n2 = e2'.Int //
let n2 = e2'.[32:32]
/* let op = e.Bin.0 //
let op = e.¬[0:2].*.0

/* case (_, _) //
d := &alloc(128)
d.[0:2] := 0
d.*.0 := 1
d.*.1 := e2'.[32:32]
d.*.2 := e1'

success

/* inlined e1 //
e2 := e.*.2
e1.[0:2] := 1
e1.[32:32] := e.*.1

/* case Bin(_, _, _) //
/* let e1 = e.Bin.1 //
/* let e2 = e.Bin.2 //
let e1 = alloc(64)
let e2 = alloc(64)

switch(e.*.1)

0 1 2

/* inlined e2 //
e2.[0:2] := 1
e2.[32:32] := e.*.1

/* boxed e2 //
e2 := e.*.3

/* case (_, _) //

switch(e1'.[0:2])

1 0, 2, 3

/* boxed e1' //
d := &alloc(192)
d.[0:2] := 0
d.*.0 := 2
d.*.1 := 0
d.*.2 := e1'
d.*.3 := e2'

success

/* inlined e1' //
d := &alloc(128)
d.[0:2] := 0
d.*.0 := 0
d.*.1 := e1'.[32:32]
d.*.2 := e2'

success

/* case _ //
d := e

success

/* match e //

switch(e.[0:2])

0, 3 1, 2

/* match op //

switch(op)

0 1

function eval(e, d)

/* match (e1', e2') //

switch(e2'.[0:2])

0,2 1

/* case Plus //
/* let n = n1 + n2 //
let n = alloc(32)
n := ADD(n1, n2)
/* return Int(n) //
d.[0:2] := 1
d.[32:32] := n

success

/* case Mult //
/* let n = n1 * n2 //
let n = alloc(32)
n := MUL(n1, n2)
/* return Int(n) //
d.[0:2] := 1
d.[32:32] := n

success

Figure 2.8: Simplified CFG after compilingeval. For pedagogic and readability purposes, code has been

simplified (block sinking, variable renaming, simple constant prop-

agation).
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2.4 Recursive data constructors: simple and packed linked lists

So far, we only considered one memory layout at once for each ADT. However, some situations call for

different memory layouts for the same data at different times. This usually requires converting data

from one layout to the other, which can be quite complex. In particular, some combinations of recursive

memory layouts require the compiler to emit recursive target code. In this section, we show how Ribbit

handles such situations using a list type with two different memory layouts. These types will also be

used in Chapter 3 as a running example to illustrate our formalization of the Ribbit language.

Consider the type of lists of 32-bit integers, which we define as the ADT List in Exhibit 13. We first

define a simple memory layout representing it as simply-linked lists with one level of indirection per

element. Notice how the second field of the struct used to represent the Cons case is not 64-bit aligned:

indeed, Ribbit will pack struct fields together without inserting any padding nor reordering fields. One

way to restore alignment would be to insert explicit 32-bit padding between the two fields. Even so, the

resulting memory layout would not be particularly efficient: each element of a list results in one new

level of indirection and uses 128 bits of memory (32 bits for the u32 value itself, 32 padding bits and 64

bits to represent the next link).

A more efficient way to represent lists of 32-bit integers on a 64-bit architecture would be to pack two

elements per level of indirection. In Exhibit 13, we demonstrate such a layout with the PairList ADT,

whose inhabitants are exactly those of List. Its memory type is a split with three branches, distinguishing

between empty, single-element and multiple-element lists. Notice how in the Cons(_, Cons(_)) case,

we represent two list elements in the same struct, allowing us to maintain 64-bit alignment without

wasting any space.

1 enum List { Nil, Cons(u32, List) } represented as
2 split .[0:1] {
3 | 1 from Nil => _<64> with [0:1]:(1)<1>
4 | 0 from Cons(_) =>
5 &<64>({{ (.Cons.0 as u32), (.Cons.1 as List) }})
6 with [0:1]:(0)<1>
7 }
8

9 enum PairList { Nil, Cons(u32, PairList) } represented as
10 split .[0:2] {
11 | 0 from Nil => _<64> with [0:2]:(0)<2>
12 | 1 from Cons(_, Nil) =>
13 _<64> with [0:2]:(1)<2> with [2:32]:(.Cons.0 as u32)
14 | 2 from Cons(_, Cons(_)) =>
15 &<64>({{
16 (.Cons.0 as u32), (.Cons.1.Cons.0 as u32),
17 (.Cons.1.Cons.1 as PairList)
18 }}) with [0:2]:(2)<2>
19 }
20

21 fn single_to_double(l : List) -> PairList { l }
22

23 fn double_to_single(l : PairList) -> List { l }
Exhibit 13: A recursive ADT for lists and two possible memory layouts.

On their own, neither of these two memory layouts is particularly noteworthy: Ribbit handles value

construction and pattern matching compilation for either List or PairList similar to previous examples.

However, the fact that the List and PairList ADTs describe the same high-level data structure allows us

to convert values from one layout to the other, as is done by the single_to_double and double_to_single
functions.

Such user-level conversion code leverages the same feature of Ribbit that we used in Section 2.3
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to compile the eval function with the ExpOpt irregular memory layout, that is, its ability to exhibit

isomorphisms between different memory representations of the same data. In this specific case, we are

dealing with two fundamentally different arrangements of the inductive structure of lists: in order to

convert a List to a PairList or vice-versa, we must walk the entire recursive structure to fuse blocks

into pairs. As we will see in Chapter 5, the Ribbit compiler handles such situations by emitting recursive

target code manifesting the isomorphism between the two representations. Figure 2.9 shows the emitted

recursive code for the single_to_double conversion function.

letᵢ s₂₀ = s.*.1.[0:+1]
Switch s₂₀

1

0

Cast d as ?64 with [0:+2]:?2
letₒ d₅ = d.![0:+2]
d₅ := alloc(128)
letₒ d₈ = d₅.*
Cast d₈ as {{?32,?32,?64}}
letₒ d₆ = d.[0:+2]
d₆ := 2
/* Fragment _.Cons.0 in dest d₁₁ //
letₒ d₁₁ = d.*.0
letᵢ s₈ = s.*.0.[0:+32]
d₁₁ := s₈
/* Fragment _.Cons.1.Cons.0 in dest d₁₂ //
letₒ d₁₂ = d.*.1
letᵢ s₁₁ = s.*.1.*.0.[0:+32]
d₁₂ := s₁₁
/* Fragment _.Cons.1.Cons.1 in dest d₁₃ //
letₒ d₁₃ = d.*.2
letᵢ s₉ = s.*.1

call convert l:s₉ d₁₃

success

Cast d as ?64 with [32:+32]:?32 with [0:+2]:?2
letₒ d₆ = d.[0:+2]
d₆ := 1
/* Fragment _.Cons.0 in dest d₇ //
letₒ d₇ = d.[32:+32]
letᵢ s₈ = s.*.0.[0:+32]
d₇ := s₈

success

letᵢ s₂₁ = s.[0:+1]
Switch s₂₁

1

0

Cast d as ?64 with [0:+2]:?2
letₒ d₆ = d.[0:+2]
d₆ := 0

success
Let rec convert = λ l:s d.

Figure 2.9: Generated code for rebuilding linked lists. s is the input list and d the destination location.

2.5 Mangled primitives: RISC-V instruction set

In this section, we consider a restricted version of the 32-bit RISC-V assembly language. We will use

Ribbit to specify as a memory layout the encoding described in the instruction set (ISA) documenta-

tion (Waterman et al. 2019). A distinctive feature of this memory layout is the way it encodes integer

values: the immediate operand of some instructions is broken down into its individual bits, which are

then scattered across the memory representation of the whole instruction. Here, we show how such

mangled primitive values can be expressed and manipulated with Ribbit.

Before expressing it in Ribbit, let us describe the subset of the RISC-V instruction set we wish to

capture. It consists of four instructions: add, addi, sw, and jal, whose semantics are given in Fig. 2.10.

A RISC-V machine has 32 registers, x0 to x31 (encoded on 5 bits). As shown in Fig. 2.11, RISC-V 32-bit

instructions have different formats based on their addressing mode. Further characteristics of our four

instructions are in Fig. 2.10.

Inst Name T
y
p
e

O
p
c
o
d
e

f
u
n
c
t
3

f
u
n
c
t
7

Description (in C)add Add R 0x33 0 0 rd = rs1 + rs2addi Add Immediate I 0x13 0 — rd = rs1 + immsw Store Word S 0x23 2 — *(rs1+imm) = rs2jal Jump And Link J 0x6F — — rd = PC+4; PC += imm
Figure 2.10: Instruction semantics and encoding, excerpt.
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31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[0 : 12] rs1 funct3 rd opcode I-type

imm[5 : 7] rs2 rs1 funct3 imm[0 : 5] opcode S-type

imm[20] imm[1 : 10] imm[11] imm[12 : 7] rd opcode J-type

Figure 2.11: RISC-V Core instruction format, excerpt. “rs1,2” are source registers, “rd” a destination register. “imm[n]”

denotes the n-th bit of imm. “imm[o : ℓ]” means “ℓ bits starting from o in the binary representation of imm”.

Already, we see complications: in general, instruction characteristics (type, instruction name, in-

volved registers, etc.) are spread over opcode, funct3 and funct7, which are stored non-consecutively.

Moreover, the latter two are sometimes not present in the 32-bit instruction value. Immediates are par-

ticularly mangled, and cannot be readily extracted from the binary representation. For our particular

(simple) subset :

1. the four instructions are distinguishable from their opcode only, stored in bits 0 to 7 inclusive;

2. the destination registers of add and addi are at the same location, bits 7 to 11;

3. the immediate value (imm) for the sw instruction is split and stored in two bit ranges: bits 7 to 11

and 25 to 31;

4. the 20-bit immediate value for the jal instruction can be recovered from bits 12 to 31 but we need

to rebuild this immediate from four separate bit ranges.

We now use Ribbit to model RISC-V registers and instructions with the Reg and InstrADTs and mem-

ory layouts in Exhibit 14. The Reg ADT is a simple sum type enumerating the 32 available RISC-V regis-

ters, which we wish to represent similarly to a C enum: each register Xi should be represented as the con-

stant i (for instance, X2 is the constant integer “3”). For this purpose, Ribbit provides a predefined repre-

sentation which we request with the keywords represented by C. It will automatically find the minimal

required width to encode each possible value – in our case, 5 bits since there are 32 registers and 2
5 = 32

– and assign each constructor to its identifier encoded on this width. For the Reg type, this corresponds

to the following memory type: split . { 0 from X0 => (0)<5> | ... | 31 from X31 => (31)<5> }.

Section 2.6 will provide more detail on memory representations predefined by Ribbit.
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1 /* C-like enum stored on 5 bits */
2 enum Reg { X0, X1, ..., X31 } represented by C
3

4 enum Instr {
5 Add(Reg, Reg, Reg), // add rd, rs1, rs2
6 Addi(Reg, Reg, i12), // addi rd, rs1, imm12
7 Jal(Reg, i20), // jal rd, imm20
8 Sw(Reg, Reg, i12), // sw rs1, rs2, imm12
9 } represented as

10 split .[0:7] { // inspect the opcode stored in the 7 lowest bits
11 | 0x13 from Addi(_, _, _) =>
12 _<32> with [0:7] : (0x13)<7> // opcode constant
13 with [7:5] : (.Addi.0 as Reg) // register operand rd
14 with [12:3] : (0)<3> // funct3 constant
15 with [15:5] : (.Addi.1 as Reg) // register operand rs1
16 with [20:12] : (.Addi.2 as i12) // immediate operand imm
17 | 0x23 from Sw(_, _, _) =>
18 _<32> with [0:7] : (0x23)<7> // opcode constant
19 with [7:5] : (.Sw.2.[0:5] as i5) // 5 lowest bits of immediate operand
20 with [12:3] : (2)<3> // funct3 constant
21 with [15:5] : (.Sw.0 as Reg) // register operand rs1
22 with [20:5] : (.Sw.1 as Reg) // register operand rs2
23 with [25:7] : (.Sw.2.[5:7] as i7) // 7 highest bits of immediate operand
24 | 0x6f from Jal(_, _) =>
25 _<32> with [0:7] : (0x6f)<7> // opcode constant
26 with [7:5] : (.Jal.0 as Reg) // register operand rd
27 /* scattered pieces of the immediate operand imm */
28 with [12:7] : (.Jal.1.[11:7] as i7) with [20:1] : (.Jal.1.[10:1] as i1)
29 with [21:10] : (.Jal.1.[0:10] as i10) with [31:1] : (.Jal.1.[19:1] as i1)
30 | 0x33 from Add(_, _, _) =>
31 _<32> with [0:7] : (0x33)<7> // opcode constant
32 with [7:5] : (.Add.0 as Reg) // register operand rd
33 with [12:3] : (0)<3> // funct3 constant
34 /* register operands rs1 and rs2 */
35 with [15:5] : (.Add.1 as Reg) with [20:5] : (.Add.2 as Reg)
36 with [25:7] : (0)<7> // funct7 constant
37 }

Exhibit 14: Ribbit ADTs and memory types for 32-bit RISC-V registers and instructions.

Our Instr ADT for RISC-V 32-bit instructions is a sum type with four constructors corresponding

to the four instructions in our subset. Their operands are either registers or integers of various widths.

Following the RISC-V specification shown in Fig. 2.11, we encode them on 32 bits and distinguish

them using their opcode stored in the 7 lowest bits. The Instr memory type is therefore a split whose

discriminant is the memory location .[0:7] and whose four branches each describe a 32-bit composite

word.

The memory layout of some instructions is relatively simple. For instance, in the Addi branch, we

partition the 32-bit uninitialized word _<32> into five distinct bit ranges. The bit ranges [0:7] and [12:3]
correspond to the opcode and funct3 constants: their contents are set to the adequate constant words(0x13)<7> and (0)<3> following Fig. 2.10. The three remaining bit ranges each store an operand, as

specified in the S-type line of Fig. 2.11. For both register operands .Addi.0 and .Addi.1 and the 12-bit

immediate operand .Addi.2, we use a fragment to specify the adequate memory type Reg or i12.

Other instructions such as Jal have a more intricate representation. As in the previous branch,

we partition the 32-bit word into several bit ranges, with [0:7] containing the opcode constant and[7:5] storing the register operand .Jal.0. However, the 20-bit immediate operand .Jal.1 is broken

27



down into four parts which are stored non-consecutively in four separate bit ranges. We ask Ribbit

to represent portions of this i20 integer value separately using fragments with the following syntax:(.Jal.1.[o:l] as il), where [o:l]denotes the l consecutive bits starting from offset o in the “standard”

i20 representation of this immediate.

Now that types and layouts have been defined, we can focus on high-level code manipulating

RISC-V instructions and, most importantly, its compilation to correct target data manipulation code

using Ribbit. Given a 12-bit integer value imm, consider the data constructor Sw(X1, X2, imm). From

a high-level perspective, this is a simple constructor: using a typical representation for such a value,

we would simply allocate an adequate amount of memory, then encode X1, X2 and imm as integers at

their assigned positions. Our representation, however, is not so straightforward: since imm is stored

non-consecutively, we need to break it down into two pieces read from two different positions in its own

memory representation. In essence, we need to synthesize code manifesting the isomorphism between

the previous representation of imm (here, a standard i12) and the representation embedded in Instr (two

pieces at stored at positions .[7:5] and .[25:7] within the instruction). As we have seen in previous

sections of this chapter, such implicit recombination of subterms is common in the context of embedded

and low-level memory representations. A simple struct flattening and reordering already exhibits a

similar behavior.

Given this data constructor, the Ribbit compiler emits the low-level code shown in Fig. 2.12, which

builds the memory representation of Sw(X1, X2, imm) by:

1. allocating enough memory – here, 32 bits – to hold this value in a new memory location x;

2. initializing the parts of x corresponding to constant parts of the desired value – here, its opcode
and funct3 constants and its two register operands;

3. reading both parts (bit ranges [0:5] and [7:5]) of the (non-constant) immediate operand from its

memory location imm, and writing their contents to their adequate positions in x.

1 let x = alloc(32);
2 x.[12:3] := 2; x.[0:5] := 0x23; // funct3, opcode
3 x.[15:5] := 1; x.[20:5] := 2; // rs1 = X1, rs2 = X2
4 x.[25:7] := imm.[5:7]; x.[7:5] := imm.[0:5]; // imm

Figure 2.12: Code building the memory representation of Sw(X1, X2, imm) in the memory location x.

Let us now consider a more complex example of a source program manipulating Reg and Instrvalues.

The RISC-V instruction set manual contains a standard extension for compressed instructions (Waterman

et al. 2019, chapter RISCV-C) which defines a compressed 16-bit encoding for some instructions. Whether

a given 32-bit instruction can be compressed according to this standard depends on the rules specified

for this operation. Usually, it requires immediate operands to be small enough to fit in reduced space,

and register operands to belong to the eight “most popular” registers X8 to X15 inclusive.

In Exhibit 15, we define the is_compressible function which determines whether a given Instr value

corresponds to a compressible 32-bit RISC-V instruction. Its two companion functions is_nonzero_register
and is_popular_register are predicates on Reg values whose names are self-explanatory. The defini-

tions of these three functions rely on boolean operations (equality, comparison, etc.) which are built into

Ribbit.
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1 fn is_nonzero_register(r : Reg) -> Bool {
2 match r {
3 X0 => False,
4 _ => True
5 }
6 }
7

8 fn is_popular_register(r : Reg) -> Bool {
9 match r {

10 X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 => True,
11 _ => False
12 }
13 }
14

15 fn is_compressible(x : Instr) -> Bool {
16 match x {
17 Jal(X1, off) => off < 4096,
18 Add(rd, rs1, rs2) => rd == rs1 && is_nonzero_register(rs1) && is_nonzero_register(rs2),
19 Addi(rd, rs, imm) => rd == rs && is_nonzero_register(rs) && imm < 64,
20 Sw(rbase, roff, imm) =>
21 is_popular_register(rbase) && is_popular_register(roff) &&
22 imm.[0:5] == 0 && imm.[10:2] == 0,
23 _ => False,
24 }
25 }

Exhibit 15: Function determining whether a given 32-bit instruction can be compressed into a 16-bit

one, in Ribbit syntax.

Ribbit’s compilation algorithm, detailed in Chapter 5, can emit the control flow graph depicted in

Fig. 2.13, which:

• inspects the internal representation of an input Op32 value to determine its head constructor (Add,

Addi, Jal or Sw), as well as the nested register constructor in Jal;

• extracts from this representation all subterms that are bound to variables in the matched pattern.

For instance, in the Sw case , the parts of the immediate imm are combined in simm in order to

reconstruct a value that can be used in a mask;

• allocates and initialises memory to represent the appropriate values. For instance, the imm value just

mentioned is first allocated as dimm, filled, then promoted to a read-only value simm before being

used.
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/* case Jal(X1, imm) //
/* Bindings //
letₒ dimm = alloc(20)
dimm.[11:+7] := s.[12:+7]
dimm.[10:+1] := s.[20:+1]
dimm.[0:+10] := s.[21:+10]
dimm.[19:+1] := s.[31:+1]
Freeze dimm to simm
d := simm < 4096

success

/* match o //
letᵢ opcode = s.[0:+7]

Switch opcode

0x13 0x33 0x6F 0x23

/* case Addi(rd, rs, imm) //
/* Bindings //
letᵢ rd = s.[7:+5]
letᵢ rs = s.[15:+5]
letᵢ imm = s.[20:+12]
/* Simplified Computation //
let db0 = rd /= rs
let b1 = rs /= 0
let db2 = imm /= 64
let res = b0 /& b1 /& b2
/* Final Write //
d := res

success

letᵢ rd = s.[7:+5]

Switch rd

1 0, 2-31

/* case Add(rd, rs1, rs2) //
/* Bindings //
letᵢ rd = s.[7:+5]
letᵢ rs1 = s.[15:+5]
letᵢ rs2 = s.[20:+5]
/* Simplified computation //
let b0 = rd /= srs1
let b1 = rs1 /= 0
let b2 = rs2 /= 0
let res = b0 /& b1 /& b2
/* Final Write //
d := res

success

/* case Sw(rbase, roff, imm) //
/* Bindings //
letᵢ rbase = s.[15:+5]
letᵢ roff = s.[20:+5]
/* Operand imm //
letₒ dimm = alloc(12)
dimm.[0:+5] := s.[7:+5]
dimm.[5:+7] := s.[25:+7]
Freeze dimm to simm
/* Simplified computation //
let b1 = 8 /= rbase /= 15
let b2 = 8 /= roff /= 15
let b3 = simm & 3103 /= 0
let res = b1 /& b2 /& b3 //
/* Final Write //
d := res

success

/* case _ //
d := 0

success

Let rec is_compressible = λ o:s d.

Figure 2.13: Simplified CFG for is_compressible. From the input i, it identifies the head constructor using the 7 lowest bits,

then extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw (in bold), and finally stores the result in dest.

2.6 Generic representations of ADTs in mainstream languages

In previous sections, we described a variety of memory layouts for specific ADTs. However, it is

not always possible nor desirable to specify the memory layout of each individual data type. Most

programming languages have their own standard way to represent data in memory, with varying

degrees of flexibility and customization by the user. Similarly, Ribbit provides a (very limited) selection

of predefined representations which follow common rules to represent any given ADT. In this section,

we explore the generic memory representations of several mainstream languages and show how they

can be modeled in Ribbit.

Note that most information presented in this section is potentially incomplete and obtained from a

variety of sources ranging from official language references to folklore knowledge of specific compiler

mechanics. Other sources include unofficial language documentation, various blog posts, as well as

manual inspection of intermediate representations emitted by compilers.

2.6.1 OCaml

OCaml is a garbage-collected, functional programming language. Such languages were the first to

natively support ADTs and pattern matching. Accordingly, OCaml features a rich type system which

includes ADTs in the form of tuples and records for product types and of sum types dubbed “variants”.

For instance, the red-black tree ADTs from Section 2.1 can be modeled as the following OCaml types:
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1 type color = Red | Black
2

3 type rbt =
4 | Empty
5 | Node of (color * int * rbt * rbt)

Exhibit 16: Red-black trees in OCaml.

As OCaml is a quite high-level language, it does not offer users precise control over low-level aspects

such as data layout. Furthermore, garbage collection requires memory contents to follow a somewhat

predictable pattern. The OCaml runtime therefore represents values according to a uniform memory

layout which we describe below, using Minsky and Madhavapeddy (2021) as our main source.

Every OCaml value is either unboxed, i.e., represented on a single machine word whose lowest bit is

set to 1 to tag it as an unboxed value, or boxed, i.e., represented as a pointer (whose lowest bit is always

0 due to address alignment) to a struct containing a header followed by data fields. Exhibit 17 depicts

these two kinds of values in memory for a 64-bit platform.

imm
63 bits

1
1

Unboxed/tagged immediate

&
63 bits

0
1

Boxed/struct pointer

header
64 bits

field 0
64 bits

. . . field n-1
64 bits

Exhibit 17: OCaml generic representation for 64-bit architectures.

More precisely, unboxed values are used to represent small enough primitive values (e.g., 63-bit

integers of type int) and unit constructors of sum types (e.g., Red, Black and Empty constructors from

Exhibit 16).

All other values, such as floating-point numbers, tuples and non-unit value constructors, are repre-

sented using the boxed layout. For instance, consider a value of the type rbt defined in Exhibit 16 of

the form Node(c, v, l, r). It will be represented as a pointer to a struct whose first field is a header

encoding the head constructor Node (as well as other metadata), followed by the 64-bit representations

of the four fields c, v, l and r.

In Ribbit, this generic way of representing any given ADT is available as a generic representation:

writing represented by caml after any ADT definition will automatically generate the corresponding

memory type.

2.6.2 Java Virtual Machine

Let us now focus on another uniform memory representation from a different ecosystem. The Java

Virtual Machine is a platform supporting several languages, providing a common runtime framework

with its own memory model. Like the OCaml runtime, it uses a rather uniform memory representation

scheme to satisfy the demands of its garbage collector. Unlike OCaml, most JVM-based languages are

heavily object-oriented: the basic memory management unit is an object, i.e., an instance of some class.

2.6.2.1 ADTs in JVM-based languages

The canonical JVM-based language is of course Java. Its type system is almost exclusively geared towards

an object-oriented programming paradigm, with the majority of data being stored in class attributes. In

this context, product types are easy to model as classes whose data attributes represent different fields,

as seen in Exhibit 18.
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(a) In Java

class Node {Color color;
int value;RBT left;RBT right;}

(b) In Scala

class Node(
val color: Color,
val value: int,
val left: RBT,
val right: RBT)

(c) In Ribbit

struct Node {c: Color,v: u64,l: RBT,r: RBT}
Exhibit 18: Product type for red-black tree nodes.

However, sum types are more delicate to model. Java provides an enum construct similar to C enums,

which is sufficient for sum types whose constructors are all argument-less. For more complex sum

types, a typical design pattern would be to create an abstract class from which every sum constructor

inherits, adding its own data attributes. Data manipulation code may then use overloaded methods or

a visitor pattern
1
. Exhibit 19 shows how Java enums and inheritance can be used to model red-black

trees and their colors.

(a) In Java

enum Color { RED, BLACK; };
abstract class RBT {}
class EmptyRBT extends RBT {};
class NodeRBT extends RBT {Node node;};

(b) In Scala

enum Color {
case Red;
case Black;}

enum RBT {
case Empty;
case Node(Node);}

(c) In Ribbit

enum Color { Red, Black }
enum RBT {Empty,Node(Node)}

Exhibit 19: Sum types for red-black trees and their colors.

In addition to Java, the JVM also supports other languages which support richer types and different

programming paradigms, most notably Scala. Specifically, Scala 3 introduces an enum feature
2

which

a offers a more natural syntax for ADTs. We illustrate it on red-black tree types in Exhibits 18 and 19.

Note that this feature is mostly syntactic sugar around advanced object-oriented features
3
.

2.6.2.2 Internal representation of JVM objects

Now that we have described how to model ADTs in JVM-based languages, let us focus on their internal

representation as JVM memory contents. All information about internal memory structures of the

JVM was obtained by examining test Java programs (using OpenJDK 21 for x86-64 with compressed

references enabled) with the JOL (Java Object Layout) tool
4
, and is coherent with the analysis provided

in https://shipilev.net/jvm/objects-inside-out.

Broadly speaking, every toplevel object is represented as a pointer to a block, similar to OCaml

“boxed” values. The first 64 bits of this block are used by the mark word, which contains various

metadata about the object itself, such as information used by the garbage collector. Next to the mark

word, the 32-bit class word indicates which class this object is an instance of. After this 96-bit header, the

block contains the memory representation of each field of the object. In order to minimize space usage

while maintaining 64-bit alignment, the JVM may reorder fields so as to pack smaller fields within larger

fields’ alignment gaps (so-called “field packing”). Primitive fields such as integers are unboxed within

their parent object’s representation.

An interesting feature of many JVM implementations is the ability to compress object references
5
. This

1
See for instance https://garciat.com/posts/java-adt for a practical example.

2https://github.com/lampepfl/dotty/issues/1970
3https://docs.scala-lang.org/scala3/reference/enums/desugarEnums.html
4https://openjdk.org/projects/code-tools/jol/
5https://shipilev.net/jvm/anatomy-quarks/23-compressed-references
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optimization applies in situations where the host platform is a 64-bit machine, yet the size of the Java

heap does not exceed 2
32

bytes. In these situations, all pointers to Java objects (allocated on the heap)

will necessarily be between 0 and 2
32 − 1. The 32 highest bits of a machine pointer to any Java object will

therefore always be zero and can be discarded, enabling a significant reduction of memory usage.

The diagrams in Exhibit 20 show the memory representation of instances of two simple Java classes,

illustrating both field packing and alignment gaps.

mark

64 bits

class

32 bits 32 bits

n

64 bits

class C { long n; };
&

32 bits

mark

64 bits

class

32 bits

m

32 bits

&

32 bits

n

64 bits

class D { int m; long n; C o; };
&

32 bits

...

Exhibit 20: Objects in JVM memory.

In Ribbit, we would model an object’s header and fields using ordinary structs and word types,

including explicit padding. For compressed references, we must model the following semantics: “take

only the 32 lowest bits of a 64-bit machine pointer, which contain all address bits”. This is exactly the

meaning of a Ribbit 32-bit pointer type (on a 64-bit platform), denoted &<32>(...).

2.6.3 C

In contrast to OCaml and to JVM-based languages, the C programming language does not support

high-level notions such as ADTs. Instead, C data types are directly expressed as their memory layout

using constructs such as structs and unions.

This has a number of drawbacks. As C is a relatively low-level programming language, all data

manipulation code must be written with its precise memory layout in mind, sometimes resulting in

significantly obfuscated code, as we have seen in Section 2.1.4 with red-black trees in Linux. Furthermore,

such low-level data types do not necessarily reflect intended type semantics, that is, the data structure

the user actually had in mind, as opposed to its concrete implementation. As a result, none of the safety

guarantees provided by ADTs are available: it is up to the user to write data manipulation code which is

exhaustive, non-redundant and keep memory contents “well-typed” w.r.t. the intended high-level data

structure.

Despite all these drawbacks, many performance-intensive applications are still written in C. Indeed,

such programs often rely on manually specified, finely optimized memory layouts, whose specifica-

tion requires total control over low-level details. This ability to precisely specify the desired memory

representation of data is only afforded to users by C and a handful of other languages.

Here, we compare the language of C data types with Ribbit’s memory types, highlighting their

common features and key differences. All information presented in this section comes from the precise

implementation of C data types. More precisely, our sources are the C17 standard and, for ABI-

dependent aspects, the System V generic ABI v4.1
6

and its processor supplement ABIs for x86_64
7

and

ARM32
8

(these two ABIs do not differ on aspects which are relevant to us here).

Primitive data types C provides a variety of primitive data types (int, char, long, double, etc.), which

are used both to actually encode a primitive of this type and as a way to get a raw word of

this size. Ribbit separates actual primitive types (in practice, uint) from other usages of words:

6https://refspecs.linuxbase.org/elf/gabi41.pdf
7https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
8https://github.com/ARM-software/abi-aa/blob/main/aapcs32/aapcs32.rst
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uninitialized/unspecified contents _<l>, constants (c)<l>, composite ... with [o:l]:.... In C,

the intended contents of, say, an int are not encoded in its type.

Pointers C understands machine pointers to any given data type, as well as opaque pointers void*. In

Ribbit, pointer types indicate both a specific pointee type and a width. If this width is different from

that of a native pointer, it designates pointers whose higher bits have been extended or removed.

Of course, this is only possible if shrinking the pointer in this way does not eat into address bits.

For an example of such resized pointers, see JVM compressed references in Section 2.6.2.

Structs According to the C standard, the C compiler does not reorder struct fields, although it does

automatically insert padding to meet alignment constraints. The contents of any padding are

unspecified and may change when copying the struct. It is up to programmers to reorder fields to

minimize the amount of space lost to alignment gaps; this technique is known as struct packing
9
.

On the other hand, Ribbit does not reorder fields nor add any padding: the actual contents of a

struct follow exactly its user-provided specification. This allows Ribbit to model arbitrarily weird

encodings such as {{(0)<7>, (1)<4>}}, which will indeed be 11-bit wide.

Enums can be seen as very simple sum types with only unit constructors, each represented as a value

of a char or any suitable signed or unsigned integer type – the actual primitive type used to store

enum values is implementation-defined. Note that there is no guarantee that the concrete contents

of any value of a given enum type actually represent one of its inhabitants (i.e., any integer of

the right width can be casted to a (possibly non-sensical) enum value). In Ribbit, C-like enums

correspond to a sum type with only unit constructors represented as a split in which each branch

represents one constructor as a constant word. The predefined representation represented by C,

which only works on such ADTs, will automatically find the minimal width necessary to encode

all constructors (not necessarily a power of 2, for instance we encode RISC-V registers on 5 bits in

Section 2.5) and generate such a split.

Unions can be seen as degenerate splits without an explicit discriminant. Similar to structs, the C

compiler will automatically add padding at the end of smaller variants to meet the alignment of

the largest variant. A possible representation of a sum type in C is a tagged union, i.e., a struct

which aggregates an explicit enumerated tag with its union payload. This pattern is captured and

generalized in a safe way by Ribbit split types.

Bit-fields are an alternative way to specify members of a struct or an union. They are rarely used by C

programmers in practice. C structs containing bit-fields resemble “packed” Ribbit-like structs, but

also rely on a notion of “storage units” (usually machine words). Whether bit-fields can straddle

storage unit boundaries is implementation-defined; as such, using bit-fields to specify precise

layout details is rather unreliable.

2.6.4 Rust

Rust is probably the most promising mainstream language when it comes to combining ADTs with

optimized memory layouts. Like Ribbit, Rust aims to offer as much low-level control as C while still

providing nice and safe abstractions such as ADTs and pattern matching. The syntax of Ribbit for

ADTs and pattern matching is heavily inspired by (and thus basically identical to) that of Rust. Here,

we focus on the memory representation of ADT values in Rust as described in its documentation (The

Rust Reference 2023; The Rustonomicon 2023), and on the (limited) ways in which Rust programmers can

customize this representation.

Every ADT defined in Rust can carry an annotation of the form #[repr(...)] which specifies one of

four possible memory representation schemes, optionally modified with packed or align attributes to

customize object alignment. We describe each of them below.

C representation As its name implies, the C representation aims to closely follow the memory layout

defined by the C standard, which we described in Section 2.6.3. Rust enums (a.k.a. sum types),

which have no native C equivalent, are represented as “tagged unions”. It is useful for interfacing

9http://www.catb.org/esr/structure-packing
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with C (and other cooperative languages) through Rust’s Foreign Function Interface, but also for

providing a mostly predictable representation of values. As we will see, the main other available

representation (Rust representation) is highly variable and purposefully unspecified.

Primitive representation The primitive representations (for instance, #[repr(u8)]) only apply to sum

types. Essentially, they allow the user to choose which primitive type backs the representation of a

C-like enum. For instance, #[repr(u8)] will guarantee that the given enum will be represented as

an unsigned 8-bit integer. For sum types with non-unit constructors, the given primitive type in-

stead specifies the type of the “tag” within the “tagged union” representation. This representation

is easily specified in Ribbit, similarly to the C language’s enums.

Transparent representation The transparent representation applies to product types with a single field,

and to sum types with only one constructor which itself contains a single field. It represents

values of such a type as their unboxed field, similar to the unboxed OCaml attribute
10

. Again, this

representation is easy to express as a Ribbit memory type.

Rust representation Unlike the three previous representations, the Rust reference states that the (de-

fault) Rust representation makes no data layout guarantees, except those required for soundness

(e.g., the fields of a struct do not overlap each other). According to the Rustonomicon, struct

fields may be reordered by the compiler, and padding is inserted as needed to meet alignment

constraints. On the other hand, the memory layout of enums is purposefully left unspecified.

Indeed, the Rust compiler reserves itself the right to apply arbitrary data layout optimizations,

without any explicit input from the programmer. A well-known example is the popular niche

optimization, which takes advantage of unused values to represent extra sum constructors. For

instance, consider an option type wrapping pointer values: Option<Box<...>>. Since 0 is not a

valid address, the Rust compiler will use this value to represent the None value, whereas values of

the form Some(p) will be represented as their unboxed pointer value p. Doing so saves space – no

extra space is used for the tag – and improves performance by removing any overhead associated

with the Some wrapper. This particular optimization, although expressible in Ribbit syntax, is not

currently handled in its formal version nor by its implementation.

2.7 Limits of Ribbit: WebKit-like NaN-boxing

As the final section of our Memory Zoo, we describe a representation that models the memory layout

used in the JavaScriptCore engine (built into WebKit) to encode JavaScript values on 64-bit platforms,

which uses an optimization dubbed NaN-boxing. In doing so, we will expose some of Ribbit’s limitations.

Our description is based off the implementation of WebKit NaN-boxing (2023). According to the

ECMAScript Language Types (2023), JavaScript values consist of:

• four constants: undefined, null and the boolean values true and false;

• numbers, which consist of 32-bit integers and double-precision (64-bit) floating-point numbers;

• arbitrary-precision integers, character strings, symbols and objects, which we collectively refer to

as cells. Every cell value is represented behind a pointer; here, we ignore other representation

details.

We define the type of Javascript values in Ribbit as the JSVal ADT shown in Exhibit 21, Line 5. The

memory type that represents JSVal values according to the layout used in JavaScriptCore is based on

the double-precision binary encoding defined by the IEEE 754 standard and takes advantage of unused

NaN values to represent all JavaScript values as 64-bit words.

More precisely, the IEEE 754 double-precision binary format consists of one sign bit (most significant

bit, numbered 63), 11 exponent bits (numbered 52–62) and 52 significand bits (numbered 0–51). NaN

values are defined as values whose exponent bits are all set, with quiet (as opposed to signaling) NaN

values flagged by setting the most significant bit of the significand (i.e., bit 51). The sign bit is irrelevant.

10https://ocaml.org/manual/5.2/attributes.html
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The space of 64-bit words whose top 13 bits are set (i.e., quiet NaNs with the sign bit set) is therefore

available to encode non-double values in the 51 remaining payload bits (excluding the zero payload,

reserved for NaNs originating from hardware or C library functions). Conversely, valid double-precision

encodings are necessarily within the range from 0 inclusive to 0xfff8000000000000 exclusive.

The JavaScriptCore implementation also takes advantage of the fact that no current x86-64 imple-

mentation uses more than 2
48

bytes of virtual address space, that is, 48 bits are sufficient to store any

machine pointer. In order to keep pointer dereferencing unencumbered by extra decoding operations,

pointers are assigned the range from 0 inclusive to 2
48

exclusive. The four constants (Undef, Null, True
and False) are mapped to values in this range, using the fixed invalid pointer values 0xa, 0x2, 0x7 and0x6 respectively.

We model this encoding as a Ribbit memory type in Exhibit 21. As seen on line 6, three main

categories of values are distinguished based on their 16 high bits. Lines 8 to 14 cover all non-numeric

values (constants and cells).

1 type Cell = i256 repr as i256;
2

3 enum Num { Int(i32), Double(f64) }
4

5 enum JSVal { Undef, Null, Bool(Bool), Num(Num), CellRef(Cell) }
6 represented as split .[48:16] {
7 | 0 from (CellRef(_) | Undef | Null | Bool) =>
8 split .[0:48] {
9 | 6 from Bool(False) => _<64> with [0:48] : (6)<48>

10 | 7 from Bool(True) => _<64> with [0:48] : (7)<48>
11 | 10 from Undef => _<64> with [0:48] : (10)<48>
12 | 2 from Null => _<64> with [0:48] : (2)<48>
13 | _ from CellRef(_) => _<64> with [0:48] : &<48>(.CellRef as Cell)
14 } with .[48:16] : (0)<16>
15 | 0xfffe from Num(Int(_)) =>
16 _<64> with [0:32] : (.Num.Int as i32) with [32:16] : (0)<16> with [48:16] : (0xfffe)<16>
17 | _ from Num(Double(_)) =>
18 _<64> with [0:48] : ((u48)(.Num.Double.[0:48]) as u48)
19 with [48:16] : ((u16)(.Num.Double.[48:16]) + 1 as u16)
20 }

Exhibit 21: Javascript values and memory layout using NaN-boxing, in Ribbit syntax.

32-bit integer values are assigned the range from 0xfffe000000000000 to 0xfffe0000ffffffff inclu-

sive, and are distinguished by their 16 higher bits (0xfffe), as seen on line 15. We then use the standard

32-bit integer encoding on the 32 lowest bits.

Finally, the range of double-precision numbers is offset by 2
49

, making its exclusive upper bound0xfffa000000000000, so that it lies outside both pointer and integer value ranges. It corresponds to the

default split branch line 17. As the binary encoding of 2
49

contains only zeroes as its 48 lowest bits, we

only need to add this arithmetic offset to the 16 highest bits of the Num(Double(_)) representation. On

Line 19, we take the 16 highest bits of the f64 representation of .Num.Double, cast them to an unsigned

16-bit integer u16 and finally add 1 (which is 2
49

shifted right by 48 bits) to obtain the desired value.

While our syntax is expressive enough to describe the JSVal memory layout, some of its features are

not supported by Ribbit beyond its syntax. They fall outside of the scope of the Ribbitulus (formalization

of the Ribbit language described in Chapter 3) and are not handled by the ribbit compilation algorithms

(which we describe in Chapters 4 and 5). These unsupported features are:

• Primitive types beyond integers – for our example, double-precision floats. For simplicity, the

current formalization and implementation of Ribbit only support integer primitives.

• Complex primitive encodings in which reversible operations are applied to raw primitive values.

In our example, we use bitcasts (from portions of an f64 to unsigned integers u48 and u16) and
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constant integer addition (+ 1). Currently, Ribbit only supports the extraction of specific bit ranges

from integer values (e.g., .Num.Double.[0:48]).

• Wildcard discriminant values in splits, indicating that a given split branch applies to memory

values whose contents at the discriminant position are not matched by other branches. The

current formalization of Ribbit requires split branches’ memory types to explicitly contain their

discriminant value as a constant at the appropriate position.

• Awareness of low-level details regarding the contents of machine pointers and primitive encodings.

Currently, pointers and primitives are treated as “opaque” values in memory whose contents are

completely unpredictable. However, depending on the considered system and architecture, some

information is in fact available. For instance, the Rust compiler exploits the fact that valid pointers

are never zero to encode pointer options on the same width as a pointer, by using the value 0 to

represent None. Such layout optimizations are known as niches. In our example, checking that the

split type is indeed valid would require Ribbit to “know” that 6, 7, 10 and 2 are not valid addresses,

and that the 16 upper bits of a double-precision float are always between 0 inclusive and 0xfff8
exclusive.

The first three features would probably be reasonably easy to fit into the existing Ribbit formalism

and implementation. However, properly modeling niches would most likely require a formalization

of the precise details of numeric encodings and of memory address allocation for a given system and

architecture. Ideally, such a formalization could then be integrated into Ribbit to allow for target-specific

layout optimizations; however, it is outside the scope of this thesis.

2.8 Conclusion

In this chapter, we have explored ADTs and their memory representations in a wide variety of contexts.

We used this opportunity to introduce our Ribbit language, which combines high-level, safe abstractions

– namely ADTs and pattern matching – with a memory description language allowing for precise

specification of data layout by the user.

In the next chapter, we will go beyond this surface-level description and fully formalize the Ribbit

language, including its safety properties.
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Chapter 3

The Ribbitulus

This chapter presents a formalization of the ribbit language presented in Chapter 2 dubbed the Ribbitulus.

In Section 3.1, we define a formal syntax which captures both high-level and memory elements of our

language, along with tools to manipulate these syntactic constructs. Section 3.2 introduces various

typing and validity judgments which characterize well-formed ribbit programs. Section 3.3 defines

a two-tiered formal semantics for the ribbit language, with high-level and memory-level evaluation

judgments. Finally, we state and prove the soundness of our semantics and establish an equivalence

between high-level and memory-level behavior of ribbit programs in Section 3.4. Figure 3.34 provides

an index of notations introduced in this chapter.

3.1 Syntax

We first formalize our input language. As in Chapter 2, we present a two-tiered view: high-level types

used for programming and following a common presentation of ADTs, and memory layout specifications

detailing how to represent them in memory. We also detail the grammar of programs we consider for

our formal semantics and compilation algorithms.

3.1.1 High-level language

The high-level syntax of the Ribbitulus consists of Algebraic Data Types and their values, as well as

other objects, all sharing common syntactical constructs. In definitions that apply to different kinds of

objects, for instance to types, values and patterns, we will use the meta-variable θ to denote any such

object.

3.1.1.1 Types

τ ∈ Types ::= t ∈ TyVars (type variable)

| Iℓ (ℓ-bit wide unsigned integer primitive type)

| ⟨τ0, . . . , τn−1⟩ (tuple/product type with n fields)

| K0(τ0)‘|′ . . . ‘|′Kn−1(τn−1) (enum/sum type with n constructors)

∆ : TyVars→ Types (type variable environment)

Figure 3.1: Algebraic Data Types in the high-level language.

Our source language features simple (monomorphic, immutable) algebraic data types whose grammar

is presented in Fig. 3.1. We denote types using τ and type variables with t. We restrict primitive types

to unsigned integers of a given width ℓ (in bits), denoted Iℓ. We denote all tuples with angle brackets,
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for instance ⟨I64, I64⟩ for the type of pairs of 64-bit integers. Constructors of sums are marked with a

capital letter, for instance “Some(t) | None” is an option type. In examples, we use K as a shortcut for

K(⟨⟩). In addition, we use ∆ to denote type name environments, i.e., maps from type variables t to types

τ, which we use to model recursive types.

Example 3.1 (Running example: lists). Consider the type τlist = Nil | Cons(⟨I32, tlist⟩) in the type variable

environment ∆list = {tlist ↦→ τlist}, which formalizes the List ADT from Section 2.4. In the remainder of

this chapter, we will regularly refer to τlist and ∆list from this example to illustrate various notions. △

3.1.1.2 Patterns and Specialization

Patterns, denoted p and defined in Fig. 3.2, describe the “shape” of a value with tuples, constructors,

primitive constants and wildcards denoted _. P denotes a set of patterns.

p ∈ Patterns ::= _ (wildcard)

| c (primitive constant)

| ⟨p0, . . . ,pn−1⟩ (tuple)

| K(p) (constructor)

Figure 3.2: Patterns.

For instance, given the type None | Some(τ), the pattern Some(_) matches values whose head

constructor is Some. We will formally define the semantics of pattern matching in Section 3.3.1.

The specialization operation, denoted τ
/
p and defined in Fig. 3.3, restricts the type τ to values match-

ing the patternpby filtering out constructors that do not appear inp. For instance, (None | Some(τ))
/

Some(_) =
Some(τ).

τ
/

_ = τ Iℓ
/
c = Iℓ ⟨τ0, . . . , τn−1⟩

/
⟨p0, . . . ,pn−1⟩ =

〈
τ0

/
p0, . . . , τn−1

/
pn−1

〉
K0(τ0) | · · · | Kn−1(τn−1)

/
Ki(p) = Ki(τi

/
p)

Figure 3.3: Specialization of a type according to a pattern.

Given two patterns p and p′, their intersection p ⊓ p′ captures values that match both p and p′,
as defined in Fig. 3.4. If p ⊓ p′ is undefined, then p and p′ are said to be incompatible. For instance,

_ ⊓ Some(_) = Some(_), and None is incompatible with Some(_).

_ ⊓ p = p ⊓ _ = p c ⊓ c = c ⟨p0, . . . ,pn−1⟩ ⊓
〈
p′

0
, . . . ,p′n−1

〉
=

〈
p0 ⊓ p′

0
, . . . ,pn−1 ⊓ p′n−1

〉
K(p) ⊓ K(p′) = K(p ⊓ p′)

Figure 3.4: Intersection of two patterns.

3.1.1.3 Paths and Focusing

Paths, denoted π and defined in Fig. 3.5, indicate a position within a type, pattern or valuexpression

(defined later, in Fig. 3.8). Given a path π and θ ∈ Types ∪ ValuExprs ∪ Patterns, we denote focus (π, θ)
the subterm at position π within θ. In addition to field and constructor accesses, which focus within

a product or sum type respectively, a path may contain a bit range, denoted r, as its last operation to

focus on individual bits within integers. More precisely, [o : ℓ] designates ℓ contiguous bits from offset
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o inclusive. For instance, in the type τ = Some(⟨I8, t⟩) | None, the least significant bit of the I8 is located

at π = .Some.0.[0 : 1] and we have focus (π, τ) = I1. Focusing also unfolds type variables as necessary.

The full focusing operation is defined in Fig. 3.6.

r ::= [o : ℓ] (bit range)

π ∈ Paths ::= ε (empty path)

| r (integer bit range extraction)

| .i.π (tuple field access)

| .K.π (constructor access)

Figure 3.5: Paths indicating a position within a high-level term.

focus{
ε , θ −→ θ

.[o : ℓ].π , Iℓ0
−→ focus (π, Iℓ) when o + ℓ < ℓ0

.[o : ℓ].π , c −→ focus (π, c′) where c′ = (c >> o) ∧ (2ℓ − 1)

.i.π , ⟨θ0, . . . , θn−1⟩ −→ focus (π, θi)

.Ki.π , K0(τ0) | · · · | Kn−1(τn−1) −→ focus (π, τi)

.K.π , K(θ) −→ focus (π, θ)
π , t −→ focus (π,∆(t))
π , x.π0 −→ x.(π0.π)
π , _ −→ _

}

Figure 3.6: Focus on the subterm at position π within θ ∈ Types ∪ ValuExprs ∪ Patterns, using the

type variable environment ∆ to dereference type variables. >> denotes the bitwise logical right shift

operation and ∧ the bitwise logical and operation; their combination allows us to extract the desired

range of bits from an integer c.

Similar to specialization by a pattern, τ
/
π defined in Fig. 3.7 restricts τ to values v for which

focus (π, v) is defined. Note that unlike focusing, this does not return a subterm of τ. For instance,

(None | Some(τ))
/

.Some = Some(τ).

τ
/
ε = τ

o + ℓ′ ⩽ ℓ

Iℓ
/

.[o : ℓ′] = Iℓ
⟨τ0, . . . , τn−1⟩

/
.i.π =

〈
τ0, . . . , τi−1, τi

/
π, τi+1, . . . , τn−1

〉
K0(τ0) | · · · | Kn−1(τn−1)

/
.Ki.π = Ki(τi

/
π)

Figure 3.7: Specialization of a type according to a path.
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3.1.1.4 Source programs

ADT valuexpressions

u ∈ ValuExprs ::= x.π (variable subterm accessor)

| c ∈ N (unsigned integer constant)

| ⟨u0, . . . ,un−1⟩ (tuple)

| K(u) (constructor)

v ∈ Values ::= c | ⟨v0, . . . , vn−1⟩ | K(v)
Full expressions

e ∈ Exprs ::= (u : τ as τ̂) (pivot expression)

| let x : τ as τ̂ = e in e′ (value binding)

| f(x) (function application)

| match(x){p0 → e0 . . . pn−1 → en−1} (pattern matching)

Figure 3.8: Source expressions and values.

We formalize input programs as simplified expressions (shown in Fig. 3.8) where every expression is let-

bound, akin to A-normal form (Sabry and Felleisen 1993). Full expressions include function applications

f(x), pattern matching, and let-bindings. We assume that all function definitions have been processed

into an environment denoted Σ binding each function symbol f to a term of the form λx.e. Pattern

matching constructs, as introduced in Section 2.1.1, consist of rules which filter value shapes with

a pattern on their left-hand side and return the expression on their right-hand side. Let-bindings are

annotated with both a type τ and a memory type τ̂, which corresponds to the memory layout specification

part of our language and will be explained in Section 3.1. Finally, pivot expressions, of the form (u : τ as τ̂),
describe a concrete value of type τ whose representation in memory should follow the memory type

τ̂. The type and memory type in pivot expressions may be omitted when they are immediate from

context (for instance, let x : τ as τ̂ = u in e is a syntactic shorthand for let x : τ as τ̂ = (u : τ as τ̂) in e).

Valuexpressions, denoted u, have a syntax reminiscent of types, consisting of tuples and constructors,

along with integer constants c ∈ N. They also introduce accessors of the form x.π, representing the

subterm located at π within the value bound to x. For simplicity, we do not support recursive values

(even though types might be recursive). ADT values are the subset of valuexpressions that do not

contain any accessors.

Both valuexpressions and patterns can be focused on at a specific position, using the same focusing

operation defined in Fig. 3.6 as types. For instance, focus (.K.0,K(x)) = x.0.

Example 3.2 (Full expression with lists). Given a memory type τ̂, the following expression:

let x : τlist as τ̂ = Cons(⟨42, Nil⟩) in match(x)
{

Nil → (0 : I32 as I32)
Cons(⟨_, _⟩) → (x.Cons.0 : I32 as I32)

}
1. builds the value Cons(⟨42, Nil⟩) of type τlist, assigns the memory layout τ̂ to it and binds it to x;

2. matches this value against two patterns;

3. returns a value of type I32 (represented as a standard 32-bit integer in memory), either the constant

0 or the subterm at position .Cons.0 in x.

△

3.1.2 Layout specification with memory types

We now formalize the second part of our language, which consists of user-specified memory layouts in

the form of memory types. As seen in Fig. 3.8, each high-level expression is associated with a memory
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type, denoted τ̂, which specifies its memory layout. As a convention, all memory objects are given a hat.

For instance memory types, denoted τ̂ and defined in Fig. 3.9, describe how values of a given ADT τ
will be represented in memory. At this representation level, we are bit-precise, yet abstract away some

architecture-dependent details such as endianness and machine pointer size and address alignment.

Let us first ignore the “split” alternation, and focus on the rest of the grammar. We extend the codomain

of ∆ so that it now contains both high-level and memory-level type variable bindings – that is, it maps

each type variable to either a high-level type or a memory type.

τ̂ ∈ �Types ::= t ∈ TyVars (type variable)

| _ℓ (ℓ-bit wide word of unspecified contents)

| (c)ℓ (ℓ-bit wide immediate encoding the constant c)

| &ℓ (τ̂) (ℓ-bit wide pointer to a τ̂ value)

| τ̂ ⋉
0⩽i<n

ri : τ̂i (composite word type with n extra values stored in unused bits of τ̂)

| {{τ̂0, . . . , τ̂n−1}} (n-field struct)

| Iℓ (ℓ-bit wide unsigned integer encoding)

| (π as τ̂) (fragment representing the subterm at position π as τ̂)

| split (π̂0, . . . , π̂N−1)
{
ci,0, . . . , ci,N−1 from Pi ⇒ τ̂i

��
0 ⩽ i < n

}
(split with N discriminant locations and n branches of provenances Pi)

∆ : TyVars→ Types ∪�Types (type variable environment)

Figure 3.9: Memory types – the hat on τ̂ distinguishes them from high-level types τ.

Fragments, denoted (π as τ̂), indicate that the subterm at the position π in the high-level type will be

represented by the memory type τ̂. As a special case, the “atomic” integer type Iℓ encodes an integer

value using the standard unsigned integer encoding on ℓ bits – it is equivalent to the fragment (ε as Iℓ).
The contents of a memory word of a fixed width ℓ (in bits) may be left unspecified with _ℓ, set to a

constant c with (c)ℓ, or filled with the address of a value of another memory type τ̂ with the pointer

type &ℓ (τ̂). Structure types are denoted by {{τ̂0, . . . , τ̂n−1}}.

Example 3.3 (Memory type description). Let us consider the high-level types I64 and τtup = ⟨I32, τ, I8⟩
where τ is an arbitrary high-level type associated with some memory type τ̂. We have a straightforward

memory encoding for I64: τ̂int = I64 which encodes a 64-bit integer as “itself”. For τtup, we choose to

represent the tuple with a “struct”, but we can choose the order of the components: first, we store the

I32 (position .0 in the high-level type), then the I8 (position .2), then some 24-bit padding (with zeroes),

then a 64-bit pointer to the τ value represented as τ̂. We group the I8,I32 and I24 padding bits together

and get τ̂tup = {{(.0 as I32), (.2 as I8), (0)24, &64 ((.1 as τ̂))}}. △

Some of the memory types we have seen so far contain bits whose contents are unspecified. This is

the case for types of the form _ℓ, but also for pointers, depending on architecture-specific characteristics.

For instance, if τ̂ corresponds to an ℓ-byte aligned structure, then the ℓ lower bits of the address of

any such structure – that is, of any &ℓ (τ̂) value – are always zero. They can therefore be used to store

extra information – this technique, used in C programs such as parts of the Linux kernel described

in Section 2.1.4, is known as bit-stealing. On some systems, the sign bit of user-space pointers may be

reclaimed in a similar way
1
, as well as bits corresponding to unused virtual address space

2
.

We capture this notion of extra information stored in the unused bits of a word or pointer with

composite words. Given a memory type τ̂ and n pairs (ri, τ̂i) each consisting of a bit range and a memory

type, τ̂⋉0⩽i<n ri : τ̂i denotes the type of values consisting of a “base” value of type τ̂ where, for each i,
the bits in ri are used to store another value of type τ̂i. We may also denote composite words in extenso

with τ̂ ⋉ r0 : τ̂0 ⋉ · · · ⋉ rn−1 : τ̂n−1 (observe the priority of ’:’ on ’⋉’). For instance, as we will see later on,

1
See for instance https://docs.rs/ointers/latest/ointers/.

2
This is done in the NaN-boxing layout from Section 2.7.
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the memory representation of the Nil list constructor according to the simple linked-list memory layout

is _64 ⋉ [0 : 1] : (1)1, which denotes an uninitialized 64-bit word whose lowest bit is set to 1.

The memory type constructs described so far are sufficient to specify the layout of virtually any ADT

combining integer and product types. However, none of these constructs are able to capture the notion

of different layouts for distinct constructors of a sum type. To this end, we introduce the split construct.

Splits model constraints of the form “if the value in memory at a given position is equal to some constant

c, then we use the following memory type”. In split (π̂1, . . . , π̂N) {B}, the π̂j are N discriminant positions

and B is a set of branches of the form ci,1, . . . , ci,N from Pi ⇒ τ̂i where Pi is a set of constant-free patterns

dubbed the provenances of the branch. It indicates that, if the value at each position π̂j in memory is

ci,j, then it represents a value matched by a pattern in the set Pi using the memory type τ̂i. If Pi is a

singleton, we may write its single element without the surrounding curly braces.

Discriminant positions follow the grammar of memory paths defined in Fig. 3.10. Memory path

operations include pointer dereferencing and struct field accesses, as well as operations that manipulate

words on a smaller scale: extraction of ℓ bits from offset o, denoted .[o : ℓ], and bitwise “and” with an

arbitrary (appropriately sized) bit mask m, denoted .m.

m ::= ε | 0.m | 1.m (bit mask)

π̂ ∈ �
Paths ::= ε (empty path)

| .r.π̂ (bit range extraction)

| .m.π̂ (bitwise and)

| . ∗ .π̂ (dereference)

| .i.π̂ (struct field access)

Figure 3.10: Memory paths. Sets of memory paths are denoted Π̂.

Bit masks are sequences of bits written with the most significant bit on the left; we write 0
ℓ

(resp. 1
ℓ
)

for ℓ contiguous zeroes (resp. ones), and m1. . . . .mn for the concatenation of n bit masks. |m| denotes

the total number of bits in m. In practice, we will almost always use bitwise ands to “mask off” a given

bit range from a composite word; to this end, ¬[o : ℓ] denotes the bit mask whose total width is evident

from context, whose bits o inclusive to o+ ℓ exclusive are set to zero and whose other bits are set to one.

For instance, given the memory type τ̂ = _64 ⋉ [0 : 32] : (42)32 ⋉ [32 : 32] : (0)32, the bit mask ¬[0 : 32] is
implied to be 64 bits wide; when applied to τ̂, it designates the type _64 ⋉ [32 : 32] : (0)32 – that is, the

specification applied to the 32 lowest bits in τ̂ has been masked off.

Example 3.4 (Splits in lists). Consider the high-level type τlist in the type variable environment ∆list from

Example 3.1. We model the two memory layouts described in Exhibit 13 with two different memory

types. We first encode the naive (modulo pointer tagging) layout List as the following memory type:

τ̂c = split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 ({{(.Cons.0 as I32), (.Cons.1 as tc)}}) ⋉ [0 : 1] : (0)1

}
As this memory layout is fundamentally recursive, we add a new binding to our type variable environ-

ment:

∆list = {tlist ↦→ τlist, tc ↦→ τ̂c}
Since there are two possible representations depending on the head constructor, we use a “split” type

with two branches. In the first branch, the single pattern Nil indicates that it represents the Nil high-

level value. Its memory type is _64 ⋉ [0 : 1] : (1)1: a 64-bit word whose lowest bit is set to 1. In the

second branch, the provenance Cons(_) encompasses all other τlist values and represents them using

the memory type &64 ({{(.Cons.0 as I32), (.Cons.1 as τ̂c)}}) ⋉ [0 : 1] : (0)1, which is a 64-bit wide pointer

whose lowest bit (address alignment bit) is set to 0, pointing to a struct encoding the first element of the

list as a 32-bit integer, followed by the list of remaining elements, itself represented as τ̂c. Finally, the

split discriminant .[0 : 1] indicates how to tell these two cases apart: by looking at the lowest bit, which
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is 1 in the Nil case and 0 in the Cons case, as enforced in both memory types with a composite word

specification (⋉[0 : 1]).
Another possible choice of representation for the same ADT is the “packed” layout PairList, which

we model with the following memory type:

τ̂p = split (.[0 : 2]) {
0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉[0 : 2] : (2)2

}
Again, we add a new binding to our type variable environment for this recursive memory type:

∆list = {tlist ↦→ τlist, tc ↦→ τ̂c, tp ↦→ τ̂p}
We fit up to two elements per level of indirection, using a three-branch split whose first two branches

represent empty and singleton lists similarly to the previous layout τ̂c, and whose last branch inlines

the two first elements of longer lists into a struct. △
The size of a memory type τ̂, denoted |τ̂| and defined in Fig. 3.11, has a rather straightforward

definition. Note that we only consider memory types whose size can be computed; in practice, this

means that recursive types must always introduce some form of indirection. For instance, in the type

variable environment {t ↦→ τ̂}, this criterion forbids τ̂ = {{_ℓ, t}} but allows τ̂ = {{_ℓ, &ℓ (t)}}.

|t| = |∆(t)| |_ℓ| = ℓ |(c)ℓ| = ℓ |&ℓ (τ̂)| = ℓ

����̂τ ⋉
0⩽i<n

ri : τ̂i

���� = |τ̂|
|{{τ̂0, . . . , τ̂n−1}}| = |τ̂0| + · · · + |τ̂n−1| |Iℓ| = ℓ |(π as τ̂)| = |τ̂|��

split (π̂1, . . . , π̂N)
{
ci,1, . . . , ci,N from Pi ⇒ τ̂i

��
1 ⩽ i ⩽ n

}�� = max

1⩽i⩽n
|τ̂i|

Figure 3.11: Size of a memory type τ̂ in the type variable environment ∆.

We formalize the notion of “memory contents at a given position π̂ in a memory type τ̂” with a

memory focusing operation, denoted
�
focus∆ (π̂, τ̂) and defined in Fig. 3.12. It is similar to focusing on

high-level terms, with the caveat that “focusing below a bitmask” is akin to performing a bitwise “and”,

as explained above.

�
focus∆{
ε , τ̂ −→ τ̂

π̂ , t −→ �
focus∆ (π̂,∆(t))

.1
|τ̂|

.π̂ , τ̂ −→ �
focus∆ (π̂, τ̂)

.(b|τ̂|−1
. . .b0).π̂ , τ̂⋉0⩽i<n[oi : ℓi] : τ̂i −→ �

focus∆

(
π̂, τ̂⋉i∈I[oi : ℓi] : τ̂i

)
where I =

{
i

���� 0 ⩽ i < n

∀j ∈ {0, . . . , ℓi − 1},boi+j = 1

}
. ∗ .π̂ , &ℓ (τ̂) −→ �

focus∆ (π̂, τ̂)
.ri.π̂ , τ̂⋉0⩽i<n ri : τ̂i −→ �

focus∆ (π̂, τ̂i)
.i.π̂ , {{τ̂0, . . . , τ̂n−1}} −→ �

focus∆ (π̂, τ̂i)
}

Figure 3.12: Memory-level focusing operation on types in type variable environment ∆.
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We can now define syntax-based operations on memory types that access parts relevant to the

represented high-level type in a generic way. The shatter operation, defined in Fig. 3.13, gathers all

fragments and primitive types that appear within a memory type, along with their positions.

shatter∆(τ̂) =
{
(π̂ ↦→ π as τ̂′)

��� �
focus∆ (π̂, τ̂) = (π as τ̂′)

}
∪

{
(π̂ ↦→ ε as Iℓ)

��� �
focus∆ (π̂, τ̂) = Iℓ

}
Figure 3.13: Collect all fragments and atoms of a memory type.

Example 3.5 (Focus and shatter on pair lists). Consider the second split branch from τ̂pof Example 3.4,

corresponding to the provenance Cons(⟨_, Nil⟩): let τ̂ = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32). We

can extract all fragments from this memory type with shatter:

shatter∆
list
(τ̂) = {(.[2 : 32] ↦→ .Cons.0 as I32)}

Indeed, we do have
�
focus∆

list
(.[2 : 32], τ̂) = (.Cons.0 as I32). △

This memory focusing operation is sufficient to destruct concrete memory structures such as pointers

and structs, but is undefined (for non-empty paths) on memory type constructs that refer back to a high-

level type – that is, primitive (integer) encodings, fragments and splits. Fragments should be explicitely

expanded as needed, rather than during focusing, so as to prevent non-termination in the presence of

recursive types. As for splits, we handle them with another syntactical operation: specialization.

Memory type specialization, denoted τ̂
/
p and defined in Fig. 3.14, handles splits in a memory

type τ̂ by filtering out all parts of this type that do not match the pattern p, similar to high-level type

specialization. However, since each split may represent arbitrarily deep provenances in different ways,

it returns a list of branches rather than a single specialized type. Each of these branches consists of a

pattern which matches precisely the high-level values it represents, and of a split-free memory type. In

particular, τ̂
/

_ removes all splits from the memory type τ̂ and yields the list of all its fully specialized

versions.

t
/
p = ∆(t)

/
p _ℓ

/
p = {(p, _ℓ)} (c)ℓ

/
p = {(p, (c)ℓ)} Iℓ

/
p = {(p, Iℓ)}

&ℓ (τ̂)
/
p =

{
(p′, &ℓ (τ̂′))

�� (p′, τ̂′) ∈ τ̂/p}(
τ̂ ⋉

0⩽i<n
ri : τ̂i

) /
p =

(p′′, τ̂′⋉ ri : τ̂′i)

������ (p′, τ̂′) ∈ τ̂
/
p

(pi, τ̂
′
i
) ∈ τ̂i

/
p

p′′ = p′ ⊓ p0 ⊓ . . . ⊓ pn−1


{{τ̂0, . . . , τ̂n−1}}

/
p =

{
(p′,

{{
τ̂′

0
, . . . , τ̂′n−1

}}
)
���� (pi, τ̂

′
i
) ∈ τ̂i

/
p

p′ = p0 ⊓ . . . ⊓ pn−1

}
(π as τ̂)

/
p = {(p, (π as τ̂))}

split (π̂0, . . . , π̂N−1)
{
ci,0, . . . , ci,N−1 from Pi ⇒ τ̂i

��
0 ⩽ i < n

} /
p =

⋃ τ̂i
/
p′

������ 0 ⩽ i < n
pi ∈ Pi

p′ = p ⊓ pi


Figure 3.14: Specialization of a memory type according to a pattern in the type variable environment ∆.

Example 3.6 (Specialization of pair lists). Recall the τ̂p memory type with the type variable environment

∆list from Example 3.4. Its specialization for non-empty lists, that is, for the pattern Cons(_), is:

τ̂p
/

Cons(_) = {(
Cons(⟨_, Nil⟩) , _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32),

)(
Cons(⟨_, Cons(_)⟩) , &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉ [0 : 2] : (2)2

)
}
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△

At this point, we have defined the main constituents of the Ribbitulus: high-level and memory

types, high-level patterns, valuexpressions and full expressions. Recall that valuexpressions are values

with the addition of path-based variable accessors. Notably, we defined two crucial operations for both

high-level and memory-level objects: specialization by a pattern which returns one or more restricted

types, and focusing on a path which returns a subterm of the given term. An index of all these concepts

and notations is available in Fig. 3.34 at the end of this chapter.

3.1.3 Memory model

Now that the user-visible part of our language has been defined, we provide an abstraction of memory

contents and a low-level representation of ribbit programs.

3.1.3.1 Memory values and expressions

After having defined memory types and their associated tools, we can define their values and expressions

that represent computations on those values. Memory values, denoted v̂ and defined in Fig. 3.15, feature

the same concrete memory structures as memory types (structs, composite words, etc., see Fig. 3.9), but

differ in how pointers are represented. While a pointer memory type directly contains its pointee

memory type, we use a more detailed memory model for values. A pointer memory value instead

contains an address, denoted a ∈ Addrs, whose contents are accessible through a store ς which maps

addresses to memory values. Memory valuexpressions, denoted û and defined in Fig. 3.15, in the spirit

of high-level valuexpressions, are similar to memory values but retain some constructs that are yet to

be evaluated. There are two such constructs: pointers of the form &ℓ (û) in which the pointee û has

not been stored and assigned an address yet, and pivot expressions of the form (u : τ as τ̂). A pivot

expression (u : τ as τ̂) expresses that the high-level valuexpression u of type τ must be represented

using the memory layout τ̂. Within a memory valuexpression, a pivot expression acts as a placeholder

for a memory value that has not been computed yet.

Memory valuexpressions

û ∈ �
ValuExprs ::= (u : τ as τ̂) (pivot expression)

| _ℓ (uninitialized ℓ-bit wide word)

| (c)ℓ (ℓ-bit wide constant)

| &ℓ (û) (ℓ-bit wide pointer to û)

| &ℓ (a) (ℓ-bit wide address)

| û ⋉
0⩽i<n

ri : ûi (composite word)

| {{û0, . . . , ûn−1}} (n-field struct)

Memory values

v̂ ∈ �
Values ::= _ℓ | (c)ℓ | &ℓ (a) | v̂ ⋉

0⩽i<n
ri : v̂i | {{̂v0, . . . , v̂n−1}}

ς : Addrs→�
Values (memory store)

Figure 3.15: Memory values and valuexpressions.

Similar to the memory focusing operation defined on memory types, we define a memory focusing

operation on memory valuexpressions in Fig. 3.16. It differs from memory focusing on types in that it

depends on a store ς to allow for focusing below addresses.

46



�
focusς (ε, û) = û �

focusς

(
.ri.π̂, û ⋉

0⩽i<n
ri : ûi

)
= �

focusς (π̂, ûi) �
focusς

(
.1
|û|

.π̂, û
)
= �

focusς (π̂, û)

m = b|û|−1
. . . . .b0 I =

{
i

���� 0 ⩽ i < n
∀j ∈ {0, . . . , ℓi − 1},boi+j = 1

}
�
focusς

(
.m.π̂, û⋉

0⩽i<n

[oi : ℓi] : ûi

)
= �

focusς

(
π̂, û⋉

i∈I
[oi : ℓi] : ûi

)
�
focusς (. ∗ .π̂, &ℓ (û)) = �

focusς (π̂, û)
(a ↦→ v̂) ∈ ς�

focusς (. ∗ .π̂, &ℓ (a)) = �
focusς (π̂, v̂)

�
focusς (.i.π̂, {{û0, . . . , ûn−1}}) = �

focusς (π̂, ûi)

Figure 3.16: Memory-level focusing operation on valuexpressions in the store ς.

Example 3.7 (Pair list memory valuexpression). Recall the memory type τ̂p defined for the τlist ADT from

Example 3.4. The following memory valuexpression is a pivot expression that requests the representation

of the high-level value Cons(42, Nil) according to the layout τ̂p:

(Cons(42, Nil) : τlist as τ̂p)

After evaluation (which will be defined in Section 3.3.2), we would obtain the following memory value

(and an empty store):

v̂ = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

This memory value follows the structure of the specified memory type τ̂p, with each fragment instanci-

ated with the supplied concrete value. Focusing on it with the memory path .[2 : 32] yields the encoded

integer value of the first element:�
focus∅ (.[2 : 32], _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32) = (42)32

△

We can now define full memory expressions, which capture all stages from a source program down

to its fully evaluated form, that is, a memory value. To this end, full memory expressions, denoted ê
and defined in Fig. 3.17, include all high-level full expressions, all memory valuexpressions, as well as

hybrid let-expressions that fit neither existing grammar but may arise during evaluation.

ê ∈ �Exprs ::= e ∈ Exprs (high-level expression)

| û ∈ �
ValuExprs (memory valuexpression)

| let x : τ as τ̂ = ê in e (intermediate let-bind form)

Figure 3.17: Full memory expressions.

Example 3.8 (Full memory expression for pair lists). The following memory expression binds x to the

memory value v̂ from Example 3.7 and accesses its integer value encoded on 32 bits using the pivot

expression (x.Cons.0 : I32 as I32).

ê = let x : τlist as τ̂p = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 in (x.Cons.0 : I32 as I32)

△
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3.1.3.2 Memory patterns: shapes of memory contents

p̂ ∈ �Patterns ::= _ℓ (ℓ-bit wide wildcard)

| (c)ℓ (ℓ-bit wide constant)

| &ℓ (̂p) (ℓ-bit wide pointer)

| p̂ ⋉
0⩽i<n

ri : p̂i (composite word)

| {{p̂0, . . . , p̂n−1}} (struct)

Figure 3.18: Memory patterns. Sets of memory patterns are denoted P̂.

Similarly to high-level patterns, we define a notion of memory patterns, denoted p̂ and defined in Fig. 3.18,

which describe the shape of a given memory type of valuexpression. Empty word memory patterns act

as (sized) wildcards, in that _ℓ matches any memory contents of size ℓ. The function shape_of, defined in

Fig. 3.19, returns a memory pattern corresponding to the shape of a memory type or valuexpression; it

mostly follows the syntax of memory constructs. For constructs that refer to parts of a high-level type or

value – that is, primitive types, fragments, splits and pivot expressions – we use an appropriately sized

wildcard. Indeed, we consider such constructs as “black boxes” whose size is known but whose precise

contents are not determined yet.

shape_of∆{
t −→ shape_of∆(∆(t))
_ℓ −→ _ℓ

(c)ℓ −→ (c)ℓ
&ℓ (τ̂) −→ &ℓ

(
shape_of∆(τ̂)

)
τ̂ ⋉

0⩽i<n
ri : τ̂i −→ shape_of∆(τ̂) ⋉

0⩽i<n
ri : p̂i

{{τ̂0, . . . , τ̂n−1}} −→ {{p̂0, . . . , p̂n−1}}
where p̂i = shape_of∆(τ̂i)

τ̂ −→ _|τ̂|

}
(a) Shape of a memory type in the type variable environment ∆

shape_ofς{
_ℓ −→ _ℓ

(c)ℓ −→ (c)ℓ
&ℓ (û) −→ &ℓ

(
shape_ofς(û)

)
&ℓ (a) −→ &ℓ

(
shape_ofς(ς(a))

)
û ⋉

0⩽i<n
ri : ûi −→ shape_ofς(û) ⋉

0⩽i<n
ri : p̂i

{{û0, . . . , ûn−1}} −→ {{p̂0, . . . , p̂n−1}}
where p̂i = shape_ofς(ûi)

(u : τ as τ̂) −→ _|τ̂|

}
(b) Shape of a memory valuexpression in the store ς

Figure 3.19: Memory pattern capturing the shape of a memory type or valuexpression.

Example 3.9 (Shapes of pair lists). The shape of the memory type τ̂p from Example 3.4 is shape_of(τ̂p) =
_64. It fits all possible values: due to the toplevel split in τ̂p, the only available information is the maximal

size of its values – here, all of its values are necessarily 64 bits wide.

On the other hand, the shape of the memory value v̂ from Example 3.7 is more precise since all

elements that were unevaluated in τ̂p are now fully determined:

shape_of(̂v) = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

△

3.2 Typing and validity

To ensure the correctness of a given memory specification, we consider two complementary notions:

intrinsic validity and well-kindedness of a memory type, and agreement between high-level and memory
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types.

3.2.1 Kinding and validity of memory types

The intrisic validity of memory types relies on two judgments. The notion of well-kindedness, denoted

∆ ⊨ τ̂, refers to memory types passing both of these judgments. While it would be possible to define

a single judgment, determining a kind and checking validity at the same time, this approach quickly

leads to cycles in derivation trees, which we would rather avoid. Using two separate judgments lets us

break the recursive cycle and still cover the entire structure of a (possibly recursive) memory type.

VTyVar

t ∈ dom (∆) ∆(t) ∈ �Types

∆ ⊨ t valid

VConstant

0 ⩽ c < 2
ℓ

∆ ⊨ (c)ℓ valid

VWord

∆ ⊨ _ℓ valid

VPrimitive

∆ ⊨ Iℓ valid

VPointer

∆ ⊨ τ̂ valid

∆ ⊨ &ℓ (τ̂) valid

VComposite

∆ ⊨ τ̂ valid ∆ ⊨ τ̂i valid i < j⇒ oi + ℓi ⩽ oj

∆ ⊨ τ̂⋉
0⩽i<n

[oi : ℓi] : τ̂i valid

VStruct

∆ ⊨ τ̂i valid

∆ ⊨ {{τ̂0, . . . , τ̂n−1}} valid

VFragment

∆ ⊨ τ̂ valid

∆ ⊨ (π as τ̂) valid

VSplit

∆ ⊨ τ̂i valid

∃ℓ,∀(p, τ̂) ∈ τ̂i
/

_,
�
focus

(
π̂j, τ̂

)
= (ci,j)ℓ ∀p ∈ Pi,∀p′ ∈ Pj, i ≠ j⇒ p ⊓ p′ is undefined

∆ ⊨ split (π̂1, . . . , π̂N)
{
ci,1, . . . , ci,N from Pi ⇒ τ̂i

��
1 ⩽ i ⩽ n

}
valid

Figure 3.20: Validity judgment on memory types.

The validity judgment, denoted ∆ ⊨ τ̂ valid and defined in Fig. 3.20, explores a memory type by

iterating over its entire inductive structure, stopping at type variables. It ensures that every specified

construct “makes sense” individually. Its main purpose is to check the good formation of memory

type constructs: the VTyVar rule checks that each type variable is bound to a memory type, while the

VComposite rule ensures that composite word bit ranges do not overlap. For splits (VSplit rule), we

check that each branch indeed contains the specified discriminant values at their respective positions

and that branch provenances do not overlap each other. In order to fully check the validity of a recursive

type, we simply iterate over each memory type bound in the type variable environment and check their

validity.

Example 3.10 (Invalid memory type: C unions). This validity judgment already rejects non-trivial user

mistakes. Let us emulate a traditional C union layout for the τzarith type defined in Section 2.2 which

takes up as much space as the largest variant (Large):

τ̂bad = _128 ⋉ [0 : 63] : (.Small as I63) ⋉ [0 : 128] : (.Large as I128)

τ̂bad is not valid: the VComposite rule does not apply because [0 : 63] and [0 : 128] overlap. Since it lacks

distinguishing data to use as a discriminant, this layout is not expressable as a split. △

Example 3.11 (Valid memory type for lists). Recall the following memory type from Example 3.4, in the

type variable environment ∆list:

τ̂c = split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 (τ̂s) ⋉ [0 : 1] : (0)1

}
where

τ̂s = {{(.Cons.0 as I32), (.Cons.1 as tc)}}
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We show that τ̂c is a valid memory type:

VStruct

VFragment

VPrimitive ∆ ⊨ I32 valid

∆ ⊨ (.Cons.0 as I32) valid

VFragment

VTyVar

(tc ↦→ τ̂c) ∈ ∆ τ̂c ∈ �Types

∆ ⊨ tc valid

∆ ⊨ (.Cons.1 as tc) valid

∆ ⊨ τ̂s valid

VSplit

VComposite

VWord

∆ ⊨ _64 valid

VConstant

0 ⩽ 1 < 2

∆ ⊨ (1)1 valid

∆ ⊨ _64 ⋉ [0 : 1] : (1)1 valid

VPointer

∆ ⊨ τ̂s valid

∆ ⊨ &ℓ (τ̂s) valid

VConstant

0 ⩽ 0 < 2

∆ ⊨ (0)1 valid

∆ ⊨ &64 (τ̂s) ⋉ [0 : 1] : (0)1 valid

VComposite�
focus (.[0 : 1], _64 ⋉ [0 : 1] : (1)1) = (1)1 �

focus (.[0 : 1], &64 (τ̂s) ⋉ [0 : 1] : (0)1) = (0)1
Nil ⊓ Cons(_) is undefined

∆ ⊨ τ̂c valid

△
The kinding judgment, denoted ∆ ⊨ τ̂ : κ̂ and defined in Fig. 3.21, checks that parts of a memory

type “make sense” in relation with each other. For instance, KComposite ensures that composite word

bit ranges indeed fit within unused bits of the base memory type and do not overlap each other. To

this end, it assigns a kind, denoted κ̂, to each memory type. A kind is either Block, which represents

structs and can never appear inside a composite word, or Word(m) representing words of the same

width as m, where m is a bit mask in which zeroes indicate bits that are necessarily free (not used for

storing data by the memory type). The kinding judgment, unlike the validity judgment, follows type

variables but does not recursively explore pointers. Indeed, only the address alignment (as opposed to

the full kind) of a memory type is needed to determine the kind of a pointer to this type. In the actual

judgment, we only informally state this address alignment criterion: since the actual set of available

bits in pointers is highly architecture/OS-dependent, we leave this information out of the validity and

kinding judgments. For now, this means that the validity of such optimizations is left up to the user; a

more satisfactory solution would be to develop architecture/OS-specific extensions for ribbit to check it

automatically.

κ̂ ::= Word(m) | Block

KTyVar

∆ ⊨ ∆(t) : κ̂

∆ ⊨ t : κ̂

KConstant

∆ ⊨ (c)ℓ : Word(1ℓ)
KWord

∆ ⊨ _ℓ : Word(0ℓ)
KPrimitive

∆ ⊨ Iℓ : Word(1ℓ)

KPointer

m sets the address bits of any ℓ-bit wide τ̂ pointer

∆ ⊨ &ℓ (τ̂) : Word(m)

SubKinding

∆ ⊨ τ̂ : Word(m.0.m′)
∆ ⊨ τ̂ : Word(m.1.m′)

KComposite

∆ ⊨ τ̂ : Word(m) ∆ ⊨ τ̂i : Word(mi) m′i =

|τ̂| bits

0 . . . 0 mi

ℓi bits

0 . . . 0

oi bits

∆ ⊨ τ̂⋉
0⩽i<n

[oi : ℓi] : τ̂i : Word(m ∨m′
0
∨ · · · ∨m′n−1

)

KStruct

∆ ⊨ {{τ̂0, . . . , τ̂n−1}} : Block

KFragment

∆ ⊨ τ̂ : κ̂

∆ ⊨ (π as τ̂) : κ̂

KSplit

∆ ⊨ τ̂i : κ̂

∆ ⊨ split (π̂1, . . . , π̂N)
{
ci,1, . . . , ci,N from Pi ⇒ τ̂i

��
1 ⩽ i ⩽ n

}
: κ̂

Figure 3.21: Memory kinds κ̂ and kinding judgment ∆ ⊨ τ̂ : κ̂, used on valid memory types.
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Most of the rules are fairly immediate by direct induction. The KComposite proceeds by checking

non-overlapping of masks. The SubKinding rule lets us relax a Word kind that has been assigned to a

memory type, by “forgetting” that a given bit is unused. This is useful to unify the kinds of all branches

in the KSplit rule.

Example 3.12 (Well-kinded memory type for lists). Recall the following memory type from Example 3.4,

in the type variable environment ∆list:

τ̂c = split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 (τ̂s) ⋉ [0 : 1] : (0)1

}
where

τ̂s = {{(.Cons.0 as I32), (.Cons.1 as tc)}}
We have |τ̂s| = |I32| + |τ̂c| = 32+ 64 = 96. Assuming that the address alignment of a struct is equal to its

size in bytes, we can assert that the two lowest bits of any pointer to a 96-bits-wide struct are free to use.

Using the KPointer rule, we can therefore assign the following kind to &64 (τ̂s):

∆ ⊨ &64 (τ̂s) : Word(162

00)

We can now show that τ̂c is of kind Word(162
01). Note how the last KComposite rule on the right marks

the last bit in the kind as used, manifesting the bit-stealing.

KSplit

SubKinding

KComposite

KWord

∆ ⊨ _64 : Word(064)

KConstant

∆ ⊨ (1)1 : Word(1)
∆ ⊨ _64 ⋉ [0 : 1] : (1)1 : Word(063

1)
∆ ⊨ _64 ⋉ [0 : 1] : (1)1 : Word(162

01)
∆ ⊨ &64 (τ̂s) : Word(162

00)

KConstant

∆ ⊨ (0)1 : Word(1)
∆ ⊨ &64 (τ̂s) ⋉ [0 : 1] : (0)1 : Word(162

01)
KComposite

∆ ⊨ τ̂c : Word(162

01)

△

We can now define well-formed type variable environments, in which every bound type is valid and

well-kinded.

Definition 3.1 (well-formed type variable environments). A type variable environment ∆ is well-formed,

and we write ⊨ ∆, if and only if every memory type is valid and well-kinded and all type variables that

appear in high-level (resp. memory) types are bound to a high-level (resp. memory) type, i.e.:

• ∀(t ↦→ τ) ∈ ∆,∀t′ ∈ TyVars,∀π ∈ Paths such that focus (π, τ) = t′,∃τ′ ∈ Types, (t′ ↦→ τ′) ∈ ∆

• ∀(t ↦→ τ̂) ∈ ∆,∆ ⊨ τ̂ valid ∧ ∃κ̂,∆ ⊨ τ̂ : κ̂

3.2.2 Agreement between ADTs and memory layouts

Now that we have defined validity criteria for memory types on their own, we can state the relationship

between ADTs and their memory layout specifications – that is, whether a given memory type properly

represents, or agrees with, a given high-level type. This agreement relation is based on four criteria,

which we formally state in Definition 3.2. Coverage ensures that every piece of data from the high-

level type appears within the memory type, as an arbitrary combination of fragments and primitive

encodings. Note that it is acceptable to split a subterm into any number of pieces and scatter them

arbitrarily across the memory type, as long as every piece appears somewhere within the memory

type. Distinguishability ensures that the precise provenance of any given high-level value is always

identifiable from its memory representation, by inspecting a combination of split discriminant locations.

Again, any configuration of split locations, values and branch provenances is acceptable, as long as

every provenance is distinguishable from incompatible other provenances. The two remaining criteria

(fragment and branch coherence) simply propagate coverage and distinguishability through the entire

inductive structures of both high-level and memory types.
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Definition 3.2 (Agreement). Let τ a high-level type and τ̂ a memory type considered in a type variable

environment ∆. We say that τ̂ represents τ, or agrees with τ, and we write agree∆(τ, τ̂), if either τ and τ̂
are identical primitive types (i.e., τ = τ̂ = Iℓ) or all of the following conditions hold:

All fragments bind subterms to their valid representation. (Fragment Coherence)

For all (π̂ ↦→ π as τ̂′) ∈ shatter∆(τ̂), τ′ = focus∆ (π, τ) is defined and τ̂′ agrees with τ′.

Split branches are valid representations of high-level subtypes. (Branch Coherence)

For all π̂ such that
�
focus∆ (π̂, τ̂) = split (. . . )

{
. . . from Pi ⇒ τ̂i

��
0 ⩽ i < n

}
, for each branch

i ∈ {0, . . . ,n − 1} and each p ∈ Pi such that ∆ ⊢ p : τ, τ̂i agrees with τ
/
p. Furthermore, for every

pattern p of type τ, there exists a branch i ∈ {0, . . . ,n − 1} and p′ ∈ Pi such that p ⊓ p′ is defined.

All data from the high-level type is represented within the memory type. (Coverage)

For every high-level path π that leads to a single bit in τ (i.e., focus∆ (π, τ) = I1), τ̂ covers π: every

memory type τ̂′ ∈ τ̂
/
π contains a fragment (or primitive type) for a position π0 prefix of π. More

precisely, there exist high-level and memory paths π0 and π̂0 such that
�
focus∆ (π̂0, τ̂′) = (π0 as τ̂′′)

and either π = π0.π′ or π = π′.[o : ℓ], π0 = π′.[o0 : ℓ0] and o0 ⩽ o ⩽ o + ℓ ⩽ o0 + ℓ0 (or π = ε, τ = Iℓ

and
�
focus∆ (π̂0, τ̂′) = Iℓ).

Memory types provide a way to tell incompatible patterns apart. (Distinguishability)

For every high-level pathπ that leads to a sum in τ (i.e., focus∆ (π, τ) = K0(τ0) | · · · | Kn−1(τn−1)), for

every pair of distinct constructors in this sum (Ki,Kj) (with 0 ⩽ i ≠ j < n), τ̂ distinguishes betweenKi

andKj. More precisely, τ̂
/
π.Ki ≠ ∅, τ̂

/
π.Kj ≠ ∅ and for any (pi, τ̂i) ∈ τ̂

/
π.Ki and (pj, τ̂j) ∈ τ̂

/
π.Kj,

there exists a memory path π̂ such that either
�
focus∆ (π̂, τ̂i) = �

focus∆

(
π̂, τ̂j

)
= (π0 as τ̂′)with π0 a

prefix of π, or
�
focus∆ (π̂, τ̂i) = (ci)ℓ, �

focus∆

(
π̂, τ̂j

)
= (cj)ℓ and ci ≠ cj.

As a first example, we show that our memory layout specification for lists agrees with their ADT.

Example 3.13 (Agreement for lists). Recall ∆list, τlist and τ̂c from our running example:

∆list = {tlist ↦→ τlist, tc ↦→ τ̂c, tp ↦→ τ̂p} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂c = split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 ({{(.Cons.0 as I32), (.Cons.1 as tc)}}) ⋉ [0 : 1] : (0)1

}
To establish agreement between τlist and τ̂c, we first show that both branches agree with their specialized

ADT counterparts. As τlist is a recursive type, we admit that the type variables forming the recursive

node agree with each other, i.e., agree∆
list

(tlist, tc).

• Nil branch: we show that agree∆
list

(Nil, _64 ⋉ [0 : 1] : (1)1). All criteria are immediate, since there

are no fragments or splits in this memory type and the high-level type Nil contains no primitive

data and only has one constructor.

• Cons(_) branch: let τ̂Cons = &64 ({{(.Cons.0 as I32), (.Cons.1 as tc)}}) ⋉ [0 : 1] : (0)1. We show that

agree∆
list

(Cons(⟨I32, tlist⟩), τ̂Cons).

Fragment coherence: agree(I32, I32) is immediate from the base case of Definition 3.2. The second

fragment corresponds to the recursive node: agree∆
list

(tlist, tc).
Branch coherence: immediate since there are no splits in this memory type.

Coverage: the primitive data in this high-level type consist of the I32 subterm at position .Cons.0,

which is covered by the fragment (.Cons.0 as I32), and of all primitive contents of the tlist

subterm at position .Cons.1, which is covered by the fragment (.Cons.1 as tc).
Distinguishability: immediate since there are no sums with more than one constructor in this

type, except below the recursive node.

We can now show that we have agree∆
list

(τlist, τ̂c).
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Fragment coherence: immediate since there are no fragments or primitive types outside of the toplevel

split (i.e., shatter∆
list
(τ̂c) = ∅).

Branch coherence: as shown above, we have agree∆
list

(Nil, _64⋉[0 : 1] : (1)1)and agree∆
list

(Cons(⟨I32, tlist⟩), τ̂Cons).

Coverage: the coverage criterion for the full type follows from coverage for the Cons(_) branch.

Distinguishability: τ̂c distinguishes between Nil and Cons, thanks to its split discriminant at position

.[0 : 1]. Indeed, we have
�
focus (.[0 : 1], _64 ⋉ [0 : 1] : (1)1) = (1)1,

�
focus (.[0 : 1], τ̂Cons) = (0)1 and

1 ≠ 0.

△

The rest of this section is dedicated to counter-examples, with memory types that disagree with τlist.

Example 3.14 (Unit representation). Consider a primitive high-level type Iℓ and the constant memory

type (42)ℓ. This memory type does not meet the coverage criterion for Iℓ, because no fragment nor

primitive type appears in it. Indeed, this type represents all high-level values as the constant 42 on ℓ
bits. Therefore, the memory type

split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 ({{(.Cons.0 as (42)ℓ), (.Cons.1 as t)}}) ⋉ [0 : 1] : (0)1

}
does not meet the fragment coherence criterion for τlist, because it does not encode its primitive subtype

focus (.Cons.0, τlist) = I32. △

Example 3.15 (Non-coverage: tags without payload). A simple tag without payloads, similar to C

enums, is not sufficient to encode arbitrary sum types with non-unit variants, as it does not meet the

coverage criterion: split (ε)
{

0 from Nil ⇒ (0)32

1 from Cons(_) ⇒ (1)32

}
does not cover τlist since it does not represent

its subterms at positions .Cons.0 and .Cons.1. △

Example 3.16 (Non-distinguishability). Let τ̂ = {{(.Cons.0 as I32), &32 ((.Cons.1 as t))}} with the type

variable t mapped to τ̂. It includes the Cons constructor’s subterms in distinct struct fields but provides

no way to distinguish Nil from Cons values. τ̂ does not meet the distinguishability criterion for τlist: we

have τ̂
/

Nil = {(Nil, τ̂)} and τ̂
/

Cons(_) = {(Cons(_), τ̂)}; it lacks a discriminant that differs between Nil

and Cons(_). △

3.2.3 Typing for high-level objects

3.2.3.1 High-level typing judgment

We now define a typing judgment for high-level valuexpressions and patterns, which are accordingly

typed by high-level types (ADTs). Even though this judgment only deals with high-level values and

types, its environments include both high-level and memory-level bindings, so as to ease the definition

of a typing judgment for full expressions which we cover in Section 3.2.3.2. In the following definitions,

the meta-syntactical variable θ denotes a high-level object which is either a pattern or a valuexpression,

i.e., θ ∈ ValuExprs ∪ Patterns. The type variable environment ∆ : TyVars → Types ∪ �Types maps each

defined type variable to either a high-level or memory type, although we will only use bindings to

high-level types here. Similarly, the typing environment Γ : Vars → Types × �Types maps each defined

variable to a pair of a high-level and a memory type, although we will only consider the former here.

The actual high-level typing judgment is denoted ∆, Γ ⊢ θ : τ and defined in Fig. 3.22. For patterns,

which by definition never contain variables, we may omit the typing environment and write ∆ ⊢ p : τ.
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HLTTypeVar

(t ↦→ τ) ∈ ∆ ∆, Γ ⊢ θ : τ

∆, Γ ⊢ θ : t

HLTVariable

(x : τ as τ̂) ∈ Γ
∆, Γ ⊢ x.π : focus (π, τ)

HLTWildcard

∆, Γ ⊢ _ : τ

HLTConstant

0 ⩽ c < 2
ℓ

∆, Γ ⊢ c : Iℓ

HLTTuple

∆, Γ ⊢ θi : τi

∆, Γ ⊢ ⟨θ0, . . . , θn−1⟩ : ⟨τ0, . . . , τn−1⟩

HLTConstr

∃i ∈ {0, . . . ,n − 1},K = Ki ∆, Γ ⊢ θ : τi

∆, Γ ⊢ K(θ) : K0(τ0) | . . . | Kn−1(τn−1)

Figure 3.22: Typing judgment for patterns and valuexpressions (θ ∈ ValuExprs ∪ Patterns).

Example 3.17 (High-level typing for lists). Recall the high-level type τlist in the type variable environment

∆list from Example 3.1: τlist = Nil | Cons(⟨I32, tlist⟩). Consider the high-level value Cons(⟨42, Nil⟩). We

show that this value is of type τlist, using the HLConstr, HLTuple, HLTTypeVar and HLConstant typing

rules.

Now consider the valuexpression x.Cons.0 in the following typing environment: Γ = {x : τlist as τ̂c},
where τ̂c is one of the two memory types defined in Example 3.4 (here, it does not matter which layout

we pick as long as it agrees with τlist). We type the valuexpression x.Cons.0 by applying the HLTVariable

rule; since focus (.Cons.0, τlist) = tlist, we have ∆list, Γ ⊢ x.Cons.0 : tlist. △

Definition 3.3 (well-typed value environments). Let ∆ a well-formed type variable environment and Γ
a well-formed typing environment in ∆. A value binding environment σ is well-typed in ∆ and Γ , and

we write ∆, Γ ⊢ σ, if and only if dom (σ) = dom (Γ ) and for each (x : τ as τ̂) ∈ Γ , we have ∆, Γ ⊢ σ(x) : τ.

We finally state some early results on high-level typing, which will be used for proving type sound-

ness in Section 3.4. In the following, we assume ∆, Γ , σ, τ ∈ Types and θ ∈ ValuExprs ∪ Patterns such

that:

⊨ ∆ ∆ ⊨ Γ ∆, Γ ⊨ σ ∆, Γ ⊢ θ : τ

Lemma 3.1 (Focusing traverses high-level typing). For any path π, if focus (π, θ) is defined, then focus (π, τ)
is defined and we have ∆, Γ ⊢ focus (π, θ) : focus (π, τ).

Proof. Immediate by induction. □

Lemma 3.2 (Accessors and their bound values have the same high-level type). Let x ∈ dom (σ) and

π ∈ Paths. We have ∆, Γ ⊢ x.π : τ if and only if focus (π,σ(x)) is defined and ∆, Γ ⊢ focus (π,σ(x)) : τ.

Proof. Immediate. □

3.2.3.2 Typing for source programs

We can now type expressions, which represent full-fledged ribbit programs. By design, each value

introduced in our language is associated with both an ADT and its memory layout. Our typing

judgment for full expressions therefore checks an expression e against both a high-level type τ and a

memory type τ̂, and we write ∆, Γ ⊢ e : τ as τ̂. Its rules are defined in Fig. 3.23. Note that in order to

type function calls, Γ now also contains bindings of the form (f : τ as τ̂→ τ′ as τ̂′) which indicate that

the function bound to f ∈ FunVars takes an argument of type τ represented as τ̂, and returns a value of

type τ′ represented as τ̂′.
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THLTyVar

(t ↦→ τ) ∈ ∆ ∆, Γ ⊢ e : τ as τ̂

∆, Γ ⊢ e : t as τ̂

TMTyVar

(t ↦→ τ̂) ∈ ∆ ∆, Γ ⊢ e : τ as τ̂

∆, Γ ⊢ e : τ as t

TPivot

∆ ⊨ τ̂ agree∆(τ, τ̂) ∆, Γ ⊢ u : τ

∆, Γ ⊢ (u : τ as τ̂) : τ as τ̂

TLetBind

∆, Γ ⊢ e : τ as τ̂ ∆, Γ ∪ {(x : τ as τ̂)} ⊢ e′ : τ′ as τ̂′

∆, Γ ⊢ let x : τ as τ̂ = e in e′ : τ′ as τ̂′

TFunCall

(f : τ as τ̂→ τ′ as τ̂′) ∈ Γ (x : τ as τ̂) ∈ Γ
∆, Γ ⊢ f(x) : τ′ as τ̂′

TMatch

(x : τ as τ̂) ∈ Γ ∆ ⊢ pi : τ ∆, Γ ⊢ ei : τ′ as τ̂′ {p0, . . . ,pn−1} is exhaustive for τ

∆, Γ ⊢ match(x){p0 → e0 . . . pn−1 → en−1} : τ′ as τ̂′

Figure 3.23: Typing judgment for full expressions.

Pivot expressions are precisely where memory types are introduced in an expression. The TPivot

rule ensures that the high-level and memory types of every pivot agree with each other, and that all

memory types are well-kinded. The following immediate result propagates this property to every

well-typed expression:

Lemma 3.3. If ∆, Γ ⊢ e : τ as τ̂, then ∆ ⊨ τ̂ and agree∆(τ, τ̂).

Proof. Immediate by induction on e. □

The TMatch rule types a pattern matching expression by checking that the left-hand side pattern and

right-hand side expression of each branch are well-typed. It also checks pattern matching exhaustivity:

if the patterns are all of type τ, then every possible value of type τ must be matched by at least one of

these patterns, using the pattern matching evaluation judgment defined in Fig. 3.26. This is similar to,

for instance, the OCaml compiler, in which pattern matching exhaustivity is checked during typing and

the pattern is completed if necessary. The actual procedure for checking exhaustivity in our TMatch

rule is left unspecified as there is ample literature on the topic (Maranget 2007; Liu 2016).

Example 3.18 (Typing a program on lists). Recall the type variable environment ∆list, the high-level type

τlist and the memory type τ̂p from Examples 3.1 and 3.4. Consider the following expression:

e = let x : τlist as τ̂p = Cons(⟨42, Nil⟩) in match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
It is immediate from the definitions of validity, kinding and agreement that the memory type I32 is valid

and well-kinded, and that it agrees with its high-level counterpart I32. Following the same reasoning as

Examples 3.11 and 3.12, we show that τ̂p is valid and well-kinded. We have shown that τlist and τ̂p agree

in Example 3.13. Using HLTTypeVar, HLTConstr and HLTWildcard rules, we show that both patterns

Nil and Cons(_) are of type tlist. Using the results from Example 3.17 and with Γ = {(x : tlist as τ̂p)}, we
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can now type e:

TPivot

∆list ⊨ τ̂p agree∆
list

(τlist, τ̂p) ∆list,∅ ⊢ Cons(⟨42, Nil⟩) : τlist

∆list,∅ ⊢ (Cons(⟨42, Nil⟩) : τlist as τ̂p) : tlist as τ̂p

TPivot

∆list ⊨ I32 agree∆
list

(I32, I32) ∆list, Γ ⊢ x.Cons.0 : I32

∆list, Γ ⊢ (x.Cons.0 : I32 as I32) : I32 as I32

TPivot

∆list ⊨ I32 agree∆
list

(I32, I32)
HLTConstant

0 ⩽ 0 < 2
32

∆list, Γ ⊢ 0 : I32

∆list, Γ ⊢ (0 : I32 as I32) : I32 as I32

TMatch

(x : tlist as τ̂p) ∈ Γ
∆list ⊢ Nil : tlist ∆list ⊢ Cons(_) : tlist ∆list, Γ ⊢ (0 : I32 as I32) : I32 as I32

∆list, Γ ⊢ (x.Cons.0 : I32 as I32) : I32 as I32 Nil ▷ Nil ∧ ∀v, Cons(_) ▷ Cons(v)

∆list, Γ ⊢ match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
: I32 as I32

TLetBind

∆list,∅ ⊢ (Cons(⟨42, Nil⟩) : τlist as τ̂p) : tlist as τ̂p

Γ = {(x : tlist as τ̂p)} ∆list, Γ ⊢ match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
: I32 as I32

∆list,∅ ⊢ e : I32 as I32

△

In order to define an evaluation judgment for expressions (in Section 3.3.2), we need a notion of

function environments, usually denoted Σ, which bind function symbols to lambda-expressions of the

form λx.e. Such an environment is well-typed iff. each bound expression is well-typed:

Definition 3.4 (well-typed function environments). Let ∆ a well-formed type variable environment and

Γ a well-formed typing environment in ∆. A function binding environment Σ is well-typed in ∆ and Γ ,

and we write ∆, Γ ⊢ Σ, if and only if dom (Σ) = dom (Γ ) and for each (f : τ as τ̂ → τ′ as τ̂′) ∈ Γ with

Σ(f) = λx.e, we have ∆, Γ ∪ {x : τ as τ̂} ⊢ e : τ′ as τ̂′.

3.2.4 Typing for memory-level objects

The last typing judgment we need to define in order to define a semantics for our language and prove

its soundness is memory typing. This judgment, denoted ∆, Γ , ς ⊢ ê : τ̂ and defined in Fig. 3.24, assigns a

memory type τ̂ to a memory expression ê in the context of a memory store ς.

As defined in Fig. 3.17, a memory expression ê ∈ �Exprs is either a memory valuexpression û ∈�
ValuExprs (whose grammar also covers memory values and patterns), a high-level expression e ∈ Exprs,

or an intermediate let-binding form let x : τ as τ̂ = ê in ewith ê ∉ Exprs. The two latter forms – high-level

expressions and let-bindings – are handled by MemTHLExp and MemTLet respectively, which rely on

the previously defined typing judgment for high-level expressions.

Memory valuexpressions require a store ς mapping addresses to memory values, in addition to the

usual type variable and typing environments. We use it in the MemTAddress rule, to type pointer

memory values (of the form &ℓ (a)) which, unlike pointer expressions (of the form &ℓ (û)), do not

embed the memory value they point to and instead only contain its address. Most of the other rules

are straightforward, defined by induction on τ̂. Note that we ignore the parts of memory types that

are related to the high-level type they represent: for instance, MemTSplit assigns a split type to any

expression which is accepted by the right-hand side of a branch, regardless of whether it actually

represents a value of the adequate provenance. Additional constraints on splits and fragments are

enforced by agreement criteria (Section 3.2.2) and high-level typing judgments (Section 3.2.3).
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MemTHLExp

∆, Γ ⊢ e : τ as τ̂

∆, Γ ,ς ⊢ e : τ̂

MemTLet

∆,Γ , ς ⊢ ê : τ̂ agree(τ, τ̂) ∆,Γ ∪ {(x : τ as τ̂)} ⊢ e : (τ′ as τ̂′)
∆,Γ , ς ⊢ let x : τ as τ̂ = ê in e : τ̂′

MemTTypeVar

(t ↦→ τ̂) ∈ ∆ ∆, Γ , ς ⊢ ê : τ̂

∆, Γ , ς ⊢ ê : t

MemTPrimitive

∆, Γ , ς ⊢ (c)ℓ : Iℓ

MemTFission

o0 = 0 on−1 + ℓn−1 = ℓ oi = oi−1 + ℓi−1 ∆, Γ , ς ⊢ ûi : Iℓi

∆, Γ , ς ⊢ _ℓ⋉
0⩽i<n

[oi : ℓi] : ûi : Iℓ

MemTWord

∆, Γ , ς ⊢ _ℓ : _ℓ

MemTConstant

∆, Γ , ς ⊢ (c)ℓ : (c)ℓ

MemTAddress

a ∉ dom (ς) ∆, Γ ,ς ⊢ v̂ : τ̂

∆, Γ ,ς ∪ {a ↦→ v̂} ⊢ &ℓ (a) : &ℓ (τ̂)

MemTPointer

∆, Γ , ς ⊢ û : τ̂

∆, Γ , ς ⊢ &ℓ (û) : &ℓ (τ̂)

MemTComposite

∆, Γ , ς ⊢ û : τ̂ ∆, Γ , ς ⊢ ûi : τ̂i

∆, Γ , ς ⊢ û⋉
0⩽i<n

ri : ûi : τ̂⋉
0⩽i<n

ri : τ̂i

MemTStruct

∆, Γ , ς ⊢ ûi : τ̂i

∆, Γ , ς ⊢ {{û0, . . . , ûn−1}} : {{τ̂0, . . . , τ̂n−1}}

MemTFragment

∆, Γ , ς ⊢ ê : τ̂

∆, Γ , ς ⊢ ê : (π as τ̂)

MemTSplit

τ̂ = split (. . . ) ∃(p, τ̂′) ∈ τ̂
/

_ ∆, Γ , ς ⊢ ê : τ̂′

∆, Γ , ς ⊢ ê : τ̂

Figure 3.24: Memory-level typing judgment. Environments appearing in gray in a rule are irrelevant to

its application.

Example 3.19 (Typing list memory values and expressions). Recall the memory type τ̂p and the memory

value v̂ from Example 3.7:

τ̂p = split (.[0 : 2]) {
0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉[0 : 2] : (2)2

}

v̂ = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

We show that v̂ is of type τ̂p:

MemTSplit

MemTComposite

MemTWord

∆list ⊢ _64 : _64

MemTConstant

∆list ⊢ (1)2 : (1)2

MemTPrimitive

∆list ⊢ (42)32 : I32

∆list ⊢ (42)32 : (.Cons.0 as I32)
MemTFragment

∆list ⊢ v̂ : _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
(Cons(⟨_, Nil⟩), _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)) ∈ τ̂p

/
_

∆list ⊢ v̂ : τ̂p

Using results from Example 3.18 and the MemTLet rule, we can then show that the memory expres-

sion from Example 3.8 ê = let x : τlist as τ̂p = v̂ in (x.Cons.0 : I32 as I32) is of type I32. △
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The MemTFission rule is slightly unusual, in that it assigns a primitive type Iℓ to a composite memory

value. Its purpose is to allow the interpretation of “mangled” integer values – that is, words which

are entirely filled with integers on disjoint bit ranges – as integers, even though their shape (composite

word) does not immediately match that of a primitive type.

Example 3.20 (Mangled integer value). Consider the high-level primitive type of 64-bit integers I64,

together with the following memory type which splits it into two 32-bit pieces:

_64 ⋉ [0 : 32] : (.[0 : 32] as I32) ⋉ [32 : 32] : (.[32 : 32] as I32)

Using this layout, the high-level value 0x111100002222 is represented as the following memory value:

_64 ⋉ [0 : 32] : (0x2222)32 ⋉ [32 : 32] : (0x1111)32

The TFission typing rule lets us assign the type I64 to this value to reinterpret it as the direct 64-bit

integer encoding (0x111100002222)64. △

In practice, this rule lets us capture memory layouts that split primitive values into multiple pieces

scattered across the memory type, such as the RISC-V layout presented in Section 2.5.

Now that we have defined well-typed memory values and expressions, we can extend this judgment

to their environments. We define well-formed typing environments which, similar to well-formed type

variable environments, apply agreement criteria to every bound type pair.

Definition 3.5 (well-formed typing environments). Let ∆ a well-formed type variable environment. A

typing environment Γ is well-formed in ∆, and we write ∆ ⊨ Γ , if and only if:

• for each (x : τ as τ̂) ∈ Γ , we have ∆ ⊨ τ̂ and agree∆(τ, τ̂);

• for each (f : τ as τ̂→ τ′ as τ̂′) ∈ Γ , we have ∆ ⊨ τ̂, agree∆(τ, τ̂), ∆ ⊨ τ̂′ and agree∆(τ′, τ̂′).

Similar to high-level variable binding environments, a memory value binding environment σ̂ : Vars→�
Values is well-typed iff. every bound value is well-typed.

Definition 3.6 (well-typed memory environments). Let ∆ a well-formed type declaration environment,

Γ a well-formed typing environment in ∆ and ς a memory store. A memory value binding environment

σ̂ is well-typed in ∆, Γ and ς, and we write ∆, Γ , ς ⊢ σ̂, if and only if dom (σ̂) = dom (Γ ) and for each

(x : τ as τ̂) ∈ Γ , we have ∆, Γ , ς ⊢ σ̂(x) : τ̂.

We finally state an immediate result on memory typing which will be used for proving type soundness

in Section 3.4.

Lemma 3.4 (memory focusing traverses memory typing). Let ∆ a well-formed type declaration environment,

Γ a well-formed typing environment in ∆ and ς a memory store. Let v̂ ∈ �
Values and τ̂ ∈ �Types such that

∆, Γ , ς ⊢ v̂ : τ̂. For all π̂ ∈ �
Paths such that �

focus (π̂, τ̂) is defined, we have ∆, Γ , ς ⊢ �
focusς (π̂, v̂) :

�
focus (π̂, τ̂).

Proof. Immediate by induction. □

3.3 Semantics

Now that syntactical constructs and their typing and validity judgments have been formalized, we are

finally able to define a two-tiered operational semantics for our language that takes both high-level and

memory constructs into account.
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3.3.1 High-level expression evaluation

The small-step evaluation judgment for high-level programs, defined in Fig. 3.25 and denoted

Σ ⊢ Γ ,σ, e ↩→ Γ ′,σ′, e′, operates on triples consisting of a typing environment Γ , a binding environment

σ mapping variables to valuexpressions, and an expression e ∈ Exprs. It is deterministic and its normal

forms are pivot expressions of the form (u : τ as τ̂). The function environment Σ maps function names

f ∈ FunVars to lambda-expressions of the form λx.e. We assume that variables have been renamed in e
so that they are bound at most once, regardless of scope.

HLEFunCall

(x : τ as τ̂) ∈ Γ (f : τ as τ̂→ τ′ as τ̂′) ∈ Γ (x ↦→ u) ∈ σ (f ↦→ λx′.e) ∈ Σ
Σ ⊢ Γ ,σ, f(x) ↩→ Γ ∪ {x′ : τ as τ̂},σ ∪ {x′ ↦→ u}, e

HLELetStep

Σ ⊢Γ ,σ, e ↩→ Γ ′,σ′, e′

Σ ⊢Γ ,σ, let x : τ as τ̂ = e in e0 ↩→ Γ ′,σ′, let x : τ as τ̂ = e′ in e0

HLELetBind

Σ ⊢Γ ,σ, let x : τ as τ̂ = (u : τ′ as τ̂′) in e ↩→ Γ ∪ {x : τ as τ̂},σ ∪ {x ↦→ u}, e

HLEMatch

x ∈ dom (σ) ∃i,σ ⊢ pi ▷ σ(x) ∀j < i,σ ⊢ pj ̸▷ σ(x)
Σ ⊢Γ ,σ,match(x){p1 → e1 . . . pn → en} ↩→ Γ ,σ, ei

Figure 3.25: High-level expression evaluation.

Note that reducing an expression with ↩→ until a normal form is reached does not yield a value,

but a (typed) valuexpression which may be reduced further by applying substitutions from the bind-

ing environment σ. These two layers of evaluation are separated so that it is possible to establish a

correspondence between high-level and memory-level evaluation, shown in Section 3.3.2.

The HLEMatch rule relies on an ancillary big-step pattern matching judgment, denoted ▷ and

defined in Fig. 3.26. Given a pattern p, a valuexpression or pattern θ of the same type and a binding

environment σ, we write σ ⊢ p ▷ θ if p matches θ using σ to substitute variables, and σ ⊢ p ̸▷ θ otherwise.

σ may be omitted if θ is a value or a pattern.

σ ⊢_ ▷ θ
σ ⊢ p ▷ focus (π, v)

σ ∪ {x ↦→ v} ⊢ p ▷ x.π
σ ⊢c ▷ c

σ ⊢pi ▷ θi

σ ⊢ ⟨p0, . . . ,pn−1⟩ ▷ ⟨θ0, . . . , θn−1⟩
σ ⊢p ▷ θ

σ ⊢K(p) ▷ K(θ)

Figure 3.26: High-level pattern matching judgment with θ ∈ ValuExprs ∪ Patterns and a binding envi-

ronment σ

Example 3.21 (High-level evaluation with lists). Consider the following expression, taken from Exam-

ple 3.18:

let x : τlist as τ̂p = Cons(⟨42, Nil⟩) in match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
It creates a value of type τlist represented using the τ̂p layout defined in Example 3.4. It then matches it

against patterns and extracts its first element. We reduce it to a pivot expression with the two following

high-level evaluation steps. We omit the empty function environment, merge typing and binding

environments, and indicate which elements are affected by a reduction step by highlighting them in the
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corresponding color.

σ = ∅, let x : τlist as τ̂p = Cons(⟨42, Nil⟩) in match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
↩→( HLELetBind )

σ = { x : τlist as τ̂p ↦→ Cons (⟨42, Nil⟩) }, match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
↩→( HLEMatch )

σ = {x : τlist as τ̂p ↦→ Cons(⟨42, Nil⟩)}, (x.Cons.0 : I32 as I32)

The second step (HLEMatch) leads to the expression on the right-hand-side of the Cons(_) pattern

matching branch, since we have Nil ̸▷ Cons(⟨42, Nil⟩) and Cons(_) ▷ Cons(⟨42, Nil⟩). △
We now state and prove the soundness of our semantics w.r.t. the high-level typing judgment defined

in Section 3.2.3.

Theorem 3.1 (high-level type soundness). Let ∆, Σ, Γ , σ, τ, τ̂ and e such that:

⊨ ∆ ∆ ⊨ Γ ∆, Γ ⊢ Σ ∆, Γ ⊢ σ ∆ ⊨ τ̂ agree∆(τ, τ̂) ∆, Γ ⊢ e : τ as τ̂

We have the two following properties:

Preservation: for all Γ ′, σ′, e′ such that Σ ⊢ Γ ,σ, e ↩→ Γ ′,σ′, e′, we have:

∆ ⊨ Γ ′ ∆, Γ ′ ⊢ Σ ∆, Γ ′ ⊢ σ′ ∆, Γ ′ ⊢ e′ : τ as τ̂

Progress: either e is a pivot expression (normal form) or there exist Γ ′, σ′ and e′ such thatΣ ⊢ Γ ,σ, e ↩→ Γ ′,σ′, e′.

Proof. By induction on ∆, Γ ⊢ e : τ as τ̂.

• If τ or τ̂ is a type variable t, we refer to the case corresponding to ∆(t).

• If e = (u : τ as τ̂), it is a normal form w.r.t. ↩→.

• If e = let x = e′ in e0, there exist τ′ and τ̂′ such that agree(τ′, τ̂′), ∆, Γ ⊢ e′ : τ′ as τ̂′ and ∆, Γ0 ⊢ e0 :

τ as τ̂ where Γ0 = Γ ∪ {(x : τ′ as τ̂′)}.

– If e′ = (u : τ′ as τ̂′), we have agree(τ′, τ̂′) and ∆, Γ ⊢ u : τ′. Let σ0 = σ ∪ {x ↦→ u}. We have

∆, Γ0 ⊢ σ0 and exactly one evaluation rule applies: Γ ,σ, e ↩→ Γ0,σ0, e0.

– Otherwise, we use the induction hypothesis for Γ , σ and e′.

Progress: since e′ is not in normal form, there exist Γ ′, σ′ and e′′ such that Σ ⊢ Γ ,σ, e′ ↩→
Γ ′,σ′, e′′ and we have Σ ⊢ Γ ,σ, e ↩→ Γ ′,σ′, let x = e′′ in e0.

Preservation: the only applicable evaluation rules are of the form Σ ⊢ Γ ,σ, e ↩→ Γ ′,σ′, let x =

e′′ in e0 with Σ ⊢ Γ ,σ, e′ ↩→ Γ ′,σ′, e′′. We have ∆ ⊨ Γ ′, ∆, Γ ′ ⊢ Σ, ∆, Γ ′ ⊢ σ′ and ∆, Γ ′ ⊢
e′′ : τ′ as τ̂′. Let Γ ′

0
= Γ ′ ∪ {(x : τ′ as τ̂′)}. Assuming that all variable symbols are

unique, since we never remove bindings from Γ , we have ∆, Γ ′
0
⊢ e0 : τ as τ̂, hence

∆, Γ ′ ⊢ let x = e′′ in e0 : τ as τ̂.

• If e = f(x), there exist τx and τ̂x such that agree(τx, τ̂x), (x : τx as τ̂x) ∈ Γ and (f : (τx as τ̂x) →
(τ as τ̂)) ∈ Γ . Let (λx′.e′) = Σ(f), Γ ′ = Γ ∪ {(x′ : τx as τ̂x)} and σ′ = σ ∪ {x′ ↦→ σ(x)}. We have

(well-typed environments) ∆, Γ ′ ⊢ e′ : τ as τ̂, ∆, Γ ⊢ σ(x) : τ(x), hence ∆, Γ ′ ⊢ σ′, and exactly one

evaluation rule applies: Σ ⊢ Γ ,σ, f(x) ↩→ Γ ′,σ′, e′.

• If e = match(x)
{
pi → ei →

��
0 < i ⩽ n

}
, there exist τx and τ̂x such that agree(τx, τ̂x), (x :

τx as τ̂x) ∈ Γ , ∆, Γ ⊢ pi : τx and ∆, Γ ⊢ ei : τ as τ̂ for each i, and at least one pattern matches σ(x).
Let i = argmin{pi ▷ σ(x)}. Exactly one evaluation rule applies: Γ ,σ, e ↩→ Γ ,σ, ei and we have

∆, Γ ⊢ ei : τ as τ̂.

□

60



3.3.2 Memory-level evaluation

The evaluation judgment defined in the previous section reduces all high-level language constructs,

but completely ignores memory-related elements, stopping at pivot expressions. We now formalize

a memory-level semantics for our language, which handles high-level constructs (matches, let-bindings

and function calls), but also reduces pivot expressions to memory values. By doing so, we also define

which memory values “properly represent” a high-level value according to a given memory layout –

they correspond to the result of fully evaluating this initial pivot expression. For instance, we reduce

the following pivot expression to its representation as a memory value in 6 memory-level steps:

(Cons(⟨42, Nil⟩) : τlist as τ̂p)↬6

m _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

Let us first informally introduce some key evaluation steps on our running example.

Example 3.22 (Memory-level evaluation on lists). Consider the following memory-level evaluation

sequence, which reduces the expression e from Example 3.7 to a memory value:

∅, let x : τlist as τ̂p = (Cons(⟨42, Nil⟩) : τlist as τ̂p) in match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
↬m(ESplit)

∅,

let x : τlist as τ̂p =

(Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32))
in match(x){. . . }

↬3

m(EComposite , EWord , EConstant)

∅,

let x : τlist as τ̂p =

_64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (Cons(⟨42, Nil⟩) : Cons(⟨I32 , Nil⟩) as (.Cons.0 as I32))
in match(x){. . . }

↬m(EFragment)
∅, let x : τlist as τ̂p = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42 : I32 as I32) in match(x){. . . }

↬m(EAtom)
∅, let x : τlist as τ̂p = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 in match(x){. . . }

↬h(ELetBind)

{ x : τlist as τ̂p ↦→ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 }, match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
↬h(EMatch)
{x : τlist as τ̂p ↦→ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 }, (x.Cons.0 : I32 as I32)

↬m(EVarFocus)
{x : . . . , x′ : I32 as I32 ↦→ (42)32 }, (x′.ε : I32 as I32)

↬m(EVarAccess)
{x : . . . , x′ : . . . }, (42)32

high-level

steps

Our memory-level evaluation judgment, denoted ↬, defines a traditional call-by-value semantics

for high-level constructs. For instance, we evaluate let-binding expressions by first reducing the let-

bound expression to a normal form, then binding it in a value environment and continuing eval-

uation. However, unlike ↩→, the normal forms of ↬ are memory values, rather than pivot ex-

pressions. Pivot expressions are precisely where their behaviors begin to diverge. The ↬ reduc-

tion steps from a pivot expression to a memory value are local to this particular expression; we

temporarily “forget” about high-level constructs and instead create concrete memory structures, us-

ing the memory type as a guide, until a memory value is reached. We label these memory-level

evaluation steps with an m. On this example, we first evaluate the let-bound pivot expression

(Cons(⟨42, Nil⟩) : τlist as τ̂p) . Its informal meaning is “produce a memory value that represents the

high-level value Cons(⟨42, Nil⟩) (which is of type τlist) according to the memory layout τ̂p”. Its evalua-

tion is driven by its memory type τ̂p and yields the memory value _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 in

six ↬m steps (ESplit, EComposite, EWord, EConstant, EFragment, EAtom) which we will detail in the

rest of this section.
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Once the expression is fully reduced,↬ resumes evaluation of the surrounding high-level constructs,

going back and forth between memory- and high-level evaluation until a single memory value is reached.

On our example, we bind the previously computed memory value to x in the environment with a

ELetBind step, then evaluate the pattern matching expression by selecting the appropriate branch with

a EMatch step. Both of these rules have a direct counterpart in the high-level semantics ↩→. We label

these high-level reduction steps with an h.

Finally we reach the pivot expression (x.Cons.0 : I32 as I32) . Once again, we must reduce it to a mem-

ory value. Unlike the previous pivot expression, which contained a high-level value (Cons(⟨42, Nil⟩)),
this pivot contains an accessor x.Cons.0 instead. Its informal semantics is “retrieve relevant data from

the memory representation of x to encode its subterm at position .Cons.0 as a 32-bit integer”. As hinted

in Section 2.5, even though this task is trivial in many situations, such accessors can present significant

challenges with some combinations of layouts. Here, we must bind an intermediate value x′ and perform

two ↬m steps to get the desired piece of data. The final result is the memory value (42)32 .

Intuitively, we can see that this reduction strategy is “coherent” with the result of the ↩→ evaluation

sequence from Example 3.21, which is the pivot expression (x.Cons.0 : I32 as I32) with x bound to

Cons(⟨42, Nil⟩): (42)32 is indeed the memory representation of focus (.Cons.0, Cons(⟨42, Nil⟩)) = 42

according to the memory layout I32. Section 3.4 will formalize and prove this equivalence between

high-level and memory evaluation results. △

A memory-level evaluation state consists of a type environment Γ , a memory value environment σ̂,

a memory store ς and a memory expression to evaluate ê. We denote an evaluation step in the type

variable environment ∆ and function environment Σ with: ∆,Σ ⊢ Γ , σ̂, ς, ê ↬ Γ ′, σ̂′, ς′, ê′. When ∆ and

Σ are immediate from the context, they may be omitted from the judgment.

As shown in Section 3.1, memory expressions include both high-level constructs – pattern matching,

let-bindings and function calls – and memory-level structures. A “full” ↬ evaluation sequence reduces

a high-level expression to a memory value; memory expressions capture all intermediate stages that

may appear during this process.

The full evaluation judgment ↬ is the union of ↬h, which handles high-level constructs in ê, and

↬m, which follows memory types to create concrete memory structures. Its normal forms are memory

values. ↬h rules, defined in Fig. 3.27, are similar to ↩→ and reduce arbitrary expressions to pivot

expressions, while ↬m rules, defined in Fig. 3.30, reduce pivot expressions to memory values. In both

definitions, environments appear in gray in a rule when they are unchanged and unused by this rule.

Note that the semantics defined by ↬ is not equivalent to the sequence of ↩→ and ↬m; high-level (↬h)

steps may be interleaved with memory-level (↬m) steps (on different subexpressions). While defining

↬ as the sequence of ↩→ and ↬m is possible, this behavior is not coherent with that of the compiled

program, which we describe in Chapter 5. Furthermore, ↬m is non-deterministic, so that it is flexible

enough to easily match the behavior of compiled programs.

3.3.2.1 From high-level constructs to pivot expressions

The subset of↬ handling high-level constructs, denoted↬h and defined in Fig. 3.27, is mostly similar to

the high-level evaluation judgment ↩→. The only major difference between the two is pattern matching

evaluation. In ↩→, variables are bound to high-level valuexpressions, and we use the high-level pat-

tern matching judgment ▷ to determine whether a given pattern matches a high-level valuexpression.

However, in ↬, variables are bound to memory values, which cannot be directly compared to high-level

patterns.

The rule EMatch relies a notion of memory-level pattern matching, based on memory patterns as

defined in Section 3.1. The main idea is to first process each high-level pattern into a list of memory

patterns matching exactly those memory values that properly represent a high-level value matched by

the high-level pattern. We then use a memory-level big-step pattern matching judgment to determine

whether one of these memory patterns matches the memory value under scrutiny.

Let us first focus on the pat2mem function defined in Fig. 3.28, which lowers a high-level pattern to

an equivalent list of memory patterns according to a given memory layout
3
.

3
pat2mem is also the first component of pattern matching compilation; see Chapter 4.
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ELetStep

∆,Σ ⊢Γ , σ̂, ς, ê ↬h Γ ′, σ̂′, ς′, ê′

∆,Σ ⊢Γ , σ̂, ς, let x : τ as τ̂ = ê in e ↬h Γ ′, σ̂′, ς′, let x : τ as τ̂ = ê′ in e

ELetBind

∆,Σ ⊢Γ , σ̂, ς,let x : τ as τ̂ = v̂ in e ↬h Γ ∪ {x : τ as τ̂}, σ̂ ∪ {x ↦→ v̂}, ς,e

EFunCall

(x ↦→ v̂) ∈ σ̂ (f ↦→ λx′.e) ∈ Σ
∆,Σ ⊢ Γ , σ̂, ς,f(x)↬h Γ ∪ {x′ : Γ (x)}, σ̂ ∪ {x′ ↦→ v̂}, ς,e

EMatch

(x : τ as τ̂) ∈ Γ
∃i,∃(p, p̂) ∈ pat2mem∆(τ̂,pi). ς ⊢ p̂ ▶ σ̂(x) ∀j < i,∀(p′, p̂′) ∈ pat2mem∆(τ̂,pj), ς ⊢ p̂′ ̸▶ σ̂(x)

∆,Σ ⊢Γ , σ̂, ς,match(x){p1 → e1 . . . pn → en}↬h Γ , σ̂, ς, ei

Figure 3.27: Memory-level expression evaluation, high-level constructs ↬h. Environments appearing

in gray in a rule are irrelevant to its application.

pat2mem∆{
_ , τ̂ −→

{
(_, _|τ̂|)

}
c , Iℓ −→ {(c, (c)ℓ)}
p , t −→ pat2mem∆(p,∆(t))
p , _ℓ −→ {(p, _ℓ)}
p , (c)ℓ −→ {(p, (c)ℓ)}
p , &ℓ (τ̂) −→

{
(p′, &ℓ (̂p))

�� (p′, p̂) ∈ pat2mem∆(p, τ̂)
}

p , τ̂⋉0⩽i<n ri : τ̂i −→
(p′′, p̂⋉0⩽i<n ri : p̂i)

������
(p′, p̂) ∈ pat2mem∆(p, τ̂)
(pi, p̂i) ∈ pat2mem∆(p, τ̂i)
p′′ = p′ ⊓ p0 ⊓ . . . ⊓ pn−1


p , {{τ̂0, . . . , τ̂n−1}} −→

{
(p′, {{p̂0, . . . , p̂n−1}})

���� (pi, p̂i) ∈ pat2mem∆(p, τ̂i)
p′ = p0 ⊓ . . . ⊓ pn−1

}
p , (π as τ̂) −→

{
(p [.π← p′] , p̂)

�� (p′, p̂) ∈ pat2mem∆(focus (π,p) , τ̂)
}

p , τ̂ = split (. . . ) −→ ⋃ {
pat2mem∆(p′, τ̂b)

���� (pb, τ̂b) ∈ τ̂
/

_

p′ = p ⊓ pb

}
}

Figure 3.28: From high-level to memory patterns, using the type variable environment ∆: pat2mem

Given a high-level patternp and a memory type τ̂ in the type variable environment∆, pat2mem∆(τ̂,p)
produces a set of branches (p′, p̂) consisting of a refined high-level pattern p′ and of its equivalent

memory pattern p̂. The goal is to decompose the pattern into finer (memory) branches. Each branch

characterizes a subset of values matched by p by the shape of their memory representation according

to τ̂. Informally, pat2mem satisfies the following specification: for any high-level value v matched by

p, Given (p′, p̂) ∈ pat2mem∆(τ̂,p), p′ is a more precise version of p and there exists exactly one branch

(p′, p̂) such that p′ matches v and p̂ matches its memory representation according to τ̂. We state and

prove the correctness of pat2mem w.r.t. this specification in Section 3.4. More precisely

• If p is a wildcard pattern, or τ̂ is a constant or empty word type, all values should be accepted. We

return a single branch (p, p̂)where p̂ matches all memory values of type τ̂.

• Primitives and fragments are straightforward by replicating their intended semantics. Exactly one

memory pattern matches memory values of type Iℓ that represents c: (c)ℓ. For a fragment (π as τ̂),
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we capture memory values representing the subterm at .π of a value matched by p according to τ̂.

• Struct and composite word types aggregate multiple fields together. We recursively explore each

of these fields, yielding a list of branches for each of them. Possible shapes for the memory values

we want to capture correspond to a struct or composite word of the same general shape, with

the same number of fields, in which each field belongs to its branch but also all branches in this

combination must be compatible with each other. To this end, we use pattern intersection and only

keep branches for which the intersection between all fields’ refined patterns is defined.

• Splits are where p may be forked into multiple subpatterns. Indeed, a high-level pattern may

match valuexpressions whose provenances are incompatible – for instance, Cons(_)matches both

Cons(⟨x, Nil⟩) and Cons(⟨x, Cons(_)⟩). In this case, we must explore all branches of the split whose

provenance set contains at least one provenance matched by p, yielding multiple incompatible

branches/refined patterns. Actually, we process all splits at once in the definition: we specialize τ̂
according to p in which constants have been replaced with wildcards, to obtain provenances, and

thus branches.

Example 3.23 (Memory patterns for lists). Our running example features two patterns of type τlist:

Nil and Cons(_). According to the memory layout τ̂p, Nil translates to a single memory pattern,

while Cons(_) yields two memory patterns corresponding to the two branches Cons(⟨_, Nil⟩) and

Cons(⟨_, Cons(_)⟩) in the toplevel split. In Example 3.22, we first compute the following patterns to

evaluate the pattern matching construct:

pat2mem∆
list

(Nil, τ̂p) = {(Nil, _64 ⋉ [0 : 2] : (0)2)}

pat2mem∆
list

(Cons(_), τ̂p) =
{ (

Cons(⟨_, Nil⟩) , _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : _32

)(
Cons(⟨_, Cons(_)⟩) , &64 ({{_32, _32, _64}}) ⋉ [0 : 2] : (2)2

) }
△

We can now define the big-step semantics of memory patterns with the relation ▶ in Fig. 3.29. We

write ς ⊢ p̂ ▶ v̂ if the memory pattern p̂ matches the memory value v̂ considered in the store ς, and

ς ⊢ p̂ ̸▶ v̂ otherwise. Similarly to the high-level pattern matching judgment ▷, it proceeds by induction

on p̂ and v̂, with wildcards accepting any (appropriately sized) memory value. The only subtlety is the

MFission rule which, similarly to the TFission typing rule, allows recognizing mangled primitive values

as integer values. Such cases arise from memory types with particularly mangled primitives such as the

RISC-V layout.

MWildcard

|̂v| ⩽ ℓ

ς ⊢ _ℓ ▶ v̂

MConstant

ς ⊢ (c)ℓ ▶ (c)ℓ

MPointer

a ∉ dom (ς) ς ⊢ p̂ ▶ v̂

ς ∪ {a ↦→ v̂} ⊢ &ℓ (̂p) ▶ &ℓ (a)

MFission

o0 = 0 on−1 + ℓn−1 = ℓ oi = oi−1 + ℓi−1 ci = c ∧
ℓ bits

0 . . . 0 1 . . . 1

ℓi bits

0 . . . 0

oi bits

ς ⊢ (ci)ℓi ▶ v̂i

ς ⊢ (c)ℓ ▶ _ℓ⋉
0⩽i<n

[oi : ℓi] : v̂i

MComposite

ς ⊢ p̂ ▶ v̂ ς ⊢ p̂i ▶ v̂i

ς ⊢ p̂⋉
0⩽i<n

ri : p̂i ▶ v̂⋉
0⩽i<n

ri : v̂i

MStruct

ς ⊢ p̂i ▶ v̂i

ς ⊢ {{p̂0, . . . , p̂n−1}} ▶ {{̂v0, . . . , v̂n−1}}

Figure 3.29: Memory-level pattern matching judgment.
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Example 3.24 (Memory-level pattern matching for lists). Recall the following expression from our

running example:

e = let x : τlist as τ̂p = Cons(⟨42, Nil⟩) in match(x)
{

Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
Its reduction sequence, shown in Example 3.22, contains the following EMatch step:{

x : τlist as τ̂p ↦→ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

}
,match(x)

{
Nil → (0 : I32 as I32)
Cons(_) → (x.Cons.0 : I32 as I32)

}
↬h

{
x : τlist as τ̂p ↦→ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

}
, (x.Cons.0 : I32 as I32)

To apply the EMatch rule here, we first compute the memory patterns obtained with pat2mem in

Example 3.23. We then take the first pattern matching branch for which a memory pattern matches

the memory value bound to x. Here, we take the second (Cons(_)) branch. Indeed, the only memory

pattern associated with Nil does not match the memory value under scrutiny, while the one associated

with the first subpattern of Cons(_) (Cons(⟨_, Nil⟩)) does:

_64 ⋉ [0 : 2] : (0)2 ̸▶ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

_64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : _32 ▶ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32

△

3.3.2.2 From pivot expressions to memory values

Let us now focus on↬m rules, which define the actual memory representation by actually lowering pivot

expressions down to memory values. The difficulty of this lowering is that we must purposefully break

type preservation during evaluation, as we are in the middle of building the memory representation of

a given high-level value. This yields complex rules with intermediate steps where the local structure

seems broken, but makes sense in the context of the global memory representation. In particular, for

pivot expressions (u : τ as τ̂), we do not necessarily have agreement between τ and τ̂. To keep track of

such global invariants and aid the proofs later on, we will add additional artifacts in purple, which do

not affect the outcome of evaluation. The first proof artifact is an additional environment σ. It is only

used in accessor-related rules, which we will detail later.

The main artifacts appear in pivot expressions: in ↬ rules, they are of the form (u : τ as τ̂≡ τ̂★.π̂),
rather than (u : τ as τ̂). The fourth element τ̂★.π̂ keeps track of the latest well-typed state in the current

evaluation sequence, starting with τ̂.ε which is well-typed at the beginning of evaluation. For instance,

if τ̂ is a pointer type &ℓ (τ̂′), we progress to a pivot which focuses on the pointee while keeping the

same high-level valuexpression and type, resulting in an ill-typed state. We keep track of this step by

appending a pointer dereference to π̂, yielding the following pivot expression: (u : τ as τ̂′≡ τ̂★.π̂.∗). The

appearance of ill-typed states in inevitable, given that we define our semantics as a sequence of tiny

steps, which by design model unfinished memory values. We reset τ̂★.π̂ at fragments, which correspond

to explicit synchronization points between high-level and memory types. More generally, we maintain

the following invariant: in every pivot expression (u : τ as τ̂≡ τ̂★.π̂), we have
�
focus∆ (π̂, τ̂★) = τ̂ and

agree∆(τ, τ̂★).
We now look at each rule in Fig. 3.30 one by one, starting with the two in Fig. 3.30a. Memory

contexts, denoted C indicate the position of a hole □ within a memory expression. They are only used to

state the ESubStep rule, which covers evaluation steps on nested sub-expressions, both within memory

structures and as let-bound expressions. Note that contexts do not mandate an evaluation order. The

rule EAddress finalizes the construction of memory values by lifting inlined pointer contents outside of

the memory valuexpression and into the store, using a fresh address.
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(a) Memory contexts and non-pivot rules

C[□] ::= □ | &ℓ (C[□]) | C[□] ⋉ b : û | û ⋉ b : C[□] | {{û, . . . , û,C[□], û, . . . , û}} | let x : τ as τ̂ = C[□] in e

ESubStep

∆,Σ ⊢Γ ,σ, σ̂, ς, û ↬m Γ ′,σ′, σ̂′, ς′, û′

∆,Σ ⊢Γ ,σ, σ̂, ς,C[û]↬m Γ ′,σ′, σ̂′, ς′,C[û′]

EAddress

a ∉ dom (ς)
∆,Σ ⊢ Γ ,σ, σ̂,ς, &ℓ (̂v)↬m Γ ,σ, σ̂,ς ∪ {a ↦→ v̂}, &ℓ (a)

(b) Memory structures

ETypeVar

(t ↦→ τ̂) ∈ ∆ ∆,Σ ⊢ Γ ,σ, σ̂, ς, (u : τ as τ̂≡ τ̂★.π̂)↬m Γ ′,σ′, σ̂′, ς′, ê
∆,Σ ⊢ Γ ,σ, σ̂, ς, (u : τ as t≡ τ̂★.π̂)↬m Γ ′,σ′, σ̂′, ς′, ê

EConstant

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as (c)ℓ≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,(c)ℓ

EWord

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as _ℓ≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,_ℓ

EPointer

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as &ℓ (τ̂) ≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,&ℓ ((u : τ as τ̂≡ τ̂★.π̂.∗))

EComposite

π̂′ = π̂.¬r0 . . .¬rn−1 π̂i = π̂.ri

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as τ̂⋉
0⩽i<n

ri : τ̂i≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,(u : τ as τ̂≡ τ̂★.π̂′)⋉
0⩽i<n

ri : (u : τ as τ̂i≡ τ̂★.π̂i)

EStruct

ûi = (u : τ as τ̂i≡ τ̂★.π̂.i)
∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as {{τ̂0, . . . , τ̂n−1}}≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς, {{û0, . . . , ûn−1}}

(c) Synchronization between high-level and memory types

ESplit

τ̂ = split (. . . ) ∃(p, τ̂′) ∈ τ̂
/

_.∆, Γ ⊢ u : τ
/
p τ̂′★ = τ̂★ [.π̂← τ̂′]

∆,Σ ⊢ Γ ,σ, σ̂, ς, (u : τ as τ̂≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς, (u : τ
/
p as τ̂′≡ τ̂′★.π̂)

EFragment

u′ =

{
focus (π,u) if defined

any inhabitant of the type focus (π, τ) otherwise

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as (π as τ̂)≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,(u′ : focus (π, τ) as τ̂≡ τ̂.ε)

Figure 3.30: Memory-level expression evaluation, computation of memory values. Environments ap-

pearing in gray in a rule are irrelevant to its application. Purple elements are only useful for stating and

proving type soundness.
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(d) Subterm extraction

EVarAccess

(x : τx as τ̂) ∈ Γ
∆,Σ ⊢ Γ ,σ, σ̂, ς, (x.ε : τ as τ̂≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς, σ̂(x)

EVarFocus

(x : τx as τ̂x) ∈ Γ (pb, τ̂b) ∈ τ̂x
/

_ ∆, Γ , ς ⊢ σ̂(x) : τ̂b

(π̂f ↦→ πf as τ̂f) ∈ shatter(τ̂b) τf = focus (πf, τx) v̂f = �
focusς (π̂f, σ̂(x)) xf fresh symbol

∆,Σ ⊢Γ ,σ, σ̂, ς, (x.(πf.π) : τ as τ̂≡ τ̂★.π̂)
↬mΓ ∪ {(xf : τf as τ̂f)},σ ∪ {xf ↦→ x.πf}, σ̂ ∪ {xf ↦→ v̂f}, ς, (xf.π : τ as τ̂≡ τ̂★.π̂)

(e) Primitive types

EAtom

∆,Σ ⊢ Γ ,σ, σ̂, ς,(c : τ as Iℓ≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,(c)ℓ

EFission

ri = [oi : ℓi] o0 = 0 on−1 + ℓn−1 = ℓ oi−1 + ℓi−1 = oi

∆,Σ ⊢ Γ ,σ, σ̂, ς,(u : τ as Iℓ≡ τ̂★.π̂)↬m Γ ,σ, σ̂, ς,_ℓ⋉
0⩽i<n

ri : (focus (.ri,u) : focus (.ri, τ) as Iℓi≡ τ̂★.π̂.ri)

Figure 3.30: (continued). Memory-level expression evaluation, computation of memory values. Envi-

ronments appearing in gray in a rule are irrelevant to its application. Purple elements are only useful

for stating and proving type soundness.

The goal of all remaining rules is to reduce a given pivot expression (u : τ as τ̂) to a memory value

representing u using the layout τ̂. This task relies on four kinds of rules.

• The most straightforward rules process memory structures such as structs, composite words or

pointers. These rules, defined in Fig. 3.30b, inspect the shape of τ̂ and distribute u (and τ) over

its components. The result is a memory valuexpression in which the root memory construct has

been lifted from the type to the value itself. We then proceed by induction on each component of

the memory structure.

• As seen before, memory types do not only consist of memory structures. Some key constructs act

as synchronization points between an ADT and its memory layout, namely fragments, splits. We

handle such memory types with ESplit and EFragment, defined in Fig. 3.30c.

– For splits, we proceed by specializing the memory type, then selecting the branch whose

provenance matches the considered valuexpression. There always exists exactly one such

branch if the valuexpression is well-typed.

– The semantics of a fragment type (π as τ̂) is “represent the subterm at position π within

the high-level value according to the memory layout τ̂”. Accordingly, EFragment creates

a new pivot expression by focusing the high-level valuexpression and type on π and using

the specified memory type τ̂. While focus (π, τ) is always defined owing to the fragment

coherence agreement criterion, focus (π,u) may not be. Indeed, it is technically possi-

ble for fragments to refer to any high-level constructor τ, even outside of a split branch

that specifically restricts possible values to this constructor. For instance, the memory type{{
split (ε)

{
0 from A ⇒ (0)8
1 from B ⇒ (1)8

}
, (.A as I32), (.B as I32)

}}
is well-kinded and agrees with the

high-level type A(I32) | B(I32), yet the subterm at position .B is undefined for values of the

form A(v) and vice-versa. In this case, we simply use any inhabitant of τ as the new val-

uexpression – given our ADT grammar, it is easy to find such a value for any high-level

type.
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• Unlike high-level values, for which we can build a memory value by induction on the memory

type using the previous two kinds of rules, evaluating an accessor x.π according to the memory

type τ̂ involves a combination of two tasks:

– extracting the parts relevant to π from the memory representation of the value bound to x;

– rearranging these parts to fit the desired layout τ̂.

The first task is performed by two bound value extraction rules, defined in Fig. 3.30d. In the simplest

case (handled by EVarAccess), π is empty and the existing memory representation of x follows τ̂.

In this case, the desired memory value has already been computed and stored as σ̂(x). Otherwise,

we use the EVarFocus rule to inspect the layout of x, denoted τ̂x, in order to find the parts of σ̂(x)
that are relevant to x.π. More formally, we are looking for a fragment (or a primitive type) which

represents the subterm at position π (or a prefix of π) within x. To this end, we use the shatter

operation defined in Fig. 3.13 to gather all fragments and primitive types in τ̂x, then filter these to

keep prefixes of π. Before using shatter, we must remove splits from τ̂x by specializing it for the

wildcard pattern _, yielding a set of branches consisting of a more precise pattern and a split-free

memory type. Assuming that σ̂(x) is of type τ̂x, there exists at least one branch (pb, τ̂b) such that

σ̂(x) is of type τ̂b (and the original high-level value represented by σ̂(x)matches pb). Conversely,

no memory value can belong to more than one specialized type, owing to the distinguishability

agreement criterion. Therefore, there exists a unique branch that matches σ̂(x); we select this

branch and shatter its memory type to search for a suitable fragment (or primitive type). If such a

fragment exists, the EVarFocus rule applies: we create an intermediate value binding this part of

σ̂(x) and attempt to extract the desired piece of data from this new memory value. We keep also

track of this intermediate value in the high-level binding environment σ, which will only be used

for proofs.

The second task is performed when neither of these two rules apply: we have to break down τ̂
using other rules. Termination relies on the coverage agreement criterion: τ̂x must represent the

subterm .π in some form, although it may break it down into smaller pieces represented at different

locations. Therefore, this process will eventually lead to an accessor for which the EVarAccess

rule applies. The same problem is encountered during compilation of valuexpressions, and we

solve it in a very similar way in our compilation approach, as we will see in Chapter 5.

• Primitive (integer) types Iℓ are handled by two different rules, defined in Fig. 3.30e, depending

on the high-level valuexpression. EAtom handles primitive constants by encoding them on ℓ bits.

While primitive types are usually “atomic”, in that there is usually no need to decompose them

further, this is not always the case. For instance, consider the pivot expression (x.ε : I64 as I64)
with the typing environment {(x : I64 as {{(x.[0 : 32] as I32), (x.[32 : 32] as I32)}})}. Here, x refers to

a 64-bit integer whose two 32-bit halves are represented as separate fields in a struct. Since x.ε is

not a constant, EAtom does not apply, and since no toplevel primitive type or ε-fragment appears

in the memory type used for x, neither do EVarAccess and EVarFocus. Instead, we must extract

both 32-bit fragments and recombine them into a single 64-bit integer. EFission lets us break

down the primitive type I64 into a combination of two I32 parts, yielding the following expression:

_64 ⋉ [0 : 32] : (x.[0 : 32] : I32 as I32) ⋉ [32 : 32] : (x.[32 : 32] : I32 as I32). Both of the two new pivots

that appear in it can be reduced with EVarFocus. More generally, EFission allows to partition a

primitive type into any number of consecutive bit ranges, so as to rebuild an integer value piece

by piece when necessary. Its counterpart is the memory typing rule TFission, which interprets the

resulting composite words as proper integers.

Example 3.25 (Legal, but temporarily ill-typed expression). Recall the memory-level evaluation sequence

from Example 3.22. We focus on the first let-bound pivot expression, and extend it with a fourth field

initialized with τ̂p.ε since this pivot is well-typed:

(Cons(⟨42, Nil⟩) : τlist as τ̂p≡ τ̂p.ε)

Let

τ̂b = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
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The evaluation sequence for this pivot is:

(Cons(⟨42, Nil⟩) : τlist as τ̂p≡ τ̂p.ε)
↬m(Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as τ̂b≡ τ̂b.ε) (ESplit)

↬m(Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as _64≡ τ̂b.¬[0 : 2].¬[2 : 32])
⋉[0 : 2] : (Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (1)2≡ τ̂b.[0 : 2])
⋉[2 : 32] : (Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (.Cons.0 as I32)≡ τ̂b.[2 : 32])

(EComposite)

↬m_64 ⋉ [0 : 2] : (Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (1)2≡ τ̂b.[0 : 2])
⋉[2 : 32] : (Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (.Cons.0 as I32)≡ τ̂b.[2 : 32])

(EWord)

↬m_64 ⋉ [0 : 2] : (1)2
⋉[2 : 32] : (Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (.Cons.0 as I32)≡ τ̂b.[2 : 32])

(EConstant)

↬m_64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42 : I32 as I32≡ I32.ε) (EFragment)

↬m_64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (42)32 (EAtom)

Notice how several pivot expressions that appear within this sequence are not well-typed when we only

consider their first three components. For instance, the EComposite step introduces the two following

pivots:

(Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as _64≡ τ̂b.¬[0 : 2].¬[2 : 32])
(Cons(⟨42, Nil⟩) : Cons(⟨I32, Nil⟩) as (1)2≡ τ̂b.[0 : 2])

Neither _64 nor (1)2 agree with the high-level type Cons(⟨I32, Nil⟩) that appears in these pivots; therefore,

they are not well-typed according to the original high-level typing judgment. However, their fourth

component keeps track of the original memory type τ̂b, of which _64 and (1)2 are subterms, which does

agree with Cons(⟨I32, Nil⟩). △

3.4 Memotheory

We now state and prove properties of our semantics to ensure that the memory-level and high-level

behaviors of ribbit programs are coherent. The most important result of this chapter is a proof of

branching bisimulation (Glabbeek and Weĳland 1996; De Nicola and Vaandrager 1995) between ↩→ and

↬ (Theorem 3.3). This concept is illustrated in Fig. 3.31. For this bisimulation, each step of the high-

level reduction sequence using the ↩→ rule labelled li has a counterpart in the memory-level reduction

sequence which uses the corresponding ↬ rule labelled h, li (the h indicates that this is indeed a “high-

level” step). Between these synchronized steps, the memory-level reduction sequence may go through

↬m steps, which correspond toと-transitions
4
, i.e., silent transitions which have no equivalent in the

high-level reduction sequence but preserve the bisimulation relation ℛ with the current high-level

expression. In essence, we show that the traditional high-level semantics is replayed exactly during

low-level evaluation, with some additional steps interspersed to build memory values.

e0 ↩→l0
e1 ↩→l1

e′ ↩→l2
e2 . . .

ê0 ↬h,l0
ê1 ↬h,l1

C[û] ↬m . . . ↬m C[̂v] ↬h,l2
ê2 . . .

ℛ ℛ ℛ ℛ ℛ ℛ

High-level

Memory-level

Figure 3.31: Diagram showing branching bisimulation between high-level and memory reduction se-

quences of the same source expression.

4
Usually denoted τ-transitions in most other contexts. However, as the τ symbol is rather overloaded in this thesis, we use the

Japanese hiragana characterと (pronounced [to]) to denote silent transitions.
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We first extend evaluation and typing, along with some notations, to help with the proofs (Sec-

tion 3.4.1). In Section 3.4.2, we define a simulation relation between evaluation states by combining the

typing judgements with a new notion of a memory value accurately representing a high-level value

according to a given memory layout. Finally, in Section 3.4.4, we leverage the previously defined tools

to show our results:

• correctness of pattern matching (Theorem 3.2);

• progress and preservation of memory evaluation (Lemmas 3.13 and 3.14);

• the branching bisimulation between ↩→ and ↬ (Lemma 3.15 and Theorem 3.3).

3.4.1 Expanded Judgements and notations

3.4.1.1 Labelled Transitions

We aim to show preservation of evaluation between high-level evaluation steps. We must thus equip

our transitions with labels that will be preserved by bisimulation. In the rest of this section, we label

high-level evaluation steps with the name of their rules: for each l ∈ {EFunCall, ELetBind, EMatch}, we

write ↩→l for high-level evaluation steps which use the rule HLl and ↬hl for memory-level evaluation

steps with use the rule l. On the other hand, ↬m steps do not carry any additional label.

3.4.1.2 Typing judgment extension

As seen in Section 3.3.2, some intermediate stages reached by memory evaluation are not well-typed

w.r.t. the current memory typing judgment, even though they always eventually reach a well-typed

state. In order to reason on these ill-typed expressions, we must relax the well-typed criterion while still

constraining expressions enough to ensure correctness. To this end, we annotated each pivot (u : τ as τ̂)
with a parent memory type τ̂★ and a memory path π̂ such that

�
focus (π̂, τ̂★) = τ̂ and which represents

“the latest well-typed state”. Formally, we have ⊢ (u : τ as τ̂★) : τ̂★, but not necessarily ⊢ (u : τ as τ̂) : τ̂.

We use τ̂★ for typing and τ̂ for evaluation. We broaden the TPivot rule of the typing judgment for

expressions defined in Fig. 3.23:

TPivot

agree∆(τ, τ̂★) ∆, Γ ⊢ u : τ

∆, Γ ⊢ (u : τ as τ̂★) : (τ as τ̂★) �
focus (π̂, τ̂★) = τ̂

∆, Γ , ς ⊢ (u : τ as τ̂≡ τ̂★.π̂) : τ as τ̂

3.4.1.3 Notational relief

We define the following notational shorthands for well-formed and well-typed environments, expres-

sions and pivots. Each combines an existing judgement, such as typing, with validity of all its premises.

⊨ ∆, Γ ⊢ σ ⇐⇒ ⊨ ∆ ∧ ∆ ⊨ Γ ∧ ∆, Γ ⊢ σ (Validity of evaluation contexts)

⊨ ∆, Γ , ς ⊢ σ̂ ⇐⇒ ⊨ ∆ ∧ ∆ ⊨ Γ ∧ ∆, Γ , ς ⊢ σ̂ (Validity of memory evaluation contexts)

⊨ ∆, Γ ⊢ e : τ ⇐⇒ ⊨ ∆ ∧ ∆ ⊨ Γ ∧ ∆, Γ ⊢ e : τ (Validity and typing)

⊨ ∆, Γ , ς ⊢ ê : τ̂ ⇐⇒ ⊨ ∆ ∧ ∆ ⊨ Γ ∧ ∆ ⊨ τ̂ ∧ ∆, Γ , ς ⊢ ê : τ̂ (Validity and memory typing)

∆, Γ ⊢ (u : τ as τ̂) ⇐⇒ ∆ ⊨ τ̂ ∧ agree∆(τ, τ̂) ∧ ∆, Γ ⊢ u : τ (Validity of pivot expression)

∆, Γ ⊢ (u : τ as τ̂≡ τ̂★.π̂) ⇐⇒ ∆, Γ ⊢ (u : τ as τ̂★) ∧ ∆ ⊨ τ̂ ∧ �
focus (π̂, τ̂★) = τ̂

(Validity of annotated pivot expr.)
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3.4.2 Simulation and representation relations

We now define our simulation relation denoted ℛ in Fig. 3.32, which underpins our branching

bisimulation theorem. We first introduce a relation between high-level expressions e and memory

expressions ê defined in Fig. 3.32a and denoted ∆, Γ ,σ, ς ⊢ e ℛ ê. We then extend it to high-level

evaluation states S = (Γh,σh, e) and memory evaluation states Ŝ = (Γm,σm, σ̂, ς, ê) in Fig. 3.32b.

∆, Γ ,σ, ς ⊢ e ℛ e
∆, Γ ,σ, ς ⊢ e ℛ ê

∆, Γ ,σ, ς ⊢ let x : τ as τ̂ = e in e0 ℛ let x : τ as τ̂ = ê in e0

∆, ς ⊢ û⟦σ⟧ reprs (u⟦σ⟧ : τ as τ̂ ≡ τ̂.ε)
∆, Γ ,σ, ς ⊢ (u : τ as τ̂) ℛ û

(a) Relation between expressions

⊨ ∆, Γh ⊢ σh ∆, Γh ⊢ Σ Γh ⊆ Γm ⊨ ∆, Γm, ς ⊢ σ̂ reprs (σh ⊔ σm)
agree∆(τ, τ̂) ⊨ ∆, Γh ⊢ e : τ as τ̂ ⊨ ∆, Γm, ς ⊢ ê : τ̂ ∆, Γm,σh ⊔ σm, ς ⊢ e ℛ ê

∆,Σ, τ, τ̂ ⊢ (Γh,σh, e) ℛ (Γm,σm, σ̂, ς, ê)
(b) Relation between full states

Figure 3.32: Simulation relation between high-level and memory evaluation states.

The first cases (Fig. 3.32a) apply to memory expressions that contain high-level constructs. They

ensure that these constructs are exactly the same as those found in the high-level expression e. The case

of Fig. 3.32bis more complex: it describes the memory-level stage of evaluation, when e has reached

a normal form for ↩→ (that is, a pivot expression (u : τ as τ̂)) and memory-level evaluation (i.e., ↬m

steps) of ê is underway. It requires the notion of a memory value representing a given high-level value

according to a memory layout. This is captured by the reprs relation defined in Fig. 3.33. It is a

syntactical characterization of memory valuexpressions which are reachable via ↬m steps from a given

pivot (u : τ as τ̂ ≡ τ̂★.π̂). We write ∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂) when the memory valuexpression

û represents the high-level value v of type τ according to the memory type τ̂, which is at position π̂
within the latest well-typed layout τ̂★. The reprs relation is defined for normalized valuexpressions: we

assume that v, as well as the first component of every pivot appearing within û, are values (as opposed

to valuexpressions containing variables). Given a high-level binding environment σ, u⟦σ⟧ denotes

the substitution of every variable in u with its bound value in σ, and û⟦σ⟧ denotes û in which the

valuexpression of every pivot has been normalized in this way. Thanks to this relation, we capture all

intermediate stages of the ↬m reduction sequence from (v : τ as τ̂ ≡ τ̂★.π̂) to a memory value. The base

case is RIdentity; all other rules correspond to a ↬m evaluation rule. Most rules are straightforward

syntactical translations of their evaluation counterparts, with some simplifications (as they simply relate

existing expressions and do not need to construct a new state).
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RIdentity

∆, ς ⊢ (v : τ as τ̂ ≡ τ̂★.π̂) reprs (v : τ as τ̂ ≡ τ̂★.π̂)
RTypeVar

∆, ς ⊢ û reprs (v : τ as ∆(t) ≡ τ̂★.π̂)
∆, ς ⊢ û reprs (v : τ as t ≡ τ̂★.π̂)

RAddress

a ∉ ς ∆, ς ⊢ &ℓ (̂v) reprs (v : τ as τ̂ ≡ τ̂★.π̂)
∆, ς ∪ {a ↦→ v̂} ⊢ &ℓ (a) reprs (v : τ as τ̂ ≡ τ̂★.π̂)

RAtom

∆, ς ⊢ (c)ℓ reprs (c : τ as Iℓ ≡ τ̂★.π̂)

RFission

o0 = 0 on−1 + ℓn−1 = ℓ oi = oi−1 + ℓi−1

∆, ς ⊢ ûi reprs (focus (.ri, v) : focus (ri, τ) as Iℓi ≡ τ̂★.π̂.ri)
∆, ς ⊢ _ℓ⋉

0⩽i<n

ri : ûi reprs (v : τ as Iℓ ≡ τ̂★.π̂)

RFragment

∆, ς ⊢ û reprs (focus (π, v) : focus (π, τ) as τ̂ ≡ τ̂.ε)
∆, ς ⊢ û reprs (v : τ as (π as τ̂) ≡ τ̂★.π̂)

RSplit

τ̂ = split (. . . ) ∃(p, τ̂′) ∈ τ̂
/

_.∆ ⊢ v : τ
/
p ∆, ς ⊢ û reprs (v : τ

/
p as τ̂′ ≡ τ̂★ [.π̂← τ̂′] .π̂)

∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂)

RWord

∆, ς ⊢ _ℓ reprs (v : τ as _ℓ ≡ τ̂★.π̂)
RConstant

∆, ς ⊢ (c)ℓ reprs (v : τ as (c)ℓ ≡ τ̂★.π̂)

RPointer

∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂.∗)
∆, ς ⊢ &ℓ (û) reprs (v : τ as &ℓ (τ̂) ≡ τ̂★.π̂)

RComposite

∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂.¬r0. . . . .¬rn−1) ∆, ς ⊢ ûi reprs (v : τ as τ̂i ≡ τ̂★.π̂.ri)
∆, ς ⊢ û⋉

0⩽i<n

ri : ûi reprs (v : τ as τ̂⋉
0⩽i<n

ri : τ̂i ≡ τ̂★.π̂)

RStruct

∆, ς ⊢ ûi reprs (v : τ as τ̂i ≡ τ̂★.π̂.i)
∆, ς ⊢ {{û0, . . . , ûn−1}} reprs (v : τ as {{τ̂0, . . . , τ̂n−1}} ≡ τ̂★.π̂)

Figure 3.33: Representation relation between normalized (i.e., variable-free) pivot expressions and mem-

ory valuexpressions.

Finally, we extend this relation to environments. Given high-level and memory-level binding envi-

ronments σ and σ̂, we write ∆, Γ , ς ⊢ σ̂ reprs σ if we have dom (σ̂) = dom (σ) = dom (Γ ) and for each

(x : τ as τ̂) ∈ Γ , ∆, ς ⊢ σ̂(x)⟦σ⟧ reprs (σ(x)⟦σ⟧ : τ as τ̂ ≡ τ̂.ε).
As before, we also define the following syntactical shorthands for the representation relation with a

well-typed pivot expression in well-formed and well-typed environments:

⊨ ∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂) ⇐⇒ ∆ ⊢ (v : τ as τ̂ ≡ τ̂★.π̂) ∧ ∆, ς ⊢ û reprs (v : τ as τ̂ ≡ τ̂★.π̂)
(Validity and reprs)

⊨ ∆, Γ , ς ⊢ σ̂ reprs σ ⇐⇒ dom (σ) = dom (σ̂) = dom (Γ ) ∧
∀(x : τ as τ̂) ∈ Γ , ⊨ ∆, ς ⊢ σ̂(x)⟦σ⟧ reprs (σ(x)⟦σ⟧ : τ as τ̂ ≡ τ̂.ε)

(Validity and Environment reprs)
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3.4.3 Results on high-level and memory-level pattern matching

As a prerequisite for our main results on ↩→ and ↬, we first establish an equivalence between high-

level and memory-level pattern matching through pat2mem and our reprs relation. The main result

of this section is Theorem 3.2. To prove it, we will use alternative characterizations of both high-level

(Lemma 3.5) and memory-level (Lemma 3.6) pattern matching judgments. Along with agreement

criteria between high-level and memory types, these will allow us to show that every part of a given

high-level pattern corresponds to specific parts of its memory counterparts obtained with pat2mem.

In this section, several results will be proven by induction on a pair (p, τ̂) consisting of a high-level

pattern and a memory type. To ensure this induction is well-founded, we assume that all fragments of

the form (ε as τ̂f) appearing in memory types have been replaced with τ̂f. This unrolling of epsilon-

fragments always terminates for the memory types we consider (indeed, memory types containing

cycles of such epsilon-fragments have limited practical interest: such types do not have a computable

size or shape, nor any finite inhabitant).

We also relax the typing judgment for memory patterns to allow for (adequately sized) wildcards. In

this section, preconditions and conclusions of the form ∆ ⊢ p̂ : τ̂ may use the following rule in addition

to existing memory typing rule:

MemTWildcard

|τ̂| ⩽ ℓ

∆, Γ , ς ⊢ _ℓ : τ̂

Lemma 3.5 (Characterization of high-level pattern matching). Let ∆, τ, p and v such that

⊨ ∆ ⊢ p : τ ⊨ ∆ ⊢ v : τ

We have p ▷ v if and only if both of the following conditions hold:

Each individual bit of every primitive matches:

∀π ∈ Paths, (focus∆ (π, τ) = I1 ∧ focus (π,p) = c ∧ focus (π, v) = c′) ⇒ c = c′

Each head constructor matches:

∀π ∈ Paths,

(
focus∆ (π, τ) =

��
0⩽i<n

Ki(τi) ∧ focus (π,p) = K(p′) ∧ focus (π, v) = K′(v′)
)
⇒ K = K′

Proof. Immediate by induction. □

The following result states that a memory pattern matches a memory value of the same type if and

only if both belong to the same specialized branch of this type and all of their parts corresponding to a

fragment or primitive in their type (as gathered by shatter) match.

Lemma 3.6 (Characterization of memory-level pattern matching). Let ∆, ς, τ̂, p̂ and v̂ such that

⊨ ∆ ⊢ p̂ : τ̂ ⊨ ∆, ς ⊢ v̂ : τ̂

We have ς ⊢ p̂ ▶ v̂ if and only if there exists a branch (pb, τ̂b) ∈ τ̂
/

_ such that

∆ ⊢ p̂ : τ̂b ∆, ς ⊢ v̂ : τ̂b ∀(π̂ ↦→ π as τ̂′) ∈ shatter∆(τ̂b), ς ⊢ �
focus (π̂, p̂) ▶ �

focusς (π̂, v̂)

Proof. Immediate by induction on τ̂. □

Through Lemma 3.5 (resp. Lemma 3.6), we have established a correspondence between high-level

(resp. memory-level) pattern matching and specific locations within high-level (resp. memory) types

consistent with agreement criteria. In order to use this correspondence to prove our main result

(Theorem 3.2), we need to be able to “reach” these locations within values and patterns. We do so using

the following Lemmas 3.7 to 3.10, which let us synchronize the exploration of memory types with that

of memory patterns obtained through pat2mem and of memory values representing a given high-level

value.
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Lemma 3.7 (Matching type branches for pat2mem). Let ∆, τ̂, pb, τ̂b, p, p′ and p̂ such that

∆ ⊨ τ̂ (p′, p̂) ∈ pat2mem∆(p, τ̂) (pb, τ̂b) ∈ τ̂
/

_ ∆ ⊢ p̂ : τ̂b

The pattern intersection pb ⊓ p′ is defined and we have

(p′, p̂) ∈ pat2mem∆(p, τ̂b)

Proof. Immediate by induction on (p, τ̂). □

Lemma 3.8 (Memory focusing and pat2mem commute). Let ∆, τ̂, p, p′, p̂ and π̂ such that

∆ ⊨ τ̂ (p′, p̂) ∈ pat2mem∆(p, τ̂) �
focus∆ (π̂, τ̂) is defined

Either p is a wildcard pattern _ or there exists p′′ such that(
p′′, �

focus (π̂, p̂)
)
∈ pat2mem∆(p,

�
focus∆ (π̂, τ̂))

Proof. Immediate by induction on (p, τ̂). □

Lemma 3.9 (Matching type branches for value memory representations). Let ∆, ς, τ, τ̂, τ̂★, π̂★, pb, τ̂b, v
and v̂ such that

⊨ ∆, ς ⊢ v̂ reprs (v : τ as τ̂ ≡ τ̂★.π̂★) (pb, τ̂b) ∈ τ̂
/

_ ∆, ς ⊢ v̂ : τ̂b

We have

∆ ⊢ v : τ
/
pb pb ▷ v ∆, ς ⊢ v̂ reprs (v : τ

/
pb as τ̂b ≡ τ̂★ [.π̂★← τ̂b] .π̂★)

Proof. Immediate by induction on (v, τ̂). □

Lemma 3.10 (Memory focusing and reprs commute on memory values). Let ∆, ς, τ, τ̂, τ̂★, π̂★, v, v̂ and π̂
such that

⊨ ∆, ς ⊢ v̂ reprs (v : τ as τ̂ ≡ τ̂★.π̂★) �
focus∆ (π̂, τ̂) is defined

We have

∆, ς ⊢ �
focusς (π̂, v̂) reprs (v : τ as

�
focus∆ (π̂, τ̂) ≡ τ̂★.π̂★.π̂)

Proof. Immediate by induction on (v, τ̂). □

We can now state our main result on pat2mem.

Theorem 3.2 (pat2mem correctness). Let ∆, ς, τ, τ̂, p, v and v̂ such that

⊨ ∆, ς ⊢ v̂ reprs (v : τ as τ̂ ≡ τ̂.ε) ∆ ⊢ p : τ

We have

p ▷ v ⇐⇒ ∃(p′, p̂) ∈ pat2mem∆(p, τ̂), ς ⊢ p̂ ▶ v̂

Proof. We prove each direction of the equivalence in the following Lemmas 3.11 and 3.12. □

Lemma 3.11 (High-level matching implies memory matching). Let ∆, ς, τ, τ̂, τ̂★, π̂, p, v and v̂ such that

⊨ ∆, ς ⊢ v̂ reprs (v : τ as τ̂ ≡ τ̂★.π̂) ∆, ς ⊢ v̂ : τ̂ ∆ ⊢ p : τ p ▷ v

There exist p′ and p̂ such that

(p′, p̂) ∈ pat2mem∆(p, τ̂) p′ ▷ v ∆ ⊢ p̂ : τ̂ ς ⊢ p̂ ▶ v̂

Proof. Let us proceed by induction on (p, τ̂).
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Wildcard: p = _. Immediate: we have

pat2mem∆(p, τ̂) = {(_, _|τ̂|)} _ ▷ v ∆ ⊢ _|τ̂| : τ̂ (MemTWildcard) ς ⊢ _|τ̂| ▶ v̂ (MWildcard)

Primitive constant: p = c and τ̂ = Iℓ. We have

pat2mem∆(p, τ̂) = {(c, (c)ℓ)} ∆ ⊢ (c)ℓ : Iℓ (MemTPrimitive)

According to the fragment coherence criterion of agreement between τ and τ̂★, we necessarily have

τ = Iℓ, hence v = c′ and v̂ = (c′)ℓ. Finally, c ▷ c′ implies c = c′, hence (c)ℓ ▶ (c′)ℓ (MConstant

rule).

Type variable: τ̂ = t ∈ TyVars. Suppose that the result holds for (p,∆(t)). From the definitions of

memory typing and of reprs, we immediately have

pat2mem∆(p, τ̂) = pat2mem∆(p,∆(t)) ∆, ς ⊢ v̂ : ∆(t) ∆, ς ⊢ v̂ reprs (v : τ as ∆(t) ≡ τ̂★.π̂)

and our result is immediate from the induction hypothesis.

Constant word: τ̂ = (c)ℓ. Since v̂ is of type τ̂, we necessarily have v̂ = (c)ℓ and we conclude with

pat2mem∆(p, τ̂) = {(p, (c)ℓ)} ∆ ⊢ (c)ℓ : (c)ℓ (MemTConstant) ς ⊢ (c)ℓ ▶ (c)ℓ (MConstant)

The same reasoning applies if τ̂ is an empty word type _ℓ.

Struct: τ̂ = {{τ̂0, τ̂1}}. Suppose that the result holds for (p, τ̂0) and (p, τ̂1). We have

pat2mem∆(p, τ̂) =
(p0 ⊓ p1, {{p̂0, p̂1}})

������ (p0, p̂0) ∈ pat2mem∆(p, τ̂0)
(p1, p̂1) ∈ pat2mem∆(p, τ̂1)

p0 ⊓ p1 is defined

 v̂ = {{̂v0, v̂1}}

∆, ς ⊢ v̂i : τ̂i ∆, ς ⊢ v̂i reprs (v : τ as τ̂i ≡ τ̂★.π̂.i)

According to our induction hypotheses, for both fields i ∈ {0, 1}, there exists (pi, p̂i) ∈ pat2mem∆(p, τ̂i)
such that

pi ▷ v ∆ ⊢ p̂i : τ̂i ς ⊢ p̂i ▶ v̂i

Since p0 and p1 both match the same value v, they are compatible and their intersection also

matches v: p0 ⊓ p1 ▷ v. We conclude with

∆ ⊢ p̂i : τ̂i

∆ ⊢ {{p̂0, p̂1}} : {{τ̂0, τ̂1}}
(MemTStruct)

ς ⊢ p̂i ▶ v̂i

ς ⊢ {{p̂0, p̂1}} ▶ v̂
(MStruct)

The same reasoning applies if τ̂ is a struct with any other number of fields, a pointer or a composite

word type.

Fragment: τ̂ = (π as τ̂′). According to the fragment coherence criterion between τ and τ̂★, since τ̂ is

a fragment that appears within τ̂★, τ′ = focus∆ (π, τ) is defined and agrees with τ̂′. Let p′ =
focus (π,p) and v′ = focus (π, v). Suppose that the result holds for (p′, τ̂′). We have

pat2mem∆(p, τ̂) = pat2mem∆(p′, τ̂′) p′ ▷ v′ ∆, ς ⊢ v̂ : τ̂′ ∆, ς ⊢ v̂ reprs (v′ : τ′ as τ̂′ ≡ τ̂′.ε)

According to our induction hypothesis, there exists (p′′, p̂) ∈ pat2mem∆(p′, τ̂′) such that

p′′ ▷ v′ ∆ ⊢ p̂ : τ̂′ ς ⊢ p̂ ▶ v̂

and we conclude with

∆ ⊢ p̂ : τ̂′

∆ ⊢ p̂ : τ̂
(MemTFragment)
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Split: τ̂ = split (. . . ). Let {(pi, τ̂i) | 0 ⩽ i < n} = τ̂
/

_. According to the branch coherence criterion

between τ and τ̂★, since τ̂ is a split that appears within τ̂★, there exists a branch i ∈ {0, . . . ,n − 1}
such that pi ▷ v. Since p also matches v, the pattern intersection p′ = p⊓pi is defined and matches

v. Let τ′ = τ
/
p′ and τ̂′★ = τ̂★ [.π̂← τ̂i]. Suppose that the result holds for (p′, τ̂i). We have

pat2mem∆(p′, τ̂i) ⊆ pat2mem∆(p, τ̂) p′ ▷ v ∆ ⊢ p′ : τ′ ∆ ⊢ v : τ′ ∆, ς ⊢ v̂ : τ̂′

∆, ς ⊢ v̂ reprs (v : τ′ as τ̂′ ≡ τ̂′★.π̂)

and according to our induction hypothesis, there exists (p′′, p̂) ∈ pat2mem∆(p′, τ̂i) such that

p′′ ▷ v ∆ ⊢ p̂ : τ̂i ς ⊢ p̂ ▶ v̂

We conclude with

∆ ⊢ p̂ : τ̂i

∆ ⊢ p̂ : τ̂
(MemTSplit)

□

Lemma 3.12 (Memory matching implies high-level matching). Let ∆, ς, τ, τ̂, p, p′, v, p̂ and v̂ such that

⊨ ∆, ς ⊢ v̂ reprs (v : τ as τ̂ ≡ τ̂.ε) ∆, ς ⊢ v̂ : τ̂ ∆ ⊢ p : τ ∆ ⊢ p̂ : τ̂ (p′, p̂) ∈ pat2mem∆(p, τ̂)

ς ⊢ p̂ ▶ v̂

We have p ▷ v.

Proof. Let us proceed by induction on (p, τ̂).
Wildcard base case: p = _. Immediate:

pat2mem∆(_, τ̂) = {(_, _|τ̂|)} _ ▷ v

Primitive bit constant base case: p = c and τ̂ = I1. We have pat2mem∆(c, I1) = {(c, (c)1)}, hence p̂ =

(c)1. According to the fragment coherence criterion of agreement between τ and τ̂, we necessarily

have τ = I1 (or a type variable which we unroll to I1), hence v = c′ and v̂ = (c′)1. Finally, since

ς ⊢ (c)1 ▶ (c′)1, we have c = c′ (MConstant rule), hence c ▷ c′.

Induction step. Here, we finally use the various intermediate results stated earlier. According to

Lemma 3.6, since ς ⊢ p̂ ▶ v̂, there exists a branch (pb, τ̂b) ∈ τ̂
/

_ such that

∆ ⊢ p̂ : τ̂b ∆, ς ⊢ v̂ : τ̂b ∀(π̂ ↦→ π as τ̂′) ∈ shatter∆(τ̂b), ς ⊢ �
focus (π̂, p̂) ▶ �

focusς (π̂, v̂)

Let τb = τ
/
pb. From Lemmas 3.7 and 3.9, we have

pb ⊓ p′ is defined (p′, p̂) ∈ pat2mem∆(p, τ̂b) pb ▷ v ∆ ⊢ v : τb

∆, ς ⊢ v̂ reprs (v : τb as τ̂b ≡ τ̂b.ε)

Induction hypothesis: suppose that for every (π̂ ↦→ π as τ̂′) ∈ shatter∆(τ̂b), the result holds for

(focus (π,p) , τ̂′). We use Lemma 3.5 to show that p ▷ v.

Each individual bit of every primitive matches: Let π ∈ Paths such that

focus∆ (π, τ) = I1 focus (π,p) = c focus (π, v) = c′

We show that c = c′. According to the coverage criterion of agreement between τ and τ̂,

there exist πf, π
′
, π̂ and τ̂f such that π = πf.π

′
and (π̂ ↦→ πf as τ̂f) ∈ shatter∆(τ̂b). Let

τ̂′ = �
focus∆ (π̂, τ̂b), p̂f = �

focus (π̂, p̂) and v̂f = �
focusς (π̂, v̂). We have:

ς ⊢ p̂f ▶ v̂f ∃p′′, (p′′, p̂f) ∈ pat2mem∆(p, τ̂′) (Lemma 3.8)

∆, ς ⊢ v̂f reprs (v : τb as τ̂′ ≡ τ̂b.π̂) (Lemma 3.10)
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Let τf = focus∆ (πf, τb), pf = focus (πf,p), p′
f
= focus (πf,p′′) and vf = focus (πf, v). Since

τ̂′ is a fragment or primitive type representing the piece of data at position πf as τ̂f, from the

definitions of pat2mem and reprs, we have:

(p′f, p̂f) ∈ pat2mem∆(pf, τ̂f) ∆, ς ⊢ v̂f reprs (vf : τf as τ̂f ≡ τ̂f.ε)

According to our induction hypothesis, we havepf ▷ vf, therefore focus (π′,pf) ▷ focus (π′, vf),
and we conclude that c = c′ with

focus (π′,pf) = focus (π,p) = c focus (π′, vf) = focus (π, v) = c′ c ▷ c′

Each head constructor matches: Let π ∈ Paths such that

focus∆ (π, τ) = K0(τ0) | · · · | Kn−1(τn−1) focus (π,p) = Ki(p′′) focus (π, v) = Kj(v′)

We prove by contradiction that Ki = Kj. Suppose that Ki ≠ Kj. According to the branch

coherence criterion of agreement between τ and τ̂, τb agrees with τ̂b. According to the

distinguishability criterion of agreement between τb and τ̂b and because τ̂b is already a

specialized memory type, there exists a memory path π̂ such that either
�
focus∆ (π̂, τ̂b) =

(ci)ℓ = (cj)ℓ with ci ≠ cj – which is impossible – or there exists πf, π′ and τ̂f such that

π = πf.π
′

and (π̂ ↦→ πf as τ̂f) ∈ shatter∆(τ̂b). Let τf = focus∆ (πf, τb), pf = focus (πf,p),
p′
f
= focus (πf,p′′) and vf = focus (πf, v). Since τ̂′ is a fragment or primitive type representing

the piece of data at position πf as τ̂f, from the definitions of pat2mem and reprs, we have:

(p′f, p̂f) ∈ pat2mem∆(pf, τ̂f) ∆, ς ⊢ v̂f reprs (vf : τf as τ̂f ≡ τ̂f.ε)

According to our induction hypothesis, we havepf ▷ vf, therefore focus (π′,pf) ▷ focus (π′, vf).
Since focus (π′,pf) = focus (π,p) = Ki(p′′) and focus (π′, vf) = focus (π, v) = Kj(v′), this im-

plies Ki = Kj.

□

3.4.4 Results on ↩→ and ↬

We are now ready to state and prove our main results. Most of our proofs proceed by induction on

memory types, or on ℛ (defined in Fig. 3.32) derivation trees. Even though types may be recursive,

expressions are finite, ensuring that typing and representation derivation trees are always finite.

Lemma 3.13 (↬m preserves ℛ on memory valuexpressions). Let ∆, Σ, τ, τ̂, S = (Γh,σh, (uh : τh as τ̂h)),
Ŝ = (Γm,σm, σ̂, ς, û) and Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′, û′) (note that û, û′ ∈ �

ValuExprs) such that

∆,Σ, τ as τ̂ ⊢ S ℛ Ŝ ∆ ⊢ Ŝ ↬m Ŝ′

We have

∆,Σ, τ as τ̂ ⊢ S ℛ Ŝ′

Proof. From now on, we omit ∆ and Σ from judgments. Let σ = σh⊔σm, σ′ = σh⊔σ′m, and vh = uh⟦σ⟧.
Note that since ↬m does not affect existing bindings in σ, we always have uh⟦σ′⟧ = vh.

Without loss of generality, we assume that τh = τ and τ̂h = τ̂. Indeed, our typing hypothesis

Γh ⊢ (uh : τh as τ̂h) : τ as τ̂ necessarily involves the following TPivot step:

TPivot

⊨ τ̂h agree(τh, τ̂h) Γh ⊢ uh : τh

Γh ⊢ (uh : τh as τ̂h) : τh as τ̂h

after which only TMTyVar, MemTTypeVar, MemTSplit and MemTFragment rules are applicable to reach

the type pair τ as τ̂. – meaning that τ̂ is essentially a more general version of τ̂h.
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Some preconditions of our goal τ as τ̂ ⊢ S ℛ Ŝ′ are unchanged from our hypothesis τ as τ̂ ⊢ S ℛ Ŝ.

We only need to prove the four following properties to prove preservation:

⊨ Γ ′m, ς′ ⊢ σ̂′ (3.1)

Γ ′m, ς′ ⊢ σ̂′ reprs σ′ (3.2)

Γ ′m, ς′ ⊢ û′ : τ̂ (3.3)

ς′ ⊢ û′⟦σ′⟧ reprs (vh : τh as τ̂h ≡ τ̂h.ε) (3.4)

We proceed by induction on û. For each case, we show that every possible ↬m step preserves the

relation. Most ↬m rules apply to pivots, which are our main base case.

Pivot: û = (um : τm as τ̂m ≡ τ̂★.π̂) (and τ̂m is not a type variable). Without loss of generality, we assume

that τm = τ and τ̂m = τ̂, using the same reasoning as above for τh = τ and τ̂h = τ̂. Our typing

hypothesis becomes:

Γm, ς ⊢ (um : τ as τ̂ ≡ τ̂★.π̂) : τ̂

and implies (since we have to use the TPivot and MemTHLExp rules):

agree(τ, τ̂★) Γm ⊢ um : τ �
focus (π̂, τ̂★) = τ̂

Using a similar reasoning, we also assume that um⟦σ⟧ = vh. Indeed, the representation relation

between two pivots is restricted to RIdentity and to RTypeVar, RFragment and RSplit, which do

not depend on the pivot value. Our representation hypothesis becomes:

ς ⊢ (vh : τ as τ̂ ≡ τ̂★.π̂) reprs (vh : τ as τ̂ ≡ τ̂.ε)

Let us proceed by case analysis on the ↬m rules. We start with subterm extraction rules.

EVarAccess: there exists (x : τx as τ̂x) ∈ Γm such that

um = x.ε τ̂x = τ̂ Ŝ′ = (Γm,σm, σ̂, ς, σ̂(x))

We prove our result for Ŝ′:

Eq. (3.1) and Eq. (3.2) are immediate from preconditions.

Eq. (3.3): Γm, ς ⊢ σ̂(x) : τ̂ follows from the environment typing hypothesis Γm, ς ⊢ σ̂.

Eq. (3.4): ς ⊢ σ̂(x) reprs (vh : τ as τ̂ ≡ τ̂.ε).
Since we have vh = x.ε⟦σ⟧ = σ(x)⟦σ⟧, this is implied by our environment representation

hypothesis Γm, ς ⊢ σ̂ reprs σ.

EVarFocus: there exist

(x : τx as τ̂x) ∈ Γm π ∈ Paths (pb, τ̂b) ∈ τ̂x
/

_ (π̂f ↦→ πf as τ̂f) ∈ shatter(τ̂b)

xf ∈ Vars \ dom (Γm)

such that

um = x.(πf.π) Γm, ς ⊢ σ̂(x) : τ̂b Γ ′m = Γm ∪ {(xf : focus (πf, τx) as τ̂f)}

σ′m = σm ∪ {xf ↦→ x.πf} σ̂′ = σ̂ ∪ {xf ↦→ �
focusς (π̂f, σ̂(x))} ς′ = ς

û′ = (xf.π : τ as τ̂ ≡ τ̂★.π̂)

We prove our result for Ŝ′:

Eq. (3.1): ⊨ τ̂f, agree(focus (πf, τx) , τ̂f) and Γ ′m, ς ⊢ �
focusς (π̂f, σ̂(x)) : focus (πf, τx) as τ̂f.

⊨ τ̂f follows from ⊨ τ̂x (implied by our environment typing hypothesis); agree(focus (πf, τx) , τ̂f)
follows from the fragment coherence agreement criterion between τx and τ̂x, which is

also implied by our environment typing hypothesis. The last result is immediate from

our environment typing hypothesis, which implies Γm, ς ⊢ σ̂(x) : τx as τ̂x, using struc-

tural and fragment or primitive memory typing rules to descend into the memory value,

high-level type and memory type.
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Eq. (3.2): ς′ ⊢ �
focusς (π̂f, σ̂(x)) reprs (x.πf⟦σ⟧ : focus (πf, τx) as τ̂f ≡ τ̂f.ε).

Our environment representation hypothesis implies:

ς ⊢ σ̂(x) reprs (x.ε⟦σ⟧ : τx as τ̂x ≡ τ̂x.ε)

We destruct the reprs derivation tree leading to this conclusion, and show that it necessar-

ily involves a rule whose conditions lead to our result. Since σ̂(x) is a memory value, the

rules RIdentity and RAddress will never be used. Starting from the conclusion and going

backwards in reprs deduction steps, we go through structural rules before encountering

the first split in τ̂x at some position π̂b, which is derived from the following RSplit step:

RSplit

⊢ x.ε⟦σ⟧ : τx
/
pb

ς ⊢ �
focusς (π̂b, σ̂(x)) reprs (x.ε⟦σ⟧ : τx

/
pb as τ̂b ≡ τ̂x [.π̂b ← τ̂b] .π̂b)

ς ⊢ �
focusς (π̂b, σ̂(x)) reprs (x.ε⟦σ⟧ : τx as

�
focus (π̂b, τ̂x) ≡ τ̂x.π̂b)

From there, we continue to descend into the memory type until we reach the position

π̂f. We have (π̂f ↦→ πf as τ̂f) ∈ shatter(τ̂b), which means that
�
focus (π̂f, τ̂b) is either a

fragment or a primitive type. If it is a fragment, we go through the following RFragment

step:

RFragment

ς ⊢ �
focusς (π̂f, σ̂(x)) reprs (focus (πf, x.ε⟦σ⟧) : focus

(
πf, τx

/
pb

)
as τ̂f ≡ τ̂f.ε)

ς ⊢ �
focusς (π̂f, σ̂(x)) reprs (x.ε⟦σ⟧ : τx

/
pb as (πf as τ̂f) ≡ τ̂x [.π̂b ← τ̂b] .π̂f)

and our result is immediate from the precondition of this step. Otherwise, it is a primitive

type: τ̂f = Iℓ and πf = ε. We go through either a RAtom or a RFission rule. Here, we

only cover the RAtom case (the RFission case is similar to a combination of RFragment

and RAtom cases). This rule does not have any preconditions, but restricts the possible

shapes for our expressions:

RAtom

�
focusς (π̂f, σ̂(x)) = (c)ℓ x.ε⟦σ⟧ = c

ς ⊢ �
focusς (π̂f, σ̂(x)) reprs (x.ε⟦σ⟧ : τx

/
pb as Iℓ ≡ τ̂x [.π̂b ← τ̂b] .π̂f)

We use these constraints to prove our result using the RAtom rule:

RAtom ς ⊢ (c)ℓ reprs (c : τx as Iℓ ≡ Iℓ.ε)

Eq. (3.3): Γ ′m, ς′ ⊢ (xf.π : τ as τ̂ ≡ τ̂★.π̂) : τ̂.

We only have to prove Γ ′m ⊢ xf.π : τ, which is immediate from the definition of Γ ′m.

Eq. (3.4): ς′ ⊢ (xf.π⟦σ′⟧ : τ as τ̂ ≡ τ̂★.π̂) reprs (vh : τ as τ̂ ≡ τ̂.ε) is immediate from our

representation hypothesis since xf.π⟦σ′⟧ = x.πf.π⟦σ⟧ = vh.

Other rules are specific to a given memory type – either a primitive type, a synchronization point

with the high-level type or a memory structure. We destruct τ̂m and prove the result for each case.

EAtom: we have

vh = c τ̂ = Iℓ Ŝ′ = (Γm,σm, σ̂, ς, (c)ℓ)

Our result is immediate: we do have Γm, ς ⊢ (c)ℓ : Iℓ and ς ⊢ (c)ℓ reprs (c : τ as Iℓ ≡ Iℓ.ε).
All other rules: similar to EAtom, each evaluation rule restricts û′, τ, τ̂ and vh so that our result

is immediate from the corresponding typing and representation rules.

Type variable pivot: û = (um : τm as tm ≡ τ̂★.π̂) with tm ∈ TyVars. The only applicable ↬m rules are

subterm extraction rules, which we treated in the previous pivot case, and ETypeVar. Suppose

that the property holds for (um : τm as ∆(tm) ≡ τ̂★.π̂). In the ETypeVar case, we have:

(Γm,σm, σ̂, ς, (um : τm as ∆(tm) ≡ τ̂★.π̂)↬m Ŝ′

and our result is immediate from the induction hypothesis.
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Pointer expression: û = &ℓ (̂v). The only applicable ↬m rule is EAddress. We have

Ŝ′ = (Γm,σm, σ̂, ς ∪ {a ↦→ v̂}, &ℓ (a))

with a ∉ dom (ς), and our result is immediate using MemTAddress and RAddress rules.

Other expression: û = C[û0] where C is a memory context. The only applicable ↬m rule is ESubStep.

Without loss of generality, we assume that there exists a memory type τ̂0 such that τ̂ = C[τ̂0].
Suppose that the result holds for τ, τ̂0, S0 = (Γh,σh, (uh : τ as τ̂0)) and Ŝ0 = (Γm,σm, σ̂, ς, û0). The

precondition τ as τ̂0 ⊢ S0 ℛ Ŝ0 is immediate from τ as τ̂ ⊢ S ℛ Ŝ. We have

Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′,C[û′
0
]) Ŝ0 ↬m Ŝ′

0
= (Γ ′m,σ′m, σ̂′, ς′, û′

0
)

From the induction hypothesis, we get τ as τ̂0 ⊢ S0 ℛ Ŝ′
0
, from which our conclusion τ as τ̂ ⊢ S ℛ Ŝ′

is immediate.

□

Lemma 3.14 (↬m progresses on memory valuexpressions). Let ∆, τ̂ and Ŝ = (Γ ,σ, σ̂, ς, û) (note that

û ∈ �
ValuExprs) such that

∆ ⊨ τ̂ ⊨ ∆, Γ , ς ⊢ σ̂ ⊨ ∆, Γ , ς ⊢ û : τ̂

There exists at least one state Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′, û′) such that ∆ ⊢ Ŝ ↬m Ŝ′.

Proof. Immediate by induction on û. □

Lemma 3.15 (↬ simulates ↩→). Let ∆, Σ, τ, τ̂, S = (Γh,σh, e) and Ŝ = (Γm,σm, σ̂, ς, ê) such that

∆,Σ, τ as τ̂ ⊢ S ℛ Ŝ

From now on, we omit ∆ and Σ from judgments. One of the three following conditions holds:

• Both expressions are in normal form: e = (u : τ as τ̂) and ê ∈ �
Values;

• Ŝ steps and remains bisimilar to S: there exists Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′, ê′) such that Ŝ ↬m Ŝ′ and (τ as τ̂) ⊢
S ℛ Ŝ′;

• both S and Ŝ step and remain bisimilar to each other: there exist S′ = (Γ ′
h

,σ′
h

, e′) and Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′, ê′)
such that S ↩→ S′, Ŝ ↬h Ŝ′ and (τ as τ̂) ⊢ S′ ℛ Ŝ′.

Proof. Let σ = σh ⊔ σm. We proceed by induction on Γm,σ, ς ⊢ e ℛ ê:

Function call: e = ê = f(x). Since f(x) is of type (τ as τ̂), there exist τ′ and τ̂′ such that (x : τ′ as τ̂′) ∈ Γh
and (f : τ′ as τ̂′→ τ as τ̂) ∈ Γh. Let x′ and e′ such that Σ(f) = λx′.e′. We assume that x′ is a unique

symbol. We have

S ↩→HLEFunCall S
′ = (Γ ′h,σ′h, e′) Ŝ ↩→hEFunCall Ŝ

′ = (Γ ′m,σm, σ̂′, ς, e′)

where

Γ ′h = Γh ∪ {(x′ : τ′ as τ̂′)} σ′h = σh ∪ {x′ ↦→ σh(x)} Γ ′m = Γm ∪ {(x′ : τ′ as τ̂′)}

σ̂′ = σ̂ ∪ {x′ ↦→ σ̂(x)}

Using hypotheses on S and Ŝ, we immediately have τ as τ̂ ⊢ S′ ℛ Ŝ′.
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Pattern matching: e = ê = match(x)
{
pi → ei

��
0 ⩽ i < n

}
. Let i ∈ {0, . . . ,n − 1} the smallest branch

such that σh ⊢ pi ▷ σh(x). Since e is well-typed, such a branch always exists. Let τ′ and τ̂′ such

that (x : τ′ as τ̂′) ∈ Γh. According to Theorem 3.2, i is also the first branch that matches σ̂(x) at the

memory level, that is, the smallest i ∈ {0, . . . ,n−1} for which there exists (p′, p̂) ∈ pat2mem(pi, τ̂
′)

such that ς ⊢ p̂ ▶ σ̂(x). We have

S ↩→HLEMatch S′ = (Γh,σh, ei) Ŝ ↩→hEMatch Ŝ′ = (Γm,σm, σ̂, ς, ei)

and τ as τ̂ ⊢ S′ ℛ Ŝ′ is immediate from hypotheses on S and Ŝ.

Let-binding: there exist x, τ′, τ̂′, e0, e′ and ê′ such that

e = let x : τ′ as τ̂′ = e′ in e0 ê = let x : τ′ as τ̂′ = ê′ in e0 Γm,σ, ς ⊢ e′ ℛ ê′

Let S′ = (Γh,σh, e′) and Ŝ′ = (Γm,σm, σ̂, ς, ê′). Since e and ê are well-typed, and using hypotheses

on S and Ŝ, we have τ′ as τ̂′ ⊢ S′ ℛ Ŝ′ and use the induction hypothesis:

• If both bound expressions are in normal form, i.e., e′ = (u′ : τ′ as τ̂′) and ê′ = v̂ ∈ �
Values, then

both expressions go through a let-binding step: we have

S ↩→HLELetBind S0 = (Γ ′h,σ′h, e0) Ŝ ↬hELetBind Ŝ0 = (Γ ′m,σm, σ̂′, ς, e0)

where

Γ ′h = Γh ∪ {(x : τ′ as τ̂′)} σ′h = σh ∪ {x ↦→ u′} Γ ′m = Γm ∪ {(x : τ′ as τ̂′)}

σ̂′ = σ̂ ∪ {x ↦→ v̂}

and τ as τ̂ ⊢ S0 ℛ Ŝ0 is immediate from hypotheses on S and Ŝ.

• If Ŝ′ steps and remains bisimilar to S′, i.e., there exists Ŝ′′ = (Γ ′m,σ′m, σ̂′, ς′, ê′′) such that

Ŝ′ ↬m Ŝ′′ and τ′ as τ̂′ ⊢ S′ ℛ Ŝ′′, then Ŝ goes through the same step using the ESubStep rule

and remains bisimilar to S: we have

Ŝ ↬m Ŝ★ = (Γ ′m,σ′m, σ̂′, ς′, let x : τ′ as τ̂′ = ê′′ in e0)

and τ as τ̂ ⊢ S ℛ Ŝ★ is immediate from hypotheses on S, Ŝ and Ŝ′′.

• If both S′ and Ŝ′ step and remain bisimilar, i.e., there exist a rule label l, S′′ = (Γ ′
h

,σ′
h

, e′′) and

Ŝ′′ = (Γ ′m,σ′m, σ̂′, ς′, ê′′) such that S′ ↩→l S
′′
, Ŝ′ ↬hl Ŝ

′′
and τ′ as τ̂′ ⊢ S′′ ℛ Ŝ′′, then both S and

Ŝ go through the same step using the (HL)ELetStep rule and remain bisimilar: we have

S ↩→l S
★ = (Γ ′h,σ′h, let x : τ′ as τ̂′ = e′′ in e0)

Ŝ ↬hl Ŝ
★ = (Γ ′m,σ′m, σ̂′, ς′, let x : τ′ as τ̂′ = ê′′ in e0)

and τ as τ̂ ⊢ S★ ℛ Ŝ★ is immediate from hypotheses on S, Ŝ, S′′ and Ŝ′′.

Pivot: there exist u, û, τ′ and τ̂′ such that

e = (u : τ′ as τ̂′) ê = û Γm,σ, ς ⊢ û reprs (u : τ′ as τ̂′ ≡ τ̂′.ε)

According to Lemma 3.14, there are two possible cases:

• û is in normal form, i.e., û ∈ �
Values. The first condition holds: e is a pivot and ê is a memory

value.

• There exists Ŝ′ = (Γ ′m,σ′m, σ̂′, ς′, û′) such that Ŝ ↬m Ŝ′. According to Lemma 3.13, since

τ as τ̂ ⊢ S ℛ Ŝ, we have τ as τ̂ ⊢ S ℛ Ŝ′, therefore the second condition holds.
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□

At last, we can state our final branching bisimulation theorem, which formalizes the intuition given

by the diagram shown in Fig. 3.31.

Theorem 3.3 ( ℛ is a branching bisimulation). Let S and Ŝ such that S ℛ Ŝ, we have:

• if S ↩→l S
′
, then there exist Ŝ′ and Ŝ′′ such that Ŝ ↬∗m Ŝ′ ↬hl Ŝ

′′
, S ℛ Ŝ′ and S′ ℛ Ŝ′′;

• if Ŝ ↬m Ŝ′, then S ℛ Ŝ′;

• if Ŝ ↬hl Ŝ
′
, then there exists S′ such that S ↩→l S

′
and S′ ℛ Ŝ′.

Proof. Immediate from Lemma 3.15. □

3.5 Conclusion

In this chapter, we have formalized the Ribbitulus, whose syntax includes a formal version of the user-

visible language presented in Chapter 2 – ADTs and their inhabitants, and memory types – as well

as a model of memory contents. For both high-level and memory-level components of the language,

we defined their semantics through a combination of a typing judgment and a small-step evaluation

judgment. Perhaps most importantly, we formally defined the notion of agreement between high-level

and memory types, and used it to show that high-level and memory semantics of a given program are

always coherent with each other. Although Ribbit currently only supports programs operating on finite

data, the choice of a small-step style to define the semantics of the Ribbitulus independently of program

(non-)termination could potentially allow us to consider infinite values (e.g., streams of data) in the

future. Of course, this would still require a significant extension to some aspects of its core design, and

probably some form of coinductive proofs.

In the next part of this thesis, we provide a formal compilation scheme for the Ribbitulus.
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High-level Memory-level
S
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t
a
x

identifiers

(variables) x ∈ Vars (type variables) t ∈ TyVars

(function symbols) f ∈ FunVars (addresses) a ∈ Addrs

expressions

and

values

e ∈ E ⊆ Exprs Fig. 3.8 ê ∈ Ê ⊆ �Exprs ⊋ �
ValuExprs ∪ Exprs

u ∈ U ⊆ ValuExprs û ∈ Û ⊆ �
ValuExprs ⊊ �Exprs Fig. 3.17

v ∈ V ⊆ Values ⊊ ValuExprs v̂ ∈ V̂ ⊆ �
Values ⊊ �

ValuExprs

(pivot expressions) (u : τ as τ̂) ∈ Exprs ∩ �
ValuExprs

patterns p ∈ P ⊆ Patterns Fig. 3.2 p̂ ∈ P̂ ⊆ �Patterns Fig. 3.18

paths π ∈ Π ⊆ Paths Fig. 3.5 π̂ ∈ Π̂ ⊆ �
Paths Fig. 3.10

types τ ∈ T ⊆ Types Fig. 3.1 τ̂ ∈ T̂ ⊆ �Types Fig. 3.9

(kinds) κ̂ ∈ {Word({0, 1}∗), Block}

E
n
v
s
.

typing ∆ : TyVars→ Types ∪�Types Γ : Vars→ Types ×�Types

value σ : Vars→ ValuExprs σ̂ : Vars→�
Values

other (function definitions) Σ : f ↦→ λx.e (store) ς : Addrs→�
Values

O
p

e
r
a
t
i
o
n

s focusing focus (π, θ) Fig. 3.6
�
focus (π̂, τ̂) ∈ �Types Fig. 3.12�
focusς (π̂, û) ∈ �

ValuExprs Fig. 3.16

specialization τ
/
p ∈ Types Fig. 3.3 τ̂

/
p ⊊ Patterns ×�Types Fig. 3.14

misc. ⊓ : Patterns × Patterns→ Patterns Fig. 3.4 shape_of∆,ς(θ̂) ∈ �Patterns Fig. 3.19

shatter∆(τ̂) ⊊ �
Paths×Paths×�Types Fig. 3.13

T
y
p

i
n

g

Typing and

Validity

∆, Γ ⊢ θ : τ Fig. 3.22

∆, Γ ⊢ e : (τ as τ̂) Fig. 3.23

∆ ⊨ τ̂ Figs. 3.20 and 3.21

∆, Γ , ς ⊢ ê : τ̂ Fig. 3.24

agreement agree∆(τ, τ̂) Definition 3.2

S
e
m

a
n

t
i
c
s

pattern

matching

σ ⊢ p ▷ u Fig. 3.26 ς ⊢ p̂ ▶ v̂ Fig. 3.29

expression

evaluation

Σ ⊢ S ↩→ S′ Fig. 3.25

S = (Γ ,σ, e), normal form iff. e = (u :

τ as τ̂)

∆,Σ ⊢ Ŝ ↬ Ŝ′ Figs. 3.27 and 3.30

Ŝ = (Γ , σ̂, ς, ê), normal form iff. ê ∈ �
Values

Figure 3.34: Index of Ribbitulus notations.
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Part II

Compiling Ribbit
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In the previous part of this thesis, we introduced the Ribbit language and its formalization (the

Ribbitulus). We now focus on compiling this source language to low-level target code which precisely

manipulates memory contents.

A central component of the Ribbitulus is the use of memory types to link high-level values to their

desired memory representation. These custom memory layouts significantly impact the compilation

of two aspects of the source language, namely pattern matching and data constructors with variable

accessors. We will cover their compilation in Chapter 4 and Chapter 5 respectively.

As we will see, the compilation technique we develop in Chapter 4 for pattern matching is also a

key component of our global compilation approach for the full Ribbitulus presented in Chapter 5. As

such, we will wrap our pattern matching compiler in a Destruct interface which will be used both by

the toplevel compilation function Compile and by the specific procedures for data constructors Rebuild

and Seek. The following diagram gives an overview of our global compilation chain:

∆ Σ e τ τ̂

Typed input program

Chapter 3

Chapter 5

Compile

Rebuild

Seek

Destruct

Chapter 4

Output in Destination Passing StyleChapter 5

As shown in the previous diagram, our compilation target is a custom program representation

in Destination-Passing Style, for which we also define a formal execution model. We will prove our

compilation algorithms correct by showing that they emit target code whose behavior is simulated by

the source program’s memory-level semantics.
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Chapter 4

Compilation of Pattern Matching

This chapter covers pattern matching compilation for the ribbit language. Our goal is to compile a list of

high-level patterns to low-level code with equivalent semantics, that is, which inspects a memory value

representing a given high-level value and returns the identifier of the first pattern matching this value.

For instance, consider the ribbit program in Fig. 4.1a, which reuses the Zarith layout from Section 2.2.

type ZarithPair = (Zarith, Zarith);
represented as{{(.0 as Zarith), (.1 as Zarith)}}
fn leq(x: ZarithPair) -> bool {
match x {(Small(_), Small(_)) => ..., // 0(Large(_), Large(_)) => ..., // 1(Small(_), Large(_)) => ..., // 2(Large(_), Small(_)) => ..., // 3}}

(a) Source code

0

1
x.1.[0:1]

1

0

2

3

x.1.[0:1]
1

0

x.0.[0:1]
1

0

(b) Output decision tree

Figure 4.1: Running example: leq comparison function on pairs of Zarith integers.

The leq function operates on pairs of Zarith integers represented as a two-field struct, and determines

which integer in a pair is the largest depending on whether the two individual integers are both “small”

(63-bit), both “large” (128-bit, stored behind a pointer) or a mixed combination. Throughout this chapter,

we will use this program as a running example to illustrate the process through which we emit the low-

level code depicted in Fig. 4.1b. This decision tree consists of leaves carrying a pattern identifier (0, 1, 2

or 3), and of decision nodes akin to C switches inspecting a given location in memory.

More generally, we aim to emit low-level code which is equivalent to a given pattern matching

expression. Perhaps the simplest way to achieve this is to do a linear scan over each patterns, leveraging

the same tools as memory-level pattern matching evaluation from Section 3.3.2.1. For each pattern, it

would test whether it matches the input value, repeating the process until a match is found. The first

step would be to compile each high-level pattern to an equivalent list of memory patterns using pat2mem.

We could then emit low-level code acting as an interpreter for the memory pattern matching judgment▶
for this particular list of memory patterns. While correct (as proven in Theorem 3.2), this naive approach

is very inefficient, as demonstrated by the following example.

Example 4.1 (Naive approach for leq). We model Zarith and ZarithPair, along with their mem-

ory layouts, as the following high-level and memory types (using a 128-bit wide integer to emulate
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GMP::BigInt):

τzarith = Small(I63) | Large(I128) τ2zarith = ⟨τzarith, τzarith⟩

τ̂zarith = split (.[0 : 1])
{

1 from Small(_) ⇒ _64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : (.Small as I63)
0 from Large(_) ⇒ &64

(
(.Large as I128)

)
⋉ [0 : 1] : (0)1

}
τ̂2zarith = {{(.0 as τ̂zarith), (.1 as τ̂zarith)}}

The τ̂zarith memory type encodes small integers directly in a 64-bit word whose lowest bit is set to 1 to

distinguish it from pointers, and boxes large integers into a 64-bit pointer whose lowest bit is set to 0. As

specified in the source program Fig. 4.1a, τ̂2zarith encodes a pair of Zarith integers as a two-field struct.

The leq pattern matching function corresponds to the four following high-level patterns of type

τ2zarith, associated with their respective identifiers 0, 1, 2 and 3:

p0 = ⟨Small(_), Small(_)⟩ p1 =
〈
Small(_), Large(_)

〉
p2 =

〈
Large(_), Small(_)

〉
p3 =

〈
Large(_), Large(_)

〉
Using pat2mem, we get the four following memory patterns, each representing one high-level pattern

according to τ̂2zarith:

p̂0 = {{_64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : _63, _64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : _63}}
p̂1 = {{&64 (_128) ⋉ [0 : 1] : (0)1, _64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : _63}}
p̂2 = {{_64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : _63, &64 (_128) ⋉ [0 : 1] : (0)1}}
p̂3 = {{&64 (_128) ⋉ [0 : 1] : (0)1, &64 (_128) ⋉ [0 : 1] : (0)1}}

In order to match a memory value of type τ̂2zarith against each of these four memory patterns, we

must inspect the tag – that is, the least significant bit, which distinguishes between Small and Large

constructors – of both fields. This potentially adds up to 4 × 2 = 8 computations, as demonstrated by

the following pseudo-code:

1 if (x.0 & 1 == 1 && x.1 & 1 == 1)
2 return 0;
3 else if (x.0 & 1 == 0 && x.1 & 1 == 1)
4 return 1;
5 else if (x.0 & 1 == 1 && x.1 & 1 == 0)
6 return 2;
7 else if (x.0 & 1 == 0 && x.1 & 1 == 0)
8 return 3;
9 else

10 return -1;
This is considerably less efficient than the decision tree shown in Fig. 4.1b, which achieves the same

semantics with only three switch nodes in total, and only two in each possible code path. △

4.1 Problem statement

Following the TMatch typing rule from Fig. 3.23, we model a well-typed pattern matching expression

of type τ in the type variable environment ∆ as a list of N patterns {p0, . . . ,pN−1} such that each pattern

pj is of type τ and every value of type τ is matched by at least one of these patterns. Given a memory

type τ̂ in agreement with τ, our goal is to emit executable code which, given the memory representation

according to τ̂ of a value v of type τ as input, returns the smallest identifier j ∈ {0, . . . ,N − 1} such that

pj matches v.

In our pattern matching compilation approach, we first lower each high-level pattern pj to a list

of memory patterns using pat2mem∆(pj, τ̂). As Example 4.1 shows, matching against each memory

pattern sequentially yields highly redundant code. A more efficient strategy is to emit a decision tree such
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as the one shown in Fig. 4.1b. Each of its switch nodes inspects a given location in memory indicated

by a memory path π̂, while each leaf indicates the identifier j ∈ N of the first high-level pattern which

matches the input value. Previous works on pattern matching compilation provide approaches emitting

compact and efficient decision trees, but do not handle custom memory layouts.

Our approach relies on a bespoke intermediate representation dubbed memory trees to compile

memory patterns to decision trees. We assume patterns are exhaustive and non-redundant. This is

enforced by our typing judgment and can be achieved with well-known techniques (Maranget 2007).

We define memory trees in Section 4.2, then detail our compilation algorithms in Section 4.3 and prove

them correct in Section 4.4. Section 4.5 covers related work on pattern matching compilation.

4.2 Intermediate Representation: Memory Trees

Memory trees are a superset of decision trees. In addition to switches and leaves, they include constructs

which allow us to encode fine notions of dependency which arise from splits in memory types. As we have

seen in Section 3.1, splits are an essential part of the Ribbitulus, allowing us to handle case disjunction

gracefully, even in cases where the discriminant between branches is found in unexpected places.

Therefore, we must enforce throughout our compilation process that we respect split dependencies,

i.e., we always inspect a split’s discriminant location, which distinguishes between different constructors,

before accessing its branches’ contents. For instance, we must check that a memory value is indeed a

pointer by inspecting its tag before dereferencing it.

4.2.1 Syntax

Memory trees, denoted 𝒯 and defined in Fig. 4.2, are our main intermediate representation during pattern

matching compilation. The key idea is to preserve dependencies, yet leave the compiler free to arrange

independent operations in any order. Similar to decision trees, a memory tree can be a leaf (J) where

J is the list of output branch identifiers that accept memory values for which evaluation reaches this

point, or a “decision node” switch(π̂){. . . } which inspects the position π̂ in memory and picks a branch

accordingly. Each branch consists of an immediate c on its left-hand side and of a memory tree on its

right-hand side. As a special case, the last branch may be a default branch denoted _ → 𝒯 , which

catches any memory value whose subterm at position π̂ does not match any previous branch. In the rest

of this chapter, switch nodes with a gray default branch appearing in a definition or statement indicate

that it applies to both kinds of switches (with and without a default branch). A tree can also be a bud

(J as τ̂): a leaf which already carries a set of accepting output identifiers J, but could still be developed

further if needed using the memory type τ̂. Finally, trees can be assembled “in parallel”: 𝒯 ∥ 𝒯 ′ is a tree

where one of 𝒯 and 𝒯 ′ is executed first, and the other second, the order being not yet decided.

J ::= {j0, . . . , jn−1} (list of case identifiers)

𝒯 ::= (J) (leaf with list J of possible outputs)

| (J as τ̂) (fragment bud with subterm layout τ̂ and list J of possible outputs)

| 𝒯0 ∥ . . . ∥ 𝒯n−1 (parallel node with n branches)

| switch(π̂) {c0 → 𝒯0, . . . , cn−1 → 𝒯n−1, _→ 𝒯 ′}
(switch node with n cases and an optional default branch)

Figure 4.2: Memory trees.

Example 4.2 (Intermediate memory tree from Zarith leq compilation). The memory tree 𝒯 = 𝒯l ∥ 𝒯r
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appears during the compilation of the leq function for the τ̂2zarith layout from Fig. 4.1a, where:

𝒯l = switch(.0.[0 : 1])
{

1 → ({0, 2, 3}) ∥ ({0, 2, 3}) ∥ ({0, 2, 3} as I63)
0 → ({1, 3} as I128) ∥ ({1, 3})

}
𝒯r = switch(.1.[0 : 1])

{
1 → ({0, 2, 3}) ∥ ({0, 2, 3}) ∥ ({0, 2, 3} as I63)
0 → ({1, 2} as I128) ∥ ({1, 2})

}
Its graphical representation is:

0, 2 0, 2
i63

0, 2

Par

i128

1, 3
1, 3

Par

switch .0.[0:1]

1 0

0, 3 0, 3
i63

0, 3

Par

i128

1, 2
1, 2

Par

switch .1.[0:1]

1 0

Par

For switch(π̂)
{
ci → 𝒯i

��
1 ⩽ i ⩽ n

}
, the memory path π̂ is at the top of the node and each concrete

value ci labels a branch to its subtree 𝒯i. Buds are depicted in yellow, leaves in green. Empty sets are

not displayed. △

As a shortcut, we define a mapping operation denoted 𝒯 [f] in Fig. 4.3, which substitutes the output

identifier set J in each leaf and bud of the memory tree𝒯 with f(J). For instance, 𝒯 [({j1, . . . , jn}) ↦→ ({j1, . . . , jn, j})]
adds the output identifier j to each leaf in 𝒯 .

(J) [f] = (f(J)) (J as τ̂) [f] = (f(J) as τ̂) 𝒯1 ∥ . . . ∥ 𝒯n [f] = 𝒯1 [f] ∥ . . . ∥ 𝒯n [f]

switch(π̂)


c1 → 𝒯1

. . . → . . .

cn → 𝒯n
_ → 𝒯 ′

 [f] = switch(π̂)


c1 → 𝒯1 [f]
. . . → . . .

cn → 𝒯n [f]
_ → 𝒯 ′ [f]


Figure 4.3: Mapping operation on memory trees.

4.2.2 Semantics

In this section, we define the big-step evaluation of a memory tree 𝒯 on an input consisting of a memory

value v̂ and a store ς. This judgment, denoted ς, v̂ ⊢ 𝒯 ▶▶ J and defined in Fig. 4.4, returns the ordered

set J of identifiers which correspond to patterns matching v̂. For leaves and buds, we simply return the

pattern identifier set J that they carry. In a “Par” node, each subtree corresponds to a different part of

the memory value being inspected; in order to match a specific memory pattern, each of these parts

must match its associated sub-pattern. That is, the set of patterns which match the whole memory value

is the intersection of the sets of patterns which match each of its parts. Finally, we evaluate a switch on

the memory location π̂ by focusing on this position in the memory value being inspected, which must

contain a constant value at this position (ensured by typing); depending on this value, we either take

the case branch associated with this constant (ESwitchCase) or the default branch (ESwitchDef).
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ELeaf

ς, v̂ ⊢ (J) ▶▶ J
EBud

ς, v̂ ⊢ (J as τ̂) ▶▶ J

ESwitchCase�
focusς (π̂, v̂) = (ci)ℓ ς, v̂ ⊢ 𝒯i ▶▶ J

ς, v̂ ⊢ switch(π̂){c0 → 𝒯0, . . . , cn−1 → 𝒯n−1, _→ 𝒯 ′} ▶▶ J

EPar

ς, v̂ ⊢ 𝒯i ▶▶ Ji

ς, v̂ ⊢ 𝒯0 ∥ . . . ∥ 𝒯n−1 ▶▶
⋂

0⩽i<n

Ji

ESwitchDef�
focusς (π̂, v̂) = (c)ℓ c ∉ {c0, . . . , cn−1} ς, v̂ ⊢ 𝒯 ′ ▶▶ J

ς, v̂ ⊢ switch(π̂){c0 → 𝒯0, . . . , cn−1 → 𝒯n−1, _→ 𝒯 ′} ▶▶ J

Figure 4.4: Memory tree evaluation.

Example 4.3 (Evaluation of a memory tree for our running example.). Let 𝒯 = 𝒯l ∥ 𝒯r the memory

tree described in Example 4.2. Consider the following memory value and store, which represent the

high-level value

〈
Small(42), Large(7)

〉
according to τ̂2zarith:

v̂ = {{_64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : (42)63, &64 (a) ⋉ [0 : 1] : (0)1}}
ς = {a ↦→ (7)128}

We evaluate this tree on the input ς, v̂, starting with 𝒯l:

�
focusς (.0.[0 : 1], v̂) = (1)1

ELeaf

ς, v̂ ⊢ ({0, 2, 3}) ▶▶ {0, 2, 3}

EBud

ς, v̂ ⊢ ({0, 2, 3} as I63) ▶▶ {0, 2, 3}
ς, v̂ ⊢ ({0, 2, 3}) ∥ ({0, 2, 3}) ∥ ({0, 2, 3} as I63) ▶▶ {0, 2, 3}

EPar

ς, v̂ ⊢ 𝒯l ▶▶ {0, 2, 3}
ESwitchCase

then 𝒯r:

�
focusς (.1.[0 : 1], v̂) = (0)1

EBud

ς, v̂ ⊢ ({1, 2} as I128) ▶▶ {1, 2}

ELeaf

ς, v̂ ⊢ ({1, 2}) ▶▶ {1, 2}
ς, v̂ ⊢ ({1, 2} as I128) ∥ ({1, 2}) ▶▶ {1, 2}

EPar

ς, v̂ ⊢ 𝒯r ▶▶ {1, 2}
ESwitchCase

and finally 𝒯 , which yields the intersection of the two previous results:

EPar

ς, v̂ ⊢ 𝒯l ▶▶ {0, 2, 3} ς, v̂ ⊢ 𝒯r ▶▶ {1, 2}
ς, v̂ ⊢ 𝒯l ∥ 𝒯r ▶▶ {2}

The final result is the singleton {2}, which expresses that only the third pattern (

〈
Small(_), Large(_)

〉
)

from the initial pattern matching matches the value (

〈
Small(42), Large(7)

〉
) represented by v̂. △

4.3 From Memory Patterns To Memory Trees

We now describe our actual compilation procedure. Given a memory type τ̂, we now consider a list

of branches {p̂i → ji | 0 ⩽ i < n}, each consisting of a memory pattern p̂i of type τ̂ (obtained via

pat2mem) and its output identifier ji. In order to compile it to an equivalent sequential decision tree –

that is, whose evaluation on a memory value of type τ̂ yields the identifiers of all matching memory

patterns – we proceed in three steps:

1. Scaffold (Section 4.3.1) a memory tree template from the memory type τ̂.

2. Weave (Section 4.3.2) each memory pattern onto the current tree.

3. Finalize (Section 4.3.3) the memory tree by sequentializing and optimizing it.
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The detailed compilation process will be illustrated on our running example. The successive memory

trees are depicted graphically in Figs. 4.5 to 4.7.

Zarith

 

Zarith

 

Par

(a) After scaffolding τ̂
2zarith

(first tree for the running example)

  
i63

 

Par

i128

 
 

Par

switch .[0:1]

1 0

(b) After scaffolding τ̂
zarith

(grown during weaving)

Figure 4.5: First compilation step: scaffolding.

0 0
i63

0

Par

i128

 
 

Par

switch .0.[0:1]

1 0

0 0
i63

0

Par

i128

 
 

Par

switch .1.[0:1]

1 0

Par

(a) After weaving the first pattern

0, 2 0, 2
i63

0, 2

Par

i128

1, 3
1, 3

Par

switch .0.[0:1]

1 0

0, 3 0, 3
i63

0, 3

Par

i128

1, 2
1, 2

Par

switch .1.[0:1]

1 0

Par

(b) After weaving all memory patterns

Figure 4.6: Second compilation step for the running example: weaving.
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0, 2 0, 2 0, 2

Par

1, 3 1, 3

Par

switch .0.[0:1]

1 0

0, 3 0, 3 0, 3

Par

1, 2 1, 2

Par

switch .1.[0:1]

1 0

Par

(a) After trimming

0, 2 1, 3

switch .0.[0:1]

1 0

0, 3 1, 2

switch .1.[0:1]

1 0

Par

(b) After pruning

0 2

switch .1.[0:1]

1 0

3 1

switch .1.[0:1]

1 0

switch .0.[0:1]

1 0

(c) After sequentialization (and finalization)

Figure 4.7: Last compilation steps for the running example.

4.3.1 Scaffolding: Memory Type-Specific Tree Templates

Scaffolding builds a memory tree “template” based on a memory type. This memory tree does not yet

contain any actual output branch, since no pattern has been taken into account yet. More precisely,

Scaffold∆(J, π̂, τ̂), defined in Fig. 4.8, creates a memory tree based on the position π̂ (initialized as ε)

in the type τ̂, with J placed at the leaves. Constant and empty word types are directly turned into

leaves, as they do not involve any choice. Fragments (π as τ̂) are turned into buds (J as τ̂), keeping the

type τ̂ available for later expansion by nested patterns. Struct and composite types are all treated as

parallel nodes: indeed, the order in which to explore fields is irrelevant, and will be determined later

on. Splits are turned into switch nodes that inspect their discriminant position; splits with multiple

discriminants become a parallel node containing a switch for each discriminant. Note that, unlike splits,

the discriminant of a switch is absolute, hence the use of π̂.π̂′. Additionally, provenances are not useful

at this stage anymore, and are thus not recorded in the memory tree. Finally, primitive types Iℓ are

represented by a switch on the current position with an initial default branch accepting all values, which

will be used as a simple C-like switch on integers.
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Scaffold∆(J, π̂){
t −→ Scaffold∆(J, π̂,∆(t))
(c)ℓ −→ (J)
_ℓ −→ (J)
Iℓ −→ switch(π̂){_→ (J)}
&ℓ (τ̂) −→ Scaffold∆(J, π̂.∗, τ̂)
τ̂⋉0⩽i<n ri : τ̂i −→ Scaffold∆(J, π̂.¬r0 . . .¬rn−1, τ̂)


0⩽i<n Scaffold∆(J, π̂.ri, τ̂i)

{{τ̂0, . . . , τ̂n−1}} −→ Scaffold∆(J, π̂.0, τ̂0) ∥ . . . ∥ Scaffold∆(J, π̂.(n − 1), τ̂n−1)
(π as τ̂) −→ (J as τ̂)
split (π̂1, . . . , π̂N) {
c1,1, . . . , c1,N from P1 ⇒ τ̂1

. . . from . . . ⇒ . . .

cn,1, . . . , cn,N from Pn ⇒ τ̂n
}

−→


1⩽i⩽N

©«
switch(π̂.π̂i){
c1,i → Scaffold∆(J, π̂, τ̂1)
. . . → . . .

cn,i → Scaffold∆(J, π̂, τ̂n)
}

ª®®®®¬
}

Figure 4.8: Scaffold a memory tree from a memory type, a list of accepted identifiers J and a base

memory location π̂.

Example 4.4 (Scaffolded tree from τ̂2zarith). Recall the memory type τ̂2zarith = {{(.0 as τ̂zarith), (.1 as τ̂zarith)}}
from Fig. 4.1a. We begin with Scaffold(∅, ε, τ̂2zarith). The resulting memory tree is the following, as

depicted in Fig. 4.5a:

𝒯−1 = (∅ as τ̂zarith) ∥ (∅ as τ̂zarith)
The “struct” rule generates a parallel node; its two children are generated from the fragments (.0 as τ̂zarith)
and (.1 as τ̂zarith), which both yield a bud of type τ̂zarith. △

4.3.2 Weaving Patterns Into A Memory Tree

We can now weave each memory pattern onto the previously generated memory tree. For each memory

pattern branch (̂pi → ji), we define 𝒯i = Weave∆(ji, ε, τ̂, p̂i, 𝒯i) until exhaustion of all patterns. The

initial tree 𝒯−1 is the output of the scaffolding phase. Each weaving adds relevant choices and outputs

from the pattern p̂i to the tree. The general form Weave∆(j, π̂, τ̂, p̂, 𝒯 ), defined in Fig. 4.9, takes a memory

pattern p̂ and a tree 𝒯 , along with the current path π̂, memory layout τ̂ and an output identifier j, and

returns a new memory tree. It inspects both pattern and tree, and integrates the latter into the former.

Branch identifiers, leaves and wildcards The general goal of weaving is to add the branch identifier j to

each leaf or bud that is relevant to this pattern. By design of scaffolding, leaves always correspond

to memory types for which no more inspection is necessary (i.e., constant or empty word types);

the WeaveLeaf rule simply adds the output identifier j to the list of accepting branches. Conversely,

wildcard patterns accept all inputs and the WeaveWildcard rule simply adds a wildcard’s output

identifier to every leaf and bud in the tree.

Fragments, buds and tree expansion Fragments and buds enable the memory tree to be expanded as

needed to handle nested patterns. This expansion is only necessary for non-wildcard memory

patterns and handled by the WeaveBud rule, which uses Scaffold to grow a new memory tree in

place, then weaves the subpattern onto this new tree.

Aggregates and parallel nodes The purpose of parallel nodes is to model “aggregate” constructions,

which include structs, composite words and (technically) pointers. In all these cases, the order

in which sub-patterns should be explored is not set in stone, and will be decided during sequen-

tialization (Section 4.3.3) based on heuristics. The WeavePointer rule simply weaves the memory

pattern below the pointer, since a pointer only “aggregates” one field (its pointee). WeaveCom-

posite and WeaveStruct recursively explore every subtree, each corresponding to a struct field or

composite word element. Note how we rely on the fact that the order of the subtrees in unchanged

during the weaving phase.
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WeaveWildcard

Weave∆(j, π̂, τ̂, _ℓ, 𝒯 ) = 𝒯
[
(J) ↦→ (J ∪ {j})
(J as τ̂) ↦→ (J ∪ {j} as τ̂)

] WeaveLeaf

Weave∆(j, π̂, τ̂, p̂, (J)) = (J ∪ {j})

WeaveTyVar

Weave∆(j, π̂, t, p̂, 𝒯 ) = Weave∆(j, π̂,∆(t), p̂, 𝒯 )

WeaveFragment

𝒯 is not a bud

Weave∆(j, π̂, (π as τ̂), p̂, 𝒯 ) = Weave∆(j, π̂, τ̂, p̂, 𝒯 )

WeaveBud

p̂ is not a wildcard pattern

Weave∆(j, π̂, (π as τ̂), p̂, (J as τ̂)) = Weave∆(j, π̂, τ̂, p̂, Scaffold∆(J, π̂, τ̂))

WeavePrimitiveCase

Weave∆

©«
j, π̂, Iℓ, (ci)ℓ, switch(π̂)



c0 → (J0)
. . . → . . .

ci → (Ji)
. . . → . . .

cn−1 → (Jn−1)
_ → (J)



ª®®®®®®®¬
= switch(π̂)



c0 → (J0)
. . . → . . .

ci → (Ji ∪ {j})
. . . → . . .

cn−1 → (Jn−1)
_ → (J)


WeavePrimitiveDefault

c ∉ {c0, . . . , cn−1}

Weave∆

©«j, π̂, Iℓ, (c)ℓ, switch(π̂)


c0 → (J0)
. . . → . . .

cn−1 → (Jn−1)
_ → (J)


ª®®®¬ = switch(π̂)


c0 → (J0)
. . . → . . .

cn−1 → (Jn−1)
c → (J ∪ {j})
_ → (J)


WeavePointer

Weave∆(j, π̂, &ℓ (τ̂) , &ℓ (̂p) , 𝒯 ) = Weave∆(j, π̂.∗, τ̂, p̂, 𝒯 )

WeaveComposite

𝒯 ′ = Weave∆ (j, π̂.¬r0 . . .¬rn−1, τ̂, p̂, 𝒯 ) 𝒯 ′i = Weave∆(j, π̂.ri, τ̂i, p̂i, 𝒯i)

Weave∆

(
j, π̂, τ̂⋉

0⩽i<n

ri : τ̂i, p̂⋉
0⩽i<n

ri : p̂i, 𝒯


0⩽i<n
𝒯i

)
= 𝒯 ′


0⩽i<n

𝒯 ′i

WeaveStruct

𝒯 ′i = Weave∆(j, π̂.i, τ̂i, p̂i, 𝒯i)
Weave∆ (j, π̂, {{τ̂0, . . . , τ̂n−1}} , {{p̂0, . . . , p̂n−1}} , 𝒯0 ∥ . . . ∥ 𝒯n−1) = 𝒯 ′

0
∥ . . . ∥ 𝒯 ′n−1

WeaveSplit

τ̂ = split (π̂0, . . . , π̂N−1)
{
ci,0, . . . , ci,N−1 from Pi ⇒ τ̂i

��
0 ⩽ i < n

}
𝒯sk = switch(π̂.π̂k)

{
ci,k → 𝒯i

��
0 ⩽ i < n

}
𝒯 ′sk = switch(π̂.π̂k)

{
ci,k → 𝒯 ′i

��
0 ⩽ i < n

}
𝒯 ′i =

{
Weave∆(j, π̂, τ̂i, p̂, 𝒯i) if ∀k ∈ {0, . . . ,N − 1}, ci,k = �

focus (π̂k, p̂)
𝒯i otherwise

Weave∆

(
j, π̂, τ̂, p̂,


0⩽k<N

𝒯sk

)
=


0⩽k<N

𝒯 ′sk

Figure 4.9: Weave a memory pattern onto a memory tree.
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Splits, primitive types and switches Switches are decision nodes used to model sum-like constructs

(i.e., splits), as well as a traditional C-like switch on primitive types. For split types, switch nodes

correspond to discriminant locations, which are combined with a “Par” node. The WeaveSplit

rule inspects all of a split’s discriminant values simultaneously, so as to only propagate patterns

to trees corresponding to split branches which are correct types for this pattern.

Primitive types are modelled as a single switch node with a default branch, which captures all

possible primitive values. The memory pattern found at the position inspected by the switch

should be a constant or empty word pattern. Depending on this subpattern and on existing

switch branches, we use one of three possible rules. Wildcard patterns accept all values and

therefore propagate to every switch branch, including the default branch if it exists, using the

WeaveWildcard rule. Constant patterns only accept a specific primitive value, and will only

propagate to a single switch branch. If this constant value is already present as the left-hand-side

of a switch branch, we weave the pattern onto this particular branch with WeavePrimitiveCase.

Otherwise, we must add a new case branch to the switch with WeavePrimitiveDefault. We use

the default switch branch as a base subtree on which to weave the memory pattern; the design of

Scaffold, together with typing of memory patterns, ensures that the default branch always exists

in this situation.

Example 4.5 (Woven tree). We can now weave the four memory patterns from Example 4.1 onto the

scaffolded tree 𝒯−1 from Example 4.4. Let us first weave the memory pattern associated with the first

branch (corresponding to the high-level pattern ⟨Small(_), Small(_)⟩ and to the output identifier 0):

p̂0 = {{p̂Small, p̂Small}}where p̂Small = _64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : _63.

The WeaveStruct rule explores the ‘Par’ node, whose two children correspond to the two fields of

the struct. Let us compute its first child with Weave(0, .0, τ̂2zarith, p̂Small, (∅ as τ̂zarith)). Since p̂Small is not

a wildcard memory pattern, we expand the left bud with WeaveBud, replacing it with the following

memory tree (depicted in Fig. 4.5b):

Scaffold(∅, .0, τ̂zarith) = switch(.0.[0 : 1])
{

0 → Scaffold(∅, .0, &64

(
(.Large as I128)

)
⋉ [0 : 1] : (0)1)

1 → Scaffold(∅, .0, _64 ⋉ [0 : 1] : (1)1 ⋉ [1 : 63] : (.Small as I63))

}
= switch(.0.[0 : 1])

{
0 → (∅ as I128) ∥ (∅)
1 → (∅) ∥ (∅) ∥ (∅ as I63)

}
The split in τ̂z is mirrored by a new switch node, on which we then weave the pattern p̂Small. We

inspect the subpattern at the position inspected by the switch (removing the leading .0 since it is the

position of this subpattern):
�
focus (.[0 : 1], p̂Small) = (1)1. Using the WeaveSplit rule, weaving will only

explore the branch corresponding to the value 1. We then propagate the new identifier 0 to the bud and

two leaves of this subtree, using WeaveComposite, WeaveLeaf and WeaveWildcard rules and yielding

the following tree:

switch(.0.[0 : 1])
{

0 → (∅ as I128) ∥ (∅)
1 → ({0}) ∥ ({0}) ∥ ({0} as I63)

}
We repeat the same process for the second field, which is identical, and finally get the result of

Weave(0, ε, τ̂2zarith, p̂0, 𝒯−1) as depicted in Fig. 4.6a:

𝒯0 =

(
switch(.0.[0 : 1])

{
0 → (∅ as I128) ∥ (∅)
1 → ({0}) ∥ ({0}) ∥ ({0} as I63)

})
∥
(
switch(.1.[0 : 1])

{
0 → (∅ as I128) ∥ (∅)
1 → ({0}) ∥ ({0}) ∥ ({0} as I63)

})
After weaving the three remaining memory patterns on resultant memory trees, we finally obtain
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the following memory tree, which is depicted in Fig. 4.6b:

𝒯3 = 𝒯l ∥ 𝒯r

𝒯l = switch(.0.[0 : 1])
{

1 → ({0, 2}) ∥ ({0, 2}) ∥ ({0, 2} as I63)
0 → ({1, 3} as I128) ∥ ({1, 3})

}
𝒯r = switch(.1.[0 : 1])

{
1 → ({0, 3}) ∥ ({0, 3}) ∥ ({0, 3} as I63)
0 → ({1, 2} as I128) ∥ ({1, 2})

}
At this point, we have integrated all information from memory type and patterns into the memory

tree. As seen in Example 4.3, 𝒯3 already has the desired semantics, that is, its evaluation outputs the

identifiers of patterns which match the input memory value. △

4.3.3 Decision tree finalization

At this stage, we have woven all patterns into the memory tree. Our memory tree is thus “complete”,

in that it contains all information from both memory type and patterns. During weaving, the shape of

the tree must not be changed: indeed, it must remain synchronized with the memory type for memory

patterns to be woven in the right places. Now that weaving is done, however, we can reshape the tree in

arbitrary ways as long as semantics are preserved. The goal of this phase is to simplify the memory tree

to prepare it for sequential code generation. At the end of these simplification passes, we get a decision

tree which corresponds to “switch nest”-style executable code. As a first step, we “trim” the tree by

removing its remaining typing information. We then sequentialize it and keep a single output identifier

for each leaf. At any point after trimming, we can apply various classic optimizations, some of which

are sketched in Section 4.3.4.

Trimming Since we have explored all patterns, the remaining buds will never be expanded, and can

thus be turned into normal leaves. This is done by the following operation:

Trim(𝒯 ) ≜ 𝒯 [(J as τ̂) ↦→ (J)]

From now on, we assume that no buds remain in the tree.

Sequentialization The next, and most important step, is to remove ‘Par’ nodes to fit a sequential

execution model. Seq(𝒯 ), defined in Fig. 4.10 is the sequentialized version of 𝒯 , i.e., a semantically

equivalent tree that does not contain any parallel nodes. Its definition is based on the following

description. When we encounter a parallel node, we first pick a branch i (based on heuristics,

as described in the next section). We then graft the remaining branches onto each leaf of 𝒯i.
Graft

(
𝒯parent, 𝒯child

)
, defined in Fig. 4.10, places 𝒯child at the leaves of 𝒯parent and specializes the

child tree’s leaves by intersecting them with the initial parent leaf. This might result in empty

leaves (indicating unreachable code), which can be removed later. Finally, we sequentialize the

resulting tree. Note that we sequentialize the remaining trees after grafting. Sequentializing

remaining branches before grafting would produce a faster compilation algorithm, but give less

freedom for heuristics to pick an appropriate branch at each grafting point.

Finalization The very last step to obtain an actual decision tree is to remove every output identifier

but the smallest one from each leaf. This reflects the “first pattern wins” semantics of pattern

matching. This is done the following operation:

Finalize(𝒯 ) ≜ 𝒯 [({j1, . . . , jn}) ↦→ ({j1})]

Note that we never encounter empty leaves at this stage, since the typing judgment for high-level

expressions ensures pattern exhaustivity.
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Seq{
(J) −→ (J)
switch(π̂){c0 → 𝒯0, . . . , cn−1 → 𝒯n−1, _→ 𝒯 ′} −→ switch(π̂){c0 → Seq(𝒯0), . . . , cn−1 → Seq(𝒯n−1), _→ Seq(𝒯 ′)}

𝒯0 ∥ . . . ∥ 𝒯n−1 −→ Seq

(
Graft

(
𝒯i,


0⩽i′<n
i′≠i

𝒯i′
))

where i = pick(𝒯0, . . . , 𝒯n−1)

}
Graft

(
𝒯parent, 𝒯child

)
≜ 𝒯parent [(J) ↦→ 𝒯child [(J′) ↦→ (J ∩ J′)]]

Figure 4.10: Sequentialization of memory trees.

Example 4.6 (Running example – Trim and Seq). Figure 4.7a is immediately obtained from Fig. 4.6b by

trimming type information from buds. After this step, some redundancy remains, thus we apply an

easy simplification to obtain Fig. 4.7b. We are now ready to remove parallel nodes. Let us pick the left

branch 𝒯l as the new parent tree and graft the right branch 𝒯r with Graft(𝒯l, 𝒯r). All leaves of 𝒯l are

replaced with a copy of 𝒯r in which leaves’ sets are intersected. For instance, the right child {1, 3} of

𝒯l is replaced with a switch(.1.[0 : 1]) whose leaves are {1, 3} ∩ {0, 2, 3} = {3} and {1, 3} ∩ {1, 2} = {1},
hence Fig. 4.7c. Notice how the semantics of each tree mentioned in this example are unchanged from

𝒯3 obtained after weaving (Example 4.5). △

4.3.4 Optimizations

At this stage, we are able to compile any given pattern matching and memory layout to an equivalent

decision tree. However, this decision tree is possibly inefficient, redundant, or both, as we show next

in Example 4.7. In this section, we describe how to make the output of our compilation procedure as

compact and efficient as possible, by 1) selecting the “best” possible trees during the sequentialization

pass, and 2) applying post-processing optimizations to remove dead code after the fact.

4.3.4.1 Sequentialization heuristics

The first opportunity for optimization in our compilation process arises during sequentialization. In Seq,

we non-deterministically pick one of a “Par” node’s branches to become the parent of all its siblings. As

the following example shows, this choice can dramatically impact the size and efficiency of the resulting

decision tree.

Example 4.7 (Good, bad and ugly decision trees). Consider the following pattern matching in Fig. 4.11

on pairs of Zarith integers, inspired by the list merge example from (Maranget 2008).
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fn has_bigint(p : ZarithPair) -> bool {
match p {(Large(_), _) => 0,(_, Large(_)) => 1,_ => 2}}

(a) Source code

1, 2 0, 1, 2

switch .0.[0:1]

1 0

0, 2 0, 1, 2

switch .1.[0:1]

1 0

Par

(b) Memory tree right before sequentialization

2 1

Switch .1.[0:1]

1 0
0

Switch .0.[0:1]

1 0

(c) Sequentialisation by switching on the field 0 first

2 0

Switch .0.[0:1]

1 0

1 0

Switch .0.[0:1]

1 0

Switch .1.[0:1]

1 0

(d) Sequentialisation by switching on the field 1 first

Figure 4.11: A simple pattern matching, with different sequentialization heuristics.

After scaffolding the memory type, weaving each memory pattern and trimming, we obtain the

memory tree shown in Fig. 4.11b. It contains a single ‘Par’ Node, and there are two ways to sequen-

tialize it depending on whether we pick the switch node on the first or second field to go first. After

sequentialization, finalization and a minor constant folding pass (described later in this section), they

yield the two decision trees shown in Figs. 4.11c and 4.11d. These two decision trees are semantically

equivalent, but do not correspond to the exact same executable code. Indeed, Fig. 4.11c is better than

Fig. 4.11d in two aspects:

• its code size is smaller, since it contains one less switch node;

• it features a “shortcut”: while every path in the second tree goes through two switches, the first

tree reaches a leaf after only one switch when the first Zarith integer is of the form Large(x).

△

While the difference between the two trees in the previous example seems negligible, some larger

programs may benefit from judiciously ordering switch nodes in decision trees, as Scott and Ramsey

(2000) show. While runtime performance seems relatively unaffected, static metrics such as code size are

more significantly impacted for deep enough pattern nesting, and a handful of (sometimes synthetic)

benchmarks are tremendously impacted.

Traditional Heuristics adapted for Memory Trees In our approach, the arrangement of switch nodes

in the final decision tree is determined by a series of choices (between children of a “Par” node) in

the Seq procedure. Such non-deterministic choices between independent subpatterns are common

in all pattern matching compilation approaches. As a result, the problem of deciding the order of

switches in a decision tree has been extensively studied since the eighties (Cardelli 1984; Baudinet
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and MacQueen 1985; Maranget 1992; Scott and Ramsey 2000), yielding a variety of heuristics tailored

to traditional pattern matching compilation approaches. Here, we informally describe the heuristics

presented in (Scott and Ramsey 2000) and how they can be adapted to our setting. Consider a parallel

node 𝒯 = 𝒯0 ∥ . . . ∥ 𝒯n−1 that we want to sequentialize. We assume that each child tree 𝒯i is a switch

node. This is easy to achieve: if there exists i such that 𝒯i is a leaf (Ji), we process it by intersecting all

other children trees’ leaves with Ji; if 𝒯i is itself a parallel node 𝒯 ′
0
∥ . . . ∥ 𝒯 ′

n−1
, we replace it in 𝒯 with

its own children; we recursively apply the two previous transformations on every “Par” node’s children

until fixpoint.

Relevance A switch node is said to be relevant to a given pattern identifier j if it is useful to determine

whether an input value is accepted or rejected by j, that is, if j appears in some of its branches

and not in others. For our approach, a subtree 𝒯i is relevant to j if some of its leaves contain j and

others do not. The relevance heuristic prioritizes trees which are relevant to “early” patterns, that

is, to small identifiers. It assigns the score −ji to each 𝒯i where ji is the smallest pattern identifier

for which 𝒯i is relevant, or −jmax − 1 if it is not relevant to any identifier where jmax is the largest

pattern identifier.

Small defaults Here, the notion of “defaults” of a switch node refers to pattern identifiers for which it

is irrelevant, that is, which appear in every leaf (and therefore act as a “default” for values which

are not matched by other patterns). This heuristic minimizes the number of such patterns by

assigning the score −Ni to each 𝒯i, where Ni is the number of distinct pattern identifiers which

appear in every leaf of 𝒯i.

Fewer child rules This heuristic prioritizes trees which lead to the fewest possible pattern identifiers.

It assigns the score −Ni to each 𝒯i, where Ni is the number of pattern identifiers that appear in at

least one leaf of 𝒯i.

Small/large branching factor The branching factor of a switch node refers to its number of branches,

including its default branch if it exists. The small (resp. large) branching factor heuristic assigns

the score −Ni (resp. −Ni) to each 𝒯i, where Ni is the branching factor of its root switch node.

Arity factor The arity factor of a tree refers to the number of distinct locations that it explores. We

therefore define the arity factor of a leaf to be 0, of a “Par” node to be its number of children, and of

a switch node to be the sum of its branches’ arity factors. This heuristic minimizes the number of

distinct locations to inspect by assigning to each 𝒯i a score equal to the negation of its arity factor.

Leaf edges The leaf edge of a switch node refers to the number of its children that are leaves. This

heuristic prioritizes higher leaf edges by assigning to each 𝒯i a score equal to its leaf edge.

Failure (“artificial rule” in (Scott and Ramsey 2000)) This heuristic prioritizes trees which never lead

to a failure to match any pattern, by assigning the score −1 to every 𝒯i switch node in which at

least one branch is an empty leaf (or, equivalently, a “Par” node having at least one empty leaf

child), and 0 to other subtrees.

Left-to-right/Right-to-left Unlike previous heuristics, which were based on the general shape of each

switch node 𝒯i, these heuristics measure their discriminant paths, which we denote π̂i. While

the precise score assigned to each 𝒯i depends on the exact set of their discriminant paths, both

heuristics prioritize shorter paths by assigning a higher score to 𝒯i than to 𝒯i′ if π̂i is shorter

than π̂i′ . If two of these trees’ discriminant paths share a common prefix π̂ but differ in their last

operation, the left-to-right heuristic prioritizes the leftmost path, while the right-to-left heuristic

prioritizes the rightmost path. For instance, when comparing two subtrees 𝒯i and 𝒯i′ whose

discriminant paths are π̂i = π̂.k and π̂i′ = π̂.k′, if k < k′, then the left-to-right (resp. right-to-left)

heuristic will assign a higher score to π̂i (resp. π̂i′).

Towards Heuristics based on Layouts Previous works on pattern matching compilation consider

high-level pattern matching and assume that a somewhat uniform memory layout is used. In our

setting, we must consider the added complexity of potentially intricate memory layouts. Indeed, the

choice of memory representation may dramatically impact the runtime cost of individual switches. For
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instance, dereferencing a pointer is more costly than arithmetic and bitwise operations on words. Given

the choice between a switch node whose discriminant path contains such costly operations and another

switch with only arithmetic and bitwise operations, it seems better to pick the latter rather than the

former as the first switch in the final decision tree, performance-wise. Indeed, doing so gives us a chance

to get a cheaper path for some memory values.

Furthermore, these heuristics were developed in the 80s-90s. Scott and Ramsey (2000) shows that

for most programs, they do not significantly improve runtime performance. However, metrics such as

data locality and cache performance are now better predictors of overall performance. Heuristics which

have access to memory-level information (for instance, memory paths) may be critical to optimize such

aspects. Some initial informal experiments with Ribbit suggest that they are indeed useful.

Here, we briefly explore how precise memory layout specifications could be leveraged to offer more

information regarding which switch may lead to a better decision tree. In the same vein as the left-

to-right and right-to-left heuristics described earlier, we can measure each switch node’s discriminant

path and prioritize those with “cheaper” memory paths. As a first approximation of a memory path’s

“cost”, we can use its total number of pointer dereferences. This crude metric could be refined by

prioritizing switches on recently accessed locations and not counting the cost of already-accessed pointer

dereferences. This would require keeping track of accessed memory paths, which is easy to add to our

Seq procedure (for instance by propagating a list Π̂ across recursive calls).

Note that in traditional pattern compilation approaches, non-deterministic choices between disjoint

patterns are made throughout the compilation process, whereas we perform a single sequentialization

pass (Seq) after all patterns have already been woven into the memory tree. As a result, metrics such

as code size or average execution path length/cost are already available during sequentialization. This

makes it possible to directly measure each subtree and choose the “best” one based on these metrics, at

the expense of exponential space requirements. Some initial informal experiments with Ribbit suggest

that aggressive hash-consing makes comparing trees directly a viable, albeit slow solution with results

similar to heuristic-based sequentialization.

4.3.4.2 Elective surgeries

Optimizations on decision trees from literature can be used at any point after trimming. Sequentializa-

tion, in particular, might introduce redundant tests or create unreachable branches. Two optimizations

are particularly relevant. Constant folding propagates information from switches, such as “position π̂
contains value c”, and uses it to remove redundant switches. Dead branch elimination removes branches

that lead to empty leaves (i.e., (∅)).
Throughout the compilation process, we may also use sharing to reduce space requirements, meaning

we manipulate Directed Acyclic Graphs rather than trees. In the Ribbit compiler, we achieve this through

hash-consing (see Chapter 6 for more details).

Example 4.8 (Optimizations and sharing for memory trees/DAGs). Consider the following memory

layout, which wraps pairs of Zarith integers in a pointer whose two lower bits are reclaimed as a tag,

which lets us determine the composition of a pair (e.g., two small integers) without having to dereference

it.

&64 (τ̂2zarith) ⋉ [0 : 2] : split (ε)


0 from ⟨Small(_), Small(_)⟩ ⇒ (0)2
1 from

〈
Large(_), Large(_)

〉
⇒ (1)2

2 from

〈
Small(_), Large(_)

〉
⇒ (2)2

3 from

〈
Large(_), Small(_)

〉
⇒ (3)2


This memory type is redundant by design, leading to empty leaves after sequentialization. After

scaffolding it and weaving the memory patterns corresponding to leq onto it, we get the following

memory tree:
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0, 2

Par

1, 3

Par

switch .0.[0:1]

1 0

0, 3

Par

1, 2

Par

switch .1.[0:1]

1 0

Par

Par

switch .[0:2]

0 1 2 3

0 1 2 3

As mentioned in Section 4.3.4.1, before sequentializing this tree, we collapse its nested parallel nodes

and remove those whose children are all leaves:

0, 2 1, 3

switch .0.[0:1]

1 0

0, 3 1, 2

switch .1.[0:1]

1 0

Par

switch .[0:2]

0 1 2 3

0 1 2 3

Let us now select the “tag” switch (discriminant path .[0 : 2]) as the root node and graft the rest of

the tree to its leaves. We get the following tree, which contains an empty leaf shown in red.
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switch .0.[0:1]

1 0

 0

switch .1.[0:1]

1 0

switch .0.[0:1]

1 0

1

switch .1.[0:1]

1 0

switch .0.[0:1]

1 0

2

switch .1.[0:1]

1 0

switch .0.[0:1]

1 0

3

switch .1.[0:1]

1 0

switch .[0:2]

0 1 2 3

Par Par Par Par

Before attempting to sequentialize the remaining parallel nodes, we can simplify this tree by pruning

all “dead paths” (shown in red) which lead to the empty leaf.

switch .0.[0:1]

1

0

switch .1.[0:1]

1

switch .0.[0:1]

0

1

switch .1.[0:1]

0

switch .0.[0:1]

1

2

switch .1.[0:1]

0

switch .0.[0:1]

0

3

switch .1.[0:1]

1

switch .[0:2]

0 1 2 3

Par Par Par Par

The resulting tree consists of a root switch node with four branches in which every path leads to

the same leaf. We can therefore simplify it by collapsing each branch into a single leaf, yielding the

following decision tree:

switch .[0:2]

0 1 2 3

0 1 2 3

△
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4.4 Metatheory

We now state and prove the soundness of pattern matching compilation, using the memory-level pattern

matching judgment ▶ as a bridge between high-level pattern matching ▷ and memory tree evaluation

▶▶. We have already proven in Theorem 3.2 that high-level and memory-level pattern matching (using

pat2mem with an adequate layout to get memory patterns) are equivalent. The main result of this

section is Theorem 4.1, which states that the semantics of the decision tree emitted by our compilation

procedure is equivalent to memory-level pattern matching with its input memory patterns.

4.4.1 Tree typing

We restore typing information discarded by our compilation scheme using a separate tree typing judg-

ment denoted ∆, π̂ ⊢ 𝒯 : τ̂ and defined in Fig. 4.12. It ensures that the structure of 𝒯 reflects that of

the considered memory type τ̂ when its switch nodes’ discriminant paths are prefixed with the current

memory path relative to the root memory type π̂.

TreeTTTyVar

(t ↦→ τ̂) ∈ dom (∆) ∆, π̂ ⊢ 𝒯 : τ̂

∆, π̂ ⊢ 𝒯 : t

TreeTLeafWord

∆, π̂ ⊢ (J) : _ℓ

TreeTLeafConstant

∆, π̂ ⊢ (J) : (c)ℓ

TreeTSwitchInt

∆, π̂ ⊢ switch(π̂)


c0 → (J0)
. . . → . . .

cn−1 → (Jn−1)
_ → (J′)

 : Iℓ

TreeTPointer

∆, π̂.∗ ⊢ 𝒯 : τ̂

∆, π̂ ⊢ 𝒯 : &ℓ (τ̂)

TreeTParComposite

∆, π̂.¬r0 . . . rn−1 ⊢ 𝒯 : τ̂ ∆, π̂.ri ⊢ 𝒯i : τ̂i

∆, π̂ ⊢ 𝒯


0⩽i<n
𝒯i : τ̂⋉

0⩽i<n

ri : τ̂i

TreeTParStruct

∆, π̂.i ⊢ 𝒯i : τ̂i

∆, π̂ ⊢ 𝒯0 ∥ . . . ∥ 𝒯n−1 : {{τ̂0, . . . , τ̂n−1}}

TreeTBudFragment

∆, π̂ ⊢ (J as τ̂) : (π as τ̂)
TreeTGrownFragment

∆, π̂ ⊢ 𝒯 : τ̂

∆, π̂ ⊢ 𝒯 : (π as τ̂)

TreeTSwitchSplit

∆, π̂ ⊢ 𝒯i : τ̂i

∆, π̂ ⊢


0⩽k<N

(
switch(π̂.π̂k)

{
ck,i → 𝒯i

��
0 ⩽ i < n

})
: split (π̂0, . . . , π̂N−1)

{
c0,i, . . . , cN−1,i from Pi ⇒ τ̂i

��
0 ⩽ i < n

}
Figure 4.12: Typing judgment for memory trees.

Example 4.9 (Tree typing). Consider the following memory tree from Fig. 4.11b:
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1, 2 0, 1, 2

switch .0.[0:1]

1 0

0, 2 0, 1, 2

switch .1.[0:1]

1 0

Par

We show that it is of type τ̂2zarith with an empty root path:

TreeTParStruct

TreeTGrownFragment

TreeTSwitchSplit

TreeTLeafConstant

.0 ⊢ ({1, 2}) : (1)1

TreeTLeafConstant

.0 ⊢ ({0, 1, 2}) : (0)1

.0 ⊢

switch(.0.[0 : 1]){
1 → ({1, 2})
0 → ({0, 1, 2})
}

: τ̂zarith

.0 ⊢

switch(.0.[0 : 1]){
1 → ({1, 2})
0 → ({0, 1, 2})
}

: (.0 as τ̂zarith)

TreeTLeafConstant

.0 ⊢ ({0, 2}) : (1)1

TreeTLeafConstant

.0 ⊢ ({0, 1, 2}) : (0)1

.1 ⊢

switch(.1.[0 : 1]){
1 → ({0, 2})
0 → ({0, 1, 2})
}

: τ̂zarith

.1 ⊢

switch(.1.[0 : 1]){
1 → ({0, 2})
0 → ({0, 1, 2})
}

: (.1 as τ̂zarith)

ε ⊢
©«
switch(.0.[0 : 1]){

1 → ({1, 2})
0 → ({0, 1, 2})
}

ª®®®®¬
∥
©«
switch(.1.[0 : 1]){

1 → ({0, 2})
0 → ({0, 1, 2})
}

ª®®®®¬
: τ̂2zarith

△

4.4.2 Pattern matching compilation correctness

We now state and prove that each of our compilation steps produces a memory tree (i.e., “progresses”)

and preserves memory tree typing as well as correct pattern identifiers. As a first result, we show that

scaffolding yields a well-typed tree whose evaluation on any well-typed memory value yields the initial

identifier set.

Lemma 4.1 (Scaffold correctness). Let ∆, ς, J, π̂, τ̂ and v̂ such that

⊨ ∆ ⊢ τ̂ ∆, ς ⊢ v̂ : τ̂ �
focusς (π̂, v̂) is defined

There exists a memory tree 𝒯 such that

Scaffold∆(J, π̂, τ̂) = 𝒯 ∆, π̂ ⊢ 𝒯 : τ̂ ς, v̂ ⊢ 𝒯 ▶▶ J

104



Proof. Immediate by induction on τ̂. □

We then prove the correctness of our weaving step. In addition to progress and preservation of

tree typing, we show that all pattern identifiers already present in the memory tree are preserved by

weaving, and that memory values matched by the woven pattern reach its identifier in tree evaluation.

We first extend the typing judgment for memory patterns so as to accept any memory pattern generated

by pat2mem(p, τ̂) as a member of the type τ̂. Indeed, when the high-level pattern p is a wildcard _,

pat2mem emits a wildcard _|τ̂| which is not typed as τ̂ by the memory typing judgment in its current

state. A naive solution would be to add a typing rule accepting all appropriately-sized wildcards (i.e.,

⊢ _|τ̂| : τ̂ for every τ̂). However, such a rule would also accept memory patterns which are unsuitable

for our purposes – for instance, a memory value of a split type in which all discriminants have been

replaced with wildcards, rendering its provenance undistinguishable.

Instead, we follow a finer characterization of memory patterns produced by pat2mem for a given τ̂. It

is very similar to the existing memory-level typing judgment, but also allows wildcard memory patterns

to occur at toplevel and at fragments, which are exactly the positions where a high-level wildcard pattern

may be encountered. We handle the former manually through a separate precondition in Lemma 4.2,

and the latter by adding the following rule to the typing judgment for memory patterns:

MemTWildcard

∆ ⊢ _|τ̂| : (π as τ̂)
Lemma 4.2 (Weave correctness). Let ∆, ς, J, π̂, τ̂, v̂★, v̂, p̂, j ∉ J and 𝒯 such that

⊨ ∆ ⊢ τ̂ ∆, ς ⊢ v̂ : τ̂ �
focusς (π̂, v̂★) = v̂ ∆ ⊢ p̂ : τ̂ ∨ p̂ = _|τ̂| ∆, π̂ ⊢ 𝒯 : τ̂ ς, v̂★ ⊢ 𝒯 ▶▶ J

There exists a memory tree 𝒯 ′ such that

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = 𝒯 ′ ∆, π̂ ⊢ 𝒯 ′ : τ̂ ς, v̂★ ⊢ 𝒯 ′ ▶▶
{
J ∪ {j} if ς ⊢ p̂ ▶ v̂

J otherwise

Proof. If p̂ is a wildcard pattern _|τ̂|, the WeaveWildcard rule applies:

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = 𝒯
[
(J) ↦→ (J ∪ {j})
(J as τ̂′) ↦→ (J ∪ {j} as τ̂′)

]
Let 𝒯 ′ this woven tree. We always have

ς ⊢ p̂ ▶ v̂ ς, v̂★ ⊢ 𝒯 ′ ▶▶ J ∪ {j}
Otherwise, we proceed by induction on τ̂, using tree and memory typing to synchronize p̂, v̂ and 𝒯

with τ̂. Most cases are immediate; here, we only detail four of them.

Primitive type: τ̂ = Iℓ. We have

p̂ = (c)ℓ v̂ = (c′)ℓ ς ⊢ p̂ ▶ v̂ ⇐⇒ c = c′ 𝒯 = switch(π̂)


c0 → (J0)
. . . → . . .

cn−1 → (Jn−1)
_ → (J′)


J =

{
Ji if ∃i′ ∈ {0, . . . ,n − 1}, c′ = ci′

J′ otherwise

• If there exists i ∈ {0, . . . ,n− 1} such that c = ci, the SwitchOldConst and Leaf weaving rules

apply:

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = switch(π̂)



c0 → (J0)
. . . → . . .

ci → (Ji ∪ {j})
. . . → . . .

cn−1 → (Jn−1)
_ → (J′)
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Let 𝒯 ′ this woven tree. If p̂matches v̂, that is, if c′ = ci, we have J = Ji and ς, v̂★ ⊢ 𝒯 ′ ▶▶ Ji∪{j}.
Otherwise, tree evaluation selects another branch and we have ς, v̂★ ⊢ 𝒯 ′ ▶▶ J.

• Otherwise, the SwitchNewConst and Leaf weaving rules apply:

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = switch(π̂)


c0 → (J0)
. . . → . . .

cn−1 → (Jn−1)
c → (J′ ∪ {j})
_ → (J′)


Let 𝒯 ′ this woven tree. If p̂matches v̂, that is, if c′ = c, we have J = J′ and ς, v̂★ ⊢ 𝒯 ′ ▶▶ J′∪{j}.
Otherwise, tree evaluation selects another branch and we have ς, v̂★ ⊢ 𝒯 ′ ▶▶ J.

Fragment type: τ̂ = (π as τ̂′). We have ∆ ⊢ p̂ : τ̂′ and ∆, ς ⊢ v̂ : τ̂′. Suppose that the results holds for τ̂′.
There are two possible cases for 𝒯 :

TreeTBudFragment: 𝒯 is a bud (J as τ̂′). Since p̂ is not a wildcard memory pattern, we expand

the bud during weaving with the BudExpand rule:

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = Weave∆(j, π̂, τ̂′, p̂, 𝒯s)

where

𝒯s = Scaffold∆(J, π̂, τ̂′)
From Lemma 4.1, we have

∆, π̂ ⊢ 𝒯s : τ̂′ ς, v̂★ ⊢ 𝒯s ▶▶ J

and we conclude using the induction hypothesis.

TreeTGrownFragment: we have ∆, π̂ ⊢ 𝒯 : τ̂′ and conclude using the induction hypothesis.

Struct type. Without loss of generality, we only consider two-field structs: τ̂ = {{τ̂0, τ̂1}}. We have

p̂ = {{p̂0, p̂1}} ∆ ⊢ p̂0 : τ̂0 ∆ ⊢ p̂1 : τ̂1 v̂ = {{̂v0, v̂1}} ∆, ς ⊢ v̂0 : τ̂0 ∆, ς ⊢ v̂1 : τ̂1

ς ⊢ p̂ ▶ v̂ ⇐⇒ ς ⊢ p̂0 ▶ v̂0 ∧ ς ⊢ p̂1 ▶ v̂1 𝒯 = 𝒯0 ∥ 𝒯1 ∆, π̂.0 ⊢ 𝒯0 : τ̂0 ∆, π̂.1 ⊢ 𝒯1 : τ̂1

ς, v̂★ ⊢ 𝒯0 ▶▶ J0 ς, v̂★ ⊢ 𝒯1 ▶▶ J1 J = J0 ∩ J1

Suppose that the result holds for τ̂0 and τ̂1. The ParStruct weaving rule applies:

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = Weave∆(j, π̂.0, τ̂0, p̂0, 𝒯0) ∥Weave∆(j, π̂.1, τ̂1, p̂1, 𝒯1)

For both fields k ∈ {0, 1}, let 𝒯 ′
k
= Weave∆(j, π̂.k, τ̂k, p̂k, 𝒯k). From our induction hypotheses, we

have

ς, v̂★ ⊢ 𝒯 ′k ▶▶

{
Jk ∪ {j} if ς ⊢ p̂k ▶ v̂k

Jk otherwise

and therefore

ς, v̂★ ⊢ 𝒯 ′
0
∥ 𝒯 ′

1
▶▶

{
(J0 ∩ J1) ∪ {j} if ς ⊢ p̂ ▶ v̂

J0 ∩ J1 otherwise

The same reasoning applies to composite word types.

Split type. Without loss of generality, we only consider splits with two discriminant positions:

τ̂ = split (π̂0, π̂1)
{
c0,i, c1,i from Pi ⇒ τ̂i

��
0 ⩽ i < n

}

106



We have 𝒯 = 𝒯s0 ∥ 𝒯s1 where for both k ∈ {0, 1},

𝒯sk = switch(π̂.π̂k)


ck,0 → 𝒯0

. . . → . . .

ck,n−1 → 𝒯n−1


with ∆, π̂ ⊢ 𝒯i : τ̂i for each i ∈ {0, . . . ,n − 1} (the 𝒯i are the same in 𝒯s0 and 𝒯s1). Suppose that the

result holds for every τ̂i. Since p̂ is of type τ̂, there exists a unique branch i ∈ {0, . . . ,n − 1} such

that

∆ ⊢ p̂ : τ̂i �
focusς (π̂0, p̂) = (c0,i)ℓ �

focusς (π̂1, p̂) = (c1,i)ℓ
(from MemTSplit and VSplit rules). Similarly, since v̂ is of type τ̂, there exists a unique branch

i′ ∈ {0, . . . ,n − 1} such that

∆, ς ⊢ v̂ : τ̂i′ �
focusς (π̂0, v̂) = (c0,i′)ℓ �

focusς (π̂1, v̂) = (c1,i′)ℓ ς, v̂★ ⊢ 𝒯i′ ▶▶ J

The WeaveSplit rule applies: we have

Weave∆(j, π̂, τ̂, p̂, 𝒯 ) = 𝒯 ′s0
∥ 𝒯 ′s1

where

𝒯 ′sk = switch(π̂.π̂k)


ck,0 → 𝒯0

. . . → . . .

ck,i → Weave∆(j, π̂, τ̂i, p̂, 𝒯i)
. . . → . . .

ck,n−1 → 𝒯n−1


• If i = i′, we have

ς, v̂★ ⊢ 𝒯 ′sk ▶▶ J′

with J′ such that

ς, v̂★ ⊢Weave∆(j, π̂, τ̂i, p̂, 𝒯i) ▶▶ J′

and we conclude using our induction hypothesis on τ̂i.

• Otherwise, p̂ does not match v̂ as they contain distinct constants in at least one discriminant

position, and since 𝒯i′ is unchanged in the woven tree for all i′ ≠ i, we have

ς, v̂★ ⊢ 𝒯 ′sk ▶▶ J

□

For all subsequent operations, we only need to show that the result of tree evaluation for any well-

typed memory value is preserved at each step (typing becomes unnecessary at this stage, and progress is

immediate). This is immediate for Trim (the semantics of a bud and of a leaf with the same set of pattern

identifiers are exactly the same). We now prove that sequentialization never alters tree semantics:

Lemma 4.3 (Seq correctness). Let 𝒯 , ς, v̂ and J such that

ς, v̂ ⊢ 𝒯 ▶▶ J

We have

ς, v̂ ⊢ Seq(𝒯 ) ▶▶ J

Proof. We first prove the correctness of Graft, i.e., given a “parent” tree 𝒯p and a “child” tree 𝒯c such

that

ς, v̂ ⊢ 𝒯p ▶▶ Jp ς, v̂ ⊢ 𝒯c ▶▶ Jc

we have

ς, v̂ ⊢ Graft(𝒯p, 𝒯c) ▶▶ Jp ∩ Jc

This is immediate by induction on 𝒯p. The result on Seq is then immediate by induction on 𝒯 . □
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We can finally prove our whole compilation approach correct:

Theorem 4.1. Let ∆, τ̂, ς, v̂, {p̂0, . . . , p̂n−1} and J ⊆ {0, . . . ,n − 1} such that:

⊨ ∆ ⊢ τ̂ ∆ ⊢ p̂j : τ̂ ∆, ς ⊢ v̂ : τ̂ J =
{
j
��
0 ⩽ j < n ∧ ς ⊢ p̂j ▶ v̂

}
We define the following memory trees according to our compilation algorithm:

𝒯−1 = Scaffold∆(∅, ε, τ̂) 𝒯j = Weave∆(j, ε, τ̂, p̂j, 𝒯j−1) 𝒯n = Seq(Trim(𝒯n−1))

We have

ς, v̂ ⊢ 𝒯n ▶▶ J

Proof. Immediate from Lemmas 4.1 to 4.3. □

4.5 Related work

The problem of compiling pattern matching has been studied since the eighties, starting with Cardelli

(1984) and Augustsson (1985). Since then, several approaches have been proposed to compile high-level

patterns to efficient decision trees (or other representations such as backtracking automata). However,

these existing approaches do not handle custom memory layouts and are geared towards uniform

memory representations which closely follow the shape of high-level terms. Such memory layouts

are typically found in garbage-collected functional programming languages, which are where pattern

matching was originally available (see for instance the OCaml runtime representation, which we present

in Section 2.6.1). Adapting existing approaches to our setting is non-trivial: indeed, our memory types

(more precisely, the split construct) introduce dependencies between memory locations (for instance,

a value behind a pointer may “depend on” this pointer’s tag) which do not mesh well with most

state-of-the-art compilation approaches.

• Our memory trees are inspired by AND-OR trees, which are used to compile pattern matching in

Standard ML of New Jersey (MacQueen 2022; Aitken 1992). Similar to memory trees, AND-OR

trees consist of leaves, AND nodes representing products (analogous to “Par” nodes) and OR

nodes representing a choice between constructors of a sum type (analogous to switch nodes). The

procedure for building an AND-OR tree encoding a given match and emitting a decision tree

from it is informally described in an obscure research report (Aitken 1992). MacQueen (2022)

mentions representing the “concrete shell” of a type, as well as each pattern, as AND-OR trees,

then “overlaying” each pattern tree successively onto the type tree, which seems similar to our

Scaffold and Weave procedures. Unfortunately, no more details have been published.

• The most seasoned approach to pattern matching compilation (Cardelli 1984; Augustsson 1985;

Maranget 2008) uses pattern matrices where each row corresponds to a possible pattern and each

column to a subterm of these patterns. Therefore, each row can be seen as encoding a conjunction

between multiple parts of a given pattern (akin to our “Par” nodes) and each column as encoding

a disjunction between different patterns (akin to our switch nodes). The procedure for building a

decision tree from a pattern matrix starts with non-deterministically picking a column to inspect.

A switch node corresponding to this column’s path is then emitted, and its branches are built by

recursively compiling the same matrix specialized for each branch. Other representations of high-

level patterns for this approach include simple lists of patterns (Baudinet and MacQueen 1985) and

sets of subpatterns dubbed unmatched frontiers (Scott and Ramsey 2000). This approach is effective

in general, but encodes dependencies poorly: adding information such as “column i must be

inspected before accessing column column j” to pattern matrices would be rather unwieldy. This

is also a problem for pattern matching on GADTs and dependent types. The solution used in the

OCaml compiler, for instance, is to force the order of columns to also encode the dependencies,

thus preventing optimizations.

As detailed in Section 4.3.4.1, various heuristics have been developed to pick columns yielding

compact and efficient decision trees (Baudinet and MacQueen 1985; Cardelli 1984; Maranget 1992;

Aitken 1992; Sestoft 1996). Scott and Ramsey (2000) provides an experimental evaluation of these
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heuristics, and shows that their usefulness is rather limited. Maranget (2008) introduces a notion

of necessity and uses it to define new heuristics. Kosarev, Lozov, and Boulytchev (2020) explore a

different optimization technique by encoding the choice of optimal decision tree into a relational

synthesis problem, and solving through miniKanren. Their idea is very promising, but fails to

scale to big matches.

• Other matrix-based approaches for strict languages produce backtracking automata, which are usu-

ally less efficient (since a location/subterm may be inspected multiple times) but more compact

than decision trees (Fessant and Maranget 2001), or (acyclic) deterministic finite automata (Pet-

tersson 1992). Another approach consists in partially evaluating a naive match evaluator for a given

list of patterns, then optimizing the resulting program to get a decision tree (Sestoft 1996).

• Pattern matching compilation for lazy languages may use similar techniques (mainly matrix-based)

as for strict languages, but is more complex since the semantics chosen for pattern matching is

not fixed and affects program termination. Early approaches solve this problem by fixing a

left-to-right order of evaluation (Augustsson 1985; Philip Wadler 1987). Laville (1991) defines

an alternative semantics based on partial terms. This more flexible semantics forms the basis

of later approaches (Puel and Suárez 1993; Maranget 1992; Maranget 1994; Sekar, Ramesh, and

Ramakrishnan 1995), in which some heuristics are applicable.

4.6 Conclusion

In this chapter, we described how to compile pattern matching, which is a key component of the Ribbit

language (and more generally of programs working with ADTs) to efficient decision trees.

However, pattern matching in most languages (and in the Ribbit DSL presented in Chapter 2) is

richer than the simplified model handled by our compilation procedure. A crucial missing feature is the

ability to use patterns to bind parts of the matched value to variable symbols, in addition to recognizing

its shape.

Indeed, this chapter only covered the compilation of a small fragment of the Ribbit language to

a simplified target representation (decision trees). In the next chapter, we will provide a detailed

compilation approach for the full expression language of the Ribbitulus. To this end, we will define

a lower-level and more expressive target representation superseding decision trees, which handles

memory allocation, reads and writes on multiple independent memory locations.

The procedures introduced in this chapter are a crucial component of our full compilation approach.

Indeed, in addition to pattern matching compilation, our memory tree-based approach is able to emit

code which retrieves the provenance of any high-level value solely from its memory representation

following a given (possibly heavily mangled) memory layout. As we will see in the next chapter, this is

frequently necessary throughout expression compilation: subterm accessors require us to dynamically

determine another value’s precise high-level provenance.
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Chapter 5

Compilation of Valuexpressions

The previous chapter solved the problem of pattern matching compilation with custom memory layouts.

We now consider the remaining constructs of the Ribbit language. The most problematic are pivot

expressions, which combine data constructors and variable accessors with arbitrary memory layouts.

Constructors and accessors are simple operations when the underlying memory layout is somewhat

similar to high-level values. However, in the context of Ribbit, this is not the case in general: we allow

users to specify an arbitrary memory layout for each value. In particular, a pivot expression (u : τ as τ̂)
specifies a memory layout for each variable appearing inu, which may be very different from the existing

memory representation of this value. In other words, pivot expressions may introduce implicit data

casts between different memory layouts!

In this chapter, we provide a compilation approach for pivot expressions which handles such arbitrary

combinations of memory types. We supersede the decision trees defined in the previous chapter

with a new target representation in Destination-Passing Style and a finer memory model supporting

multiple memory locations as well as explicit allocation, reads and writes. We then combine this new

approach with the pattern matching compilation scheme described in the previous chapter into a single

compilation procedure which covers the full Ribbit language.

5.1 Motivating Examples

Before formally describing our compilation approach, let us illustrate the problems it solves on several

examples. In this chapter, we will use the RISC-V instruction model presented in Section 2.5 and

the packed list layout presented in Section 2.4 as running examples to illustrate different parts of our

compilation scheme.

Example 5.1 (High-level and memory types for RISC-V instructions.). Recall the Reg and Instr ADTs

and memory layouts presented in Section 2.5, which model a subset of the RISC-V instruction set

consisting of four instructions: Add (addition of two register operands), Addi (addition of a register and

an immediate), Jal (unconditional jump-and-link) and Sw (store a 32-bit word in memory). We model

registers as a simple enumeration of the 32 possible registers X0 to X31, encoded similarly to a C enum

on 5 bits:

τreg = X0 | · · · | X31 τ̂reg = split (ε)
{
i from Xi ⇒ (i)5

��
0 ⩽ i < 32

}
For our particular instruction subset, each of the four possible constructors can be identified using only

its opcode stored in the 7 lowest bits of a 32-bit instruction. The Ribbitulus model for these four RISC-V
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instructions corresponds to the following high-level and memory types:

τriscv = Add(
〈
τreg, τreg, τreg

〉
)

| Addi(
〈
τreg, τreg, I12

〉
)

| Jal(
〈
τreg, I20

〉
)

| Sw(
〈
τreg, τreg, I12

〉
)

τ̂riscv = split (.[0 : 7])


0x33 from Add(_) ⇒ τ̂Add0x13 from Addi(_) ⇒ τ̂Addi0x6f from Jal(_) ⇒ τ̂Jal0x23 from Sw(_) ⇒ τ̂Sw


τ̂Add = _32 ⋉ [0 : 7] : (0x33)7

⋉ [7 : 5] : (.Add.0 as τ̂reg)
⋉ [12 : 3] : (0)3
⋉ [15 : 5] : (.Add.1 as τ̂reg)
⋉ [20 : 5] : (.Add.2 as τ̂reg)
⋉ [25 : 7] : (0)7

τ̂Addi = _32 ⋉ [0 : 7] : (0x13)7
⋉ [7 : 5] : (.Addi.0 as τ̂reg)
⋉ [12 : 3] : (0)3
⋉ [15 : 5] : (.Addi.1 as τ̂reg)
⋉ [20 : 12] : (.Addi.2 as I12)

τ̂Jal = _32 ⋉ [0 : 7] : (0x6f)7
⋉ [7 : 5] : (.Jal.0 as τ̂reg)
⋉ [12 : 7] : (.Jal.1.[11 : 7] as I7)
⋉ [20 : 1] : (.Jal.1.[10 : 1] as I1)
⋉ [21 : 10] : (.Jal.1.[0 : 10] as I10)
⋉ [31 : 1] : (.Jal.1.[19 : 1] as I1)

τ̂Sw = _32 ⋉ [0 : 7] : (0x23)7
⋉ [7 : 5] : (.Sw.2.[0 : 5] as I5)
⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (.Sw.0 as τ̂reg)
⋉ [20 : 5] : (.Sw.1 as τ̂reg)
⋉ [25 : 7] : (.Sw.2.[5 : 7] as I7)

We model the RISC-V instruction sw x1, x2, 42 as the high-level value v = Sw(⟨X1,X2, 42⟩), and its

representation as τ̂riscv is the following memory value:

v̂ = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : (10)5 ⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (1)5 ⋉ [20 : 5] : (2)5 ⋉ [25 : 7] : (1)7

To obtain the previous memory value, we decomposed the 12-bit immediate 42 = 0b0000 0010 1010
into its 5 lowest bits 0b01010 = 10 and 7 highest bits 0b000 0001 = 1 . △

One of the problems addressed by our compilation approach is how to compile source value con-

structors – that is, pivot expressions such as (v : τriscv as τ̂riscv) – to low-level code which builds a

memory value adequately representing the requested value – in this case, v̂. Such value-building code

may perform memory allocation, casts from unspecified words to more precise memory structures and

initialization of constants at specific positions. For instance, a snippet of low-level code building the

memory value v̂ from Sw(⟨X1,X2, 42⟩)may be:

1 let x = alloc(32); // allocate the necessary space for the memory value
2 x.[0:5] := 0x23; x.[12:3] := 2; // constant parts of the memory layout
3 x.[15:5] := 1; x.[20:5] := 2; // register fragments: rs1 = X1, rs2 = X2
4 x.[25:7] := 1; x.[7:5] := 10; // split immediate 42

Figure 5.1: Code building the memory value v̂ representing Sw(⟨X1,X2, 42⟩) in the root memory location

x.

The low-level code shown in Fig. 5.1 is rather straightforward: it is reasonably easy to produce such

code through a simple exploration of the desired memory value. Section 5.4.1 will provide a more

formal description of such a procedure.

For pivot expressions containing a valuexpression with accessors x.π rather than a simple value,

the target code also needs to read from the existing memory value x. For instance, consider the pivot

(x.Sw.0 : τreg as τ̂reg), which accesses the first register operand of an Sw instruction stored in x. We

only need to extract the 5 bits at offset 15 within x to get the desired memory value: for instance,

with the previously built memory value v̂, we have
�
focus (.[15 : 5], v̂) = (1)5, which is indeed the τ̂reg

representation of the register value X1. The following low-level code snippet performs this access for

any memory value x, storing the result in a newly allocated memory value r:
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1 let r = alloc(5); // allocate 5 bits for the extracted register value
2 r := x.[15:5]; // extract the desired subterm from the value stored in x

Figure 5.2: Code extracting the first register operand from the representation of an Sw instruction stored

in the memory location x.

Again, this low-level accessor code is immediate from a simple inspection of the memory type τ̂riscv.

Section 5.4 will provide a formal procedure to compile such simple accessors.

However, other accessors can be trickier to compile. Broadly speaking, the compilation of an arbitrary

accessor (x.π : τ as τ̂)may be problematic for two reasons:

• the subterm .π may not be stored as a single fragment within the representation of its parent value

x (or may be stored as a single fragment using a different memory layout from τ̂), requiring us to

gather multiple pieces before reassembling them into a τ̂ memory value, as in Example 5.2;

• the actual location of the fragment encoding .π within x may depend on the precise provenance of

the high-level value represented in x, requiring us to find and inspect split discriminant locations

in x to determine its shape and retrieve the representation of x.π, as in Example 5.3.

Example 5.2 (Scattered immediate in RISC-V: imm accessor). Consider the pivot (x.Sw.2 : I12 as I12),
which accesses the immediate operand of an Sw instruction as a standard, consecutive 12-bit primitive.

This piece of data is not immediately accessible in the memory representation of an Sw instruction.

Indeed, in τ̂Sw, the immediate subterm .Sw.2 is broken down in two pieces stored in separate locations:

its 5 lowest bits are stored at memory position .[7 : 5] and its 7 highest bits at .[25 : 7]. The following

low-level code snippet performs this access on a τ̂reg memory value stored in x, storing the extracted

immediate in a newly allocated location imm:
1 let imm = alloc(12); // allocate 12 bits for the rebuilt immediate
2 imm.[0:5] := x.[7:5]; // 5 lowest bits stored at offset 7 in the instruction
3 imm.[5:7] := x.[25:7]; // 7 highest bits stored at offset 25 in the instruction

Figure 5.3: Code rebuilding the immediate operand from its two pieces extracted from the representation

of an Sw instruction stored in the memory location x.

△

So far, value constructors and accessors only required us to allocate memory and initialize it with the

contents of various parts of the input (parent) memory value. However, the following example shows

that seemingly simple accessors may require more in-depth inspection of the input value and the use of

a “switch” construct reminiscent of decision trees.

Example 5.3 (Variable head location in lists). Recall the high-level list type τlist and “packed” memory

layout τ̂p (along with the type variable environment ∆list) from Example 3.4:

∆list = {tlist ↦→ τlist, tp ↦→ τ̂p} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂p = split (.[0 : 2]) {

0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉ [0 : 2] : (2)2

}

Assume thatx is bound to a non-empty list represented as τ̂p, and consider the following pivot expression

which accesses its first element: (x.Cons.0 : I32 as I32). Depending on the precise provenance of x, its
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subterm .Cons.0 may be stored in two different locations: if x represents a list with only one element,

then it is a composite 64-bit word whose 32 bits at offset 2 encode the single I32 element. However, if x
represents a list with more than one element, it is a pointer to a struct whose first field encodes the first

element on 32 bits. As a result, in order to extract the I32 representation of x.Cons.0, we must first inspect

the two lowest bits of x (as indicated by the split discriminant position .[0 : 2] in its layout τ̂p) to identify

its provenance, which determines where the subterm .Cons.0 will be stored. The following low-level

code snippet performs this access, assuming that the memory location x contains the τ̂p representation

of a non-empty list:

1 let res = alloc(32); // allocate 32 bits for the extracted element
2 switch(x.[0:2]) { // identify the provenance of x
3 0 -> fail; // Nil: not supposed to happen
4 1 -> // Cons(<_, Nil>): extract from composite word
5 res := x.[2:32];
6 2 -> // Cons(<_, Cons(_)>): extract from pointer and struct
7 res := x.*.0;
8 }

Figure 5.4: Code extracting the first element of a non-empty list from its memory representation as τ̂p
stored in the memory location x.

△

The four previous examples have illustrated various situations which can arise during compilation

of valuexpressions/pivot expressions. As a final motivating example, let us consider a full Ribbitulus

expression in which pivots are combined with other syntactical constructs, namely function calls, let-

bindings and pattern matching.

Example 5.4 (Full expression with RISC-V values.). Recall the is_compressible function from Exhibit 15,

which inspects a 32-bit RISC-V instruction to determine whether it can be compressed into a 16-bit

instruction according to Waterman et al. (2019). It uses two auxiliary functions is_nonzero_register
and is_popular_register. Both are simple predicates using pattern matching to determine whether a

given register is x0 or not, or whether it is one of the eight “most popular registers” x8 to x15.

Both of these functions return booleans, which we model through the following types:

τbool = True | False τ̂bool = split (ε)
{

0 from False ⇒ (0)8
1 from True ⇒ (1)8

}
For simplicity, we assume that the following primitive operations are available: an “AND” operation

between booleans denoted ∧, a comparison predicate x < c between a primitive value stored in x and a

constant c of the same width, and an equality operator x = x′ between two values of the same type.

We model is_nonzero_register, is_popular_register and is_compressible with the function en-

vironment Σ and typing environment Γ defined below. Their bodies correspond to the expressions ec,

e0reg and epreg respectively. Note that or-patterns and variable patterns have been processed into Ribbit-

ulus pattern matching branches by expanding or-patterns into multiple branches and lifting variables
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to let-bindings in right-hand-side expressions.

Γ =


is_compressible : ( τriscv as τ̂riscv → τbool as τ̂bool)is_nonzero_register : ( τreg as τ̂reg → τbool as τ̂bool)is_popular_register : ( τreg as τ̂reg → τbool as τ̂bool)


Σ =


is_compressible ↦→ λx. ecis_nonzero_register ↦→ λx. e0regis_popular_register ↦→ λx. epreg

 e0reg = match(x)
{
X0 → (False : τbool as τ̂bool)
_ → (True : τbool as τ̂bool)

}

epreg = match(x)


X8 → (True : τbool as τ̂bool)
. . . → . . .

X15 → (True : τbool as τ̂bool)
_ → (False : τbool as τ̂bool)


ec = match(x) {

Jal(⟨X1, _⟩) → let n : I20 as I20 = x.Jal.1 in
(n < 4096 : τbool as τ̂bool)

Add(⟨_, _, _⟩) → let rd : τreg as τ̂reg = x.Add.0 in
let rs1 : τreg as τ̂reg = x.Add.1 in let bs1 : τbool as τ̂bool = is_nonzero_register(rs1) in
let rs2 : τreg as τ̂reg = x.Add.2 in let bs2 : τbool as τ̂bool = is_nonzero_register(rs2) in
(rd = rs1 ∧ bs1 ∧ bs2 : τbool as τ̂bool)

Addi(⟨_, _, _⟩) → let rd : τreg as τ̂reg = x.Addi.0 in
let rs : τreg as τ̂reg = x.Addi.1 in let b : τbool as τ̂bool = is_nonzero_register(rs) in
let n : I12 as I12 = x.Addi.2 in
(rd = rs ∧ b ∧ n < 64 : τbool as τ̂bool)

Sw(⟨_, _, _⟩) → let r0 : τreg as τ̂reg = x.Sw.0 in let b0 : τbool as τ̂bool = is_popular_register(r0) in
let r1 : τreg as τ̂reg = x.Sw.1 in let b1 : τbool as τ̂bool = is_popular_register(r1) in
let n : I12 as I12 = x.Sw.2 in
let nl : I5 as I5 = n.[0 : 5] in let nh : I2 as I2 = n.[10 : 2] in
(b0 ∧ b1 ∧ nl = 0 ∧ nh = 0 : τbool as τ̂bool)

_ → (False : τbool as τ̂bool)

}

The expression ec, which corresponds to the body of is_compressible from Exhibit 15, combines several

syntactical constructions. At toplevel, it is a pattern matching expression, which requires us to emit code

that recognizes the shape of the input value – this has been covered in Chapter 4, and we will provide a

more formal interface in Section 5.3.

Let us now focus on the right-hand side of its branches, for instance the Sw(⟨_, _, _⟩), which matches

our value v from Example 5.1. The right-hand side of this branch is an expression which binds the three

operands of an Sw instruction – two registers r0 and r1 and a 12-bit immediate n. It then uses these

extracted values to compute a boolean value determining whether x is a compressible instruction.

From a high-level perspective, extracting these values is a simple task. Indeed, a simple represen-

tation for the input value x would simply encode its 12-bit immediate operand at position .Sw.2 as the

primitive type I12. The actual memory layout τ̂riscv, however, is not so straightforward: since the im-

mediate operand is stored non-consecutively in two separate pieces, we must reassemble them to bind

the expected 12-bit immediate to n. In essence, we need to synthesize code manifesting the isomorphism

between the non-consecutive representation ofn and its desired standard immediate representation. △

Our compilation procedure is able to emit the control flow graph shown in Fig. 5.5, which repre-

sents low-level code combining a decision tree for the toplevel match with memory reads, writes and

allocations that perform the tasks required for its branches.
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function is_popular_register : Reg -> Bool = λ reg res. switch(reg)
8..15

0..7,16..31

res := 1 success

res := 0 success

/* case Jal(X1, imm) //
/* Bindings //
let imm = alloc(20)
imm.[11:7] := instr.[12:7]
imm.[10:1] := instr.[20:1]
imm.[0:10] := instr.[21:10]
imm.[19:1] := instr.[31:1]
res := imm < 4096

success

/* match instr //
let opcode = instr.[0:7]

switch(opcode)

0x13 0x33 0x6F 0x23

/* case Addi(rd, rs, imm) //
/* Bindings //
let rd = instr.[7:5]
let rs = instr.[15:5]
let imm = instr.[20:12]
/* Result computation //
let breg = alloc(8)
breg := (rd /= rs) /& (rs /= 0)
res := breg /& (imm < 64)

success

let rd = instr.[7:5]

switch(rd)

1 0, 2-31

/* case Add(rd, rs1, rs2) //
/* Bindings //
let rd = instr.[7:5]
let rs1 = instr.[15:5]
let rs2 = instr.[20:5]
/* Result computation //
let bd = alloc(8)
bd := (rd /= rs1)
let bs = alloc(8)
bs := (rs1 /= 0 /& rs2 /= 0)
res := bd /& bs

success

/* case Sw(rbase, roff, imm) //
/* Bindings //
let rbase = instr.[15:5]
let roff = instr.[20:5]
let imm = alloc(12)
imm.[0:5] := instr.[7:5]
imm.[5:7] := instr.[25:7]
/* Result computation //
let bbase = alloc(8)
bbase := is_popular_register(rbase)
let boff = alloc(8)
boff := is_popular_register(roff)
let immlow = imm.[0:5]
let immhigh = imm.[10:2]
let bimm = alloc(8)
bimm := (immlow /= 0) /& (immhigh /= 0)
res := bbase /& boff /& bimm 

success

/* case _ //
res := 0

success

function is_compressible : Riscv /> Bool = λ instr res.

Figure 5.5: Simplified CFGs for is_popular_register and is_compressible. From the input instr, is_compressible
identifies the head constructor using the 7 lowest bits, then extracts subterms such as destination and source registers for Add or the 12-bit imm for Sw,

and finally computes the boolean result and stores it in res.

More precisely, this target program:

• inspects the internal representation of an input τ̂riscv value to determine its head constructor (Add,

Addi, Jal or Sw), as well as the nested register constructor in Jal;

• extracts from this representation all subterms that are bound to variables in the matched pattern.

For instance, in the Sw case , the two parts of the 12-bit immediate operand are combined in imm
in order to reconstruct a value that can be used in a mask;

• allocates and initialises memory to represent the appropriate values. For instance, the imm value just

mentioned is first allocated as 12 uninitialized bits, filled, then used to compute the final result.

The rest of this chapter is organized as follows. In Section 5.2, we define a target representation in

Destination Passing Style supporting all previously mentioned operations, as well as a detailed execution

model. Our compilation procedure consists of several smaller algorithms, each translating a subset of

the ribbit language to target expressions. The first of these procedures, Destruct, is defined in Section 5.3

and provides an opaque interface around the pattern matching compilation approach from Chapter 4. In

Section 5.4, we introduce necessary tools through simple but incomplete procedures for compiling value

constructors and accessors. Section 5.5 details our main compilation algorithms for pivots dubbed Seek

and Rebuild. Section 5.6 brings everything together in our toplevel compilation function CompileProg,

which handles the whole Ribbitulus in a unified way while also ensuring termination. Finally, in

Section 5.7, we state and prove the correctness of our compilation algorithms.
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5.2 Target in Destination Passing Style

As we have seen in the previous section, compiled ribbit programs must perform a variety of tasks,

including:

• reading from locations in memory and switching on their values;

• writing results to their appropriate memory locations;

• allocating and initializing memory following the shape of the intended output value.

In this section, we define a target intermediate representation in which each of these tasks is made

explicit. We use a Destination-Passing Style (Shaikhha et al. 2017) representation in A-normal form

(2023). This provides us precise control over memory management and input/output arguments, and

could enable further memory improvements, such as using stack allocation when appropriate and

applying tail-call modulo cons (Bour, Clément, and Scherer 2021). Another avenue would naturally be

to use Continuation-Passing Style (Appel 1992), notably to simplify handling of recursive calls, as we will

see in Section 5.6.1. This is in line with numerous compilers for functional languages (Vincent Laviron

2023; Hall, Hammond, et al. 1992) and easily allows moving to SSA representations such as Rust’s MIR

and LLVM.

5.2.1 Syntax

Our target IR consists of expressions denoted ẽ, whose grammar is given in Fig. 5.6. As a convention,

target keywords are typeset in a monospaced font, and target elements are given a tilde hat (for instance, ẽ
is a target expression). Target expressions include calls to functions, which are defined in a global target

function environment denoted Σ̃ mapping each function symbol f ∈ FunVars to a lambda-expression

with an arbitrary number of arguments λ(xin,0, . . . , xin,n−1, xout).ẽ. Note that sharing is not explicit in the

IR, even though we use a control-flow-graph style representation underneath.

p̃ ::= _ℓ ⋉
0⩽i<n

[oi : ℓi] : _ℓi |
{{

_ℓ0
, . . . , _ℓn−1

}}
(shallow memory shapes)

ẽ ::= success | fail (return statements)

| freeze(xout→in); ẽ | let in xin = xin.π̂; ẽ (create input locations)

| let out xout = alloc(ℓ); ẽ | let out xout = xout.π̂; ẽ (create output locations)

| xout := c; ẽ | xout := &alloc(ℓ); ẽ | xout := xin; ẽ (write to memory)

| cast xout to p̃; ẽ | cast xout to Iℓ; ẽ (reinterpret or refine the shape of a memory location)

| call f(xin,0, . . . , xin,n−1, xout); ẽ
(function call with n input arguments and one destination argument)

| switch (xin) {c0 → ẽ0, . . . , cn−1 → ẽn−1, _→ ẽ′} (switch node reading from an input location)

Σ̃ : f ↦→ λ(xin,0 . . . xin,n−1)xout.ẽ (target function environment)

Figure 5.6: Target IR grammar.

The essence of destination passing style is that each function takes a destination argument which

indicates where it should write its result. Similarly, in our IR, memory locations, usually denoted x, are

identifiers for unaligned pointers. We distinguish between input locations (“xin”), which are read-only

and correspond to already-built values, and output locations (“xout”), which are write-only and corre-

spond to values currently being built. This distinction allows us to formally segregate “analysis” code

(i.e., pattern matching) from “building” code (i.e., value constructors). Destination passing style is thus

immediately visible in function declarations and calls: the last argument of call f(xin,0, . . . , xin,n−1, xout)
is an output memory location xout that should be filled with the result computed by f. For instance,

in both CFGs shown in Fig. 5.5, the destination res is an output location whose contents at the end of
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either function call represent a τ̂bool memory value. Indeed, every success statement follows a write

instruction of the form res := rhs where rhs designates a boolean value.

Input and output sub-locations are obtained by focusing an existing location with a memory path,

for instance with the instruction let out x′ = x.π̂. Additionally, an output location x can be frozen to

turn it into an input location with freeze(x). Constructing values requires memory to write into: either

by focusing an existing output location with a memory path (let out x′ = x.π̂), or by claiming a given

amount of unused memory (let out x = alloc(ℓ)). This memory is then filled using write instructions,

with several kinds of contents: constants denoted c, the contents of an input location, or the address of

newly allocated memory of a given size denoted &alloc(ℓ).
Newly allocated output locations are filled with an uninitialized word of the form _ℓ. To model

memory structures such as structs or composite words, they must first be cast to an adequate shallow

shape. Shallow shapes, denoted p̃, are a subset of memory patterns consisting of composite and struct

patterns in which every field is a wildcard. Nested memory structures are obtained through several

successive casts. Cast instructions are also used to reinterpret integers as primitive values, in situations

where they have previously been cast to composite words in order to build their contents as separate bit

ranges.

Example 5.5 (Target IR for building an Sw value). The following target code creates a new output

location x and fills it with the memory representation of Sw(⟨X1,X2, 42⟩) as τ̂riscv:

ẽSw = let out x = alloc(32);
cast x to _32 ⋉ [0 : 7] : _7 ⋉ [7 : 5] : _5 ⋉ [12 : 3] : _3 ⋉ [15 : 5] : _5 ⋉ [20 : 5] : _5 ⋉ [25 : 7] : _7;

let out xopcode = x.[0 : 7]; xopcode := 0x23; freeze(xopcode);
let out xfunct3 = x.[12 : 3]; xfunct3 := 2; freeze(xfunct3);
let out xreg0 = x.[15 : 5]; xreg0 := 1; freeze(xreg0); (register X1)

let out xreg1 = x.[20 : 5]; xreg1 := 2; freeze(xreg1); (register X2)

let out ximmlow = x.[7 : 5]; ximmlow := 10; freeze(ximmlow); (5 lowest bits of immediate 42)

let out ximmhigh = x.[25 : 7]; ximmlow := 1; freeze(ximmhigh); (7 highest bits of immediate 42)

freeze(x);
success

This code is driven by the memory layout used for Sw instructions:

τ̂Sw = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : (.Sw.2.[0 : 5] as I5) ⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (.Sw.0 as τ̂reg) ⋉ [20 : 5] : (.Sw.1 as τ̂reg) ⋉ [25 : 7] : (.Sw.2.[5 : 7] as I7)

We start by allocating 32 bits to store the future τ̂Sw value (since |τ̂Sw| = 32) into a new output location

x. We then cast these uninitialized 32 bits to a shallow shape which lets us access the location of every

constant and every fragment in τ̂Sw. We then fill each of these locations with appropriate contents.

For each of these components, we start by binding a new output identifier to its location, then write

appropriate contents and freeze it after its contents are final. For constants (opcode and funct3 in

the RISC-V layout specification), we simply write their values specified in τ̂Sw to their locations. For

fragments, which each correspond to an operand of the source Sw instruction, we must first determine

the representation of the designated register or immediate. Here, this is easy to achieve: for instance,

the representation of the register X1 as τ̂reg is (1)5 and the representation of the five lowest bits of the

immediate 42 as I5 is 10. △

Example 5.6 (Target IR for rebuilding an Sw immediate). We now define a function fimm which, given an

input location xin which contains the memory representation as τ̂riscv of an Sw instruction (as obtained,

for instance, from the code in Example 5.5), and an output location (a.k.a. destination) xout which contains

12 uninitialized bits, fills xout with the representation as I12 of the immediate operand (position .Sw.2)

of the input value.

Our target function environment will contain the following function binding:

fimm ↦→ λxinxout.ẽimm
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with its body ẽimm defined as follows:

ẽimm = cast xout to _12 ⋉ [0 : 5] : _5 ⋉ [5 : 7] : _7;

let in xinlow = xin.[7 : 5]; let out xoutlow = xout.[0 : 5]; xoutlow := xinlow; freeze(xoutlow);
let in xinhigh = xin.[25 : 7]; let out xouthigh = xout.[5 : 7]; xouthigh := xinhigh; freeze(xouthigh);
cast xout to I12;

success
A closed program which builds the representation of Sw(⟨X1,X2, 42⟩) (using the target program ẽSw

from Example 5.5), then calls fimm to extract its immediate operand would be:

ẽSw; let out ximm = alloc(12); call fimm(x, ximm); freeze(ximm); success
△

Traditional control flow relies on the switch construct with a default branch marked by “_”, along

with success and fail return statements which do not return any value. The default branch of a switch
may be omitted, which is equivalent to having a fail default branch. Given two target expressions ẽ and

ẽ′, their sequence ẽ; ẽ′ corresponds to ẽ in which every success statement has been replaced with ẽ′.

Example 5.7 (is_popular_register target code). Recall the pattern-matching based function is_popular_register
from Example 5.4. We translate it to the following target function:

freg ↦→ λxinxout.switch (xin) {
0 → xout := 0; success
. . . → . . .

7 → xout := 0; success
8 → xout := 1; success
. . . → . . .

15 → xout := 1; success
16 → xout := 0; success
. . . → . . .

31 → xout := 0; success
_ → fail
}

As we will see in Section 5.3, this translation from match constructs to target switches is directly based

on our pattern matching compilation algorithms presented in Chapter 4. △

5.2.2 Semantics

We now define a small-step evaluation judgment for our target IR. The evaluation judgment, denoted

Σ̃ ⊢ S̃ ⇝ S̃′ and defined in Figs. 5.9a to 5.9e, uses evaluation states S̃ and a target function environment

Σ̃ which remains fixed throughout execution/evaluation. It is deterministic (modulo fresh addresses).

Elements that appear in gray in an evaluation rule are not necessary for nor affected by the application

of this rule.

Evaluation States Target evaluation states, denoted S̃ = (ρ, σ̃in, σ̃out, ς, ẽ), consist of several config-

uration elements defined in Fig. 5.7, namely a call stack ρ, two environments σ̃in and σ̃out for input

and output locations respectively, and a memory store ς. The normal forms are states of the form

(∅, σ̃in, σ̃out, ς, success); fail corresponds to a “stuck” state. We now detail each piece of the evaluation

state while looking at the rules that affect them.
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S̃ ::= (ρ, σ̃in, σ̃out, ς, ẽ) (configuration tuple)

ρ ::= ∅ | (σ̃in, σ̃out, ẽ) :: ρ (call stack)

σ̃ : Vars→ Addrs ×�
Paths (location binding environment)

ς : Addrs→�
Values (memory store)

Figure 5.7: Target evaluation states.

Memory Stores The actual memory content is found within the store ς which, as in Chapter 3, maps

addresses a ∈ Addrs to concrete memory values v̂ ∈ �
Values. However, unlike before, we will manipulate

memory contents imperatively. Indeed, we will allocate and write in memory piece by piece. In particular,

a central operation is to insert the value v̂ at position π̂ in ς(a). We denote this operation ς[a.π̂ ← v̂].
It relies on an insertion operation denoted

�
insertς (ς(a), π̂, v̂), which writes the new value v̂ at position

π̂ within the previous value stored at a. The result of insertion is a pair of a new memory store and

value (ς′, v̂′) such that
�
focusς′ (π̂, v̂′) = v̂. Its actual definition is rather cumbersome and can be found

in Fig. 5.8. It proceeds by induction on memory values in the store, following pointers when necessary.

We also define
�
focusς (π̂, v̂), which defines the value at position π̂ in v̂ in the store ς.

(a ↦→ v̂) ∈ ς �
insertς (̂v, π̂, v̂′) = (ς′, v̂′′)

ς[a.π̂← v̂′] = ς′ ∪ {a ↦→ v̂′′}
�
insertς (̂v, π̂, v̂′) = (ς′, v̂′′)�

focusς′ (π̂, v̂′′) = v̂′�
insertς(□,□, v̂′){
v̂ , ε −→ (ς, v̂′)
v̂ , .1

|v̂|
.π̂ −→ �

insertς (̂v, π̂, v̂′)

v̂ ⋉
0⩽i<n

[oi : ℓi] : v̂i , .(b|v̂|−1
. . .b0).π̂ −→

©«ς′, v̂′ ⋉
0⩽i<n
i∉I

[oi : ℓi] : v̂i
ª®®¬

where I =

{
i

���� 0 ⩽ i < n

∀j ∈ {0, . . . , ℓi − 1},boi+j = 1

}
and (ς′, v̂′) = �

insertς

(̂
v⋉

i∈I
[oi : ℓi] : v̂i, π̂, v̂′

)
&ℓ (a) , . ∗ .π̂ −→ (ς′ ∪ {a ↦→ v̂}, &ℓ (a))where (ς′, v̂) = �

insertς (ς(a), π̂, v̂′)

v̂ ⋉
0⩽i′<n

ri′ : v̂i′ , .ri.π̂ −→
©«ς′, v̂ ⋉ ri : v̂′i ⋉

0⩽i′<n
i′≠i

ri′ : v̂i′
ª®®¬ where (ς′, v̂′i) = �

insertς (̂vi, π̂, v̂′)

{{̂v0, . . . , v̂n−1}} , .i.π̂ −→
(
ς′,

{{̂
v0, . . . , v̂i−1, v̂′i, v̂i+1, . . . , v̂n−1

}})
where (ς′, v̂′i) = �

insertς (̂vi, π̂, v̂′)
}

Figure 5.8: Write at some position in memory.

Example 5.8. Let us consider ς =

a ↦→
_32 ⋉ [0 : 7] : _7 ⋉ [12 : 3] : (2)3

⋉ [15 : 5] : (1)5 ⋉ [20 : 5] : (2)5
⋉ [7 : 5] : (10)5 ⋉ [25 : 7] : (1)7

, a store containing a partially

initialized representation of Sw(⟨X1,X2, 42⟩) where the tag, at position [0 : 7] is missing. We wish to do

the insertion ς[a.[0 : 7] ← (0x23)7]. We have:�
insert∅ (ς(a), .[0 : 7], (0x23)7) = (∅, _32 ⋉ [0 : 7] : (0x23)7 ⋉ . . . )
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hence the following modified store: {a ↦→ _32 ⋉ [0 : 7] : (0x23)7 ⋉ . . . } △

Memory Locations and Bindings Target instructions however never manipulate concrete addresses

directly, they are indeed absent from the target language. Instead, each memory address is referred to

by its identifier x. As mentioned in the previous section, memory locations are either read-only input

locations xin or write-only output locations xout. They are stored in two separate location environments σ̃in

and σ̃out. Both location environments map location identifiers to unaligned pointers of the form a.π̂,

where a is an address in the store and π̂ is a memory path referring to a precise subterm within the

memory value ς(a).
The creation of new locations is handled by four rules IRENewOutLoc, IRESubOutLoc, IRESubInLoc

and IREFreezeLoc, defined in Fig. 5.9a. Newly allocated memory is represented as a fresh address a
in the store ς mapped to an “uninitialized” word _ℓ. Note that the three other rules do not modify

the store: they have no effect on concrete memory contents, but instead (dis)allow read/write accesses

to precise memory locations. These four rules enforce some degree of separation between input and

output locations by maintaining the following invariant:

dom (σ̃in) ∩ dom (σ̃out) = ∅

Unfortunately, this is not sufficient for a complete partition of memory between read-only and write-only

contents. For instance, if two bindings x ↦→ a.π̂ and x′ ↦→ a.(π̂.π̂′) are in the output location environment

σ̃out, after freezing x, we might expect the entire contents of the location a.π̂ to remain unchanged for

the rest of the program’s execution. However, this is not guaranteed as x′ has not been frozen, which

means there is still a way to write to a location within a.π̂ (namely its subterm at position π̂′).

(a) Memory locations

IRENewOutLoc

x ∉ dom (σ̃in) ∪ dom (σ̃out) a ∉ dom (ς)
Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, let out x = alloc(ℓ); ẽ ⇝ ρ, σ̃in, σ̃out ∪ {x ↦→ a.ε}, ς ∪ {a ↦→ _ℓ}, ẽ

IRESubOutLoc

(x ↦→ a.π̂0) ∈ σ̃out x′ ∉ dom (σ̃in) ∪ dom (σ̃out)
Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, let out x′ = x.π̂; ẽ ⇝ ρ, σ̃in, σ̃out ∪ {x′ ↦→ a.π̂0.π̂}, ς, ẽ

IREFreezeLoc

x ∉ dom (σ̃out)
Σ̃ ⊢ ρ, σ̃in, σ̃out ∪ {x ↦→ a.π̂}, ς, freeze(x); ẽ ⇝ ρ, σ̃in ∪ {x ↦→ a.π̂}, σ̃out, ς, ẽ

IRESubInLoc

(x ↦→ a.π̂0) ∈ σ̃in x′ ∉ dom (σ̃in) ∪ dom (σ̃out)
Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, let in x′ = x.π̂; ẽ ⇝ ρ, σ̃in ∪ {x′ ↦→ a.π̂0.π̂}, σ̃out, ς, ẽ

Figure 5.9: Target IR semantics, memory locations.

Effects on Memory Locations: Writes and Casts We can now define the semantics of operations which

write to existing memory locations, namely writes and casts, with the rules shown in Figs. 5.9b and 5.9c.

To read from an input location xin with σ̃in(xin) = a.π̂, we first retrieve the memory value bound to a in

the store ς, then focus on its subterm at position π̂ to get its value. To write to an output location xout

with σ̃out(xout) = a.π̂, we rely on the store update operation ς[a.π̂← v̂] defined before. We implement

write operations (rules IREWriteConstant, IREWriteAlloc, IREWriteRead) according to the previous

principles. For instance, IREWriteRead retrieves the locations of both output and input identifiers, reads

the contents of the input location, checks that the output location contains an uninitialized word of the

same size, and finally update the store so that the output location receives the input location’s contents.

Casts are similar to writes: to cast a memory value from an uninitialized word to a shallow shape, we

simply interpret this shape as a memory value which we write to the adequate location (IRECastShape).

The IRECastInt rule reinterprets composite words as primitive (integer) values similarly to -Fission

120



rules in various parts of the Ribbitulus. More precisely, it only applies to composite words whose bit

ranges partition the total word range and each specify constant contents.

(b) Memory writes

IREWriteConstant

(x ↦→ a.π̂) ∈ σ̃out
�
focusς (π̂, ς(a)) = _ℓ

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, x := c; ẽ ⇝ ρ, σ̃in, σ̃out, ς[a.π̂← (c)ℓ], ẽ

IREWriteAlloc

(x ↦→ a0.π̂) ∈ σ̃out
�
focusς (π̂, ς(a0)) = _ℓ0

a ∉ dom (ς)
Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, x := &alloc(ℓ); ẽ ⇝ ρ, σ̃in, σ̃out, ς[a0.π̂← &ℓ0

(a)] ∪ {a ↦→ _ℓ}, ẽ

IREWriteRead

(xin ↦→ ain.π̂in) ∈ σ̃in

(xout ↦→ aout.π̂out) ∈ σ̃out
�
focusς (π̂in, ς(ain)) = v̂in

�
focusς (π̂out, ς(aout)) = _ℓ |̂vin| = ℓ

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, xout := xin; ẽ ⇝ ρ, σ̃in, σ̃out, ς[aout.π̂out ← v̂in], ẽ

(c) Memory casts

IRECastShape

(x ↦→ a.π̂) ∈ σ̃out (a ↦→ v̂) ∈ ς �
focusς (π̂, v̂) = _ℓ |p̃| ⩽ ℓ

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, cast x to p̃; ẽ ⇝ ρ, σ̃in, σ̃out, ς[a.π̂← p̃], ẽ

IRECastInt

(x ↦→ a.π̂) ∈ σ̃out (a ↦→ v̂) ∈ ς �
focusς (π̂, v̂) = _ℓ⋉

0⩽i<n

[oi : ℓi] : (ci)ℓi

o0 = 0 on−1 + ℓn−1 = ℓ oi = oi−1 + ℓi−1 c =
∑

0⩽i<n

(2oi × ci)

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, cast x to Iℓ; ẽ ⇝ ρ, σ̃in, σ̃out, ς[a.π̂← (c)ℓ], ẽ

Figure 5.9: (cont’d). Target IR semantics, memory store.

Conditionals Conditionals are simply interpreted as C-style switches. The two rules IRESwitchCase

and IRESwitchDefault defined in Fig. 5.9d evaluate switches using the same logic as the decision tree

semantics defined in Fig. 4.4. To do so, we read the discriminant value as described above.

Functions and Call Stack Finally, the semantics of functions is modeled via a call stack. The stack ρ
is either empty ∅ or consists of a triple (σ̃′

in
, σ̃′

out
, ẽ′) pushed onto another stack ρ′, which we denote

(σ̃′
in

, σ̃′
out

, ẽ′) :: ρ′. We use it to evaluate each function call in a fresh context, using two rules IREFunCall

and IREReturn defined in Fig. 5.9e. In IREFunCall, we push the current location environments and

continuation onto the stack, and evaluate the function body in location environments containing only

its arguments. The previous context is restored at the end of the function call with IREReturn. Only

the memory store ς persists through function calls and returns.
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(d) Switch nodes

IRESwitchCase

(x ↦→ a.π̂) ∈ σ̃in (a ↦→ v̂) ∈ ς ∃i ∈ {0, . . . ,n − 1}, �
focusς (π̂, v̂) = (ci)ℓ

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, switch (x) {c0 → ẽ0, . . . , cn−1 → ẽn−1, _→ ẽ′}⇝ ρ, σ̃in, σ̃out, ς, ẽi

IRESwitchDefault

(x ↦→ a.π̂) ∈ σ̃in (a ↦→ v̂) ∈ ς �
focusς (π̂, v̂) = (c)ℓ c ∉ {c0, . . . , cn−1}

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, switch (x) {c0 → ẽ0, . . . , cn−1 → ẽn−1, _→ ẽ′}⇝ ρ, σ̃in, σ̃out, ς, ẽ′

(e) Function calls

IREFunCall (
f ↦→ λ(x′

0
. . . x′n−1

)x′
out

.ẽ′
)
∈ Σ̃ (xi ↦→ ai.π̂i) ∈ σ̃in (xout ↦→ a.π̂) ∈ σ̃out

Σ̃ ⊢ ρ, σ̃in, σ̃out, ς, call f(x0, . . . , xn−1, xout); ẽ ⇝ (σ̃in, σ̃out, ẽ) :: ρ, ς, {x′i ↦→ ai.π̂i | 0 ⩽ i < n}, {x′
out
↦→ a.π̂}, ẽ′

IREReturn

Σ̃ ⊢(σ̃′
in

, σ̃′
out

, ẽ′) :: ρ, σ̃in, σ̃out, ς, success ⇝ ρ, σ̃′
in

, σ̃′
out

, ς, ẽ′

Figure 5.9: (cont’d). Target IR semantics, control flow.

Example 5.9 (Execution of Sw(⟨X1,X2, 42⟩) value constructor code.). Recall the ẽSw target expression

from Example 5.5:

ẽSw = let out x = alloc(32);
cast x to _32 ⋉ [0 : 7] : _7 ⋉ [7 : 5] : _5 ⋉ [12 : 3] : _3 ⋉ [15 : 5] : _5 ⋉ [20 : 5] : _5 ⋉ [25 : 7] : _7;

let out xopcode = x.[0 : 7]; xopcode := 0x23; freeze(xopcode);
let out xfunct3 = x.[12 : 3]; xfunct3 := 2; freeze(xfunct3);
let out xreg0 = x.[15 : 5]; xreg0 := 1; freeze(xreg0); (register X1)

let out xreg1 = x.[20 : 5]; xreg1 := 2; freeze(xreg1); (register X2)

let out ximmlow = x.[7 : 5]; ximmlow := 10; freeze(ximmlow); (5 lowest bits of immediate 42)

let out ximmhigh = x.[25 : 7]; ximmlow := 1; freeze(ximmhigh); (7 highest bits of immediate 42)

freeze(x);
success

We execute it in empty initial environments (we do not show the stack ρ as it remains empty throughout

execution):
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∅,∅,∅, let out x = alloc(32) ; . . .
⇝ (IRENewOutLoc)
∅, {x ↦→ a.ε}, {a ↦→ _32 }, cast x to _32 ⋉ [0 : 7] : _7 ⋉ [7 : 5] : _5 ⋉ . . . ; . . .

⇝ (IRECastShape)
∅, {x ↦→ a.ε}, {a ↦→ _32 ⋉ [0 : 7] : _7 ⋉ . . . }, let out xopcode = x.[0 : 7] ; xopcode := 0x23; freeze(xopcode); . . .

⇝ (IRESubOutLoc)
∅, {x ↦→ a.ε, xopcode ↦→ a.[0 : 7]}, {a ↦→ _32 ⋉ [0 : 7] : _7 ⋉ . . . }, xopcode := 0x23 ; freeze(xopcode); . . .

⇝ (IREWriteConstant)
∅, {x ↦→ a.ε, xopcode ↦→ a.[0 : 7]}, {a ↦→ _32 ⋉ [0 : 7] : (0x23)7 ⋉ . . . }, freeze(xopcode) ; . . .

⇝ (IREFreezeLoc)
{xopcode ↦→ a.[0 : 7]}, {x ↦→ a.ε}, {a ↦→ _32 ⋉ [0 : 7] : (0x23)7 ⋉ . . . }, . . .

⇝15 (IRESubOutLoc, IREWriteConstant, IREFreezeLoc)5

xopcode ↦→ a.[0 : 7]
xfunct3 ↦→ a.[12 : 3]
xreg0 ↦→ a.[15 : 5]
xreg1 ↦→ a.[20 : 5]
ximmlow ↦→ a.[5 : 7]
ximmhigh ↦→ a.[25 : 7]


, {x ↦→ a.ε},

a ↦→
_32 ⋉ [0 : 7] : (0x23)7 ⋉ [12 : 3] : (2)3

⋉ [15 : 5] : (1)5 ⋉ [20 : 5] : (2)5
⋉ [7 : 5] : (10)5 ⋉ [25 : 7] : (1)7

 , freeze(x) ; success

⇝ (IREFreezeLoc)
{x ↦→ a.ε , . . . },∅, {. . . }, success

Notice that the final result bound to a in the store is the same memory value we obtained in Example 5.5.

△

Example 5.10. Recall the following target program from Example 5.6, which extracts the immediate

operand from a previously built Sw instruction:

ẽSw; let out ximm = alloc(12); call fimm(x, ximm); freeze(ximm); success
with the target function environment Σ̃ = {fimm ↦→ λxinxout.ẽimm}, where

ẽimm = cast xout to _12 ⋉ [0 : 5] : _5 ⋉ [5 : 7] : _7;

let in xinlow = xin.[7 : 5]; let out xoutlow = xout.[0 : 5]; xoutlow := xinlow; freeze(xoutlow);
let in xinhigh = xin.[25 : 7]; let out xouthigh = xout.[5 : 7]; xouthigh := xinhigh; freeze(xouthigh);
cast xout to I12;

success
Starting from the final state of ẽSw execution (see Example 5.9), the execution sequence of the remaining
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program let out ximm = alloc(12); call fimm(x, ximm); freeze(ximm); success is:

Σ̃ ⊢ ∅, {x ↦→ a.ε},∅, {a ↦→ . . . }, let out ximm = alloc(12) ; . . .
⇝ (IRENewOutLoc)
∅, {x ↦→ a.ε}, {ximm ↦→ aimm.ε}, {a ↦→ . . . , aimm ↦→ _12 }, call fimm(x, ximm) ; . . .

⇝ (IREFunCall)
. . . :: ∅ , {xin ↦→ a.ε}, {xout ↦→ aimm.ε}, {a ↦→ . . . ,aimm ↦→ _12}, ẽimm

⇝9 (IRECastShape, {IRESubInLoc, IRESubOutLoc, IREWriteRead, IREFreezeLoc}2)

. . . :: ∅, {xin ↦→ a.ε, . . . }, {xout ↦→ aimm.ε},
{
a ↦→ . . . ,

aimm ↦→ _12 ⋉ [0 : 5] : (10)5
⋉ [5 : 7] : (1)7

}
, cast xout to I12 ; success

⇝ (IRECastInt)
. . . :: ∅, {xin ↦→ a.ε, . . . }, {xout ↦→ aimm.ε}, {a ↦→ . . . ,aimm ↦→ (42)12 }, success

⇝ (IREReturn)
∅ , {x ↦→ a.ε}, {ximm ↦→ aimm.ε}, {a ↦→ . . . ,aimm ↦→ (42)12}, freeze(ximm) ; success

⇝ (IREFreeze)
∅, {x ↦→ a.ε, ximm ↦→ aimm.ε},∅, {a ↦→ . . . ,aimm ↦→ (42)12}, success

△

5.3 Pattern matching compilation interface

Now that our target representation is defined, we can describe our compilation approach for the source

Ribbit language. It consists of various procedures which compile a subset of Ribbit expressions e ∈ Exprs

to target programs ẽ. Our main procedure Compile, which covers the entire Ribbit expression language

by wrapping around previous specialized procedures, will be defined in Section 5.6. As a convention,

all such compilation procedures are typeset in SmallCaps and defined as algorithms in pseudo-code.

Many of these algorithms use Python-style generators with the “yield” keyword and “for-each” style

loops.

In Algorithm 1, we define our first compilation procedure Destruct, which handles pattern matching

expressions. The actual mechanics of pattern matching compilation have already been detailed in

Chapter 4: Destruct merely acts as a wrapper around its components pat2mem, Scaffold, Weave, Trim

and Seq. It also lowers the decision tree emitted by these procedures to equivalent target code. This lets

us connect the output of our previous compilation approach to actual memory locations and compiled

expressions corresponding to the right-hand sides of pattern matching branches.
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Data: ∆ a type variable environment

Data: X = {x0, . . . , xn−1} a list of n root input locations

Data: T̂ = {τ̂0, . . . , τ̂n−1} their memory types

Data: {({pj,0, . . . ,pj,n−1}, ẽj) | 0 ⩽ j < N} a list of N pattern matching branches

Result: Target code determining the first branch j such that every pj,i matches the contents of

xi, then branching to ẽj

1 function Destruct∆(X, T̂ , {(Pj, ẽj) | 0 ⩽ j < N}):
// Treat the set of distinct inputs as a single tuple represented as a struct

2 τ̂← {{τ̂0, . . . , τ̂n−1}}
3 𝒯 := Scaffold∆(∅, ε, τ̂)

// Assign a fresh output identifier to each memory pattern

4 k := 0

5 B := ∅
6 for j ∈ {0, . . . ,N − 1} do

7 pj ←
〈
pj,0, . . . ,pj,n−1

〉
8 for (p′, p̂) ∈ pat2mem∆(pj, τ̂) do

9 𝒯 := Weave∆(k, ε, p̂, 𝒯 )
10 B := B ∪ {(k, ẽj)}
11 k := k + 1

12 𝒯 := Seq(Trim(𝒯 ))
// Lower the decision tree to a target expression

13 return TreeToTarget(X,B, 𝒯 )
Algorithm 1: Wrapper around Chapter 4: Destruct.

As we will see in the next sections, we will sometimes need to determine which patterns match

multiple input values. To this end, Destruct takes as input a list of n memory locations x0, . . . , xn−1

to inspect, along with their contents’ respective memory types τ̂0, . . . , τ̂n−1. Similarly, the N pattern

matching branches consist of a list of n high-level patterns pj,0, . . . ,pj,n−1 on the left-hand side, and

of a target expression ẽj on the right-hand side. The semantics of a given branch

(
(pj,0, . . . ,pj,n−1), ẽj

)
is “if j is the smallest identifier such that each input xi is matched by its corresponding pattern pj,i,

then continue execution with ẽj”. Our previous pattern matching compilation approach was designed

to inspect a single input value. However, we can easily “trick” it into compiling matches on multiple

values by grouping them into a tuple ⟨x0, . . . , xn−1⟩ and aggregating their memory layouts in a struct

τ̂ = {{τ̂0, . . . , τ̂n−1}}.
The first compilation steps closely follow the approach described in Chapter 4. We first Scaffold a

memory tree 𝒯 from the memory layout τ̂. We process each pattern matching branch j using pat2mem

to get memory patterns which capture the representations of values matched by this branch. We then

Weave each of these memory patterns into 𝒯 . Note that we weave each memory pattern with a fresh

identifier k (which we map back to the right-hand side expression ẽj in B). Indeed, it would be incorrect

to use the same identifier j for all memory patterns. For instance, if pat2mem yielded two memory

patterns p̂0 = {{(0)32, (0)32}} and p̂1 = {{(1)32, (1)32}}, successively weaving p̂0 and p̂1 with the same

identifier j would yield a tree which accepts incorrect memory values such as {{(0)32, (1)32}}. Finally, after

weaving all patterns, we use Trim and Seq to obtain a decision tree.

The last compilation step, which translates the final decision tree 𝒯 to a target expression, is delegated

to the TreeToTarget function defined in Fig. 5.10. Given a list of input locations X = {x0, . . . , xn−1} and a

mapping from pattern identifiers to their compiled right-hand side expressions B = {(j, ẽj) | 0 ⩽ j < N},
it processes decision tree nodes as follows:

• Leaves ({j, . . . }) indicate that the first pattern which matches the input value is the one associated

with the identifier j. At this point, the program should continue with the expression corresponding

to the right-hand side of this pattern matching branch: we replace the leaf with ẽj (Tree2IRLeaf

rule). Conversely, empty leaves (∅) indicate that no pattern matches the input value: in this case,

we abort execution with fail (Tree2IRFail rule).
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• Switch nodes switch(π̂) inspect the memory value located at position π̂ within the “root input

value”. Since we grouped our n actual input locations x0, . . . , xn−1 into a single struct, we neces-

sarily have π̂ = .i.π̂′ with i ∈ {0, . . . ,n − 1}. This discriminant path corresponds to the subterm

at position π̂′ within the input memory location xi, which we bind to a fresh location identifier

x′ with a let in x′ = xi.π̂
′

target instruction. We can then emit a target switch expression which

inspects this new location x′ and whose branches are obtained by recursively transforming the

decision node’s branches (Tree2IRSwitchDef rule). If the initial switch had no default branch, we

use fail as the target switch node’s default branch (Tree2IRSwitchNoDef rule).

Tree2IRLeaf

TreeToTarget(X, {(j, ẽj) | 0 ⩽ j < N}, ({j, . . . })) = ẽj

Tree2IRFail

TreeToTarget(X,B, (∅)) = fail
Tree2IRSwitchNoDef

x′ fresh symbol ẽ′j = TreeToTarget({x0, . . . , xn−1},B, 𝒯j)

TreeToTarget

©«{x0, . . . , xn−1},B, switch(.i.π̂)


c0 → 𝒯0

. . . → . . .

cn−1 → 𝒯n−1

ª®¬ = let in x′ = xi.π̂; switch (x′)


c0 → ẽ′
0

. . . → . . .

cn−1 → ẽ′n−1

_ → fail


Tree2IRSwitchDef

x′ fresh symbol

ẽ′j = TreeToTarget({x0, . . . , xn−1},B, 𝒯j) ẽ′ = TreeToTarget({x0, . . . , xn−1},B, 𝒯 ′)

TreeToTarget

©«{x0, . . . , xn−1},B, switch(.i.π̂)


c0 → 𝒯0

. . . → . . .

cn−1 → 𝒯n−1

_ → 𝒯 ′


ª®®®¬ = let in x′ = xi.π̂; switch (x′)


c0 → ẽ′

0

. . . → . . .

cn−1 → ẽ′n−1

_ → ẽ′


Figure 5.10: From decision trees to target IR expressions.

Let us illustrate this first compilation procedure on a simple pattern matching example.

Example 5.11 (Compilation of is_popular_register). Recall the is_popular_register function from

Example 5.4, which we modelled as the following source function:

freg ↦→ λx.match(x)


X8 → (True : τbool as τ̂bool)
. . . → . . .

X15 → (True : τbool as τ̂bool)
_ → (False : τbool as τ̂bool)


Let xout an output location which we will use as a destination for its result. We admit that the

source expression (True : τbool as τ̂bool) translates to the target expression xout := 1; success and

(False : τbool as τ̂bool) to xout := 0; success. The body of freg is a simple pattern matching expression,

which we compile with the following Destruct call:

Destruct

(
{x}, {τ̂reg},

{
({Xj}, ẽj)

��
0 ⩽ j < 32

})
where

ẽj =

{
xout := 1; success if 8 ⩽ j < 16

xout := 0; success otherwise

The Scaffold, Weave, Trim and Seq steps yield the following decision tree:
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0 31...

switch .0

0 ... 31

Figure 5.11: Intermediate decision tree in the compilation of is_popular_register.

Using TreeToTarget, we replace the switch discriminant .0 with x, each leaf jwith the corresponding

target expression ẽj and get the following target expression:

switch (x)



0 → xout := 0; success
. . . → . . .

7 → xout := 0; success
8 → xout := 1; success
. . . → . . .

15 → xout := 1; success
16 → xout := 0; success
. . . → . . .

31 → xout := 0; success
_ → fail


which corresponds to the CFG depicted in Example 5.4. △

5.4 First Naive Approaches for Valuexpressions

We now focus on the compilation of pivot expressions of the form (u : τ as τ̂). Given a destination output

locationxout, our goal is to emit target code which fillsxout with the memory representation ofu according

to the layout τ̂. As hinted in Section 5.1, this may raise some unexpected issues: some seemingly simple

accessors can require complex manipulation of both input and output memory contents (see for instance

Example 5.3).

In this section, we present incomplete compilation procedures which handle simple subsets of pivot

expressions. These first algorithms provide us with an opportunity to introduce some tooling required

for our full compilation approach, presented in the next sections.

5.4.1 Compilation of Value Constructors

As our first foray into the compilation of pivot expressions, we consider their simplest case: (v : τ as τ̂)
where v is a high-level value of type τ, without variables. Since values do not contain variable accessors,

the memory value v̂ representing v according to τ̂ is static and largely follows the structure of the

memory type τ̂. Given a destination xout, our goal is to emit a target expression ẽ which allocates, casts

and initializes memory so that at the end of its execution, xout contains v̂. This is accomplished with the

Construct algorithm defined in Algorithm 2.
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Data: ∆ a type variable environment

Data: xout an output location

Data: v a high-level value to represent

Data: τ its type

Data: τ̂ a memory layout agreeing with τ
Result: Target code building the memory representation of v as τ̂ in xout

1 function Construct∆ (xout, (v : τ as τ̂)):
// Base case: target value is a constant encoded as a primitive type.

2 if v = c ∧ τ̂ = Iℓ then return xout := c; success
3 else // Otherwise, break down the memory type into smaller pieces.

// Remove splits by selecting the single branch matching v.

4 τ′← τ
/
v

5 {(p, τ̂′)} ← τ̂
/
v

// Allocate memory, cast and fill in constant parts as needed for this memory type.

6 ẽconst ← Refine

(
xout, _|τ̂|, shape_of(τ̂′)

)
// Recursively build memory values representing each fragment (or primitive).

7 frags← shatter∆(τ̂′)
8 ẽfrags ← for (π̂f ↦→ πf as τ̂f) ∈ frags do

9 xf ← fresh symbol

10 τf ← focus (πf, τ
′)

11 vf ← focus (πf, v)
12 ẽf ← Construct∆ (xf, (vf : τf as τ̂f))
13 yield let out xf = xout.π̂f; ẽf; freeze(xf)
14 return ẽconst; ẽfrags

Algorithm 2: Construct: a simple compiler for value constructors.

In Construct, and in all other algorithms going forward, all equalities between memory types stand

for type equivalence up to type variables, for instance we consider the equality “t = Iℓ” to be true if

∆(t) = Iℓ. We do not specify how to determine whether two types are equal. Construct proceeds by

inspecting the desired value v and memory type τ̂ simultaneously to determine which operations are

needed to represent v as τ̂. We assume that at the beginning of execution, xout is an output location

whose contents are an adequately sized uninitialized word _|τ̂|. If τ̂ is a primitive type Iℓ, then from

agreement and typing hypotheses, v is necessarily a constant c, and all we have to do is to write it to xout

with a single instruction xout := c.

Otherwise, we break down the memory type into smaller components. We first process all splits in τ̂
by specializing it for v (high-level values can indeed be interpreted as patterns). This necessarily yields

a single branch (p, τ̂′), since it is impossible for a value to match more than one branch of the same split.

The next steps follow the resulting split-free memory type τ̂′ to build the desired memory value. We

first consider its “constant” parts which describe concrete memory structures such as words, pointers

and structs – these correspond to its shape shape_of∆(τ̂′). In order to mirror the desired memory shape

in the contents of xout, we refine them using the Refine function defined in Fig. 5.12 (on line 6).
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Refine∆(x){
p̂ , p̂ −→ success
_ℓ , (c)ℓ −→ x := (c)ℓ; success
_ℓ , &ℓ (̂p) −→ x := &alloc(|̂p|); Refine

(
x, &ℓ

(
_|p̂|

)
, &ℓ (̂p)

)
_ℓ , p̂ ⋉

0⩽i<n
[oi : ℓi] : p̂i −→ cast x to _ℓ⋉0⩽i<n[oi : ℓi] : _ℓi ;

Refine

(
x, _ℓ⋉0⩽i<n[oi : ℓi] : _ℓi , p̂⋉0⩽i<n[oi : ℓi] : p̂i

)
_ℓ , {{p̂0, . . . , p̂n−1}} −→ cast x to {{

_|p̂0|, . . . , _|p̂n−1|
}}

; Refine

(
x,

{{
_|p̂0|, . . . , _|p̂n−1|

}}
, {{p̂0, . . . , p̂n−1}}

)
&ℓ (̂p) , &ℓ (̂p′) −→ let out x′ = x.∗; Refine(x′, p̂, p̂′)
p̂ ⋉

0⩽i<n
ri : p̂i , p̂′ ⋉

0⩽i<n
ri : p̂′i −→ let out x′ = x.¬r0 . . .¬rn−1; let out x0 = x.r0; . . . ; let out xn−1 = x.(n − 1);

Refine(x′, p̂, p̂′); Refine(x0, p̂0, p̂′
0
); . . . ; Refine(xn−1, p̂n−1, p̂′

n−1
)

{{p̂0, . . . , p̂n−1}} ,

{{
p̂′

0
, . . . , p̂′n−1

}}
−→ let out x0 = x.0; . . . ; let out xn−1 = x.(n − 1);

Refine(x0, p̂0, p̂′
0
); . . . ; Refine(xn−1, p̂n−1, p̂′

n−1
)

p̂ , p̂′ −→ fail
}

Figure 5.12: Refine(x, p̂old, p̂new) – Memory shape refinement instructions.

Refine takes as inputs an output location x, a memory shape p̂old which describes the initial contents

of x, and a more precise shape p̂new. It emits memory allocation, cast and write instructions which

capture precisely the difference between p̂old and p̂new. For instance, to go from an uninitialized word

_ℓ to a pointer &ℓ (̂p), we first allocate memory and store its address in x, then recursively Refine its

uninitialized contents to p̂. After executing these instructions, which will be shown in green in the

following examples, the contents of x conform to the desired shape p̂new.

Example 5.12 (Refine the shape of an Sw instruction.). Recall the τriscv value v = Sw(⟨X1,X2, 42⟩) from

Example 5.1. Our goal is to emit code which builds its memory representation as τ̂riscv in the output

location xout with the following Construct call:

Construct(xout, (Sw(⟨X1,X2, 42⟩) : τriscv as τ̂riscv))

The specialization of τ̂riscv for v yields the memory type τ̂Sw. Assuming that xout initially contains an

empty 32-bit word _32, the first step is to refine its shape to that of τ̂Sw, which is:

shape_of(τ̂Sw) = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : _5 ⋉ [12 : 3] : (2)3 ⋉ [15 : 5] : _5 ⋉ [20 : 5] : _5 ⋉ [25 : 7] : _7

We are able to do so with a single cast instruction, which is emitted by Refine(xout, _32, shape_of(τ̂Sw)):

cast xout to _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : _5 ⋉ [12 : 3] : (2)3 ⋉ [15 : 5] : _5 ⋉ [20 : 5] : _5 ⋉ [25 : 7] : _7

△

The next step is to emit target code which fleshes out the skeleton created by Refine with the

“variable” parts of τ̂′. These parts correspond to fragments and primitive types appearing in τ̂′, which

we gather on line 7 as a set of triplets of the form (π̂f ↦→ πf as τ̂f) using the shatter function (which was

defined in Fig. 3.13, Section 3.1). Unlike constant parts whose memory contents are solely determined

by the memory type, the contents of these variable parts also depend on the input value v. Indeed, each

triplet (π̂f ↦→ πf as τ̂f) specifies that the memory value at position π̂f within the root destination xout

should represent the subterm at position πf in the high-level value v as the memory layout τ̂f. Our goal

is now to emit code, gathered into ẽfrags, which builds the memory representation of these subterms in

their appropriate locations. For each fragment (or primitive) (π̂f ↦→ πf as τ̂f), we proceed as follows

(lines 8 to 13):

1. Define a new output location xf which will be the destination of this fragment. It corresponds to

the position π̂f within the current destination xout.

2. Recursively call Construct to emit code ẽf which builds the representation of the desired subterm

focus (πf, v) as τ̂f in xf.
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3. Freeze xf since there is no need to modify its contents after this point.

In examples, we will display the target instructions emitted by these steps in a light blue box.

Note the use of Python-style generators with for and yield keywords on lines 8 and 13. In general, we

will reuse this functional iterator-based style throughout this chapter to build lists of target expressions.

Example 5.13 (Build variable parts of an Sw instruction). The target expression shown in Example 5.12

handled all constant parts of τ̂Sw. We now resume the execution of this Construct call after line 6. We

emit target code which handles all variable parts of τ̂Sw to build the representation of the high-level

value v = Sw(⟨X1,X2, 42⟩). We have

shatter(τ̂Sw) =

(.[7 : 5] ↦→ .Sw.2.[0 : 5] as I5),
(.[15 : 5] ↦→ .Sw.0 as τ̂reg),
(.[20 : 5] ↦→ .Sw.1 as τ̂reg),
(.[25 : 7] ↦→ .Sw.2.[5 : 7] as I7)


Let us first deal with the first immediate fragment (.[7 : 5] ↦→ .Sw.2.[0 : 5] as I5). The corresponding

subterm in our input value v is

focus (.Sw.2.[0 : 5], v) = focus (.[0 : 5], 42) = 10

which is of type

focus

(
.Sw.2.[0 : 5], Sw(

〈
τreg, τreg, I12

〉
)
)
= focus (.[0 : 5], I12) = I5

We perform the following recursive Construct call to build its representation as I5, where x2,05 is a fresh

location symbol:

Construct (x2,05, (10 : I5 as I5))
Since 10 is a primitive value which we want to represent as the primitive memory type I5, this call is a

“base case” of Construct and yields the target expression x2,05 := 10; success. To build this fragment,

we therefore emit the following target expression:

let out x2,05 = xout.[7 : 5]; x2,05 := 10; freeze(x2,05); success
We now process the first register operand represented by the triplet (.[15 : 5] ↦→ .Sw.0 as τ̂reg). The cor-

responding subterm in our input value v is focus (.Sw.0, v) = X1, which is of type focus

(
.Sw.0, Sw(

〈
τreg, τreg, I12

〉
)
)
=

τreg. We perform the following recursive Construct call to build its representation as τ̂reg, where x0 is a

fresh location symbol:

Construct

(
x0, (X1 : τreg as τ̂reg)

)
We first specialize τ̂reg for X1, yielding the memory type (1)5. This constant type does not contain any

primitive or fragment, therefore the code emitted by this recursive Construct call is:

Refine(x0, _5, (1)5) = x0 := 1; success
To build this fragment, we finally emit the following target expression:

let out x0 = xout.[15 : 5]; x0 := 1 ; freeze(x0); success
The two other fragments are handled similarly. △

The final target expression emitted by Construct∆(xout, (v : τ as τ̂)) on line 14 is the sequence of

ẽconst, which refines the contents of xout to build the constant parts of τ̂, and of ẽfrags, which recursively

builds the variable parts of τ̂ in their respective locations.
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Example 5.14 (Construct the representation of an Sw value). Using the target expressions shown in

Examples 5.12 and 5.13, we finally obtain the following target code:

cast xₒᵤₜ to _₃₂
    ⋉[0:7]:_₇   ⋉[7:5]:_₅  ⋉[12:3]:_₃
    ⋉[15:5]:_₅ ⋉[20:5]:_₅ ⋉[25:7]:_₇
let out opcode = xₒᵤₜ.[0:7]
opcode := 0x23

let out funct₃ = xₒᵤₜ.[12:3]
funct₃ := 2

/* Subterm .Sw.2.[0:5] //

let out immlow = xₒᵤₜ.[7:5]
immlow := 10
freeze(immlow)

/* Subterm .Sw.0 //

let out reg₀ = xₒᵤₜ.[15:5]
reg₀ := 1

freeze(reg₀)

/* Subterm .Sw.1 //

let out reg₁ = xₒᵤₜ.[20:5]
reg₁ := 1

freeze(reg₁)

/* Subterm .Sw.2.[5:7] //

let out immhigh = xₒᵤₜ.[25:7]
immhigh := 1
freeze(immhigh)

success

Figure 5.13: Final code to construct the RISC-V Sw(⟨X1,X2, 42⟩) value according to τ̂Sw.

△

5.4.2 Compilation of Accessors: A First Attempt

The Construct algorithm presented in the previous subsection is able to emit target code which builds

the memory representation of any value as any suitable memory layout. However, most of the complexity

associated with compilation of pivot expressions comes from valuexpressions which combine constant

values with variable accessors of the form x.π. As Section 5.1 demonstrates, seemingly simple accessors

can require extensive manipulation of both input and output values. Our general compilation approach

for arbitrary pivot expressions, which we will present in Section 5.5, is rather complex and relies on

several tools to handle different aspects of valuexpressions and memory layouts. We now introduce

the basic concepts used to handle accessors in our full approach through a simple, but incomplete

procedure.

Consider an accessor x.π, where x is known to be bound to a value v of type τ whose memory

representation v̂ follows the layout τ̂. A first intuition to compile this accessor could be to look for a

position π̂ at which v̂ contains the memory representation of the subterm focus (π, v). For instance,

consider the RISC-V “store word” instruction v̂ = Sw(
〈
vreg0, vreg1, vimm

〉
) represented using the memory

type τ̂Sw from Example 5.1. The memory representation of its first register operand vreg0 is stored at

position .[15 : 5]within v̂, since this position corresponds to the following fragment in τ̂Sw:�
focus (.[15 : 5], τ̂Sw) = (.Sw.0 as τ̂reg)

To extract this register, we can simply use the following target expression:

let in xin1 = xin.[15 : 5]; success
The Extract procedure, defined in Algorithm 3, implements this idea by looking for “the right

memory path” corresponding to a given high-level path. Its first argument is a description of the form

(xin ⊳ p : τ as τ̂) which characterizes the parent/input value from which to extract a subterm. This

description indicates that the input location xin contains the memory representation of a (statically
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unknown) high-level value of type τ which is known to match the pattern p, according to the memory

layout τ̂. Given such an input description, a destination xout and a high-level path π, it emits code to

store in xout the representation of the subterm located at π within the input value. Here, we are looking

for “the right memory path”, as such, there should exist a fragment within τ̂ that exactly corresponds to

the (high-level) subterm π. Note that we do not specify the desired memory layout for this subterm: for

now, we assume that any fragment corresponding to π is acceptable. All we have to do now is to find

where.

Data: ∆ the type variable environment

Data: (xin ⊳ p : τ as τ̂) the input description

Data: xout the output location

Data: π the path in the input to the desired value

Result: Code binding xout to the representation of the subterm at position π in the input

1 function Extract∆((xin ⊳ p : τ as τ̂), xout,π):
// Base case: the desired subterm is exactly the input value.

2 if π = ε then

3 return xout := xin; success
4 else // Otherwise, explore each branch of the input memory type.

5 B← for (pb, τb, τ̂b, fragsb) ∈ Explore∆(p, τ, τ̂) do

// Look for a fragment encoding a parent of the desired subterm.

6 if ∃(π̂ ↦→ π0 as τ̂′) ∈ fragsb,∃π′,π = π0.π′ then

7 x′
in
← fresh symbol

8 τ′,p′← focus∆ (π0, τb) , focus (π0,pb)
// Recursively explore this parent subterm.

9 ẽ← Extract∆((x′
in
⊳ p′ : τ′ as τ̂′), xout,π

′)
10 ẽb ← let in x′

in
= xin.π̂; ẽ

11 else ẽb ← fail
12 yield (pb, ẽb)

// Dynamically determine the branch used for the actual input value.

13 return Destruct∆ (xin, τ̂,B)
Algorithm 3: Extract: an incomplete compilation algorithm for variable accessors.

If π = ε, then the desired subterm is the input value itself: xin already contains its memory repre-

sentation, and we simply copy its contents to the destination xout (Line 2). Otherwise, we must explore

the memory type τ̂ to find the position of the desired subterm’s representation, depending on its actual

value. Indeed, a key specificity of the compilation of accessors is that the precise shape of the accessed

value is statically unknown. While a value v always matches at most one branch of a split memory type,

the actual interpretation of an accessor x.π depends on the value bound to x, which is not available at

compile time. We must therefore emit code which dynamically determines the precise shape of x, and

uses this information to find the representation of x.π. Let us illustrate this on an example.

Example 5.15 (Variable head location in lists, cont’). In Example 5.3, we already showed that the exact

position of a given subterm within a value’s memory representation was not always fixed. Recall the

following type definitions from Example 3.4:

∆list = {tlist ↦→ τlist, tp ↦→ τ̂p} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂p = split (.[0 : 2]) {

0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉ [0 : 2] : (2)2

}
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Consider a call to Extract with the following arguments:

Extract∆
list

(
(xin ⊳ Cons(⟨_, _⟩) : τlist as τ̂p), xout, .Cons.0

)
Here, our goal is to emit code which stores in xout the memory representation of the subterm at position

.Cons.0 within the (high-level) input value of type τlist. This input value is statically unknown; however,

it is known to match the pattern Cons(⟨_, _⟩), and its memory representation as τ̂p is known to be stored

in the input location xin.

While this information is enough to exclude the Nil case (in which it would be impossible to extract

the subterm at .Cons.0), it is not sufficient to determine the exact layout of the concrete contents of xin.

Indeed, there are two different branches in the root split of τ̂p whose provenances are compatible with

Cons(⟨_, _⟩).
• If the concrete input memory value represents a list with a single element, then its precise layout

follows the Cons(⟨_, Nil⟩) branch, and the fragment (.Cons.0 as I32) representing the desired

subterm is located at .[2 : 32].
• Otherwise, the contents of xin follow the Cons(⟨_, Cons(_)⟩) branch, in which the fragment

(.Cons.0 as I32) is located at . ∗ .0.

△
To handle such situations, we use the Explore function on line 5. Explore, defined in Fig. 5.14,

combines memory type specialization with shatter to examine both splits and fragments. Given a high-

level type τ, a memory type τ̂ which agrees with τ (both considered in the type variable environment ∆)

and a pattern p of type τ, Explore∆(p, τ, τ̂) yields a list of branches of the form (pb, τb, τ̂b, fragsb). These

branches characterize the space of high-level values matched by the pattern p and of their memory

representations. Each branch consists of a precise pattern pb, the specialized type τb and layout τ̂b for

this pattern, and the list of fragments and primitives contained therein fragsb.

Explore∆(p0, τ0, τ̂0) =
{(
(p, τ0

/
p, τ̂, shatter∆(τ̂)

) �� (p, τ̂) ∈ τ̂0

/
p0

}
Figure 5.14: Explore the branches of a given memory layout.

Example 5.16 (Explore the packed list layout.). Recall the following Extract call from Example 5.15:

Extract∆
list

(
(xin ⊳ Cons(⟨_, _⟩) : τlist as τ̂p), xout, .Cons.0

)
where

∆list = {tlist ↦→ τlist, tp ↦→ τ̂p} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂p = split (.[0 : 2]) {

0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉ [0 : 2] : (2)2

}
We explore all branches τ̂p which are relevant to the input pattern Cons(⟨_, _⟩):

Explore∆
list

(
Cons(⟨_, _⟩), τlist, τ̂p

)
=

{ (
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)(
Cons(⟨_, Cons(_)⟩), Cons(⟨I32, Cons(tlist)⟩), τ̂2, frags

2

) }
where

τ̂1 = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32) frags
1
= {(.[2 : 32] ↦→ .Cons.0 as I32)}

τ̂2 = &64

©«


(.Cons.0 as I32),
(.Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp)


ª®¬⋉ [0 : 2] : (2)2 frags

2
=


(. ∗ .0 ↦→ .Cons.0 as I32),
(. ∗ .1 ↦→ .Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp). ∗ .2
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Note that the types and layouts of branches are specialized according to their patterns Cons(⟨_, Nil⟩) and

Cons(⟨_, Cons(_)⟩) respectively. △
After gathering all possible branches with Explore, we process each of them by emitting specialized

target code which extracts the memory representation of the desired subterm .π from the contents of

xin. For each branch (pb, τb, τ̂b, fragsb), we proceed as follows. The main idea is to look for a part of τ̂b
which represents a parent of the desired subterm, i.e., a fragment (or primitive) (π̂ ↦→ π0 as τ̂′) ∈ fragsb such

that π0 is a prefix of π. If it exists, we narrow down our search to this specific part (at position π̂) of the

input value. We bind this part to a new input location, focus its type and pattern accordingly (line 8),

then recursively Extract the desired subterm from this new input value (line 10). If no such part exists,

we are unable to determine a memory position containing the representation of the subterm at π: in

this case, we emit a fail statement.

At this point, we have determined how to extract the desired subterm’s representation from xin for

every possible branch. We must now assemble these specialized target expressions into a single program.

At runtime, this program must determine which of the branches gathered by Explore corresponds to

the actual, concrete input value. This is precisely what our pattern matching compilation approach

was designed for: this task is easily carried out using Destruct on line 13 to emit code which inspects

the input value in xin, determines which branch pb matches it and continues with the associated target

expression ẽb. In examples, we will display the code emitted by Destruct in yellow boxes.

Example 5.17 (Extract the first element of a packed list.). Let us consider again the first element of a

non-empty list with the following Extract call:

Extract∆
list

(
(xin ⊳ Cons(⟨_, _⟩) : τlist as τ̂p), xout, .Cons.0

)
Recall the branches collected with Explore in Example 5.16:

Explore∆
list

(
Cons(⟨_, _⟩), τlist, τ̂p

)
=

{ (
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)(
Cons(⟨_, Cons(_)⟩), Cons(⟨I32, Cons(tlist)⟩), τ̂2, frags

2

) }
where

τ̂1 = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32) frags
1
= {(.[2 : 32] ↦→ .Cons.0 as I32)}

τ̂2 = &64

©«


(.Cons.0 as I32),
(.Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp)


ª®¬⋉ [0 : 2] : (2)2 frags

2
=


(. ∗ .0 ↦→ .Cons.0 as I32),
(. ∗ .1 ↦→ .Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp). ∗ .2


We now emit specialized target code for both of these branches.

• The first branch

(
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)
corresponds to lists containing a single

element. The fragment (.[2 : 32] ↦→ .Cons.0 as I32) in frags
1

represents exactly the desired subterm

.Cons.0. We bind the location at position .[2 : 32] within xin to a fresh input location symbol xin1,

then recursively explore it with the following base case call:

Extract∆
list
((xin1 ⊳ _ : I32 as I32), xout, ε)

We emit the following target expression for this branch:

ẽ1 = let in xin1 = xin.[2 : 32]; xout := xin1; success
• The second branch

(
Cons(⟨_, Cons(_)⟩), Cons(⟨I32, Cons(⟨I32, tlist⟩)⟩), τ̂2, frags

2

)
corresponds to lists

with more than one element. Similar to the first branch, we focus on the fragment (. ∗ .0 ↦→
.Cons.0 as I32) in frags

2
, binding it to the fresh input location xin2 and recursively exploring it with

the following base case call:

Extract∆
list
((xin2 ⊳ _ : I32 as I32), xout, ε)

We emit the following target expression for this branch:

ẽ2 = let in xin2 = xin. ∗ .0; xout := xin2; success
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We then emit target code which dynamically selects the appropriate branch ẽ1 or ẽ2 with the following

Destruct call:

Destruct∆
list

(
(xin : τ̂p), {(Cons(⟨_, Nil⟩), ẽ1) , (Cons(⟨_, Cons(_)⟩), ẽ2)}

)
We finally obtain the target program represented by the following control flow graph:

let in tag = xᵢₙ.[0:2]

switch(tag)

0 1 2

fail

let in xᵢₙ₁ = xᵢₙ.[2:32]
xₒᵤₜ := xᵢₙ₁

success

let in xᵢₙ₂ = xᵢₙ.¬[0:2].*.0
xₒᵤₜ := xᵢₙ₂

success

Note that the fail branch generated for the 0 tag value, which corresponds to the Nil branch of τ̂p, is

never taken since xin represents a non-empty list. Going forward, we will omit such unreachable switch

branches from CFGs. △

To implement Extract, we assumed that once we have narrowed down the layout τ̂ to a single branch

τ̂b, any given high-level path π can be translated to a single memory path π̂. While this is true for some

configurations, it is not the case in general, as demonstrated by the following example.

Example 5.18. Recall the RISC-V types and values from Example 5.1:

τriscv = Add(
〈
τreg, τreg, τreg

〉
)

| Addi(
〈
τreg, τreg, I12

〉
)

| Jal(
〈
τreg, I20

〉
)

| Sw(
〈
τreg, τreg, I12

〉
)

τ̂riscv = split (.[0 : 7])


0x33 from Add(_) ⇒ τ̂Add0x13 from Addi(_) ⇒ τ̂Addi0x6f from Jal(_) ⇒ τ̂Jal0x23 from Sw(_) ⇒ τ̂Sw


τ̂Sw = _32 ⋉ [0 : 7] : (0x23)7

⋉ [7 : 5] : (.Sw.2.[0 : 5] as I5)
⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (.Sw.0 as τ̂reg)
⋉ [20 : 5] : (.Sw.1 as τ̂reg)
⋉ [25 : 7] : (.Sw.2.[5 : 7] as I7)

v = Sw(⟨X1,X2, 42⟩)

v̂ = _32 ⋉ [0 : 7] : (0x23)7 ⋉ [7 : 5] : (10)5 ⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (1)5 ⋉ [20 : 5] : (2)5 ⋉ [25 : 7] : (1)7

The subterms at positions .Sw.0 and .Sw.1 within v, which correspond to the two register operands of an

Sw instruction, are both accessible as a single fragment within its memory representation v̂, at positions

.[15 : 5] and .[20 : 5] respectively. Our Extract procedure is able to emit target code which extracts their

representations from the parent memory value v̂: we have

Extract

(
(xin ⊳ Sw(_) : τriscv as τ̂riscv), (xout : τreg as τ̂reg), Sw.0

)
= let inx′

in
= xin.[15 : 5]; xout := x′

in
; success

However, we are not yet able do the same for the immediate operand at position .Sw.2. Indeed, this

subterm is broken into two pieces within τ̂Sw: its 7 lowest bits are stored at position .[0 : 7], and its 5

highest bits at .[25 : 7]. Our Extract procedure is therefore unable to emit adequate target code, since

there does not exist any fragment within τ̂Sw which covers the entire subterm .Sw.2. △

In this section, we have shown how tools such as Refine and Explore can be combined to design

fairly complex compilation procedures such as Construct and Extract. However, these procedures are

incomplete. On one hand, Construct is by design limited to statically known value constructors. On

the other hand, Extract fails to retrieve subterms such as the immediate operand at position .Sw.2 from
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a τriscv value. In order to handle such situations, we must emit target code which assembles multiple

pieces together into a single memory value. This is done by our full compilation procedure, which

we present in the next section. As we will see, it leverages previous tools to compile any given pivot

expression to equivalent target code.

5.5 Compilation of Arbitrary Valuexpressions

We are now ready to present our main compilation approach for pivot expressions (u : τ as τ̂), which

consists of two mutually recursive procedures: Rebuild (Algorithm 5) and Seek (Algorithm 4). Seek is

an extended version of Extract which looks for a fragment corresponding to a given high-level subterm.

Unlike Extract, if no such fragment exists, it defers to Rebuild which will break down the desired

subterm into smaller pieces. Rebuild is somewhat similar to Construct: it handles the constant parts

of the desired valuexpression u, using Refine to build a first skeleton and Seek to fill its variable parts.

The main ideas underlying both algorithms are:

• Alternatively Explore input and output values, using Seek and Rebuild respectively.

• Identify each input value with a quadruple (xin ⊳ p : τ as τ̂) and the output value with a triple

(xout : τout as τ̂out).
• Break down the desired valuexpression u until we reach the smallest possible pieces – individual

bits of primitive values – which are necessarily directly available within τ̂ (assuming that τ̂ is valid,

well-kinded and agrees with τ).

• Since the exact layout of data may be statically unknown, we use Destruct to emit code which

dynamically determines the precise shape of the output value by inspecting input values, and

branches to the corresponding specialized program. As in Extract, we will highlight the code

emitted by Destruct in yellow .

5.5.1 Seek a subterm

Seek, in Algorithm 4, compiles an accessor x.π to target code. We consider the memory representation

of the value bound to x (which is already built and read-only at execution time) as the input value and

identify it with the quadruple (xin ⊳ pin : τin as τ̂in), composed of its input location, type, layout and

pattern respectively. That is, at execution time, xin is expected to contain the memory representation

according to τ̂in of some value of type τin matching the pattern pin. Similarly, we refer to the memory

representation of the desired subterm (which is the piece of data currently being built) as the output

value and identify it with the triple (xout : τout as τ̂out) composed of its output location, type and

layout respectively. Our goal is to emit code that, given an input location xin containing the memory

representation of v following the layout τ̂in and an output location xout, stores in xout the representation

of focus (π, v) following the layout τ̂out.

Seek is similar to the Extract procedure presented in Section 5.4.2. The differences are highlighted

in orange . As we have seen, in some cases, there exists no single fragment that covers the desired path.

Alternatively, we might reach π = ε, but τ̂in ≠ τ̂out, indicating that we should exhibit an isomorphism

between τ̂in and τ̂out to get the desired memory value. In both cases, we need to break down the desired

output value into smaller pieces in order to reconstruct it differently, on Line 9. For primitive types

(Line 10), we expose the underlying individual bits using a cast operation to consider the output value as

a composite word. We restore its primitive integer type after rebuilding its contents with another cast 1
.

For other memory types, these smaller pieces correspond to fragments and primitives. We now need to

rebuild the output value from these pieces. This task is carried out by our next procedure: Rebuild.

1
While correct, rebuilding each bit individually is not optimal. Ideally, we would explore the input values to determine which

pieces are available and avoid unnecessarily breaking down values.

136



Data: ∆ the type variable environment

Data: (xin ⊳ pin : τin as τ̂in) the input description

Data: (xout : τout as τ̂out) the output description

Data: π the path to the desired subterm within the input value

Result: Code binding xout to the representation of the subterm at position π in the input value

1 function Seek∆((xin ⊳ pin : τin as τ̂in), (xout : τout as τ̂out),π):
// Invariant: π and pin are compatible.

// Base case: input and output values are the same data with the same representation.

2 if π = ε ∧ τ̂in = τ̂out then return xout := xin; success
3 else // Otherwise, Explore all cases of the input value.

4 B← for (pb, τb, τ̂b, fragsb) ∈ Explore∆(pin, τin, τ̂in) do

// Seek a fragment containing the piece of data at π.

5 if ∃(π̂f ↦→ πf as τ̂f) ∈ fragsb,∃π′,π = πf.π
′
then

// Found one. We focus on it and Seek inside.

6 xf ← fresh symbol

7 τf,pf ← focus (πf, τb) , focus (πf,pb)
8 ẽb ← let in xf = xin.π̂f; Seek

∆

(
(xf ⊳ pf : τf as τ̂f), (xout : τout as τ̂out) ,π′

)
9 else // Otherwise, Rebuild from smaller pieces.

10 if τ̂out = Iℓ then // If we are seeking a primitive, decompose it in individual bits

11 τ̂′
out
← _ℓ⋉0⩽i<ℓ[i : 1] : (.[i : 1] as I1)

12 ẽ← Rebuild

(
{(xin ⊳ pb : τb as τ̂b)}, (xout : τout as τ̂′

out
), xin.π

)
13 p̃← _ℓ⋉0⩽i<ℓ[i : 1] : _1

14 ẽb ← cast xout to p̃; ẽ; cast xout to Iℓ; success
15 else

16 ẽb ← Rebuild ({(xin ⊳ pb : τb as τ̂b)}, (xout : τout as τ̂out), xin.π)

17 yield (pb, ẽb)
// Assemble the code of these branches via a decision tree.

18 return Destruct∆ (xout, τ̂in,B)
Algorithm 4: Seek – Seek the memory location representing π in xin.
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5.5.2 Rebuild a valuexpression

Data: ∆ the type variable environment

Data: (xi ⊳ pi : τi as τ̂i) the n input descriptions

Data: (xout : τout as τ̂out) the output description

Data: u a valuexpression to compile

Result: Target code building the memory representation of u as τ̂out in xout from the n input

values.

1 function Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τout as τ̂out),u):
// Base case: target value is a constant encoded as a primitive type.

2 if u = c ∧ τ̂out = Iℓ then return xout := c; success
3 else // Otherwise, explore all cases of the output value.

4 pout0 ← u [x.π ↦→ _]
5 Posout ← {(x.π,π′) | focus (π′,u) = x.π}
6 pout ← Remap ({xi ↦→ pi | 0 ⩽ i < n},pout0, Posout)
7 B← for pb, τb, τ̂b, fragsb ∈ Explore∆(pout, τout, τ̂out) do

// Allocate memory, cast and fill in constant parts as needed for this memory type.

8 ẽconst ← Refine

(
xout, _|τ̂out|, shape_of∆(τ̂b)

)
// Rebuild target fragments from input values, which we specialize for the current branch.

9 for i ∈ {0, . . . ,n − 1} do

10 Posi ← {(xout.π,π′) | focus (π,u) = xi.π
′}

11 p′
i
← Remap({xout ↦→ pb},pi, Posi)

12 ẽfrags ← for (π̂f ↦→ πf as τ̂f) ∈ fragsb do

13 xf ← fresh symbol

14 τf ← focus (πf, τb)
15 if ∃i ∈ {0, . . . ,n − 1},∃(xi.πin,πout) ∈ Posout,∃π,πout.π = πf then

// If this fragment corresponds to a single piece of an input value, Seek it within this value.

16 ẽf ← Seek∆((xi ⊳ p′i : τi as τ̂i), (xf : τf as τ̂f),πin.π)
17 else // Otherwise, Rebuild it from smaller pieces.

18 ẽf ← Rebuild∆({(xi ⊳ p′i : τi as τ̂i) | 0 ⩽ i < n}, (xf : τf as τ̂f), focus (πf,u))
19 yield let out xf = xout.π̂f; ẽf; freeze(xf); success
20 yield ({xi ↦→ p′

i
| 0 ⩽ i < n}, ẽconsts; ẽfrags)

// Assemble these branches into a decision tree.

21 return Destruct∆ ({xi : τ̂i | 0 ⩽ i < n},B)
Algorithm 5: Rebuild – Rebuild the value in memory representing u from the xis.

Rebuild (Algorithm 5) compiles an arbitrary valuexpression u to target code that constructs its memory

representation as τ̂out in the destination xout. Whereas Seek retrieves a (possibly mangled) relevant

fragment from a single input value, Rebuild inspects the shape of the output value to assemble its

constituent pieces, which include constant parts of the memory layout as well as fragments extracted

from multiple input values. It reuses the general structure of Seek (and Extract), but considers n input

values described by quadruples (xi ⊳ pi : τi as τ̂i)with 0 ⩽ i < n.

Firstly, when u is a primitive value c and the output layout τ̂out is a fixed-width primitive encoding

Iℓ, we simply write the constant c to the output location xout (Line 2). Otherwise, we operate in a

similar manner as in the previous procedures Extract and Seek: we Explore all suitable branches of τ̂out

(Line 3), whose code we will eventually combine with Destruct (Line 21).

However, unlike Extract and Seek which explore and destruct an already-built input value, Rebuild

explores the output value. By definition, we cannot use Destruct to determine the shape of the output

value, since it is not built yet! Instead, we must infer it from the shapes of the n input values x0, . . . , xn−1.

To do so, we build a pattern pout which is known to match the output value with the following steps.

• On Line 4, we substitute accessors in u with wildcards to get a first approximation of its shape
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pout0 which matches its statically known parts.

• On Line 5, we capture the variable parts of u by collecting all accessors xi.π that appear in it, along

with their positions.

• On Line 6, we finally get a pattern pout which integrates both static and variable information, using

the Remap function defined in Fig. 5.15.

Remap ({xi ↦→ pi | 0 ⩽ i < n},p, Pos) = p
[

.π′← focus (π,pi) ↦→
�� (xi.π,π′) ∈ Pos

]
Figure 5.15: Remap: refine patterns according to a position map.

The Remap function, defined in Fig. 5.15, takes as inputs a map P from variable symbols to patterns, a

“parent” pattern p and a set Pos of pairs (x.π,π′). It returns a pattern based on p in which for each pair

(x.π,π′), the subterm at position π′ has been replaced with focus (π,P(x)).
Example 5.19 (Remap list patterns.). Recall ∆list = {tlist ↦→ τlist} and τlist = Nil | Cons(⟨I32, tlist⟩) from

Example 5.15. Consider the valuexpression u = Cons(⟨x1.Cons.0, x2.Cons.1⟩) which, given two non-

empty lists x1 and x2, returns a new list consisting of the head of x1 appended to the tail of x2. Its “static”

pattern is Cons(⟨_, _⟩), and we collect its accessors and their positions in the following set:

Posout = {(x1.Cons.0, .Cons.0), (x2.Cons.1, .Cons.1)}
We can now use Remap to get a precise pattern for u:

Remap ({x1 ↦→ Cons(_), x2 ↦→ Cons(_)}, Cons(⟨_, _⟩), Posout) = Cons(⟨_, _⟩)
△

Using this function, we are able to characterize the output value with a pattern pout, which we use to

Explore all possible branches of its memory layout τ̂out (Line 3). Note that there is a bĳection between

the pout branches and the possible combinations of pi branches since, by definition, the only variable

parts of u are its accessors xi.π.

For each of these branches, we proceed similarly to Construct: we first Refine the contents of the

output location xout to capture all constant parts of the memory layout (Line 8). We then move on to

the variable parts of the output value. On Line 11, we derive a new pattern p′
i

for each input value,

which is at least as precise as pi and also integrates information from the considered output branch pb.

We then build the memory representation of each fragment appearing in τ̂b. Depending on whether

a given fragment corresponds to a variable accessor in u, we either use Seek or Rebuild to recursively

build it in its adequate location. On Line 15, we determine whether the high-level path πf corresponds

to a variable accessor xi.π using the previously computed map Posout. If so, we can simply Seek the

corresponding subterm within the input value xi (and discard all other input values). Otherwise, we

must recursively Rebuild this part of u. As with Construct, in upcoming examples, we will highlight

the code emitted by Refine in green and the code emitted to process each fragment in light blue .

On Line 21, we finally assemble each branch into a single target program using Destruct. As

mentioned earlier, at execution time, the only way to determine the shape of the desired output value is

to infer it from input values. Consequently, we pass the n input values x0, . . . , xn−1 to Destruct.

Example 5.20 (Rebuild the head of a packed list). Recall the following type definitions from Example 5.15:

∆list = {tlist ↦→ τlist, tp ↦→ τ̂p} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂p = split (.[0 : 2]) {

0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉[0 : 2] : (2)2

}
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Recall the Explored branches for the pattern Cons(_) from Example 5.16:

Explore∆
list

(
Cons(⟨_, _⟩), τlist, τ̂p

)
=

{ (
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)(
Cons(⟨_, Cons(_)⟩), Cons(⟨I32, Cons(tlist)⟩), τ̂2, frags

2

) }
where

τ̂1 = _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32) frags
1
= {(.[2 : 32] ↦→ .Cons.0 as I32)}

τ̂2 = &64

©«


(.Cons.0 as I32),
(.Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp)


ª®¬⋉ [0 : 2] : (2)2 frags

2
=


(. ∗ .0 ↦→ .Cons.0 as I32),
(. ∗ .1 ↦→ .Cons.1.Cons.0 as I32),
(.Cons.1.Cons.1 as tp). ∗ .2


Consider the following pivot expression which, given a non-empty list x, rebuilds a list containing only

its head.

(Cons(⟨x.Cons.0, Nil⟩) : τlist as τ̂p)
We now compile it using our Rebuild and Seek procedures. In this situation, we statically know the

exact shape of the output value, since the pattern Cons(⟨_, Nil⟩) corresponds to exactly one branch of

the memory layout τ̂p. However, we do not know the precise shape of the input value x: its statically

known pattern Cons(_) matches two branches of its memory layout τ̂p. Consequently, at some point

during compilation, we will explore two branches of a Seek call, which we will then join using Destruct.

Here, we detail this compilation process using intermediate results from Examples 5.16, 5.17 and 5.19.

The emitted code is shown in Fig. 5.16. We start with the following Rebuild call:

Rebuild∆
list

({
(x ⊳ Cons(_) : τlist as τ̂p)

}
, (xout : τlist as τ̂p), Cons(⟨x.Cons.0, Nil⟩)

)
We explore the output memory layout with the pattern Cons(⟨_, Nil⟩)with Explore (Cons(⟨_, Nil⟩), τlist, τ̂list),
which yields a single branch

(
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)
. We first process the constant

parts of the specialized memory type τ̂1 using Refine:

ẽconst = Refine (xout, _64, _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : _32)

The next step deals with the only variable part of the output value, which is the head of the list

represented by the triple (.[2 : 32] ↦→ .Cons.0 as I32) in frags
1
. It corresponds to the accessor x.Cons.0 in

the considered valuexpression. We bind its destination to a new output location headout, then Seek this

piece of data with:

ẽ = Seek∆
list

(
(x ⊳ Cons(_) : τlist as τ̂p), (headout : I32 as I32), .Cons.0

)
The input pattern Cons(_) is compatible with two branches of the input memory type τ̂p, corresponding

to the refined patterns Cons(⟨_, Nil⟩) and Cons(⟨_, Cons(_)⟩). We explore both of these branches:

Branch

(
Cons(⟨_, Nil⟩), Cons(⟨I32, Nil⟩), τ̂1, frags

1

)
: We find the fragment (.[2 : 32] ↦→ .Cons.0 as I32)

in frags
1

and emit a target expression ẽ1 which binds its location to a new symbol head, then

recursively seeks the desired subterm with:

Seek∆
list
((head ⊳ _ : I32 as I32), (headout : I32 as I32), ε)

This Seek call is a base case: the input location head contains exactly the desired piece of data, and

we write its contents to the destination headout.

Branch

(
Cons(⟨_, Cons(_)⟩), Cons(⟨I32, Cons(⟨I32, tlist⟩)⟩), τ̂2, frags

2

)
: We find the fragment (.¬[0 : 2]. ∗

.0 ↦→ .Cons.0 as I32) in frags
2

and emit a target expression ẽ2 which binds its location to a new

symbol head, then recursively seeks the desired subterm with the same Seek call as the previous

branch:

Seek∆
list
((head ⊳ _ : I32 as I32), (headout : I32 as I32), ε)
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The Seek call returns a target expression ẽ which determines which branch matches the input value,

emitted by the following Destruct call:

Destruct∆
list

(
(x : τ̂p), {(Cons(⟨_, Nil⟩), ẽ1), (Cons(⟨_, Cons(_)⟩), ẽ2)}

)
We append a freeze instruction to ẽ and get a target expression ẽfrags which processes all variable parts

of the output value. Finally, we assemble and return the complete target program ẽconsts; ẽfrags.

cast xₒᵤₜ to _₆₄ ⋉[0:2]:_₂ ⋉[2:32]:_₃₂

let out tagₒᵤₜ = xₒᵤₜ.[0:2]
tagₒᵤₜ := 1
/* Subterm .Cons.0 //

let out headₒᵤₜ = xₒᵤₜ.[2:32]
let in tag = x.[0:2]

switch(tag)

1 2

/* Case Cons(_, Nil) //
let in head = x.[2:32]

headₒᵤₜ := head
freeze(headₒᵤₜ)

success

/* Case Cons(_, Cons(_)) //
let in head = x.¬[0:1].*.0

headₒᵤₜ := head
freeze(headₒᵤₜ)

success

Figure 5.16: Target code emitted by Rebuild∆
list

({
(x ⊳ Cons(_) : τlist as τ̂p)

}
, (xout : τlist as τ̂p), Cons(⟨x.Cons.0, Nil⟩)

)
.

△

Together, our Seek and Rebuild procedures are able to handle a variety of situations, including

memory types in which integer values are shattered in multiple pieces scattered accross memory such

as RISC-V instructions.

Example 5.21. Recall the RISC-V types defined in Example 5.1:

τriscv = Add(
〈
τreg, τreg, τreg

〉
)

| Addi(
〈
τreg, τreg, I12

〉
)

| Jal(
〈
τreg, I20

〉
)

| Sw(
〈
τreg, τreg, I12

〉
)

τ̂riscv = split (.[0 : 7])


0x33 from Add(_) ⇒ τ̂Add0x13 from Addi(_) ⇒ τ̂Addi0x6f from Jal(_) ⇒ τ̂Jal0x23 from Sw(_) ⇒ τ̂Sw


τ̂Sw = _32 ⋉ [0 : 7] : (0x23)7

⋉ [7 : 5] : (.Sw.2.[0 : 5] as I5)
⋉ [12 : 3] : (2)3
⋉ [15 : 5] : (.Sw.0 as τ̂reg)
⋉ [20 : 5] : (.Sw.1 as τ̂reg)
⋉ [25 : 7] : (.Sw.2.[5 : 7] as I7)

In Example 5.18, we showed that Extract was unable to retrieve the immediate operand of a store-word

RISC-V instruction. Using Rebuild and Seek, we are now able to do so by collecting the two relevant

pieces of data and reassembling them into a single I32 value. We achieve this with the following Seek

call:

Seek ((xin ⊳ Sw(⟨_, _, _⟩) : τriscv as τ̂riscv), (xout : I32 as I32), .Sw.2)
which yields the following target program (note that we have chosen to break down the output value

“optimally”, rather than in individual bits as specified in the general Seek algorithm):
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/* Subterm .[0:5] //

let out lowₒᵤₜ = xₒᵤₜ.[0:5]
let in lowᵢₙ = xᵢₙ.[7:5]
lowₒᵤₜ := lowᵢₙ
freeze(lowₒᵤₜ)
/* Subterm .[5:7] //

let out highₒᵤₜ = xₒᵤₜ.[5:7]
let in highᵢₙ = xᵢₙ.[25:7]
highₒᵤₜ := highᵢₙ
freeze(highₒᵤₜ)

success

△

In this section, we described two procedures Seek and Rebuild which, together with Destruct,

provide all of the necessary tools to compile the full space of source expressions. In the next section, we

will show how to ensure termination of these algorithms in the presence of recursive combinations of

memory layouts, and finally provide a unified compilation procedure for the ribbit language.

5.6 Wrapping up: a complete compilation procedure for Ribbit

5.6.1 Dealing with recursion

Although the compilation approach presented in the previous section is sufficient to handle most

situations, it does not necessarily terminate in the presence of recursive types and layouts. Let us

demonstrate this on an example.

Example 5.22 (Recursive rebuilding of linked lists). Recall the following type definitions from Exam-

ple 5.20:

∆list = {tlist ↦→ τlist, tp ↦→ τ̂p, tc ↦→ τ̂c} τlist = Nil | Cons(⟨I32, tlist⟩)

τ̂p = split (.[0 : 2]) {

0 from Nil ⇒ _64 ⋉ [0 : 2] : (0)2
1 from Cons(⟨_, Nil⟩) ⇒ _64 ⋉ [0 : 2] : (1)2 ⋉ [2 : 32] : (.Cons.0 as I32)
2 from Cons(⟨_, Cons(_)⟩) ⇒ &64

({{
(.Cons.0 as I32), (.Cons.1.Cons.0 as I32), (.Cons.1.Cons.1 as tp)

}})
⋉[0 : 2] : (2)2

}

Consider the simply-linked list layout τ̂c, which we introduced in Example 3.4:

τ̂c = split (.[0 : 1])
{

1 from Nil ⇒ _64 ⋉ [0 : 1] : (1)1
0 from Cons(_) ⇒ &64 ({{(.Cons.0 as I32), (.Cons.1 as tc)}}) ⋉ [0 : 1] : (0)1

}
On its own, this naive memory layout is easily handled with our existing compilation procedures Rebuild,

Seek and Destruct. The two memory layouts τ̂c and τ̂p specify two different ways to encode the same in-

ductive structure (lists). For instance, consider the valuexpression u = Cons(⟨x.Cons.0, Nil⟩) where x is

bound to aτlist value. As we have seen in Example 5.20, we can compile the pivot expression (u : τlist as τ̂p)
(assuming that x is represented as τ̂p) with Rebuild∆

list

(
(x ⊳ Cons(_) : τlist as τ̂p), (xout : τlist as τ̂p),u

)
.

Similarly, ifx is represented as τ̂c, we can compile the pivot expression (u : τlist as τ̂c)with Rebuild∆
list
((x ⊳ Cons(_) : τlist as τ̂c), (xout : τlist as τ̂c),u),

which yields the following target program:
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cast xₒᵤₜ to _₆₄ ⋉[0:1]:_₁

let out tag = xₒᵤₜ.[0:1]
tag := 0

let out ptr = xₒᵤₜ.¬[0:1]
ptr := &alloc(96)
let out str = ptr.*
cast str to {{_₃₂, _₆₄}}

/* Subterm .Cons.0 //

let out headₒᵤₜ = xₒᵤₜ.¬[0:1].*.0
let in head = x.¬[0:1].*.0

headₒᵤₜ := head
freeze(headₒᵤₜ)
/* Subterm .Cons.1 = Nil //

let out tailₒᵤₜ = xₒᵤₜ.¬[0:1].*.1
cast tailₒᵤₜ to _₆₄ ⋉[0:1]:_₁

let out tag' = tailₒᵤₜ.[0:1]
tag' := 1

freeze(tailₒᵤₜ)
success

However, using both of these layouts together raises new issues. For instance, given a τlist value

whose memory representation using the simple layout τ̂c is stored in x, consider the following pivot

expression, which reencodes it using the packed layout τ̂p: (x.ε : τlist as τ̂p). We can readily ask Seek to

emit such conversion code:

Seek∆
list

(
(x ⊳ _ : tlist as tc), (xout : tlist as tp), ε

)
Nevertheless, emitting code which transforms an entire inductive data structure in memory is not so

simple: it requires recursive target code to walk the entire list structure and fuse blocks two-by-two,

as shown in Fig. 5.17. Given this input, our current algorithms will not terminate: we will attempt to

Rebuild/Seek each element of the list without ever converging. Let us demonstrate this by walking

through each compilation step of the above Seek call.

We first Explore the input memory layout τ̂c. We get two branches corresponding to the patterns

Nil and Cons(_), for which we will emit two target expressions denoted ẽNil and ẽCons respectively. We

emit code which determines which branch matches the input value with the following Destruct call:

Destruct∆
list
((x : tc), {(Nil, ẽNil) , (Cons(_), ẽCons)})

which yields a switch node inspecting the split discriminant position .[0 : 1].
Neither of these two branches contains any fragment representing a parent of the desired subterm

ε. We must therefore rebuild it from smaller pieces with the following Rebuild calls:

ẽNil = Rebuild∆
list

(
{(x ⊳ Nil : Nil as _64 ⋉ [0 : 1] : (1)1)}, (xout : tlist as tp), x.ε

)
ẽCons = Rebuild∆

list

(
{(x ⊳ Cons(_) : Cons(⟨I32, tlist⟩) as &64 (. . . ) ⋉ [0 : 1] : (0)1)}, (xout : tlist as tp), x.ε

)
Following the Rebuild algorithm, we first determine which pattern is known to match the output value

using its specified valuexpression and each input value’s pattern. Here, the desired output value encodes

exactly the same data as the input value x (as specified by the accessor x.ε). We then Explore all branches

of the output memory type τ̂p which are compatible with this pattern. Following the three-branch split

in τ̂p, we get a single branch in the Nil case and two branches Cons(⟨_, Nil⟩) and Cons(⟨_, Cons(_)⟩)
in the Cons(_) case. To distinguish between the two possible branches in ẽCons, we use the following

Destruct call, where ẽConsNil and ẽConsCons designate the target code emitted for each branch:

Destruct∆
list
((x : τ̂c), {(Cons(⟨_, Nil⟩), ẽConsNil) , (Cons(⟨_, Cons(_)⟩), ẽConsCons)})

which yields a switch node inspecting the nested discriminant at position .¬[0 : 1]. ∗ .1.[0 : 1]within x.
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Let us now detail the code emitted for each of these three branches ẽNil, ẽConsNil and ẽConsCons.

Following the Rebuild algorithm, we first use Refine to emit code which allocates, casts and initializes

memory in xout according to the shape of the considered branch’s memory type. Here, all three branches

cast the contents of xout to a composite word shape revealing the τ̂p split discriminant location .[0 : 2],
whose contents are then initialized to the appropriate discriminant value. In the Cons(⟨_, Cons(_)⟩)
case, we also allocate 128 bits of memory to store a struct with two 32-bit and one 64-bit fields.

For the empty list Nil, this is sufficient and the program ends with success. For the two remaining

branches Cons(⟨_, Nil⟩) and Cons(⟨_, Cons(_)⟩), the next step is to fill the location of each fragment in

the output memory type with its concrete contents. For the Cons(⟨_, Nil⟩) branch, we must retrieve the

single element of the list x.Cons.0 and store it at position .[2 : 32]within xout. We bind its destination to

a new output location headout and perform the following Seek call:

Seek∆
list
((x ⊳ Cons(⟨_, Nil⟩) : Cons(⟨I32, Nil⟩) as &64 (. . . ) ⋉ [0 : 1] : (0)1), (headout : I32 as I32), .Cons.0)

Its memory representation as I32 is stored at position . ∗ .0 within the input location x. We bind this

location to a new symbol head and recursively Seek the desired subterm from it:

Seek∆
list
((head ⊳ _ : I32 as I32), (headout : I32 as I32), ε)

We have reached the base case of Seek and extract the subterm by copying the contents of head into its

destination headout.

In the Cons(⟨_, Cons(_)⟩) case, we proceed similarly for the first and second elements of the list

x.Cons.0 and x.Cons.1.Cons.0. Let us now focus on the last subterm of this branch, which is the tail of

the list x.Cons.1.Cons.1. We first bind its destination, which is at position . ∗ .2 within the root output

location xout, to a new output location tailout. We then Seek it within x with the following call:

Seek∆
list

(
(x ⊳ Cons(⟨_, Cons(_)⟩) : Cons(⟨I32, Cons(. . . )⟩) as &64 (. . . ) ⋉ [0 : 1] : (0)1), (tailout : tlist as tp), .Cons.1.Cons.1

)
The input memory type has already been specialized from τ̂c to the following split-free type:

&64 ({{(.Cons.0 as I32), (.Cons.1 as tc)}}) ⋉ [0 : 1] : (0)1

It contains the fragment (.Cons.1 as tc), which represents a parent of the desired subterm .Cons.1.Cons.1.

We bind its location in memory, which is at position .¬[0 : 1]. ∗ .1 within x, to a new symbol tail, and

recursively seek the desired subterm in it with:

Seek∆
list

(
(tail ⊳ Cons(_) : Cons(⟨I32, tlist⟩) as tc), (tailout : tlist as tp), .Cons.1

)
We explore the only branch of τ̂c which is compatible with the input pattern Cons(_), which yields

the same specialized memory type as above. Again, we find the fragment (.Cons.1 as tc) at position

.¬[0 : 1]. ∗ .1, bind its location to a new symbol tail
′
and recursively seek the desired subterm in it with:

Seek∆
list

(
(tail

′ ⊳ _ : tlist as tc), (tailout : tlist as tp), ε
)

This call is identical (modulo location identifiers) to the initial Seek call: we have exhibited a cycle in its

call graph. In their current state, our Rebuild and Seek algorithms fail to handle such situations. △

To properly handle such cases, we must emit recursive target code. Naturally, we could also refuse to

emit such code (in contexts when recursion is not acceptable). In both cases, we need to detect recursion.

Intuitively, a call to Seek or Rebuild leads to infinite recursion if it attempts to recursively rebuild the

same combination of arguments as its own – i.e., an output value with the same type, layout and relative

position from an input value with the same type, layout and pattern. This indicates that the output

value contains a subterm which must be rebuilt in the exact same way as itself: the only way to emit

correct code is to introduce an explicit recursive node and emit recursive calls at this position. For this

purpose, we replace Seek and Rebuild with their memoized versions using the Wrap function defined in

Algorithm 6.
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1 function Wrap(Rebuild):
2 H := ∅
3 return H, λ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τout as τ̂out),u) . {

4 h← ({(π,π′, τi, τ̂i,pi) | focus (π,u) = xi.π
′}, τout, τ̂out,u [x.π ↦→ _])

5 if h ∈ dom (H) then

6 f← H(h)
7 if H(h) = Uncalled(f) then H(h) := Called(f)
8 return call f(x0, . . . , xn−1, xout); success
9 else

10 f← fresh symbol

11 H(h) := Uncalled(f)
12 ẽ← Rebuild({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τout as τ̂out),u)
13 if H(h) = Uncalled(f) then

14 H := H \ h
15 return ẽ

16 else if H(h) = Called(f) then

17 H(h) := Defined (f, λx0 . . . xn−1xout.ẽ)
18 return call f(x0, . . . , xn−1, xout); success
19 end

20 end

21 }

Algorithm 6: Wrapper for emitting recursive code (Rebuild).

1 function Wrap(Seek):
2 H := ∅
3 return H, λ ((xin ⊳ p : τin as τ̂in), (xout : τout as τ̂out),π) . {

4 h← (τin, τ̂in,p, τout, τ̂out,π)
5 if h ∈ dom (H) then

6 f← H(h)
7 if H(h) = Uncalled(f) then H(h) := Called(f)
8 return call f(xin, xout); success
9 else

10 f← fresh symbol

11 H(h) := Uncalled(f)
12 ẽ← Seek((xin ⊳ p : τin as τ̂in), (xout : τout as τ̂out),π)
13 if H(h) = Uncalled(f) then

14 H := H \ h
15 return ẽ

16 else if H(h) = Called(f) then

17 H(h) := Defined (f, λxinxout.ẽ)
18 return call f(xin, xout); success
19 end

20 end

21 }

Algorithm 6: Wrapper for emitting recursive code (Seek).

Both Seek and Rebuild get assigned their own hashmap H, in which all calls will be recorded. Wrap

memoizes each Seek or Rebuild call by hashing its anonymized arguments, i.e., its arguments without

any input or output memory locations (Line 4). For instance, we remove variable accessors from the
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valuexpression argument of Rebuild and instead keep a map from positions within the valuexpression

to input value subterms. We record when we enter one of the algorithms, and generate a fresh function

symbol f. If we enter this function again, we emit a call call f(x0, . . . , xn−1, xout) with the appropriate

arguments and mark this function as “Called” (Line 8). Afterwards, we can use simple deforestation to

get rid of extra functions. Note that, on top of emitting recursive code, this also improves sharing.

function convert(x, xₒᵤₜ)

let in tag = x.[0:1]

switch(tag)

1 0

/* Case Cons(_) //
let in tag' = x.¬[0:1].*.1.[0:1]

switch(tag')

1 0

/* Case Nil //

cast xₒᵤₜ to _₆₄ ⋉[0:2]:_₂

let out tagₒᵤₜ = xₒᵤₜ.[0:2]
tagₒᵤₜ := 0

success

/* Case Cons(_, Nil) //

cast xₒᵤₜ to _₆₄ ⋉[0:2]:_₂ ⋉[2:32]:_₃₂

let out tagₒᵤₜ = xₒᵤₜ.[0:2]
tagₒᵤₜ := 1
/* Subterm .Cons.0 //

let out headₒᵤₜ = xₒᵤₜ.[2:32]
let in head = x.¬[0:1].*.0

headₒᵤₜ := head
freeze(headₒᵤₜ)

success

/* Case Cons(_, Cons(_)) //

cast xₒᵤₜ to _₆₄ ⋉ [0:2]:_₂

let out tagₒᵤₜ = xₒᵤₜ.[0:2]
tagₒᵤₜ := 2
let out ptr = xₒᵤₜ.¬[0:2]
ptr := &alloc(128)
let out str = ptr.*
cast str to {{_₃₂, _₃₂, _₆₄}}

/* Subterm .Cons.0 //

let out headₒᵤₜ = xₒᵤₜ.¬[0:2].*.0
let in head = x.¬[0:1].*.0

headₒᵤₜ := head
freeze(headₒᵤₜ)
/* Subterm .Cons.1.Cons.0 //

let out head'ₒᵤₜ = xₒᵤₜ.¬[0:2].*.1
let in tail₀ = x.¬[0:1].*.1
let in head' = tail₀.¬[0:1].*.0

head'ₒᵤₜ := head'
freeze(head'ₒᵤₜ)
/* Subterm .Cons.1.Cons.1 //

let out tailₒᵤₜ = xₒᵤₜ.¬[0:2].*.2
let in tail₁ = x.¬[0:1].*.1
let in tail' = tail₁.¬[0:1].*.1

call convert(tail', tailₒᵤₜ)
freeze(tailₒᵤₜ)

success

Figure 5.17: Generated code for rebuilding linked lists with a recursive convert function.

Example 5.23 (Recursive rebuilding of lists). Recall the following cyclic Seek call from Example 5.22:

Seek∆
list

(
(x ⊳ _ : tlist as tc), (xout : tlist as tp), ε

)
Thanks to memoization, this call terminates and emits target code featuring a recursive function convert
as shown in Fig. 5.17. Here, we detail the steps taken by our memoized compilation procedure to

emit this recursive target code. We instantiate memoized compilation procedures and their associated

hashmaps with Wrap as follows:

(HRebuild, RecRebuild) ≜ Wrap(Rebuild∆
list
) (HSeek, RecSeek) ≜ Wrap(Seek∆

list
)

We then call the memoized compilation procedure RecSeek with the same arguments:

RecSeek

(
(x ⊳ _ : tlist as tc), (xout : tlist as tp), ε

)
Its anonymized argument tuple, which characterizes the task of converting a list from τ̂c to τ̂p, is:

h =
(
(tlist, tc, _), (tlist, tp), ε

)
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At this point, HSeek is still empty (and thus does not contain h). We add h to HSeek and associate it with a

new function symbol convert, which we initially mark as Uncalled. We then proceed with the actual Seek

call, whose steps have been detailed in Example 5.22. The code emitted for the Nil and Cons(⟨_, Nil⟩)
branches is unchanged from the unwrapped version, since no Seek or Rebuild call is encountered more

than once. For the third branch Cons(⟨_, Cons(_)⟩), the code emitted for shape refinement and for the

first two subterms .Cons.0 and .Cons.1.Cons.0 is also unchanged.

Let us now focus on the last subterm of this branch .Cons.1.Cons.1, which is the tail of the list. We

seek it within x with

RecSeek

(
(x ⊳ Cons(⟨_, Cons(_)⟩) : Cons(⟨I32, Cons(. . . )⟩) as &64 (. . . ) ⋉ [0 : 1] : (0)1), (tailout : tlist as tp), .Cons.1.Cons.1

)
Following the same first steps as the unwrapped version of Seek, we find a fragment representing this

subterm as tc at position .¬[0 : 1]. ∗ .1.¬[0 : 1]. ∗ .1 within x. We bind this memory location to a new

symbol tail
′
and attempt to seek the desired subterm with:

RecSeek

(
(tail

′ ⊳ _ : τlist as tc), (tailout : tlist as tp), ε
)

The anonymized arguments of this call are identical to those of the initial RecSeek call: they are present

in the hashmap HSeek and associated with the convert function symbol. We do not proceed with the

recursive Seek call, and instead emit a function call to convert shown in red in the CFG to recursively

rebuild the tail of the list. We mark this function as Called and return to the toplevel RecSeek call, which

finalizes the recursive node by defining the function convert using the returned target expression as its

body. △

5.6.2 Complete compilation algorithm

We are, at last, equipped with all necessary tools to compile the full language of ribbit expressions. We

now combine all of the individual algorithms presented in this chapter into a single unified compilation

procedure for the complete Ribbitulus.

In Algorithm 7, we define our general compilation procedure Compile for source expressions. Given

n input descriptions characterizing already-built values, a destination xout and a source expression e, it

proceeds by case analysis on e to emit a target expression which evaluates e and stores its result in xout.

Compilation of pivot expressions is delegated to our dedicated procedures Seek and Rebuild defined in

Section 5.5, with the former being used for accessors and the latter for other forms of valuexpressions.

Both of these functions are hashconsed with Wrap to handle situations which require recursive target

code: we use their wrapped versions RecSeek and RecRebuild, which are instantiated in our toplevel

compilation procedure CompileProg. Similarly, compilation of pattern matching is delegated to the

Destruct procedure described in Section 5.3 after each right-hand side expression has been recursively

Compiled. The compilation of remaining source language constructs is straightforward. For let-bindings,

we emit code which allocates an adequately-sized new memory location, fills its contents by evaluating

the let-bound expression, then freezes it for later use before evaluating the rest of the expression. Finally,

source function calls are immediately translated to target function calls with the same function symbol

and input arguments, using xout as the destination argument.
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Data: ∆ the type variable environment

Data: RecSeek the memoized version of Seek∆

Data: RecRebuild the memoized version of Rebuild∆

Data: n input descriptions (xi ⊳ pi : τi as τ̂i) for free variables in e
Data: xout the destination location

Data: e the source expression

Result: Target expression ẽ storing its result in xout

function Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, xout, e):
cases e :

case (xi.π : τ as τ̂) :
return RecSeek ((xi ⊳ pi : τi as τ̂i), (xout : τ as τ̂),π)

case (u : τ as τ̂) :
return RecRebuild ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τ as τ̂),u)

case let x : (τ as τ̂) = e0 in e1 :

ẽ0 ← Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, x, e0)
ẽ1 ← Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n} ∪ {(x ⊳ _ : τ as τ̂)}, xout, e1)
return let out x = alloc(|τ̂|); ẽ0; freeze(x); ẽ1

case f(xi) :
return call f(xi, xout); success

case match(xi)
{
pj → ej

��
0 ⩽ j < N

}
:

for i′ ∈ {0, . . . ,n − 1} \ {i} do p′
i′ ← pi′

for j ∈ {0, . . . ,N − 1} do

p′
i
← pj

ẽj ← Compile∆

(
{(xi′ ⊳ p′i′ : τi′ as τ̂i′) | 0 ⩽ i′ < n}, xout, ej

)
return Destruct∆

(
(xi : τ̂i), {(pj, ẽj) | 0 ⩽ j < N}

)
Algorithm 7: Main compilation procedure for expressions: Compile. RecSeek and RecRebuild

refer to the wrapped versions of Seek and Rebuild respectively, which we define in Algorithm 8.

Our outermost compilation interface CompileProg is presented in Algorithm 8. Its input is a complete

ribbit program represented by a function environment Σ, a typing environment Γ , an identifier x and

a toplevel source expression e of type τ and layout τ̂. This procedure is responsible for initializing the

hashmaps HSeek and HRebuild, compiling each source function’s body as well as the toplevel expression

with Compile, and adding the recursive functions defined in Wrap to the target function environment.
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Data: ∆ the type variable environment

Data: Γ the (function) typing environment

Data: Σ the source function environment

Data: (x : τ as τ̂) the output description for the toplevel result

Data: e the toplevel source expression

Result: Σ̃ the target function environment (includes compiled versions of Σ functions)

Result: ẽ the toplevel target expression (compiled version of e)

function CompileProg∆(Γ ,Σ, (x : τ as τ̂), e):
(HSeek, RecSeek ) := Wrap(Seek∆)
(HRebuild, RecRebuild ) := Wrap(Rebuild∆)
Σ̃ := ∅
for (f ↦→ λxf.ef) ∈ Σ̃ do

((τin as τ̂in) → (τout as τ̂out)) ← Γ (f)
ẽf ← Compile∆ ({(xf ⊳ _ : τin as τ̂in)}, x, ef)
Σ̃ := Σ̃ ∪ {(f ↦→ λxfx.ẽf)}

ẽ← let out x = alloc(|τ̂|); Compile∆(∅, x, e); freeze(x); success
for (h ↦→ Defined(f, λx0 . . . xn−1xout.ẽ)) ∈ HSeek ∪HRebuild do

Σ̃ := Σ̃ ∪ {(f ↦→ λx0 . . . xn−1xout.ẽ)}
return (Σ̃, ẽ)

Algorithm 8: CompileProg – main compilation interface handling both functions and toplevel ex-

pressions.

We finally have a single compilation procedure for the Ribbitulus. The following example illustrates

the compilation of a program with multiple functions manipulating RISC-V instructions.

Example 5.24 (Compilation of a program with RISC-V instructions). Recall the following collection of

types, functions and expressions from Example 5.4:

τbool = True | False τ̂bool = split (ε)
{

0 from False ⇒ (0)8
1 from True ⇒ (1)8

}

Γ =


is_compressible : ( τriscv as τ̂riscv → τbool as τ̂bool)is_nonzero_register : ( τreg as τ̂reg → τbool as τ̂bool)is_popular_register : ( τreg as τ̂reg → τbool as τ̂bool)


Σ =


is_compressible ↦→ λx. ecis_nonzero_register ↦→ λx. e0regis_popular_register ↦→ λx. epreg

 e0reg = match(x)
{
X0 → (False : τbool as τ̂bool)
_ → (True : τbool as τ̂bool)

}

epreg = match(x)


X8 → (True : τbool as τ̂bool)
. . . → . . .

X15 → (True : τbool as τ̂bool)
_ → (False : τbool as τ̂bool)
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ec = match(x) {

Jal(⟨X1, _⟩) → let n : I20 as I20 = x.Jal.1 in
(n < 4096 : τbool as τ̂bool)

Add(⟨_, _, _⟩) → let rd : τreg as τ̂reg = x.Add.0 in
let rs1 : τreg as τ̂reg = x.Add.1 in let bs1 : τbool as τ̂bool = is_nonzero_register(rs1) in
let rs2 : τreg as τ̂reg = x.Add.2 in let bs2 : τbool as τ̂bool = is_nonzero_register(rs2) in
(rd = rs1 ∧ bs1 ∧ bs2 : τbool as τ̂bool)

Addi(⟨_, _, _⟩) → let rd : τreg as τ̂reg = x.Addi.0 in
let rs : τreg as τ̂reg = x.Addi.1 in let b : τbool as τ̂bool = is_nonzero_register(rs) in
let n : I12 as I12 = x.Addi.2 in
(rd = rs ∧ b ∧ n < 64 : τbool as τ̂bool)

Sw(⟨_, _, _⟩) → let r0 : τreg as τ̂reg = x.Sw.0 in let b0 : τbool as τ̂bool = is_popular_register(r0) in
let r1 : τreg as τ̂reg = x.Sw.1 in let b1 : τbool as τ̂bool = is_popular_register(r1) in
let n : I12 as I12 = x.Sw.2 in
let nl : I5 as I5 = n.[0 : 5] in let nh : I2 as I2 = n.[10 : 2] in
(b0 ∧ b1 ∧ nl = 0 ∧ nh = 0 : τbool as τ̂bool)

_ → (False : τbool as τ̂bool)

}
Consider the following toplevel expression, which builds a value representing a store-word instruction

as in Example 5.5, then calls the is_compressible function to determine whether it is compressible:

e = let instr : τriscv as τ̂riscv = Sw(⟨X1,X2, 42⟩) in is_compressible(instr)
We compile this complete program with

CompileProg (Γ ,Σ, (res : τbool as τ̂bool), e)

which yields the CFG forest depicted in Fig. 5.18. In this forest, each compiled function corresponds

to a pink node leading to its body. Note that the specification of a compilation scheme for primitive

operations – in this example, on booleans and integers – is implementation-dependent; here, we assume

that comparison and “AND” operators of arbitrary arity are available. The compilation rules defined by

Compile are clearly visible in the different parts of each CFG. △
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let out res = alloc(8)

/* Let instr = Sw(X₁, X₂, 42) //
let out instr = alloc(32)

cast instr to _₃₂
    ⋉[0:7]:_₇   ⋉[7:5]:_₅  ⋉[12:3]:_₃
    ⋉[15:5]:_₅ ⋉[20:5]:_₅ ⋉[25:7]:_₇
let out opcode = instr.[0:7]
opcode := 0x23
let out funct₃ = instr.[12:3]
funct₃ := 2

/* Subterm .Sw.2.[0:5] //
let out immlow = instr.[7:5]
immlow := 10
freeze(immlow)

/* Subterm .Sw.0 //
let out reg₀ = instr.[15:5]

reg₀ := 1

freeze(reg₀)

/* Subterm .Sw.1 //
let out reg₁ = instr.[20:5]

reg₁ := 1

freeze(reg₁)

/* Subterm .Sw.2.[5:7] //
let out immhigh = instr.[25:7]
immhigh := 1
freeze(immhigh)

freeze(instr)

call is_compressible(instr, res)

freeze(res)

success

function is_compressible(x, xₒᵤₜ)

function is_nonzero_register(x, xₒᵤₜ)

switch(x)

0 _

xₒᵤₜ := 0

success

xₒᵤₜ := 1

success

function is_popular_register(x, xₒᵤₜ)

switch(x)

8..15 _

xₒᵤₜ := 1

success

xₒᵤₜ := 0

success

/* Case Jal(_) //
let in rd = x.[7:5]

switch(rd)

1 0, 2-31

/* Case Jal(X₁, _) //

/* Bind imm to x.Jal.1 //
let out imm = alloc(20)

/* Rebuild subterm .[0:10] //
let out imm₀ = imm.[0:10]
let in imm₀' = x.[21:10]
imm₀ := imm₀'
freeze(imm₀)

/* Rebuild subterm .[10:1] //
let out imm₁ = imm.[10:1]
let in imm₁' = x.[20:1]
imm₁ := imm₁'
freeze(imm₁)

/* Rebuild subterm .[11:7] //
let out imm₂ = imm.[11:7]
let in imm₂' = x.[12:7]
imm₂ := imm₂'
freeze(imm₂)

/* Rebuild subterm .[19:1] //
let out imm₃ = imm.[19:1]
let in imm₃' = x.[31:1]
imm₃ := imm₃'
freeze(imm₃)

freeze(imm)

/* Compute result //

xₒᵤₜ := (imm < 4096)
success

/* Case Jal(_, _) //
xₒᵤₜ := 0

success

/* Match x //
let in opcode = x.[0:7]

switch(opcode)

0x13 0x33 0x6F 0x23

/* Case Addi(_) //

/* Bind rd to x.Addi.0 //
let out rd = alloc(5)
let in rd' = x.[7:5]
rd := rd'
freeze(rd)

/* Bind rs to x.Addi.1 //
let out rs = alloc(5)
let in rs' = x.[15:5]
rs := rs'
freeze(rs)

/* Bind imm to x.Addi.2 //
let out imm = alloc(12)
let in imm' = x.[20:12]
imm := imm'
freeze(imm)

/* Bind bs to is_nonzero_register(rs) //
let out bs = alloc(8)

call is_nonzero_register(rs, bs)

freeze(bs)

/* Compute result //

xₒᵤₜ := (rd /= rs) /& bs /& (imm < 64)
success

/* Case Add(_) //

/* Bind rd to x.Add.0 //
let out rd = alloc(5)
let in rd' = x.[7:5]
rd := rd'
freeze(rd)

/* Bind rs₁ to x.Add.1 //
let out rs₁ = alloc(5)
let in rs₁' = x.[15:5]
rs₁ := rs₁'
freeze(rs₁)

/* Bind rs₂ to x.Add.2 //
let out rs₂ = alloc(5)
let in rs₂' = x.[20:5]
rs₂ := rs₂'
freeze(rs₂)

/* Bind b₁ to is_nonzero_register(rs₁) //
let out b₁ = alloc(8)

call is_nonzero_register(rs₁, b₁)

freeze(b₁)

/* Bind b₂ to is_nonzero_register(rs₂) //
let out b₂ = alloc(8)

call is_nonzero_register(rs₂, b₂)

freeze(b₂)

/* Compute result //

xₒᵤₜ := b₁ /& b₂ /& (rd /= rs₁)
success

/* Case Sw(_) //

/* Bind reg₀ to x.Sw.0 //
let out reg₀ = alloc(5)
let in reg₀' = x.[15:5]
reg₀ := reg₀'
freeze(reg₀)

/* Bind reg₁ to x.Sw.1 //
let out reg₁ = alloc(5)
let in reg₁' = x.[20:5]
reg₁ := reg₁'
freeze(reg₁)

/* Bind imm to x.Sw.2 //
let out imm = alloc(12)

/* Rebuild subterm .[0:5] //
let out immlow = imm.[0:5]
let in immlow' = x.[7:5]
immlow := immlow'
freeze(immlow)

/* Rebuild subterm .[5:7] //
let out immhigh = imm.[5:7]
let in immhigh' = x.[25:7]
immhigh := immhigh'
freeze(immhigh)

freeze(imm)

/* Bind bool₀ to is_popular_register(reg₀) //
let out bool₀ = alloc(8)

call is_popular_register(reg₀, bool₀)

freeze(bool₀)

/* Bind bool₁ to is_popular_register(reg₁) //
let out bool₁ = alloc(8)

call is_popular_register(reg₁, bool₁)

freeze(bool₁)

/* Bind imml to imm.[0:5] //
let out imml = alloc(5)
let in imml' = imm.[0:5]
imml := imml'
freeze(imml)

/* Bind immh to imm.[10:2] //
let out immh = alloc(2)
let in immh' = imm.[10:2]
immh := immh'
freeze(immh)

/* Bind bool₂ to (imml /= 0) /& (immh /= 0) //
let out bool₂ = alloc(8)
bool₂ := (imml /= 0) /& (immh /= 0)
freeze(bool₂)

/* Compute result //

xₒᵤₜ := bool₀ /& bool₁ /& bool₂
success

Figure 5.18: Output of CompileProg for the program of Example 5.24.
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5.7 Metatheory

We now prove our compilation approach correct by exhibiting a weak simulation relation between the

source memory evaluation ↬ from Section 3.3.2 and the target evaluation ⇝ from Section 5.2.2. Com-

bined with Theorem 3.3, this gives us a weak simulation between source and target evaluation, showing

correctness of the Compile procedure.

The key idea is to modify our compilation algorithm to emit synchronization tokens in the target

program to synchronize its execution with source evaluation. All other steps from the target evaluation

⇝ are と-transitions. Tokens may either appear by themselves, in which case the corresponding

transition has no effect on the underlying target evaluation state, or be attached to another target

instruction – for instance x := c[EConstant-token]; . . . – in which case the normal semantics of this

instruction applies.

Note that our target semantics ⇝ is deterministic, whereas the memory-level source semantics ↬ is

non-deterministic. To prove that the latter simulates the former, we show that ↬ can always take a step

which corresponds to the program order determined by our compilation algorithms.

5.7.1 Relation on constants and Refine

We start with the ℛ̃ const relation defined in Fig. 5.20, which characterizes target code emitted by Refine.

This relation also allows us to demonstrate our approach in a somewhat restricted context. An annotated

version of Refine is shown in Fig. 5.19. The new proof-exclusive elements are shown in purple. We

simply emit specific tokens for allocation and cast operations.

We then define a simulation relation ℛ̃ consts in Fig. 5.20 for target code building the “constant” parts

of memory values, i.e., target code which only allocates, casts and writes constants in memory. We will

use this simulation to prove the correctness of Refine.

Given an output location xout, a memory environment ςsrc, a target location environment σ̃out and

target memory environment ςtgt, we have: xout, p̂new ⊢ (ςsrc, û) ℛ̃ consts(σ̃out, ςtgt, ẽ) if xout points to a

value of shape p̂old = shape_ofςsrc

(û) in ςtgt before execution of ẽ, and of shape p̂new after.

Its base rule IRRConstsRefine corresponds exactly to the application of Refine. The other rules

corresponds to cases where the toplevel constructor of p̂old and p̂new are identical, which proceed by

induction.

Refine∆(x){
p̂ , p̂ −→ success
_ℓ , (c)ℓ −→ x := c[EConstant-token]; success
_ℓ , &ℓ (̂p) −→ x := &alloc(|̂p|)[EPointer-token]; Refine

(
x, &ℓ

(
_|p̂|

)
, &ℓ (̂p)

)
_ℓ , p̂ ⋉

0⩽i<n
[oi : ℓi] : p̂i −→ cast x to _ℓ⋉0⩽i<n[oi : ℓi] : _ℓi[EComposite-token];

Refine

(
x, _ℓ⋉0⩽i<n[oi : ℓi] : _ℓi , p̂⋉0⩽i<n[oi : ℓi] : p̂i

)
_ℓ , {{p̂0, . . . , p̂n−1}} −→ cast x to {{

_|p̂0|, . . . , _|p̂n−1|
}}
[EStruct-token];

Refine

(
x,

{{
_|p̂0|, . . . , _|p̂n−1|

}}
, {{p̂0, . . . , p̂n−1}}

)
&ℓ (̂p) , &ℓ (̂p′) −→ let out x′ = x.∗; Refine(x′, p̂, p̂′)
p̂ ⋉

0⩽i<n
ri : p̂i , p̂′ ⋉

0⩽i<n
ri : p̂′i −→ let out x′ = x.¬r0 . . .¬rn−1; let out x0 = x.r0; . . . ; let out xn−1 = x.(n − 1);

Refine(x′, p̂, p̂′); Refine(x0, p̂0, p̂′
0
); . . . ; Refine(xn−1, p̂n−1, p̂′

n−1
)

{{p̂0, . . . , p̂n−1}} ,

{{
p̂′

0
, . . . , p̂′n−1

}}
−→ let out x0 = x.0; . . . ; let out xn−1 = x.(n − 1);

Refine(x0, p̂0, p̂′
0
); . . . ; Refine(xn−1, p̂n−1, p̂′

n−1
)

p̂ , p̂′ −→ fail
}

Figure 5.19: Version of Refine augmented with tokens.
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IRRConstsRefine

(xout ↦→ aout.π̂out) ∈ σ̃out p̂old = shape_ofςsrc

(û)
shape_ofςtgt

( �
focusςtgt

(
π̂out, ςtgt(aout)

) )
= p̂old Refine (xout, p̂old, p̂new) ≠ fail

xout, p̂new ⊢ (ςsrc, û) ℛ̃ consts

(
σ̃out, ςtgt, Refine (xout, p̂old, p̂new)

)
IRRConstsPointer

(xout ↦→ aout.π̂out) ∈ σ̃out (x′
out
↦→ aout.π̂out.∗) ∈ σ̃out x′

out
, p̂new ⊢ (ς, û) ℛ̃ consts(σ̃out, ẽ)

xout, &ℓ (̂pnew) ⊢ (ς, &ℓ (û)) ℛ̃ consts(σ̃out, ẽ)

IRRConstsComposite

(xout ↦→ aout.π̂out) ∈ σ̃out (x′
out
↦→ aout.π̂out.¬r0 . . .¬rn−1) ∈ σ̃out

x′
out

, p̂ ⊢ (ς, û) ℛ̃ consts (σ̃out, ẽ) (xout,i ↦→ aout.π̂out.ri) ∈ σ̃out xout,i, p̂i ⊢ (ς, ûi) ℛ̃ consts(σ̃out, ẽi)

xout, p̂⋉
0⩽i<n

ri : p̂i ⊢
(
ς, û⋉

0⩽i<n

ri : ûi

)
ℛ̃ consts (σ̃out, ẽ; ẽ0; . . . ; ẽn−1)

IRRConstsStruct

(xout ↦→ aout.π̂out) ∈ σ̃out (xout,i ↦→ aout.π̂out.i) ∈ σ̃out xout,i, p̂i ⊢ (ς, ûi) ℛ̃ consts(σ̃out, ẽi)
xout, {{p̂0, . . . , p̂n−1}} ⊢ (ς, {{û0, . . . , ûn−1}}) ℛ̃ consts (σ̃out, ẽ0; . . . ; ẽn−1)

Figure 5.20: Relation characterizing Refine intermediate states: xout, p̂new ⊢ (ςsrc, û) ℛ̃ consts(σ̃out, ςtgt, ẽ).

Lemma 5.1 (Refine). Let ∆, Γ , τ̂, p̂new, ςsrc, û, xout, aout, π̂out, σ̃out, ςtgt and ẽ such that

⊨ ∆, Γ , ςsrc ⊢ û : τ̂ (xout ↦→ aout.π̂out) ∈ σ̃out
�
focusςtgt

(
π̂out, ςtgt(aout)

)
= v̂out

xout, p̂new ⊢ (ςsrc, û) ℛ̃ consts(σ̃out, ςtgt, ẽ)

We either have

shape_ofςsrc

(û) = shape_ofςtgt

( �
focusςtgt

(
π̂out, ςtgt(aout)

) )
= p̂new ẽ = success

or there exist σ̃′
out

and ẽ′ such that for any Σ̃, ρ, σ̃in,

Σ̃ ⊢ ρ, σ̃in, σ̃out, ςtgt, ẽ ⇝と ρ, σ̃in, σ̃′
out

, ςtgt, ẽ
′ (xout ↦→ aout.π̂out) ∈ σ̃′out

xout, p̂new ⊢ (ςsrc, û) ℛ̃ consts(σ̃′out
, ςtgt, ẽ

′)

or there exist a label L, ς′
src

, û′, σ̃′
out

, ς′
tgt

and ẽ′ such that for any Σ, σ̂, Σ̃, ρ, σ̃in,

∆,Σ ⊢ Γ , σ̂, ςsrc, û ↬L Γ , σ̂, ς′
src

, û′ Σ̃ ⊢ ρ, σ̃in, σ̃out, ςtgt, ẽ ⇝L ρ, σ̃in, σ̃′
out

, ς′
tgt

, ẽ′

(xout ↦→ aout.π̂out) ∈ σ̃′out
xout, p̂new ⊢ (ς′src, û′) ℛ̃ consts(σ̃′out

, ς′
tgt

, ẽ′)

Proof. By induction on ℛ̃ consts.

IRRConstsRefine: let

p̂old = shape_ofςsrc

(û)

We have

shape_ofςtgt

(̂vout) = p̂old ẽ = Refine(xout, p̂old, p̂new) ≠ fail
We proceed by case analysis on ẽ:
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Refine success case If p̂old = p̂new, we have ẽ = success.
Refine token cases We have p̂old = _ℓ. For simplicity, we only consider the following case:

û = (u : τ as (c)ℓ) p̂new = (c)ℓ ẽ = xout := c[EConstant-token]; success
The source and target programs û and ẽ both go through a EConstant step (using the

IREWriteConstant rule for ẽ), yielding normal forms related to each other by ℛ̃ consts

(IRRConstsRefine rule):

Γ , σ̂, ςsrc, (u : τ as (c)ℓ)↬ Γ , σ̂, ςsrc, (c)ℓ σ̃out, ςtgt, ẽ ⇝ σ̃out, ςtgt[aout.π̂out ← (c)ℓ], success
Refine non-token cases For simplicity, we only consider the following case:

p̂old = &ℓ

(
p̂′

old

)
û = &ℓ (û′) p̂new = &ℓ (̂p′new

)

ẽ = let out x′
out

= xout.∗; Refine(x′
out

, p̂′
old

, p̂′
new
)

Induction hypothesis: the result holds for û′, p̂′
new

and Refine(x′
out

, p̂′
old

, p̂′
new
). The target

program ẽ goes through aと-transition (IRESubOutLoc) binding the new symbol x′
out

to the

pointee memory value, and we conclude using the induction hypothesis and the IRRConsts-

Pointer rule:

σ̃out, ςtgt, ẽ ⇝と σ̃out ∪ {x′out
↦→ aout.π̂out.∗}, ςtgt, Refine(x′

out
, p̂′

old
, p̂′

new
)

IRRConstsPointer, IRRConstsComposite, IRRConstsStruct: immediate from induction hypothe-

ses.

□
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5.7.2 Annotated compilation code

1 function Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τout as τ̂out),u):
// Explicitly unroll type variables.

2 if τ̂out = t ∈ TyVars then

3 ẽ← Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τout as ∆(t)),u)
4 return ETypeVar-token; ẽ

// Base case: target value is a constant encoded as a primitive type.

5 else if u = c ∧ τ̂out = Iℓ then return xout := c[EAtom-token]; success
6 else // Otherwise, explore all cases of the output value.

// Insert ESplit-tokens before accessing branch-specific locations.

7 ẽconsts ← Refine

(
xout, _|τ̂out|, shape_of∆(τ̂out)

)
8 Π̂splits ←

{
π̂

��� �
focus∆ (π̂, τ̂out) = split (. . . )

}
9 ẽsplits ← for π̂ ∈ Π̂splits do yield ESplit-token

10 Posout ← {(x.π,π′) | focus (π′,u) = x.π}
11 pout ← Remap ({xi ↦→ pi | 0 ⩽ i < n},u [x.π ↦→ _] , Posout)
12 B← for pb, τb, τ̂b, fragsb ∈ Explore∆(pout, τout, τ̂out) do

// Allocate memory, cast and fill in constant parts as needed for this memory type.

13 ẽ′
consts

← Refine

(
xout, shape_of∆(τ̂out), shape_of∆(τ̂b)

)
// Allow EWord steps for definitively uninitialized words.

14 Π̂words ←
{
π̂

��� �
focus∆ (π̂, τ̂b) = _ℓ

}
15 ẽwords ← for π̂ ∈ Π̂words do yield EWord-token

// Allow EAddress steps for new pointers.

16 Π̂addrs ←
{
π̂

��� �
focus

(
π̂, shape_of∆(τ̂b)

)
= &ℓ (. . . )

}
17 ẽaddrs ← for π̂ ∈ Π̂addrs do yield EAddress-token

// Rebuild target fragments from input values, which we specialize for the current branch.

18 for i ∈ {0, . . . ,n − 1} do

19 Posi ← {(xout.π,π′) | focus (π,u) = xi.π
′}

20 p′
i
← Remap({xout ↦→ pb},pi, Posi)

21 ẽfrags ← for (π̂f ↦→ πf as τ̂f) ∈ fragsb do

22 xf ← fresh symbol

23 τf ← focus (πf, τb)
24 if ∃0 ⩽ i < n,∃(xi.πin,πout) ∈ Posout,∃π,πout.π = πf then

// If this fragment corresponds to a single piece of an input value, Seek it within this value.

25 ẽf ← Seek((xi ⊳ p′i : τi as τ̂i), (xf : τf as τ̂f),πin.π)
26 else // Otherwise, Rebuild it from smaller pieces.

27 ẽf ← Rebuild({(xi ⊳ p′i : τi as τ̂i) | 0 ⩽ i < n}, (xf : τf as τ̂f), focus (πf,u))
28 ẽt ← if

�
focus∆ (π̂f, τ̂b) = Iℓ then success

29 else EFragment-token; success
30 yield let out xf = xout.π̂f; ẽt; ẽf

31 yield ({xi ↦→ p′
i
| 0 ⩽ i < n}, ẽconsts; ẽsplits; ẽ

′
consts

; ẽwords;ẽfrags; ẽaddrs)
// Assemble these branches into a decision tree.

32 return Destruct∆ ({xi : τ̂i | 0 ⩽ i < n},B)
Algorithm 9: Version of Rebuild adapted for a less painful proof.
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1 function Seek∆((xin ⊳ pin : τin as τ̂in), (xout : τout as τ̂out),π):
// Invariant: π and pin are compatible.

// Explicitly unroll type variables in τ̂out.

2 if τ̂out = t ∈ TyVars then

3 ẽ← Seek∆ ((xin ⊳ pin : τin as τ̂in), (xout : τout as ∆(t)),π)
4 return ETypeVar-token; ẽ

// Base case: input and output values are the same data with the same representation.

5 if π = ε ∧ τ̂in = τ̂out then return xout := xin[EVarAccess-token]; success
6 else // Otherwise, Explore all cases of the input value.

7 B← for pb, τb, τ̂b, fragsb ∈ Explore∆(pin, τin, τ̂in) do

// Seek a fragment containing the piece of data at π.

8 if ∃(π̂f ↦→ πf as τ̂f) ∈ fragsb,πf ⪯ π then

// Found one. We focus on it and Seek inside.

9 xf ← fresh symbol

10 τf,pf ← focus (πf, τb) , focus (πf,pb)
11 ẽ← Seek ((xf ⊳ pf : τf as τ̂f), (xout : τout as τ̂out), focus (πf,π))
12 ẽb ← let in xf = xin.π̂f[EVarFocus-token]; ẽ
13 else // Otherwise, Rebuild from smaller pieces.

14 if τ̂out = Iℓ then // If we are seeking a primitive, decompose it in individual bits

15 τ̂′
out
← _ℓ⋉0⩽i<ℓ[i : 1] : (.[i : 1] as I1)

16 ẽ← Rebuild

(
{(xin ⊳ pb : τb as τ̂b)}, (xout : τout as τ̂′

out
), xin.π

)
17 p̃← _ℓ⋉0⩽i<ℓ[i : 1] : _1

18 ẽb ← cast xout to p̃[EFission-token]; ẽ; cast xout to Iℓ; success
19 else ẽb ← Rebuild ({(xin ⊳ pb : τb as τ̂b)}, (xout : τout as τ̂out), xin.π)
20 yield (pb, ẽb)

// Assemble the code of these branches via a decision tree.

21 return Destruct∆ (xout, τ̂in,B)
Algorithm 10: Version of Seek adapted for a less painful proof.

To prepare for the main simulation proof, we redefine our compilation algorithms so that they emit code

whose execution order is easily simulated by memory-level evaluation. For the purposes of our proofs,

we discard the Wrap function and other mechanisms to emit recursive code. Extending our results and

proofs to capture recursive code emission is left as future work
2
. The rest of our algorithms is modified

in the following ways:

• we added tokens at appropriate places within the emitted target code to synchronize with memory-

level source evaluation;

• we explicitly unroll type variables in memory layouts before exploring them further, and synchro-

nize this with ETypeVar source evaluation steps;

• we split the Refine step of Rebuild into two parts: we first reify the shape of the unspecialized

memory layout – i.e., memory structures common to all branches, then refine it into a specialized

shape. Indeed, refining to the specialized shape requires that all splits have been processed, which

is done through an ESplit step in source evaluation. We must therefore separate these two stages

of shape refinement.

2
Or to the reader, should they feel adventurous.
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Data: ∆ the type variable environment

Data: n input descriptions (xi ⊳ pi : τi as τ̂i) for free variables in e
Data: xout the destination location

Data: e the source expression

Result: Target expression ẽ storing its result in xout

function Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, xout, e):
cases e :

case (xi.π : τ as τ̂) :
return Seek ((xi ⊳ pi : τi as τ̂i), (xout : τ as τ̂),π)

case (u : τ as τ̂) :
return Rebuild ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τ as τ̂),u)

case let x : (τ as τ̂) = e0 in e1 :

ẽ0 ← Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, x, e0)
ẽ1 ← Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n} ∪ {(x ⊳ _ : τ as τ̂)}, xout, e1)
return let out x = alloc(|τ̂|); ẽ0; freeze(x)[ELetBind-token]; ẽ1

case f(xi) :
return call f(xi, xout)[EFunCall-token]; success

case match(xi)
{
pj → ej

��
0 ⩽ j < N

}
:

for i′ ∈ {0, . . . ,n − 1} \ {i} do p′
i′ ← pi′

for j ∈ {0, . . . ,N − 1} do

p′
i
← pj

ẽj ← Compile∆

(
{(xi′ ⊳ p′i′ : τi′ as τ̂i′) | 0 ⩽ i′ < n}, xout, ej

)
return Destruct∆

(
(xi : τ̂i), {(pj, EMatch-token;ẽj) | 0 ⩽ j < N}

)
Algorithm 11: Version of Compile adapted for a less painful proof.

5.7.3 Simulation Relation on Environments

We now define a family of relations which synchronize evaluation environments of (source) memory

expressions and target programs. They are defined in Fig. 5.21 for function environments ( ℛ̃ f), input

location environments ( ℛ̃ in) and output location environments ( ℛ̃ out). These three relations ensure

that bindings are synchronised on both sides and that memory values bound in various environments

have the same shape. Note that, for input locations, it proceeds by induction on call stacks, to find

the right stack segment which contains the considered binding. We also add extra information in the

source typing environment Γ to synchronise it with Rebuild and Seek calls, by remembering the current

pattern of each input argument xi. More precisely, each variable symbol x is bound to a triplet of the

form (p : τ as τ̂) in Γ .

(f ↦→ λxin.e) ∈ Σ (f ↦→ λxinxout.ẽ) ∈ Σ̃ ∆, Γ ∪ {(xin ⊳ _ : τin as τ̂in)} ⊢ e : τout as τ̂out

∀ςsrc, ∀̂vsrc,∀ςtgt, ∀̂vtgt,∀ρ,∀σ̃out,∀ςtgt,∀ain,∀π̂in,(
∆, ςsrc ⊢ v̂src : τ̂in ∧ shape_ofςsrc

(̂vsrc) = shape_ofςtgt

(̂vtgt)
∧ �

focusςtgt

(
π̂in, ςtgt(ain)

)
= v̂tgt ∧ �

focusςtgt

(
π̂out, ςtgt(aout)

)
= _|τ̂out|

)
⇒ ∆, xout ⊢ (Γ ∪ {(xin ⊳ _ : τin as τ̂in)}, {xin ↦→ v̂src}, ςsrc, e) ℛ̃ (ρ, {xin ↦→ ain.π̂in}, {xout ↦→ aout.π̂out}, ςtgt, ẽ)

∆, f ⊢ Γ ,Σ ℛ̃ fΣ̃

∀(f : (τin as τ̂in) → (τout as τ̂out)) ∈ Γ , ∆, f ⊢ Γ ,Σ ℛ̃ Σ̃

∆ ⊢ Γ ,Σ ℛ̃ fΣ̃

Figure 5.21: Relation ℛ̃ f between function environments.

157



(x ↦→ a.π̂) ∈ σ̃in shape_ofςsrc

(̂v) = shape_ofςtgt

( �
focusςtgt

(
π̂, ςtgt(a)

) )
∆ ⊢ (x, v̂, ςsrc) ℛ̃ in(ρ, σ̃in, ςtgt)

∆ ⊢ (x, v̂, ςsrc) ℛ̃ in(ρ, σ̃′
in

, ςtgt)
∆ ⊢ (x, v̂, ςsrc) ℛ̃ in

(
(σ̃′

in
, σ̃out, ẽ) :: ρ, σ̃in, ςtgt

) ∀(x ↦→ v̂) ∈ σ̂,∆ ⊢ (x, v̂, ςsrc) ℛ̃ in(ρ, σ̃in, ςtgt)
∆ ⊢ (σ̂, ςsrc) ℛ̃ in(ρ, σ̃in, ςtgt)

Figure 5.21: Relation ℛ̃ in between source and target input environments.

ê ∉ �
ValuExprs ∆, Γ , ςsrc ⊢ ê : τ̂ (xout ↦→ a.π̂) ∈ σ̃out

�
focusςtgt

(
π̂, ςtgt(a)

)
= _|τ̂|

∆, xout ⊢ (Γ , ςsrc, ê) ℛ̃ out(σ̃out, ςtgt)

(xout ↦→ a.π̂) ∈ σ̃out shape_ofςtgt

( �
focusςtgt

(
π̂, ςtgt(a)

) )
= shape_ofςsrc

(û)

∆, xout ⊢ (Γ , ςsrc, û) ℛ̃ out(σ̃out, ςtgt)

Figure 5.21: Relation ℛ̃ out between source (memory) expressions and target output environments.

5.7.4 Seek and Rebuild

Before defining the simulation relation between full evaluation states, let us define some helper functions.

We define the sequence of a list (or set if the order is arbitrary) of target expressions as:

concat ({ẽ0, . . . , ẽn−1}) ≜ ẽ0; . . . ; ẽn−1

Given ∆, ς and û such that ⊨ ∆, ς ⊢ û :, we define notational shortcuts in Fig. 5.22 which establish a

correspondence between the source memory valuexpression û and parts of the target program emitted

by Rebuild.
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consts(∆, ς, û) =
{
(π̂, τ̂)

��� �
focusς (π̂, û) = (u : τ as τ̂)

}
p̂consts(∆, ς, û) = shape_ofς(û)

[
.π̂← shape_of∆(τ̂)

�� (π̂, τ̂) ∈ consts(∆, ς, û)
]

splits(∆, ς, û) =
(π̂0.π̂′, τ̂′)

������
�
focusς (π̂0, û) = (u : τ as τ̂)

∧ �
focus∆ (π̂′, τ̂) = split (. . . )

∧ ∃!(p, τ̂′) ∈ τ̂
/

_,∆, Γ ⊢ u : τ
/
p


p̂splits(∆, ς, û) = p̂const(∆, ς, û)

[
.π̂← shape_of∆(τ̂)

��� (π̂, τ̂) ∈ splits(∆, Ŝ)
]

Π̂words(∆, ς, û) =
π̂.π̂′

������
�
focusς (π̂, û) = (u : τ as τ̂)

∧ ∃!(p, τ̂′) ∈ τ̂
/

_,∆, Γ ⊢ u : τ
/
p

∧ �
focus∆ (π̂′, τ̂′) = _ℓ


frags(∆, ς, û) =

(π̂.π̂f, focus (πf,u) , focus (πf, τ) , τ̂f)

������
�
focusς (π̂, û) = (u : τ as τ̂)

∧ ∃!(p, τ̂′) ∈ τ̂
/

_,∆, Γ ⊢ u : τ
/
p

∧ (π̂f ↦→ πf as τ̂f) ∈ shatter∆(τ̂′)


Π̂addrs(∆, ς, û) =

π̂.π̂′

������
�
focusς (π̂, û) = (u : τ as τ̂)

∧ ∃!(p, τ̂′) ∈ τ̂
/

_,∆, Γ ⊢ u : τ
/
p

∧ �
focus∆ (π̂′, τ̂) = &ℓ (τ̂′)

 ∪
{
π̂

��� �
focusς (π̂, û) = &ℓ (û′)

}
Figure 5.22: Helper functions mirroring intermediate expressions emitted by Rebuild.

In order to exactly match ↬ reduction steps, we should do the same for type variables that occur

in pivots’ memory types; for simplicity, we omit this and assume that type variables only occur in

source-level pivots and in fragments.

We can now define our actual simulation relation ℛ̃ between source and target evaluation environ-

ments, in Fig. 5.23. It consists of five rules corresponding to the toplevel target code emitted by Compile;

one rule IRRAtomFusion which allows the recombination of atoms destroyed by Seek; and three rules

corresponding to intermediate execution stages of the target code emitted by Rebuild.
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IRRLetBind

∆, x ⊢ (Γ , σ̂, ς, ê) ℛ̃ ẽ ẽ′ = Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n} ∪ {(x ⊳ _ : τ as τ̂)}, xout, e)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, let x : τ as τ̂ = ê in e) ℛ̃ (ρ, σ̃out, ẽ; freeze(x)[ELetBind-token]; ẽ′)

IRRStackSuccess

σ̃′
out
(x′

out
) = σ̃out(xout) ∆, {x0, . . . , xn−1}, x′out

⊢ (Γ , σ̂, ς, ê) ℛ̃ (ρ, σ̃′
out

, ẽ)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, ê) ℛ̃

(
(σ̃in, σ̃out, success) :: ρ, σ̃′

out
, ẽ

)
IRRCompile

(xi ⊳ pi : τi as τ̂i) ∈ Γ ∆, Γ ⊢ e : τ as τ̂

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, e) ℛ̃ (ρ, σ̃out, Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xout : τ as τ̂), e))

IRRSeek

(xi ⊳ pi : τi as τ̂i) ∈ Γ focus∆ (π, τi) = τ ∆ ⊨ τ̂ agree∆(τ, τ̂)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, (xi.π : τ as τ̂)) ℛ̃ (ρ, σ̃out, Seek∆ ((x ⊳ pi : τi as τ̂i), (xout : τ as τ̂),π))

IRRRebuild

(xi ⊳ pi : τi as τ̂i) ∈ Γ ∆, Γ ⊢ u : τ ∆ ⊨ τ̂ agree∆(τ, τ̂)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, (u : τ as τ̂)) ℛ̃ (ρ, σ̃out, Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n} , (xout : τ as τ̂),u))

Figure 5.23: Simulation relation ℛ̃ between memory and target expressions.

IRRAtomFusion

∆, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ (ρ, σ̃out, ẽ)
∃o0, ℓ0, . . . ,on−1, ℓn−1, shape_ofς(û) = _ℓ⋉

0⩽i<n

[oi : ℓi] : _ℓi

o0 = 0 oi+1 = oi + ℓi on−1 + ℓn − 1 = ℓ

∆, {x0, . . . , xN−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ (ρ, σ̃out, ẽ; cast xout to Iℓ; success)

Figure 5.23: Simulation relation for memory valuexpressions: Seek code.
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IRRRebuildConsts

xout, p̂consts(∆, ς, û) ⊢ (ς, û) ℛ̃ const(σ̃out, ẽconsts)
ẽsplits = concat

({
ESplit-token

�� (π̂, τ̂) ∈ splits(∆, ς, û)
})

ẽ′
consts

= Refine

(
xout, p̂const(∆, ς, û), p̂splits(∆, ς, û)

)
ẽwords = concat

(
{EWord-token | π̂ ∈ Π̂words(∆, ς, û)}

)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ frags(ρ, σ̃out, ẽfrags)

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ (ρ, σ̃out, ẽconsts; ẽsplits; ẽ
′
consts

; ẽwords; ẽfrags)

IRRRebuildSplits

ẽsplits = concat

({
ESplit-token

�� (π̂, τ̂) ∈ splits(∆, ς, û)
})

xout, p̂splits(∆, ς, û) ⊢ (ς, û) ℛ̃ const(σ̃out, ẽconsts)
ẽwords = concat

(
{EWord-token | π̂ ∈ Π̂words(∆, ς, û)}

)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ frags(ρ, σ̃out, ẽfrags)

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ (ρ, σ̃out, ẽsplits; ẽconsts; ẽwords; ẽfrags)

IRRRebuildFrags�
focus (π̂,C) = □ σ̃out(x′out

) = σ̃out(xout).π̂ ∆, {x0, . . . , xn−1}, x′out
⊢ (Γ , σ̂, ς, û) ℛ̃ (ρ, σ̃out, ẽ)

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς,C[_|û|]) ℛ̃ frags(ρ, σ̃out, ẽfrags)
∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς,C [û]) ℛ̃ (ρ, σ̃out, ẽ; ẽfrags)

Figure 5.23: Simulation relation for memory valuexpressions: Rebuild code.

The ℛ̃ frags relation defined in Fig. 5.24 characterizes the portion of target code emitted by Rebuild

which deals with non-constant parts of the memory type – i.e., ẽfrags; ẽaddrs. Its definition follows exactly

the corresponding portions of the Rebuild algorithm.

(xi ⊳ pi : τi as τ̂i) ∈ Γ (xout ↦→ aout.π̂out) ∈ σ̃out frags(∆, ςsrc, û) = {(π̂f,uf, τf, τ̂f) | 0 ⩽ f < N}
∀(π̂, τ̂) ∈ consts(∆, ςsrc, û),∃f ∈ {0, . . . ,N − 1}, π̂ = π̂f

ẽf =

{
Seek∆ ((xi ⊳ pi : τi as τ̂i), (xf : τf as τ̂f),π) if uf = xi.π

Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, (xf : τf as τ̂f),uf) otherwise

∆, {x0, . . . , xn−1}, xf ⊢ (Γ , σ̂, ς, (uf : τf as τ̂f)) ℛ̃
(
ρ, σ̃in, σ̃out ∪ {xf ↦→ aout.π̂out.π̂f}, ςtgt, ẽf

)
ẽtf =

{success if
�
focusς (π̂f, û) = (u : τ as Iℓ)

EFragment-token; success otherwise

ẽfrags = concat ({let out xf = xout.π̂f; ẽtf; ẽf | 0 ⩽ f < N})
ẽaddrs = concat

({
EAddress-token

��� π̂ ∈ Π̂addrs(∆, ς, û)
})

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ς, û) ℛ̃ frags(ρ, σ̃out, ẽfrags; ẽaddrs)

Figure 5.24: The ℛ̃ frags relation
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5.7.5 Statement of Simulation

Theorem 5.1 ( ℛ̃ is a weak simulation). Let ∆, Σ, Ŝ = (Γ , σ̂, ςsrc, ê), Σ̃, S̃ = (ρ, σ̃in, σ̃out, ςtgt, ẽ), xout and

x0, . . . , xn−1 such that

⊨ ∆ ⊢ Γ ∆, ς ⊢ σ̂ : Γ

∀i ∈ {0, . . . ,n − 1}, (xi ⊳ pi : τi as τ̂i) ∈ Γ ⇒
(
∆ ⊢ pi : τi ∧ ∃(p′i, p̂i) ∈ pat2mem∆(pi, τ̂i), ς ⊢ p̂i ▶ σ̂(xi)

)
∆ ⊢ (Γ ,Σ) ℛ̃ fΣ̃ ∆ ⊢ (σ̂, ςsrc) ℛ̃ in(ρ, σ̃in, ςtgt) ∆, xout ⊢ (Γ , ςsrc, ê) ℛ̃ out(σ̃out, ςtgt)

If

∆, {x0, . . . , xn−1}, xout ⊢ Ŝ ℛ̃ S̃

then one of the three following conditions holds:

• Both Ŝ and S̃ are in normal form w.r.t. ↬ and ⇝ respectively.

• There exists S̃′ such that

Σ̃ ⊢ S̃ ⇝と S̃′ ∆, {x0, . . . , xn−1}, xout ⊢ Ŝ ℛ̃ S̃′

• There exist a memory-level evaluation step label L, Ŝ′, S̃′, S̃′′ and a finite number of steps m such that

∆,Σ ⊢ Ŝ ↬L Ŝ′ Σ̃ ⊢ S̃ ⇝m
と

S̃′⇝L S̃′′ ∆, {x0, . . . , xn−1}, xout ⊢ Ŝ′ ℛ̃ S̃′′

Proof. By induction on ℛ̃ .

IRRCompile: we have

ê = e ∈ Exprs ẽ = Compile∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n}, xout, e)

and proceed by case analysis on e and ẽ. If e is a pivot, it is handled by the IRRSeek and

IRRRebuild cases below. The remaining Compile cases are let-binding, function call and pattern

matching expressions. Here, we focus on the match case: there exists i ∈ {0, . . . ,n − 1} such that

e = match(xi)
{
pj → ej

��
0 ⩽ j < N

}
ẽ = Destruct∆

(
(xi : τ̂i),

{
(pj, EMatch-token; ẽj)

��
0 ⩽ j < N

})
where for each branch j ∈ {0, . . . ,N − 1},

ẽj = Compile∆

(
{(xi′ ⊳ p′i′ : τi′ as τ̂i′) | 0 ⩽ i′ < n}, xout, ej

)
p′i′ =

{
pj if i′ = i

pi′ otherwise

Using Theorem 3.2, there exists at least one branch j ∈ {0, . . . ,N − 1} such that

∃(p′, p̂) ∈ pat2mem∆(pj, τ̂i), ςsrc ⊢ p̂ ▶ σ̂(xi)

We pick the smallest such j. Using Theorem 4.1 and the definition of Destruct, there exists a finite

number of steps m such that

ρ, σ̃in, σ̃out, ςtgt, ẽ ⇝m
と

ρ, σ̃′
in

, σ̃out, ςtgt, EMatch-token; ẽj

S̃′

with σ̃in ⊆ σ̃′
in

(which preserves ℛ̃ in). At this point, both programs (Ŝ and S̃′) go through an

EMatch evaluation step and yield the following states:

Ŝ′ = (Γ , σ̂, ςsrc, ej) S̃′′ = (ρ, σ̃′
in

, σ̃out, ςtgt, ẽj)

and we conclude using the IRRCompile rule.
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IRRSeek: there exists i ∈ {0, . . . ,n − 1} such that we have

(xi ⊳ pi : τi as τ̂i) ∈ Γ focus∆ (π, τi) = τ ∆ ⊨ τ̂ agree∆(τ, τ̂) ê = (xi.π : τ as τ̂)

ẽ = Seek∆ ((xi ⊳ pi : τi as τ̂i), (xout : τ as τ̂),π)

Here, we only consider the case where τ̂ is not a type variable, either π ≠ ε or τ̂i ≠ τ̂, and Seek

finds a fragment within the input value on which to focus. The target program ẽ first goes through

the decision tree emitted by Destruct in a finite number m of と-transitions, reaching the target

expression ẽb of the corresponding input branch (pb, τb, τ̂b, fragsb) ∈ Explore∆(pi, τi, τ̂i). There

exists a fragment (π̂f ↦→ πf as τ̂f) ∈ fragsb and a suffix path π′ such that π = πf.π′, and we have

ẽb = let in xf = xi.π̂f; EVarFocus-token; ẽf

where xf is a fresh symbol and

ẽf = Seek∆ ((xf ⊳ pf : τf as τ̂f), (xout : τ as τ̂),π′)

with

τf = focus∆ (πf, τb) pf = focus (πf,pb)

From there, the target expression ẽb goes through a と-transition (IRESubInLoc rule) to execute

the let in instruction. Both programs then go through a EVarFocus step: the target program

consumes its token, and the source expression performs the following reduction step:

Γ , σ̂, ςsrc, (xi.π : τ as τ̂)↬ Γ ∪ {(xf : τf as τ̂f)}, σ̂ ∪ {xf ↦→ �
focusςsrc

(π̂f, σ̂(xi))}, ςsrc, (xf.π′ : τ as τ̂)

We conclude using the IRRSeek rule.

IRRRebuild: we have

ê = (u : τ as τ̂) (xi ⊳ pi : τi as τ̂i) ∈ Γ ∆, Γ ⊢ u : τ ∆ ⊨ τ̂ agree∆(τ, τ̂)

ẽ = Rebuild∆ ({(xi ⊳ pi : τi as τ̂i) | 0 ⩽ i < n} , (xout : τ as τ̂),u))

Here, we ignore the type variable and primitive base cases. Let

Posout = {(x.π,π′) | focus (π′,u) = x.π}

pout = Remap ({xi ↦→ pi | 0 ⩽ i < n},u [x.π ↦→ _] , Posout)

The target program ẽ first goes through the decision tree emitted by Destruct in a finite num-

ber m of と-transitions, reaching the target expression ẽb of the corresponding output branch

(pb, τb, τ̂b, fragsb) ∈ Explore∆(pout, τ, τ̂). It is immediate from their definitions that Π̂words, Π̂addrs,

Π̂splits defined in the Rebuild algorithm are identical to those derived from the source state us-

ing helper functions in Fig. 5.22. It is also immediate from their definitions that the consistuent

pieces of ẽb ẽsplits, ẽ
′
consts

, ẽwords are identical to those derived from the source state in the IR-

RRebuildConsts rule. The target expressions ẽfrags and ẽaddrs are defined in such a way that we

have

∆, {x0, . . . , xn−1}, xout ⊢ (Γ , σ̂, ςsrc, (u : τ as τ̂)) ℛ̃ frags(ρ, σ̃in, σ̃out, ςtgt, ẽfrags; ẽaddrs)
Finally, the first piece of ẽb is defined as follows:

ẽconsts = Refine

(
xout, _|τ̂|, shape_of∆(τ̂)

)
and according to the precondition on output values, we have

xout, _|τ̂| ⊢ (ςsrc, (u : τ as τ̂)) ℛ̃ const(σ̃out, ςtgt, ẽconsts)

We conclude with the IRRRebuildConsts rule using Lemma 5.1.

Other rules: immediate by induction or done similarly to previous cases.

□
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5.7.6 Future work

We have shown that our compilation algorithms, if they succeed, emit target code whose execution is

simulated by the source program’s memory-level evaluation. Ideally, we would also state and prove the

following results:

• Given well-formed inputs, Compile and other compilation procedures succeed. It would probably

involve a cumbersome, but not fundamentally difficult, induction on the source expression and

types, similar to many of the proofs presented in Section 3.4.

• Termination (and correctness) of the memoized versions of Seek and Rebuild. The termination

property would stem from the fact that input programs are finite. We would extend the existing

correctness proofs with new base cases corresponding to hashmap hits.

5.8 Conclusion

In this chapter, we presented a unified compilation procedure for the whole Ribbit language. The

Ribbitulus combines a small high-level language, manipulating immutable ADT values with pattern

matching, accessors and data constructors, with a much lower-level memory specification language.

Although both of these components are relatively easy to compile on their own, their combination

creates new compilation problems.

In order to define a complete compilation scheme for the Ribbitulus, we considered each language

construct separately, yielding a collection of compilation procedures dedicated to specific aspects of our

language. We provide a toplevel compilation interface which handles the full language by combining

these smaller procedures together.

Two aspects of our language, namely pattern matching and pivot expressions, stand out as their com-

pilation is significantly complicated by custom memory layouts. The compilation procedures handling

these two language constructs are therefore driven by the exploration of their memory types, following

their structure to emit appropriate target code.

Our target is an intermediate representation in Destination-Passing Style which provides the neces-

sary tools for both of these aspects: decision nodes are used as the target of pattern matching compila-

tion, while explicit memory allocations, reads and writes support the precise manipulation of memory

contents required by pivot expressions.

We were able to consider pattern matching in isolation: in Chapter 4, we provided a compilation

approach solely for the “recognition” aspect (i.e., excluding variable bindings) of pattern matching. It

took custom memory layouts into account by lowering high-level patterns to the memory-level language.

We were not able to isolate the compilation of pivot expressions as much: indeed, the combination

of data constructors and accessors causes interaction between arbitrary memory layouts. Since the

Ribbit language provides enough flexibility to specify any combination of memory layouts, as long as

they agree with the considered high-level data type, this situation may cause seemingly trivial data

constructors/accessors to require complex recursive target code.

We established the correctness of our compilation scheme w.r.t. the source language by proving that

each of its components was correct w.r.t. the corresponding Ribbitulus fragment.
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Part III

The Ribbit Implementation
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In the first two parts of this thesis, we presented the Ribbit language and a full formal compilation

approach for this language. This compilation approach included some fairly complex algorithms,

for which it is desirable to have some form of practical validation. In this final part, we detail our

implementation of these algorithms in the Ribbit prototype compiler. Chapter 6 describes the compiler

itself and details how it implements complex procedures such as our mutually recursive and memoized

Rebuild and Seek. This implementation allowed us to carry out a preliminary experimental evaluation

of our pattern matching compilation approach, which we will present in Chapter 7.

166



Chapter 6

Ribbit compiler implementation

This chapter describes our prototype implementation of the Ribbit language and compiler. It is written

in OCaml and available at https://gitlab.inria.fr/ribbit/ribbit under the MIT license. In addition

to the source code, the Ribbit distribution includes various example input files, including the memory

zoo exhibits from Chapter 2. A web interface is also available at https://ribbit.gitlabpages.inria.fr/ribbit/ to experiment with the Ribbit language and with predefined examples interactively.

Our implementation can verify the validity of ADTs, memory layouts and programs, compile pro-

grams to our intermediate representation, show the obtained CFGs, and run them. In addition, it will

verify the correctness of compiled code against a reference source interpreter.

Note that the input Ribbit syntax shown in this chapter differs slightly from that shown in exhibits

in Chapter 2. Indeed, at the time of writing, the Ribbit implementation still uses a previous version of

memory types with minor differences in how constant, pointer and composite words are modeled.

6.1 Running example: arithmetic expressions

Recall the arithmetic expression example from the Memory Zoo (Section 2.3). Listing 1 shows the

contents of a Ribbit input file (extension .rbt) which defines the ADT Exp for arithmetic expressions

with an optimized memory layout corresponding to ExpOpt, along with the eval function.

As mentioned before, there are slight differences between the idealized syntax of Chapter 2 and

the concrete input syntax accepted by the current Ribbit prototype. In this program, they manifest

themselves in the following ways:

• Both primitive (integer) types and unspecified word types are modeled with wl, which designates

an l-bit “word” without specifying its contents. When it appears on the left-hand side of a bit range

specification with ..., wl acts as an uninitialized word type (_<l> in idealized syntax) which is

used to build a composite word type. When it occurs on its own, without bit ranges specifications,

wl is interpreted as an integer encoding (il in idealized syntax).

• Memory words whose contents are set to a given constant c are expressed with a “whole-word”

specification with . : and an unsized singleton type (= c) added onto an adequately sized word

type wl, rather than with a constant word type (c)<l> as in Chapter 2.

• The number of bits which are unused due to address alignment is specified for each pointer type

– for instance, &<64, 2>(...) indicates that the two lowest bits may be used to store extra data.

• All other syntactical differences are purely cosmetic: bit ranges are denoted [o, l] (rather than[o:l]), subterm paths in fragments are prefixed with _, and function call arguments are specified

in a rather strange way – for instance, f(x=v) rather than simply f(v).
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1 type String = i512;
2 represented as (_ as w512)
3

4 enum Op { Plus, Mult }
5 represented as w8 with . : split . {
6 | 0 from Plus => (= 0)
7 | 1 from Mult => (= 1)
8 }
9

10 enum Exp { Var(String), Int(i32), Bin(Op, Exp, Exp) }
11 represented as split .[0, 2] {
12 | 0 from Bin(_, Bin|Var, Bin|Var) =>
13 &<64, 2>({{ _.Bin.0 as Op, w56 with . = 0, _.Bin.1 as Exp, _.Bin.2 as Exp }})
14 | 1 from Int => w64 with .[32, 32] : (_.Int as w32)
15 | 2 from Var => &<64, 2>(_.Var as String)
16 | 3 from Bin(_, Int, Bin|Var)|Bin(_, Bin|Var, Int)|Bin(_, Int, Int) =>
17 &<64, 2>(split .1 {
18 | 0 from Bin(_, Int, _) =>
19 {{ _.Bin.0 as Op, w24, _.Bin.1.Int as w32, _.Bin.2 as Exp }}
20 | 1 from Bin(_, Bin|V, Int) =>
21 {{ _.Bin.0 as Op, w24, _.Bin.2.Int as w32, _.Bin.1 as Exp }}
22 })
23 }
24

25 let v : Exp = Bin(Plus, Int(42), Var(0));
26

27 fn eval (e : Exp) -> Exp {
28 match e {
29 Int(_) | Var(_) => e,
30 Bin(op, e1, e2) => match (eval(e=e1), eval(e=e2)) {
31 (Int(n1), Int(n2)) => match op {
32 Plus => Int(n1 + n2),
33 Mult => Int(n1 * n2)
34 },
35 (e1', e2') => Bin(op, e1', e2')
36 }
37 }
38 }
39

40 let res : Exp = eval(e=v);
Listing 1: Optimized memory layout for arithmetic expressions and user implementation of eval.

6.2 Intermediate forms and interpreters

In this section, we provide an overview of the various intermediate forms that a Ribbit program goes

through during its compilation. Many of these intermediate program representations have their own

interpreter, which lets us check empirically that the semantics of a given program is preserved by each

compilation pass. We will use the program on arithmetic expressions from Section 6.1 as our running

example to illustrate each representation. All of them can be obtained at once by invocating ribbit with

verbose, graph and debug options enabled, using the command ribbit -m batch –ir -g -s -debugarithexprs.rbt. Crucially, all intermediate forms shown in this section were taken straight from the

compiler’s output, without any modifications.

The Ribbit prototype first processes all type declarations before moving on to function and value
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declarations. Let us illustrate this processing on the String, Op and Exp type declarations from the pro-

gram shown in Listing 1. This step normalizes memory types given by programmers, or computes them

based on a generic representation (as described in Section 2.6). The syntax is exactly the same as memory

types, with some minor expansions (such as expanded or-patterns in split branches’ provenances).

1 [Type declarations]:
2 enum Exp {Var(String), Int(i32), Bin(Op, Exp, Exp)}
3 represented as
4 split(_.[0:+2]) (
5 0 from
6 Bin(_, Bin(_), Bin(_)), Bin(_, Bin(_), Var(_)),
7 Bin(_, Var(_), Bin(_)), Bin(_, Var(_), Var(_)) =>
8 &<64,2>({{_.Bin.0 as Op, w56 w _:(= 0), _.Bin.1 as Exp, _.Bin.2 as Exp}})
9 w _.[0:+2]:(= 0),

10 1 from Int(_) => w64 w _.[0:+2]:(= 1) w _.[32:+32]:_.Int as w32,
11 2 from Var(_) => &<64,2>(_.Var as String) w _.[0:+2]:(= 2),
12 3 from
13 Bin(_, Bin(_), Int(_)), Bin(_, Int(_), Bin(_)),
14 Bin(_, Int(_), Int(_)), Bin(_, Int(_), Var(_)),
15 Bin(_, Var(_), Int(_)) =>
16 &<64,2>(split(_.1) (
17 0 from Bin(_, Int(_), _) =>
18 {{_.Bin.0 as Op,
19 w24 w _:(= 0),
20 _.Bin.1.Int as w32,
21 _.Bin.2 as Exp}},
22 1 from Bin(_, Bin(_), Int(_)), Bin(_, Var(_), Int(_)) =>
23 {{_.Bin.0 as Op,
24 w24 w _:(= 1),
25 _.Bin.2.Int as w32,
26 _.Bin.1 as Exp}}
27 ))
28 w _.[0:+2]:(= 3)
29 )
30

31 enum Op {Plus, Mult}
32 represented as
33 w8 w _:split(_) (
34 0 from Plus(_) => (= 0),
35 1 from Mult(_) => (= 1)
36 )
37

38 type String = i512 represented as _ as w512

Listing 2: Ribbit output: Processing type declarations.

Let us now consider the value declaration from the program shown in Listing 1:

let v : Exp = Bin(Plus, Int(42), Var(0));. Ribbit outputs its representation as a memory value in

both textual and graphical form, as shown in Listing 3.
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&<64> a₁ with

[0:+2]

2 uninit bits with
[0:+2]

3 on 2 bits

0 on 8 bits

0 on 24 bits

42 on 32 bits

&<64> a₂ with

[0:+2]

2 uninit bits with
[0:+2]

2 on 2 bits

0 on 512 bits

1 [Value Declaration]:
2 Compiling Bin(Plus, Int(42), Var(0))
3

4 [Value Declaration]:
5 Elaborated to Bin(Plus, Int(42), Var(0))
6

7 [Value Declaration]:
8 v = Bin(Plus, Int(42), Var(0)) = Bin(Plus, Int(42), Var(0))
9 represented as

10 &<64>(a0) with [0:+2] = ?2 with [0:+2] = (3)2
11 with a0 ->
12 {{ (0)8;
13 (0)24;
14 (42)32;
15 &<64>(a1) with [0:+2] = ?2 with [0:+2] = (2)2;
16 }};
17 a1 -> (0)512

Listing 3: Ribbit output: Processing the first value declaration.

In general, the Ribbit prototype processes such declarations with the following sequence of actions:

• typecheck and desugar the bound expression;

• prepare new identifiers and compute the shape of its memory type;

• compile the expression and optimize the resulting target expression;

• prepend an allocation instruction and append a freeze instruction to the resulting target expression;

• evaluate the desugared source expression as a purely high-level object (↩→ then substitute all

variables), yielding a high-level value;

• evaluate the compiled expression with the target interpreter, yielding a memory value and its

accompanying store;

• convert the high-level value to a memory value;

• compare both memory values to check that both routes of evaluation yield the same result;

• if both succeed and yield equivalent memory values, add both high-level and memory values to

the current value environment.

This means that, for every program, we check the correctness of Compile empirically. This has proven

crucial in practice to converge towards a correct compilation algorithm.

Let us now consider the successive intermediate forms of a full-fledged function: eval. The Ribbit

prototype first typechecks and normalizes its body to the explicitly typed A-normal form shown in

Listing 4. This elaboration was already showcased in Section 2.3.
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1 [Function declaration]:
2 Compiling eval(e: ) = match e {
3 Int(_) | Var(_) => e,
4 Bin(op, e1, e2) => match (eval(
5 e: e1), eval(e: e2)) {
6 (Int(n1), Int(n2)) => match op {
7 Plus => Int(n1 + n2),
8 Mult => Int(n1 * n2),
9 },

10 (e1', e2') => Bin(op, e1', e2'),
11 },
12 }
13

14 [Function declaration]:
15 Elaborated to eval(e: Exp) : Exp
16 = let x : Exp = e;
17 match x {
18 Int(_) => e,
19 Var(_) => e,
20 Bin(_, _, _) =>
21 let x1 : Exp = x.Bin.1;
22 let x2 : Exp = eval(e: x1);
23 let x3 : Exp = x.Bin.2;
24 let x4 : Exp = eval(e: x3);
25 match x2, x4 {
26 Int(_), Int(_) =>
27 let x5 : Op = x.Bin.0;
28 match x5 {
29 Plus =>
30 let x6 : i32 = x2.Int;
31 let x7 : i32 = x4.Int;
32 let x8 : i32 = ADD(x6, x7);
33 Int(x8),
34 Mult =>
35 let x9 : i32 = x2.Int;
36 let x10 : i32 = x4.Int;
37 let x11 : i32 = MUL(x9, x10);
38 Int(x11),
39 },
40 _, _ => Bin(x.Bin.0, x2, x4),
41 },
42 }

Listing 4: Ribbit output: Desugared eval.

Following our compilation algorithms, we then process the pattern matching and each right-hand

side expression. The resulting CFG is given in Fig. 6.1. This CFG was already shown, with some minor

optimizations applied, in Section 2.3.

Finally, we evaluate eval(v) in two ways: as a source expression using Ribbit’s built-in interpreter

for the source language, and as a target expression using its compiled version and Ribbit’s built-in

interpreter for the target language. Here, both evaluations yield equivalent results, and we obtain the

output shown in Listing 5, which represents the result as a memory value. Note the use of ?2 to represent

the 2 uninitialized padding bits.
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letᵢ s₂₁ = sx₂.[0:+2]

Switch s₂₁

0 1 2,3

/* case Int(_),Int(_) //
/* let x₅ = x.Bin.0 //
letᵢ s₁₁ = s₁.*.0
/* match x₅ //
letᵢ s₁₈ = s₁₁

Switch s₁₈

0 1

/* case _,_ //
letᵢ s₂₂ = sx₄.[0:+2]

Switch s₂₂

0 1 2,3

letᵢ s₅ = s₁.*.3
letᵢ s₆ = s₅
dx₁ := s₆

Freeze dx₁ to sx₁
/* let x₂ = eval(e: x₁) //
new out dx₂ (64 bits)

call eval e:sx₁ dx₂

/* Shape ?₆₄ to &<64>({{?₈, 0₂₄, ?₃₂, ?₆₄}}) w [0:+2]:?₂ w [0:+2]:3₂ //
Cast ∇ as ?64 with [0:+2]:?2
letₒ d₂₄ = ∇.![0:+2]
d₂₄ := alloc(128)
letₒ d₂₇ = d₂₄.*
Cast d₂₇ as {{?8,?24,?32,?64}}
letₒ d₂₉ = d₂₇.1
d₂₉ := 0
letₒ d₂₅ = ∇.[0:+2]
Cast d₂₅ as ?2 with [0:+2]:?2
letₒ d₃₃ = d₂₅.[0:+2]
d₃₃ := 3
/* Fragment _.Bin.0 in dest d₃₄ //
letₒ d₃₄ = ∇.*.0
letᵢ s₁₁ = s₁.*.0
d₃₄ := s₁₁
/* Fragment _.Bin.1.Int in dest d₃₅ //
letₒ d₃₅ = ∇.*.2
letᵢ s₁₂ = sx₂.[32:+32]
d₃₅ := s₁₂

/* Fragment _.Bin.2 in dest d₃₆ //
letₒ d₃₆ = ∇.*.3
letᵢ s₂₀ = sx₄
d₃₆ := s₂₀

success

letᵢ s₉ = s₁.*.1

Switch s₉

0 1

/* Shape ?₆₄ to ?₆₄ w [32:+32]:?₃₂ w [0:+2]:1₂ //
Cast dx₃ as ?64 with [0:+2]:?2
letₒ d₂₁ = dx₃.![0:+2]
Cast d₂₁ as ?64 with [32:+32]:?32
letₒ d₂₂ = dx₃.[0:+2]
d₂₂ := 1
/* Fragment _.Int in dest d₂₃ //
letₒ d₂₃ = dx₃.[32:+32]
letᵢ s₃ = s₁.*.2
d₂₃ := s₃

letᵢ s₅ = s₁.*.3
letᵢ s₆ = s₅
dx₃ := s₆

letᵢ s₂ = s₁
∇ := s₂

success

/* Shape ?₆₄ to &<64>({{?₈, 1₂₄, ?₃₂, ?₆₄}}) w [0:+2]:?₂ w [0:+2]:3₂ //
Cast ∇ as ?64 with [0:+2]:?2
letₒ d₂₄ = ∇.![0:+2]
d₂₄ := alloc(128)
letₒ d₂₇ = d₂₄.*
Cast d₂₇ as {{?8,?24,?32,?64}}
letₒ d₂₉ = d₂₇.1
d₂₉ := 1
letₒ d₂₅ = ∇.[0:+2]
Cast d₂₅ as ?2 with [0:+2]:?2
letₒ d₃₃ = d₂₅.[0:+2]
d₃₃ := 3
/* Fragment _.Bin.0 in dest d₃₄ //
letₒ d₃₄ = ∇.*.0
letᵢ s₁₁ = s₁.*.0
d₃₄ := s₁₁
/* Fragment _.Bin.2.Int in dest d₃₅ //
letₒ d₃₅ = ∇.*.2
letᵢ s₁₃ = sx₄.[32:+32]
d₃₅ := s₁₃
/* Fragment _.Bin.1 in dest d₃₆ //
letₒ d₃₆ = ∇.*.3
letᵢ s₁₉ = sx₂
d₃₆ := s₁₉

success

Freeze dx₃ to sx₃
/* let x₄ = eval(e: x₃) //
new out dx₄ (64 bits)

call eval e:sx₃ dx₄

letᵢ s₂₁ = sx₂.[0:+2]

Switch s₂₁

0 1 2,3

/* Shape ?₆₄ to &<64>({{?₈, 0₅₆, ?₆₄, ?₆₄}}) w [0:+2]:?₂ w [0:+2]:0₂ //
Cast ∇ as ?64 with [0:+2]:?2
letₒ d₂₄ = ∇.![0:+2]
d₂₄ := alloc(192)
letₒ d₂₇ = d₂₄.*
Cast d₂₇ as {{?8,?56,?64,?64}}
letₒ d₂₉ = d₂₇.1
d₂₉ := 0
letₒ d₂₅ = ∇.[0:+2]
Cast d₂₅ as ?2 with [0:+2]:?2
letₒ d₃₃ = d₂₅.[0:+2]
d₃₃ := 0
/* Fragment _.Bin.0 in dest d₃₄ //
letₒ d₃₄ = ∇.*.0
letᵢ s₁₁ = s₁.*.0
d₃₄ := s₁₁
/* Fragment _.Bin.1 in dest d₃₅ //
letₒ d₃₅ = ∇.*.2
letᵢ s₁₉ = sx₂
d₃₅ := s₁₉

letᵢ s₂₁ = sx₂.[0:+2]

Switch s₂₁

0 1 3

/* Shape ?₆₄ to ?₆₄ w [32:+32]:?₃₂ w [0:+2]:1₂ //
Cast dx₁ as ?64 with [0:+2]:?2
letₒ d₁₈ = dx₁.![0:+2]
Cast d₁₈ as ?64 with [32:+32]:?32
letₒ d₁₉ = dx₁.[0:+2]
d₁₉ := 1
/* Fragment _.Int in dest d₂₀ //
letₒ d₂₀ = dx₁.[32:+32]
letᵢ s₃ = s₁.*.2
d₂₀ := s₃

Freeze dx₂ to sx₂
/* let x₃ = x.Bin.2 //
new out dx₃ (64 bits)
letᵢ s₁₀ = s₁.[0:+2]

Switch s₁₀

0 3

letᵢ s₃ = s₁.*.2
letᵢ s₄ = s₃
dx₁ := s₄

/* case Var(_) //

letᵢ s₉ = s₁.*.1

Switch s₉

0 1

/* case Plus //
/* let x₆ = x₂.Int //
letᵢ s₁₂ = sx₂.[32:+32]
/* let x₇ = x₄.Int //
letᵢ s₁₃ = sx₄.[32:+32]
/* let x₈ = ADD(x₆, x₇) //
new out dx₈ (32 bits)
dx₈ = ADD s₁₂ s₁₃
Freeze dx₈ to sx₈
/* Shape ?₆₄ to ?₆₄ w [32:+32]:?₃₂ w [0:+2]:1₂ //
Cast ∇ as ?64 with [0:+2]:?2
letₒ d₂₄ = ∇.![0:+2]
Cast d₂₄ as ?64 with [32:+32]:?32
letₒ d₂₅ = ∇.[0:+2]
d₂₅ := 1
/* Fragment _.Int in dest d₂₆ //
letₒ d₂₆ = ∇.[32:+32]
letᵢ s₁₅ = sx₈
d₂₆ := s₁₅

success

/* case Bin(_, _, _) //
/* let x₁ = x.Bin.1 //
new out dx₁ (64 bits)
letᵢ s₁₀ = s₁.[0:+2]

Switch s₁₀

0 3

Freeze dx₄ to sx₄
/* match x₂,x₄ //
letᵢ s₂₂ = sx₄.[0:+2]

Switch s₂₂

0 1 2,3

Let rec eval = λ e:s₁ ∇.

/* match x //
letᵢ s₁₀ = s₁.[0:+2]

Switch s₁₀

0 1 2 3

/* case Mult //
/* let x₉ = x₂.Int //
letᵢ s₁₂ = sx₂.[32:+32]
/* let x₁₀ = x₄.Int //
letᵢ s₁₃ = sx₄.[32:+32]
/* let x₁₁ = MUL(x₉, x₁₀) //
new out dx₁₁ (32 bits)
dx₁₁ = MUL s₁₂ s₁₃
Freeze dx₁₁ to sx₁₁
/* Shape ?₆₄ to ?₆₄ w [32:+32]:?₃₂ w [0:+2]:1₂ //
Cast ∇ as ?64 with [0:+2]:?2
letₒ d₂₄ = ∇.![0:+2]
Cast d₂₄ as ?64 with [32:+32]:?32
letₒ d₂₅ = ∇.[0:+2]
d₂₅ := 1
/* Fragment _.Int in dest d₂₆ //
letₒ d₂₆ = ∇.[32:+32]
letᵢ s₁₇ = sx₁₁
d₂₆ := s₁₇

success

/* case Int(_) //

Figure 6.1: Ribbit output: target CFG for eval.

172



&<64> a₁₂ with

[0:+2]

2 uninit bits with
[0:+2]

3 on 2 bits

0 on 8 bits

0 on 24 bits

42 on 32 bits

&<64> a₂ with

[0:+2]

2 uninit bits with
[0:+2]

2 on 2 bits

0 on 512 bits

1 [Value Declaration]:
2 Compiling eval(e: v)
3

4 [Value Declaration]:
5 Elaborated to let x12 : Exp = v;
6 eval(e: x12)
7

8 [Value Declaration]:
9 res = eval(e: v) = Bin(Plus, Int(42), Var(0))

10 represented as
11 &<64>(a0) with [0:+2] = ?2 with [0:+2] = (3)2
12 with a0 ->
13 {{ (0)8;
14 (0)24;
15 (42)32;
16 &<64>(a1) with [0:+2] = ?2 with [0:+2] = (2)2;
17 }};
18 a1 -> (0)512

Listing 5: Ribbit output: Evaluation of eval(v).

6.3 Technical Features

In this section, we go over some specific technical aspects of the Ribbit implementation.

Hash-consing Classically, directed acyclic graphs (DAGs) with maximal sharing can be created from

trees by using hash-consing (Filliâtre and Conchon 2006). For both termination and tractability, we

apply these techniques pervasively in Ribbit, both on memory trees (described in Section 4.2) and on

target IR expressions (described in Section 5.2).

For this purpose, we use the Hashtbl interface from OCaml standard library to provide a generic

hash-consing-aware recursion scheme for trees. Listing 6 shows some parts of Ribbit’s source code

using this interface. The fixpoint operator memo_rec memoizes a given function f by hash-consing its

input. We use it to define a sharing-aware fold over memory trees. This fold recovers maximal sharing,

even when it was not originally present. We use this fold pervasively throughout pattern matching

compilation.
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1 (** Memoize a function on Memory Trees by hash-consing them. *)
2 let memo_rec f =
3 let tbl = Hashtbl.create 17 () in
4 let rec f_rec (t : M.t) =
5 match Hashtbl.find_opt tbl t with
6 | Some res -> res
7 | None ->
8 let res = f f_rec t in
9 Hashtbl.replace tbl t res;

10 res
11 in
12 f_rec
13

14 (** Fold over a Memory Tree, up to hash-consing.
15 Each labeled function (f_leaf, ...) is applied to the relevant construct.
16 *)
17 let fold ~f_bud ~f_leaf ~f_par ~f_switch =
18 let f f_rec t =
19 let acc = match t with
20 | Leaf l -> f_leaf l
21 | Bud (ty, l) -> f_bud ty l
22 | Par trs -> f_par @@ List.map (fun tr -> f_rec tr) trs
23 | Switch { discr; path; cases; default } ->
24 f_switch discr path
25 (List.map (fun (z, tr) -> z, f_rec tr) cases)
26 (Option.map f_rec default)
27 in
28 acc
29 in
30 memo_rec f

Listing 6: excerpt from Ribbit: hash-consing on Memory Trees.

Memoization On top of hash-consing, and as described in Section 5.6.1, we memoize each call to Seek

and Rebuild with the Wrap algorithm. The different functions making up the Compile_adt module

have a nearly one-to-one correspondence with the various compilation procedures defined in Chapter 5.

The actual implementation of Wrap uses a polymorphic hash table to avoid code duplication, but is

otherwise identical to the formal algorithm in every point.

Algorithmic checking of types Most of our compilation algorithms are directly translated into our

implementation. However, the implementation of formal agreement criteria between high-level and

memory types, as well as intrinsic validity and kinding of memory types (all defined in Chapter 3), is

not as clear-cut. First, these judments are not defined in a procedural way. Furthermore, especially for

agreement, we allow ourselves to quantify over rather unreasonable sets (e.g., every single bit of every

primitive for coverage).

The current Ribbit prototype implements a limited version of agreement checking. In particular, it

verifies agreement with the granularity of a whole memory word and simply accepts any splitting of

atoms (as used, notably, in our RISC-V example).

6.4 Visualizing execution traces

The mutually recursive nature of our Seek and Rebuild compilation procedures, presented in Chapter 5,

makes it difficult to know precisely which parts of the input expression and memory type are responsible

in the event of a crash during this stage of compilation.
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To ease debugging of these two algorithms’ implementation, Ribbit includes a logger to emit an

execution trace in Chrome trace format. Coupled with a trace visualization tool such as Perfetto

(https://ui.perfetto.dev/), it allows to observe the full stack of nested calls to various compilation

functions. Such a trace is shown in Fig. 6.2. It shows the stack of Seek and Rebuild calls, along with

various auxiliary functions corresponding to smaller pieces of our compilation algorithms. For each

call, we can observe its arguments in the bottom window.

In addition to debugging the implementation per se, this tool also informed some aspects of the

actual Rebuild and Seek algorithms, most notably how to anonymize their arguments so that recursive

nodes are emitted precisely when necessary.

Figure 6.2: Part of a debugging trace for the arithmetic expressions example, in Perfetto.

6.5 In memoriam: the legacy LLVM backend

The formal compilation approach described in Chapters 4 and 5 outputs an expression following the

syntax of an abstract target language. Similarly, the current version of the Ribbit implementation

compiles input programs this our custom target program representation. It also features an interpreter

for this target language. Our target IR is the end of the current compilation chain: the Ribbit prototype

lacks a proper backend to either native assembly or a standard low-level intermediate representation.

However, at some point during Ribbit development, our implementation did in fact have a working

LLVM IR backend. This backend allowed us to run the few benchmarks covered in Chapter 7. In

this section, we describe the legacy LLVM IR backend, explain why it was eventually abandoned and

explore some possibilities for a future Ribbit backend that would once again allow our implementation

to produce executable programs.

The global code generation procedure is rather straightforward: constructors are turned into memory

allocation and initialization code and decision trees are turned into LLVM control flow graphs. Two

difficulties remain: deal with LLVM’s explicitely typed IR and generate code for memory paths.

6.5.1 Values and memory allocation

Words, pointers and struct values correspond to basic low-level memory structures. However, memory

values only describe some arrangement of data in memory; where and how we may allocate memory to

hold this data remains unspecified. The choice of allocation scheme highly depends on the language and

its memory management policy. In Ribbit, all data is allocated on the “main” stack frame, which remains

175

https://ui.perfetto.dev/


available during pattern matching execution. The object under scrutiny is then passed by reference to

the compiled pattern matching function.

6.5.2 Lowering Memory Types

Our compilation procedure discards type information, yielding a decision tree whose input is a single

untyped root memory value. Backend targets such as LLVM IR require each memory value (including

the root value, bound subterm values and intermediate switch discriminants) to be explicitely typed.

This section describes the process of building an adequate LLVM IR type for each memory value, using

information retrieved from the initial memory type.

Since every memory value in the decision tree is expressed as a position within the root memory

value, we can deduce their types from the root memory type. However, our memory types contain splits,

which are not expressable as LLVM types (LLVM Language Reference Manual 2023). Indeed, LLVM types

are unambigous, in that they only describe fully concrete types (in terms of bit width, legal operations,

etc.) and do not capture multiple branches. For our purposes, they consist of

1. fixed-width integer types, such as i32
2. an opaque pointer type ptr
3. structures that aggregate other LLVM types, such as {i64, ptr}

. For simplicity, we assume LLVM pointer types are by default 64-bit wide with 8 unused bits due to

address alignment. Different pointer types requires using LLVM address spaces with different data layout

specifications (in the LLVM sense).

We now describe, given a type τ̂, how to build the corresponding LLVM type. This is straightforward

for non-split memory types: we map any ℓ-bit-wide word or pointer to the integer type iℓ, discarding

any bitword content specification. We do not use the specific ptr type yet so as to freely manipulate

pointer alignment bits. We map structs to LLVM structs and type variables and subterm types to their

bound memory type’s LLVM type.

Lowering split types to LLVM IR types is less immediate. We need an LLVM type that is able to

store values of any branch, and in which the split discriminant is accessible. By definition, the exact

shape of a memory value instanciated from a split type (and an unknown source value) is unknown

until we inspect its discriminant. Type validity ensures this is possible: indeed, a split type has one kind

and each branch type must be of this kind. Furthermore, the discriminant location is always accessible

in each branch type. Conservatively, we use the “largest” branch type to determine the common type

shape. If the kind is Word, every branch maps to an LLVM integer type and we take the largest. If the

kind is Block, every branch maps to an LLVM struct and we recursively find a common type for each

field, and keep extra fields. After inspecting the discriminant, we refine the memory type and cast the

value to a more precise LLVM type in order to perform operations specific to the identified variant. By

validity of memory types, this cast should always be valid.

6.5.3 Code Generation for Memory Paths

Memory paths π̂ are used to specify the discriminant of each switch node and to specify values in binding

environments. Code generation transforms memory paths into sequences of instructions extracting the

part of the root memory value specified by the path. Memory path operations consist of pointer

dereferencing, field access and arbitrary operations on bitwords. Given a target providing instructions

for dereferencing, field access and all operations used in bitword content specifications, as well as casts

from pointers to words and back, mapping operations on structs and on words to target instructions

is immediate. Dereferencing operations require additional care to reset all alignment bits and cast the

value to a pointer type before dereferencing it.

Example 6.1. The path .∗ on &64,8 (. . . ) becomes

%x1 = and i64 %x0, 0xffffffffffffff00%x2 = inttoptr i64 %x1 to ptr%x3 = load ty, ptr %x2 △
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6.5.4 Possible future backends

The LLVM backend was written at a time when Ribbit was only able to compile the recognition aspect of

pattern matching (corresponding to Destruct/to Chapter 4), a very limited subset of variable accessors

(corresponding to Extract) and constant value constructors (corresponding to Construct). As such,

its output prior to going through the LLVM backend consisted of decision trees (for pattern matching),

memory paths (for accessors) and constant memory values (for data constructors).

Since then, we have extended our compilation approach to cover the entire Ribbit language, as

described in detail in Chapter 5 (corresponding to Compile, Seek and Rebuild). This required us to

define a proper target language (the DPS IR which we defined in Chapter 5) specifically integrated with

our formalism, to allow for the complex manipulation of memory types and values which underlie

Rebuild and Seek.

Our target IR is richer and more complex than the previous combination of decision trees, memory

paths and constant memory values. It also comes with its own memory model. As such, it quickly out-

grew the existing LLVM backend, which was subsequently abandoned. Specifically, LLVM IR features

its own low-level type system, which restricts the possible data casts in a way which is incompatible

with the code emitted by our new compilation algorithms (Refine). In particular, Ribbit’s richer type

system allow casts that are rejected by LLVM, such as casting an uninitialized 512bit words into a struct.

Nevertheless, it would of course be desirable to restore Ribbit’s ability to emit executable code

in the future. Doing so would involve writing a backend translating our custom target IR to (either

assembly but nobody does that anymore or) a standard IR from a common compiler framework. Possible

targets include LLVM IR, but also others such as C−− (S. L. P. Jones, Ramsey, and Reig 1999) or

WebAssembly (Wikipedia 2024b). In particular, C−− seems less opinionated than LLVM on possible

casts and does not have its own memory type system, thus would probably be easier to interface with

Ribbit than LLVM.
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Chapter 7

Experimental evaluation of pattern

matching compilation

This chapter presents an experimental evaluation of the pattern matching compilation procedure pre-

sented in Chapter 4. These experiments were run using a version of the Ribbit prototype which is

available as an artifact associated with (Baudon, Radanne, and Gonnord 2023), available at https://doi.org/10.5281/zenodo.7994178 1
. This version includes the now-defunct LLVM backend, which

allowed us to measure concrete execution times.

The experiments we describe here have been performed on a laptop running Gentoo GNU/Linux x86-64

on an Intel Core i5 CPU @ 1.60GHz ×8 (although Ribbit is single-threaded), with 32 GiB of RAM. As for

compiler versions, we used Rust 1.67.1, OCaml 4.14.0 and LLVM 14. We demonstrate that:

• Ribbit is expressive enough to reproduce the behavior of native OCaml and Rust compilers on

some representative middle-sized examples, with similar performance;

• acting on low-level memory layouts impacts static characteristics of generated decision trees, as

well as execution-time performance.

For this purpose, we consider two examples: the red-black trees motivating example from Section 2.1,

and a stack machine interpreter example used in (Maranget 2008) to showcase various heuristics for

OCaml pattern matching compilation. The full programs are both available in the artifact. For these two

examples, we have implemented native OCaml and Rust versions, two Ribbit versions mimicking the

internal memory representations of OCaml and Rust, along with the Linux-like red-black tree encoding

from Section 2.1.4. However, we do not attempt to match compilation heuristics.

1
Which was given the “available” as well as “reusable” ACM badges, see https://www.acm.org/publications/policies/artifact-review-and-badging-current
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stack interpreter red-black trees

compiler & layout exec. time memsize #pointers exec. time memsize #pointers

ocamlopt 4.15 12 4 3.13 155 31

rustc 3.31 7 2 3.37 124 30

ribbit

OCaml 1.89 13 4 5.45 156 31

Rust 1.87 8 3 4.61 125 31

Linux – – – 4.54 94 31

Figure 7.1: Execution times on 10
9

runs, and memory usage (exec. time is in ns, memsize in words).

In Fig. 7.1, we first compare the memory usage and number of pointers of some concrete values

(a small stack program and a red-black tree with 30 nodes), to cross-validate our memory layout

specifications (the size of objects in OCaml/Rust versus the size obtained in Ribbit with our encoding).

As we can see, the results are coherent for all implementations. We then compare execution-time

performance of the target code generated by each compiler. This comparison should be made while

keeping in mind that this version of Ribbit emits code which does far less than native OCaml or Rust:

our prototype implementation did not implement sophisticated memory management, or even proper

function calls. Additionally, the measured times are very tiny, making measurement difficult. Our

goal here is only to show that our pattern matching compilation technique can emit code of similar

efficiency to seasoned industry-ready compilers using their memory layouts, which is indeed the case.

The final lesson from these dynamic measurements is that improving the memory representation of

values is very worthwhile: each reduction from the OCaml representation to the Rust and then to the

Linux layout significantly reduces memory footprint and execution times. The Linux red-black trees

implementation, in particular, is extremely efficient while having a tiny footprint, demonstrating the

gain of such sophisticated bit-stealing.

stack interpreter red-black trees

memory layout OCaml Rust OCaml Rust Linux

code size (switches) 38 30 26 21 21

path length (switches)

avg 5.25 4.55 9.25 8.73 8.72

min 2 2 1 1 1

max 8 6 13 13 13

deref ops

avg 2.56 2.55 4.45 4.19 2.36

min 1 1 1 1 0

max 4 3 7 7 3

Figure 7.2: Static metrics of decision trees generated by Ribbit : code size is the total number of switches; we also compute

the number of switches per path in the decision tree and the number of dereferences along these paths.

Figure 7.2 depicts static metrics obtained via Ribbit for different memory layouts. For both bench-

marks, the better performance obtained with the Rust layout and to a further extent with the Linux

layout seems to correlate with fewer derefencing operations. The case of red-black trees is even more

interesting: despite a greater number of switches and similar path lengths in decision trees, the per-

formance of the Linux encoding still achieves better performance. Perhaps unsurprisingly, it seems

that a good static measurement to predict performance is the amount of indirection. These results

suggest that we should complement existing heuristics for pattern matching compilation with new ones

taking data layout-related metrics into account, such as the number of dereferencing operations and

cache-friendliness.
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Chapter 8

Related Work

Ribbit is not the only language allowing to describe the memory layout of values. In Section 8.1, we

will showcase other approaches to language design which allow programmers to fine-tune, to various

degrees, the memory representation of data. We will then present some sources of inspiration. A first

source is the rich literature on pattern matching compilation, which was described in Section 4.5. A

second inspiration is the variety of memory representations that are used in practice by programmers

and language designers. Some of them were already presented in Chapter 2, and we showcase others

in Section 8.2.

8.1 Language Approaches to Memory Layout Specification

We first consider language-integrated approaches which allow programmers to design the complete

memory representation of some objects. This has been done for numerous purposes, either for perfor-

mance and control, as is the case for Ribbit, or for verification. It can even arise from the combination of

various independent language features.

Low-level Types with High-level Views One approach to achieve precise control over memory layout

is to combine two features: an expressive type language allowing to describe the representation, and

the ability to create “smart constructors”, which hide the low-level representation behind a high-level

presentation.

The most complete example of such an approach is probably the Habit language (Diatchki, M. P.

Jones, and Leslie 2005), described as “a pure functional language that explores the intersection of low-

level programming problems and high-level programming paradigms”
1
. It introduces the notion

of bitdata: “bit-level representations of data that are required in the construction of many different

applications, including operating systems, device drivers, and assemblers.” The main idea is to combine

two complementary language features: the bitdata memory specification language on the one hand,

and views (P. Wadler 1987) on the other hand to provide high-level constructors.

As described by Diatchki and M. P. Jones (2006), and unlike Ribbit, it is an extension of Haskell

which extends and leverages its rich type system to capture very low-level aspects including alignment

and placement in virtual and physical address spaces. Similar to Ribbit’s agreement criteria, they

describe an informal property dubbed “no junk and confusion”, although they do not provide any

decision procedure to check that property beyond a small static analysis able to emit warnings in some

cases. However, they do not detail their compilation approach ((Hasp) 2013), delegating most delicate

compilation problems to an IR called Fidget.

These two features – low-level memory specifications and views – may also be combined in other lan-

guages. For instance, active patterns (Syme, Neverov, and Margetson 2007) and pattern synonyms (Pick-

ering et al. 2016) allow users to abstract over patterns by exposing “constructors” which do not directly

reflect the underlying definition of the algebraic data type. This allows for both a “programmer” view

1http://www.habit-lang.org/
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and a “representation” view, similar to our approach. Combined with a rich type algebra with unbox-

ing annotations, it allows some representation tricks. Similarly, (Solodkyy, Reis, and Stroustrup 2013)

propose patterns-as-library for C++ based on objects and template meta-programming. Combined with

the precise low-level constructs available in C data types, this provides a way to (do the same stuff) in

C++.

Verification-oriented approaches Many of the links between ADTs and low-level programming were

initially made for verification. Notably, Dargent (Chen et al. 2023) allows to specify memory represen-

tations in an external DSL which outputs C code for accessors, and Isabelle/HOL theorems; with the

aim of formally verifying embedded systems. (Swamy et al. 2022) propose a similar approach to for-

mally verify binary format parsers in F∗. Simonnet, Lemerre, and Sighireanu (2023) provide a rich type

system capturing a very complete selection of low-level aspects of memory contents, and verify them

using abstract interpretation. All these approaches are precise and very expressive, but do not provide

language-integrated constructs such as pattern matching. They also also provide far less optimizations

than Ribbit.

Memory Layout Optimizations for ADTs Some general-purpose languages with ADTs also provide

ways to improve data layout. As we have seen in Section 2.6.4, Rust provides users with a choice between

some pre-defined memory representations; in addition, it performs semi-automatic layout optimizations

via the notion of niche (RFC: Alignment niches for references types 2021) to exploit unassigned values. It

would be interesting to combine these existing language-level tools with precise data layout annotations

such as Ribbit’s memory types to provide users with even greater control over memory representation.

OCaml provides a standard language extension featuring an [@@unboxed] annotation to unbox sum

types with a single constructor. Such sum types do not require any extra precaution to unbox: as there

is only one possible constructor, there is no need to distinguish between different cases. Even though

this standard extension is limited to this very simple situation, Chataing et al. (2024) propose to extend

it to a wider variety of scenarios. They propose a sufficient condition and an associated static analysis

to ensure that such unboxed constructors do not lead to “confusion” – i.e., using Ribbit terminology,

non-distinguishability. This generalization of constructor unboxing still restricts data layout enough to

require minimal changes to existing compilation algorithms.

Performance-oriented approaches for serialized/array data LoCal (Vollmer et al. 2019) and Gib-

bon (Koparkar et al. 2021), on the other hand, provide DSLs tailored to describe and manipulate

low-level and serialised representations. Their memory layouts are less flexible than what we pre-

sented, making it impossible to provide truly customised representations, but allowing them numerous

powerful optimisations we do not provide, such as leveraging parallelism. We hope to combine our

approaches in the future.

Memory layouts for arrays, while largely out of scope of this thesis, have been explored in numerous

high-performance languages. For instance, Accelerate
2

(Chakravarty et al. 2011) is an embedded DSL

to express idiomatic array transformations in Haskell. At the source level, it allows users to explicitly

specify the precise shape of each array. During compilation, it automatically applies memory layout

optimizations such as converting “array-of-structs” to “struct-of-arrays”. Finally, its CUDA backend

must automatically deal with various array shapes to emit efficient GPU code.

Some approaches (Bhaskaracharya, Bondhugula, and Cohen 2016) based on the polyhedral model (Feautrier

1991) allow to automatically optimize the memory layout of array-based data using techniques such as

array compaction.

8.2 Optimized Memory Representations

Another important source of inspiration is the plethora of representation tricks and design choices

in programming languages to suit various needs. These serves as motivating examples. In an ideal

world, Ribbit should be able to express all such representations! In Chapter 2, we showed some specific

2https://www.acceleratehs.org/
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representation tricks, along with some generic language representation. Here, we showcase some

feature-specific designs.

In particular, memory representation in functional polymorphic garbage-collected languages was

quickly identified as an important area for performance improvements (Peterson 1989; Leroy 1992; S. L. P.

Jones and Launchbury 1991). Our work encourages new development in this area, as it easily supports

such representation and allows experimenting with new representations easily.

Unboxing and arrays has been the subject of numerous work and libraries (see (Keller et al. 2010) for

a recent Haskell example). We believe many of the data-layout proposed in these works would enhance

our approach, notably regarding mutability and concurrency, which we do not explore. Colin, Lepigre,

and Scherer (2018) refine the criterion for recursive yet unboxed types in the OCaml case.

Iannetta, Gonnord, and Radanne (2021) and Koparkar et al. (2021) propose completely flattened

representations for recursive types, which provide excellent cache behavior and parallelism but require

whole-program transformations. In contrast, our technique provides great manual control over memory

representation and follow a more traditional compilation pipeline. Supporting such fully flattened

layouts in Ribbit would be highly desirable.

Several approaches try to mix polymorphism with optimized data layout. Leroy (1990) shows

how to make polymorphic and monomorphic representations work conjointly and Hall, S. L. P. Jones,

and Sansom (1994) show how to marry specialization and unboxing. Classically, C++ and Rust rely

aggressively on specialization. All these approaches would be compatible with our work.
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Chapter 9

Conclusion and future work

This thesis presented the Ribbit language, and demonstrated its usefulness to capture optimized memory

layouts for Algebraic Data Types thanks to its fine-grained memory types. The Ribbit compiler lets

programmers use high-level, safe language constructs while still reaping the performance benefits of

custom memory layouts. Abstractions such as pattern matching are translated to equivalent target

code which properly manipulates data following the specified (and possibly quite convoluted) memory

representation, thanks to compilation algorithms which follow the structure of memory types.

Let us now consider some possible extensions to our formalism, which would broaden its scope of

application and allow it to capture finer, lower-level representations.

Memory management strategies Chapter 5 presented a compilation approach to emit target code

which allocates and initializes memory structures to properly represent data. However, it did not

explore the topic of deallocation, and our target program representation does not distinguish between

deep and shallow copy of memory contents. This last aspect would be particularly important to consider

in order to extend Ribbit to work with mutable data.

In the future, we hope to investigate memory management strategies, for instance following Loren-

zen, Leĳen, and Swierstra (2023) which prevent unnecessary memory allocation, allowing to potentiate

the memory usage and performance benefits already associated with optimized memory layouts.

Another possibility would be to leverage stack allocation by encoding the distinction between data

allocated on the stack and on the heap within memory types.

Richer memory layouts As shown in Section 2.7, some existing memory layouts (e.g., NaN-boxing)

rely on characteristics of non-integer primitive encodings (e.g., using NaN float values in NaN-boxing),

which Ribbit does not currently support. More importantly, our current approach is unable to check

that memory layouts using techniques such as NaN-boxing or niches are correct (i.e., that such memory

types are valid, well-kinded and agree with the associated ADT). Doing so would require extending

our formalism to capture architecture- and system-specific details of numeric encodings and machine

addresses, which we currently view as completely opaque data.

Another feature which is completely absent from Ribbit is data linearization and array-based layouts.

Extending Ribbit with array types, as sketched in (Baudon, Radanne, and Gonnord 2023), would allow

users to express “struct-of-arrays” and “array-of-structs” representations, and more generally combine

optimized array-based memory layouts with ADTs.

High-level language features So far, Ribbit only supports monomorphic ADTs. However, data types

such as finger trees (Hinze and Paterson 2006) (or many of Okasaki’s data structures) which require

polymorphic recursion do not yield themselves well to monomorphization.

We believe defining memory layouts for polymorphic types is absolutely feasible, following the

literature on the topic (Leroy 1990). A simple approach would be the OCaml trick: polymorphic data

is always one word (immediate, or pointer), which allow easily emitting polymorphic code. Extending

Ribbit with richer high-level types would allow modeling such nested data types.
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Automatic synthesis of memory layouts In the future, we also hope to synthesize memory repre-

sentations automatically, given some specific metrics to optimize. Such metrics might include memory

usage or number of pointer dereferences, as mentioned in Chapter 7.
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