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Abstract8

In this workshop paper, we revisit the notion of parallel-innermost term rewriting. We provide a9

definition of parallel complexity and propose techniques to derive upper bounds on this complexity10

via the Dependency Tuple framework by Noschinski et al.11
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1 Introduction15

In this paper, we consider the problem of evaluating the potentiality of parallelisation in16

pattern-matching based recursive functions like the one depicted in Figure 1.

fn size(&self) -> int {
match self {

&Tree::Node { v, ref left, ref right }
=> left.size() + right.size() + 1,
&Tree::Empty => 0 , } }

Figure 1 Tree size computation in Rust

17

In this particular example, the recursive calls to left.size() and right.size() can be18

done in parallel. Building on previous work on parallel-innermost rewriting [6, 4], and first19

ideas about parallel complexity [1], we propose a new notion of Parallel Dependency Tuples20

that capture such a behaviour, and a method to compute parallel complexity bounds.21

2 Parallel-innermost Term Rewriting22

The following definitions are mostly standard [3].23

▶ Definition 1 (Term rewrite system, innermost rewriting). T (Σ, V) denotes the set of terms24

over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its25

positions is defined inductively as a set of strings of positive integers: (a) if t ∈ V, then26

Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then Pos(t) = {ε} ∪
⋃

1≤i≤n{iπ | π ∈ Pos(ti)}.27

The position ε is called the root position of term t. The (strict) prefix order < on positions28

is the strict partial order given by: π < τ iff there exists π′ ̸= ε such that ππ′ = τ . For29

π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term that results30

from t by replacing the subterm t|π at position π by the term s.31
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For a term t, V(t) is the set of variables in t. If t has the form f(t1, . . . , tn), root(t) = f32

is the root of t. A term rewrite system (TRS) R is a set of rules {ℓ1 → r1, . . . , ℓn → rn}33

with ℓi, ri ∈ T (Σ, V), ℓi ̸∈ V, and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n. The rewrite relation of R34

is s →R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a substitution σ such35

that s = s[ℓσ]π and t = s[rσ]π. Here, σ is called the matcher and the term ℓσ is called the36

redex of the rewrite step. If ℓσ has no proper subterm that is also a possible redex, ℓσ is an37

innermost redex, and the rewrite step is an innermost rewrite step denoted by s i→R t.38

ΣR
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R} and ΣR

c = Σ \ ΣR
d are the defined and constructor39

symbols of R. We may omit the superscript and just write Σd and Σc if R is not of importance40

or clear from the context. Finally, let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.41

The notion of parallel-innermost rewriting dates back at least to [6]. Informally, in a42

parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This cor-43

responds to executing all function calls in parallel on a machine with unbounded parallelism.44

▶ Definition 2 (Parallel-innermost rewriting [4]). A term s rewrites innermost in parallel to t45

with a TRS R, written s i−→∥ R t, iff s i−→+
R t, and either (a) s i→R t with s an innermost46

redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n either sk
i−→∥ R tk or47

sk = tk is a normal form.48

▶ Example 3 (size). Consider the TRS R with the following rules modelling the code49

of Figure 1.50

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))51

52 Here ΣR
d = {plus, size} and ΣR

c = {Zero, S, Nil, Tree}. We have the following parallel53

innermost rewrite sequence, where innermost redexes are underlined:54

size(Tree(Zero, Nil, Tree(Zero, Nil, Nil)))
i−→∥ R S(plus(size(Nil), size(Tree(Zero, Nil, Nil))))
i−→∥ R S(plus(Zero, S(plus(size(Nil), size(Nil)))))
i−→∥ R S(plus(Zero, S(plus(Zero, Zero))))
i−→∥ R S(plus(Zero, S(Zero)))
i−→∥ R S(S(Zero))

55

Note that in the second and in the third step, two innermost steps each are happening in56

parallel. A corresponding regular innermost rewrite sequence without parallel evaluation of57

redexes would have needed two more steps.58

3 Finding Upper Bounds for Parallel Complexity59

3.1 Notion of Parallel Complexity60

We extend the notion of innermost runtime complexity to parallel-innermost rewriting.61

▶ Definition 4 ((Parallel) Innermost Runtime Complexity). The size |t| of a term t is |x| = 1 if62

x ∈ V and |f(t1, . . . , tn)| = 1 +
∑n

i=1|ti|, otherwise. The derivation height of a term t w.r.t.63

a relation → is the length of the longest sequence of →-steps from t: dh(t, →) = sup{e |64

∃ t′ ∈ T (Σ, V). t →e t′} where →e is the eth iterate of →. If t starts an infinite →-sequence,65

we write dh(t, →) = ω.66

A term f(t1, . . . , tk) is basic (for a TRS R) iff f ∈ ΣR
d and t1, . . . , tk ∈ T (ΣR

c , V). T R
basic is67

the set of basic terms for a TRS R. For n ∈ N, we define the innermost runtime complexity68

function ircR(n) = sup{dh(t, i→R) | t ∈ Tbasic, |t| ≤ n} and we introduce the parallel69

innermost runtime complexity function irc∥
R(n) = sup{dh(t, i−→∥ R) | t ∈ Tbasic, |t| ≤ n}.70
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In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds71

for irc∥
R fully automatically. As usual for runtime complexity, we are considering only basic72

terms as start terms, corresponding to a defined function called on data objects as arguments.73

An upper bound for (sequential) ircR is also an upper bound for irc∥
R. We will introduce74

techniques to find upper bounds for irc∥
R that are strictly tighter than these trivial bounds.75

3.2 Complexity: the sequential case76

We build on the Dependency Tuple framework [5], originally introduced to determine upper77

bounds for (sequential) innermost runtime complexity. A central idea is to group all function78

calls by a rewrite rule together rather than to regard them separately (as for termination [2]).79

▶ Definition 5 (Sharp Terms T ♯). For every f ∈ Σd, we introduce a fresh symbol f ♯ of the80

same arity. For a term t = f(t1, . . . , tn) with f ∈ Σd, we define t♯ = f ♯(t1, . . . , tn) and let81

T ♯ = {t♯ | t ∈ T (Σ, V), root(t) ∈ Σd}.82

To compute an upper bound for sequential complexity, we “count” how often each rewrite83

rule is used. The idea is that the cost of the function call to the lhs of a rule is 1 + the sum84

of the costs of all the function calls in the rhs, counted separately. To group k function85

calls together, we use “compound symbols” Comk, which intuitively represent the sum of86

the runtimes of their arguments. Then, we can use polynomial interpretations Pol with87

Pol(Comk(x1, . . . , xk)) = x1 + · · · + xk for all k to compute a complexity bound [5, Thm. 27].88

▶ Definition 6 (Dependency Tuple, DT [5]). A dependency tuple (DT) is a rule of the89

form s♯ → Comn(t♯
1, . . . , t♯

n) where s♯, t♯
1, . . . , t♯

n ∈ T ♯. Let ℓ → r be a rule with Posd =90

{π1, . . . , πn} and π1 ◁ . . . ◁ πn for a total order ◁ on positions. Then DT(ℓ → r) = ℓ♯ →91

Comn(r|♯π1
, . . . , r|♯πn

). For a TRS R, let DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.92

▶ Example 7. For our running example, we get the following DTs:93

plus♯(Zero, y) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y))

size♯(Nil) → Com0
size♯(Tree(v, l, r)) → Com3(size♯(l), size♯(r), plus♯(size(l), size(r)))

94

The given polynomial interpretation, which orients all DTs with ≻ and all rules from R95

with ≿, proves ircR(n) ∈ O(n2): Pol(plus♯(x1, x2)) = Pol(size(x1)) = x1, Pol(size♯(x1)) =96

2x1 + x2
1, Pol(plus(x1, x2)) = x1 + x2, Pol(Tree(x1, x2, x3)) = 1 + x2 + x3, Pol(S(x1)) =97

1 + x1, Pol(Zero) = Pol(Nil) = 1.98

3.3 Computing Upper Bounds for Parallel Rewriting99

To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the100

notion of DTs from Def. 6 for sequential innermost rewriting along with existing techniques [5]101

and implementations. We illustrate this in the following example.102

▶ Example 8. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel103

(this will be captured by the notion of structural independency). Thus, the cost for these two104

calls is not the sum, but the maximum of the calls. Regardless of which of these two calls105

has the higher cost, we still need to add the cost for the call to plus, which starts evaluating106

only after both calls to size have finished. With σ as the used matcher for the rule, we have:107

dh(size(Tree(v, l, r))σ, i−→∥ R)
= 1 + max(dh(size(l)σ, i−→∥ R), dh(size(r)σ, i−→∥ R)) + dh(plus(size(l), size(r))σ, i−→∥ R)108
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Equivalently, we can “factor in” the cost of calling plus into the maximum function:109

dh(size(Tree(v, l, r))σ, i−→∥ R)
= max(1 + dh(size(l)σ, i−→∥ R) + dh(plus(size(l), size(r))σ, i−→∥ R),

1 + dh(size(r)σ, i−→∥ R) + dh(plus(size(l), size(r))σ, i−→∥ R))
110

Intuitively, this would correspond to evaluating plus(size(l), size(r)) twice, in two parallel111

threads of execution, which costs the same amount of time as evaluating plus(size(l), size(r))112

once. We can represent this maximum of the execution times of two threads by introducing113

two DTs for our recursive size-rule:114

size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))
size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))115

To express the cost of a concrete rewrite sequence, we would non-deterministically choose116

the DT that corresponds to the “slower thread”.117

In other words, the cost of the function call to the lhs of a rule is 1 + the sum of the118

costs of all the function calls in the rhs that are in structural dependency with each other.119

The actual cost of the function call to the lhs in a concrete rewrite sequence is the maximum120

of all the possible costs of such chains (in the prefix order < on positions) of structural121

dependency. Thus, structurally independent function calls are considered in separate DTs,122

whose non-determinism models the parallelism of these function calls.123

The notion of structural dependency of functions calls is captured by Def. 9. Basically,124

it comes from the fact that a term cannot be evaluated before all its subterms have been125

reduced to normal forms (innermost rewriting/call by value).126

▶ Definition 9 (Structural dependency). The term t1 structurally depends on t2 iff there127

exists a rule ℓ → r ∈ R such that r|τ1 = t1 and r|τ2 = t2 with τ1 < τ2 in the prefix order <.128

We thus revisit the notion of DTs, which now embed structural dependencies.129

▶ Definition 10 (Parallel Dependency Tuples DT∥, PDTs). For a rewrite rule ℓ → r, we define130

the set of its Parallel Dependency Tuples (PDTs) DT∥(ℓ → r): if Posd(r) = ∅, then DT∥(ℓ →131

r) = {ℓ♯ → Com0}; otherwise, DT∥(ℓ → r) = {ℓ♯ → Comk(r|♯π1
, . . . , r|♯πk

) | k > 0, π1 > · · · >132

πk is a maximal >-chain in Posd(r)}. For a TRS R, let DT∥(R) =
⋃

ℓ→r∈R DT∥(ℓ → r).133

▶ Example 11. For our recursive size-rule lhs → rhs, we have Posd(rhs) = {1, 11, 12}.134

The two maximal >-chains are 11 > 1 and 12 > 1. With rhs|1 = plus(size(l), size(r)),135

rhs|11 = size(l), and rhs|12 = size(r), we get the PDTs from Ex. 8.136

To connect PDTs with our parallel-innermost rewrite relation i−→∥ R, we need the notion137

of chain tree, which is an extension of dependency chains [2], and its complexity.138

▶ Definition 12 (Chain Tree, Cplx [5]). Let D be a set of DTs and R be a TRS. Let T139

be a (possibly infinite) tree whose nodes are labelled with a DT from D and a substitution.140

Let the root node be labelled with (s♯ → Comn(. . .) | σ). Then T is a (D, R)-chain tree141

for s♯σ iff we have the following for all nodes of T : if a node is labelled with (u♯ →142

Comm(v♯
1, . . . , v♯

m) | µ), then u♯µ is in normal form w.r.t. R. Moreover, if this node has143

the children (p♯
1 → Comm1(. . .) | δ1), . . . , (p♯

k → Commk
(. . .) | δk), then there are pairwise144

different i1, . . . , ik ∈ {1, . . . , m} with v♯
ij

µ i−→∗
R p♯

jδj for all j ∈ {1, . . . , k}.145

Let S ⊆ D and s♯ ∈ T ♯. For a chain tree T , |T |S ∈ N∪{ω} is the number of nodes in T la-146

belled with a DT from S. We define Cplx⟨D,S,R⟩(s♯) = sup{|T |S | T is a (D, R)-chain tree for147

s♯}. For terms s♯ without a (D, R)-chain tree, we define Cplx⟨D,S,R⟩(s♯) = 0.148

We can now make our main correctness claim:149
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▶ Proposition 13 (Cplx bounds Derivation Height for i−→∥ R). Let R be a TRS, let t =150

f(t1, . . . , tn) ∈ T (Σ, V) such that all ti are in normal form. Then we have dh(t, i−→∥ R) ≤151

Cplx⟨DT∥(R),DT∥(R),R⟩(t♯). If R is confluent, then dh(t, i−→∥ R) = Cplx⟨DT∥(R),DT∥(R),R⟩(t♯).152

Thus, in particular we can use polynomial interpretations in the DT framework for our153

PDTs to get upper bounds for irc∥
R.154

▶ Example 14 (Ex. 8 continued). For our TRS R computing the size function on trees, we155

get the set DT∥(R) with the following PDTs:156

plus♯(Zero, y) → Com0 size♯(Nil) → Com0
plus♯(S(x), y) → Com1(plus♯(x, y)) size♯(Tree(v, l, r)) → Com2(size♯(l), plus♯(size(l), size(r)))

size♯(Tree(v, l, r)) → Com2(size♯(r), plus♯(size(l), size(r)))
157

The interpretation Pol from Ex. 7 implies irc∥
R(n) ∈ O(n2). This bound is tight: consider158

size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the159

third is always Nil. The function plus, which needs time linear in its first argument, is called160

linearly often on data linear in the size of the start term. Due to the structural dependencies,161

these calls do not happen in parallel (so call k + 1 to plus must wait for call k).162

▶ Example 15. Note that irc∥(n) can be asymptotically lower than irc(n), for instance in:163

doubles(Zero) → Nil d(Zero) → Zero
doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))164

The upper bound ircR(n) ∈ O(n2) is tight: from a term doubles(S(S(. . . S(Zero) . . .))),165

we get linearly many calls of the linear-time function d on arguments of size linear in the166

start term. However, the Parallel Dependency Tuples in this example are:167

doubles♯(Zero) → Com0 d♯(Zero) → Com0
doubles♯(S(x)) → Com1(d♯(S(x))) d♯(S(x)) → Com1(d♯(x))
doubles♯(S(x)) → Com1(doubles♯(x))

168

Then the given polynomial interpretation, which orients all DTs with ≻ and all rules from169

R with ≿, proves irc∥
R ∈ O(n): Pol(doubles♯(x1)) = Pol(d(x1)) = 2x1, Pol(d♯(x1)) = x1,170

Pol(doubles(x1)) = Pol(Cons(x1, x2)) = Pol(Zero) = Pol(Nil) = 1, Pol(S(x1)) = 1 + x1.171

4 Conclusion172

We have come up with a notion of parallel runtime complexity and a concrete algorithm to173

compute upper bounds on this complexity on TRSs. Future work includes practical design174

of parallel rewriting engines as well as the formalisation of complexity w.r.t. term height175

(considering terms as trees), which seems to be more practical for our parallelisation needs.176
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