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Abstract

DNA supercoiling (SC), the level of under- or overwinding
of the DNA polymer around itself, is widely recognized as
an ancestral regulation mechanism of gene expression in bac-
teria. Higher negative SC levels facilitate the opening of the
DNA double helix at gene promoters, and increase the associ-
ated expression levels. Different levels of SC have been mea-
sured in bacteria exposed to different environments, leading
to the hypothesis that SC variation can be an environmental
response. Moreover, DNA transcription has been shown to
generate local variations in the SC level, and therefore to im-
pact the transcription of neighboring genes.

In this work, we study the coupled dynamics of DNA su-
percoiling and transcription at the genome scale. We imple-
ment a genome-wide model of gene expression based on the
transcription-supercoiling coupling (TSC). We show that, in
this model, a simple change in global DNA SC is sufficient to
trigger differentiated responses in gene expression levels via
the TSC. Then, studying our model in the light of evolution,
we demonstrate that this SC-mediated non-linear response to
environmental change can serve as the basis for the evolution
of specialized phenotypes, through the selection of a specific
genomic architecture.

Introduction

The DNA molecule is a double-stranded polymer of nu-
cleotides that plays a fundamental role in life. It is shaped as
a double helix which rotates around itself at a rate of around
one turn per 10.5 base pairs (Krogh et al., 2018). However,
when subject to physical forces, it can become overwound
or underwound, or writhe around itself, in a process known
as DNA supercoiling (SC); SC level o is measured as the
density of extra turns (or coils) per base pair. In bacte-
rial cells, DNA is usually slightly underwound (Lal et al.,
2016), with o < 0, a typical value being oy ~ —0.066 in E.
coli (Crozat et al., 2005). The SC level is tightly regulated by
a class of enzymes called topoisomerases. The main topoi-
somerases are topoisomerase I and gyrase: gyrase uses ATP
to maintain DNA in a negative SC state by adding negative
coils, while topoisomerase I relaxes SC and does not need
ATP (Martis B. et al., 2019). DNA SC furthermore plays
an important role in bacterial cells as an ancestral regulator

of gene activity (Dorman and Dorman, 2016). Indeed, as
shown in figure 1A and 1B, low SC levels (¢ < o) favor
higher expression of bacterial genes, as the thermodynamic
reaction of promoter opening required to begin transcription
is facilitated (Meyer and Beslon, 2014). Conversely, high
SC levels (¢ > 0¢) reduce gene expression; such varia-
tions in DNA SC have been shown to affect 7% of E. coli
genes (Peter et al., 2004). In some bacterial species, such as
Buchnera aphidicola, an obligate aphid endosymbiont with
a greatly shrunk genome, gene regulation nevertheless takes
place in the near-total absence of transcription factors; in
these species, DNA SC is suspected to be the main, if not
the sole, regulatory mechanism (Brinza et al., 2013).

Dynamic properties of DNA supercoiling DNA SC is
under the influence of both internal and external constraints.
It varies both in time, during the lifecycle of the bac-
terium, which alternates between growth and stationary
phases (Krogh et al., 2018), and in space, as different re-
gions of the chromosome experience different SC levels (Lal
et al., 2016; Junier and Rivoire, 2016). In bacteria, the SC
homeostasis is mainly regulated by topoisomerases, espe-
cially topoisomerase I and gyrase, but nucleoid-associated
proteins (NAPs) such as H-NS also play a topological role by
preventing the relaxation of superhelical stress at their fixa-
tion points in the genome, resulting in topological domains
that have different SC levels (Krogh et al., 2018). Moreover,
the global SC level can change as a genome-wide response
to environmental changes such as pH (Martis B. et al., 2019).

Crucially, the transcription process of DNA to RNA itself
plays a role in local SC level variations. Indeed, when an
RNA polymerase (RNAP) transcribes a gene, it follows the
helical twist of the DNA template, but its rotation is ham-
pered by frictional drag (Ma and Wang, 2016). This gen-
erates an accumulation of positive SC through overwinding
of the DNA molecule downstream of the transcribed region,
and of negative SC through underwinding upstream of the
transcribed region (Liu and Wang, 1987), as shown in fig-
ure 1C. As transcription is itself regulated by SC (figures 1A
and B), this results in an dynamic interaction between the
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Figure 1: A. When DNA is underwound (lower o, left), gene
transcription rates are higher than when DNA is overwound
(higher o, right). B. Promoter activity e increases with the
level of negative SC —o. C. The transcription of a gene by
RNA polymerase (RNAP) generates a decrease in SC up-
stream of the transcribed gene, and an increase downstream.
D. Transcription-supercoiling coupling: the sign of the inter-
action between neighboring genes depends on their relative
orientation.

transcription levels of neighboring genes, which has been
termed the transcription-supercoiling coupling (TSC).

The Transcription-Supercoiling Coupling The exis-
tence of a coupling between transcription and supercoiling,
or transcription-supercoiling coupling (TSC) has been ex-
perimentally shown through measurements of the expres-
sion level of neighboring genes in both prokaryotic and eu-
karyotic organisms (Meyer and Beslon, 2014). Its influ-
ence on gene expression is represented in figure 1D: when
two neighboring genes stand in diverging orientations (fig-
ure 1D, left), the transcription of each gene generates a lo-
cal increase in negative SC around the other gene, thereby
increasing the other gene’s transcription level; both genes
therefore reinforce each other’s transcription. Conversely,
when two neighboring genes face each other in converging
orientations (figure 1D, center), each gene is situated down-
stream of the RNA polymerase during the other gene’s tran-
scription, leading to a decrease in negative SC and there-
fore a lower transcription level; both genes inhibit each
other. Finally, if two genes are in a colinear orientation
(figure 1D, right), the downstream gene up-regulates the
upstream gene, and the upstream gene down-regulates its
downstream neighbor. The typical distance at which this in-
teraction operates is 2,500 bp on each side of the transcribed
gene (Meyer and Beslon, 2014).

Several models have been proposed to describe the TSC.
In Meyer and Beslon (2014), a quantitative model of the SC
level at a locus of interest is proposed. DNA transcription
is regulated by the opening energy of DNA around gene
promoters, which directly depends on the SC level. In this

model, the reciprocal influence of neighboring genes can be
obtained by computing the difference in transcription lev-
els due to SC and subsequent SC variation, and iterating
this system until a fixed point is reached. El Houdaigui
et al. (2019) describe a more detailed stochastic model of
DNA transcription involving explicit RNA polymerases and
topoisomerases. The transcription level of a genomic re-
gion of interest is simulated using discrete time steps, dur-
ing which RNA polymerases attach to the DNA template,
progress along the transcribed region while generating pos-
itive SC downstream and negative SC upstream, and detach
from the DNA, relaxing SC constraints.

These models however limit themselves to mechanistic
descriptions of the local interaction between genes, but do
not try to generalize to the whole-genome scale nor to the
evolutionary level. Yet, the dense gene content of bacte-
ria suggests that the TSC can generate a global transcrip-
tional interaction network through the propagation of local
SC variations, as opposed to the much more isolated eukary-
otic genes. Indeed, in bacteria, distances between neighbor-
ing genes are classically around 1,000 bp (Blattner, 1997),
low enough to connect multiple genes through the TSC.
Moreover, global gene regulation through SC does evolve in
nature, as exemplified in Buchnera (Brinza et al., 2013), an
endosymbiotic bacteria with streamlined genomes in which
SC has evolved as one of the main regulation mechanisms,
and in experimental evolution, where SC has been shown to
drive the evolutionary response of E. coli strains.

Evolution of DNA supercoiling regulation in bacteria
In the Long-Term Evolution Experiment (LTEE) (Lenski
et al., 1991), 12 populations of E. coli bacteria have been
evolving for over 80,000 generations in a glucose-limited
environment. Not only have parallel increases in the level of
SC been measured in 10 of those populations (Crozat et al.,
2010), but mutations in two genes regulating DNA SC, topA
and fis, have been identified as the genetic basis for this phe-
notypic change, and have been verified to confer a fitness ad-
vantage (Crozat et al., 2005). These results suggest a strong
selection pressure to tune SC to the new environment of the
LTEE.

Evolution of SC has also been observed in the wild:
in Dickeya dadantii, a plant pathogenic bacteria, different
genomic regions exhibit markedly different responses to
changes in SC (Muskhelishvili et al., 2019), allowing the
expression of certain genes only in specific environments.
This suggests that specific chromosomal organizations can
evolve as a way to trigger the activity of certain pools of
genes depending on the change in SC level caused by differ-
ent environments.

Both the importance of SC regulation and the detailed
mechanisms of the TSC at the local scale have been well
studied, but a thorough analysis of the genome-wide effect



of the TSC on gene expression, and of its possible evolu-
tionary use by natural selection, remains missing. Here, we
describe a new model which incorporates a high-level model
of global SC regulation and of the TSC within an in silico
experimental evolution setting. Using this model, we first
investigate the non-linear variation in gene transcription lev-
els at the whole-genome scale in response to variations of
the global SC level. Then, we study the evolutionary trajec-
tory of genomic organization (the relative orientations and
positions of genes on the genome) under the influence of the
TSC.

We show that in our model, a genome-scale gene interac-
tion network emerges from local interactions, allowing com-
plex phenotypic modifications in response to the change of a
single parameter, the global SC level. Moreover, we demon-
strate that, using genomic inversions as the sole mutation op-
erator, evolution can select genomes displaying qualitatively
different phenotypes under different basal SC conditions.

A Genome-Wide TSC Model

Overview We present a model aiming at studying the
genome-wide effect of the transcription-supercoiling cou-
pling in bacteria, expanding upon previous work which only
considered local interactions. The model, written in Python,
consists in an individual-based simulation'. An individ-
ual possesses a circular genome, comprising a fixed num-
ber of genes, that is represented using the string-of-pearls
paradigm: the genome is simply a ring of genes. Each gene
is described by the following characteristics: its position on
the genome, its orientation, and its initial expression level.

Figure 2: Genes on a genome and local SC variations (outer
ring), and associated interaction network (inner ring). Outer
ring color signals locally high (o > o9, red) or low (o < 0oy,
blue) SC levels. Closer genes interact more strongly (black
arrows) than farther apart genes (gray arrows).

The Transcription-Supercoiling Coupling (TSC) Our
model aims at modeling the interaction between the tran-

'Source code available here, and archived here.

scriptional activities of genes at the whole-genome scale and
the local level of SC. When a gene is transcribed, the RNA
polymerase that performs the transcription acts as a topo-
logical barrier, and prevents the relaxation of SC on either
side of itself (El Houdaigui et al., 2019). As a consequence,
DNA upstream of the transcribed gene is underwound and
the negative SC level increases during transcription, while
DNA downstream of the transcribed gene is overwound and
the negative SC level decreases (figure 1C). This affects the
transcription of neighboring genes, as a higher level of neg-
ative SC around a gene’s promoter increases transcriptional
activity. Therefore, a highly expressed gene can increase
the expression level of its upstream genes, and decrease
the expression level of its downstream genes, as has been
measured in vivo (El Houdaigui et al., 2019), and as has
been already modeled (Meyer and Beslon, 2014). In gene-
dense genomes such as prokaryotic ones, this is likely to
create a genome-wide transcriptional network, the topology
of which depends on the relative gene orientation. Figure 2
shows an example genome, including the local SC variations
due to gene transcription, and the resulting gene interaction
network. Genes not only interact with their closest neigh-
bors, but also (albeit more weakly) with more distant genes.

Description of the model In order to simulate the influ-
ence of the TSC on gene expression levels, we model the
temporal change of these expression levels over a number of
time steps, called the lifecycle of an individual.

For an individual with n genes, we first compute the local
variation in supercoiling at the locus of each gene, which is
due to the expression of other genes, in the form of a gene
interaction matrix. Its coefficients are given by the following
equation, describing the influence of gene j on gene i:

do;
azj' = emax(1l —

d(i, j)

dmam

;0) )

More precisely, the interaction level depends on the rel-
ative orientation of the two genes, as the transcription of a
gene has a positive effect on upstream genes and a nega-
tive effect on downstream genes. We choose € = 1 if the
gene 7 is upstream of the gene j (orif ¢ = j)ande = —1
otherwise. It also depends on gene distance, as genes that
are further apart on the genome interact less, so the strength
of the interaction linearly decreases with the intergenic dis-
tance d(4, j), reaching O when d(i,j) = dmaz, the maxi-
mum distance above which the interaction vanishes.

Using this interaction matrix, we can now compute the SC
variation at the locus of each gene at each time step, which
depends on the expression level of all the other genes:

301
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Finally, we obtain the expression level of the focal gene at
t + 1, which depends on both the local SC variation Ac;(t)
and the variation in global SC level 3:

ei(t+1) = ¢(Aai(t), B) ©)

Where ¢ is an non-linear saturating activation function
that ensures that the expression levels of genes do not di-
verge over time (figure 1B). Promoters are therefore consti-
tutive in this model, and their activity only depends on the
local SC level.

In the model, the variation in global SC level § =
(0 — 00)/0o0 represents the result of topoisomerase activ-
ity, which causes a relative variation in SC from o to 0. As
a parameter of the activation function ¢ used in computing
the temporal evolution of gene activation levels, /3 acts as a
bias, and its effect depends on the precise shape of this acti-
vation function. Using a classical linear activation function,
we would obtain: ¢(Ac, 8) = max(0, min(cAo + §,2)),
meaning that, depending on the sign of [, the expression
level of an isolated gene would go to 0 or 2 independently
of its initial value (here, c is a scaling factor representing the
change in gene activity per variation in supercoiling). An-
other natural choice would be the hyperbolic tangent func-
tion, used in neural networks: ¢(Ac, 8) = tanh((cAc —
1) + B) + 1. However, this function has only one fixed
point, and this fixed point is attractive and stable, meaning
that whatever the initial expression level of an isolated gene,
its expression level will converge towards this fixed point.

Final expression level

-0.5 0.0 0.5 1.0 15 2.0 2.5
Local supercoiling variation Ao

Figure 3: Activation functions ¢ for « = 2 and 3 values of
(. Stars indicate the values of e* (saddle point between the
basins of attraction of the activated and inhibited states) for
the 3 values of /3.

Adding a gain parameter o > 1 to the hyperbolic tangent
yields ¢(e, 8) = tanh(a(e — 1) + 8) + 1. The activation
function now has three different fixed points e, e*, and e™,
as represented in figure 3. e~ and e’ are both attractive
stable fixed points, and e* is the saddle point between their
basins of attraction: if an isolated gene’s expression level e
is lower (resp. higher) than e*, it will converge to e~ (resp
e™).

In order to keep the expression levels between O and 2,
we use a rescaled hyperbolic tangent function, using a gain
valueof « =2 and c = 1:

#(Ao, B) = tanh(2(Ac — 1) + ) + 1 4)

Finally, we iterate this procedure for a defined number of
time steps, and obtain a time series of gene expression levels.

The bistability of the activation function ¢ allows us to
define activated and inhibited states for each gene, depend-
ing on the expression level that the gene converges to; note
that due to the non-linear asymmetric interactions between
neighboring genes, more complex behaviors than simple
convergence to the fixed points can emerge, as exemplified
in figure 8.

Influence of the Global Supercoiling Level
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Figure 4: Lifecycle of the individual presented in figure 2,
under relative global SC 8 = 15%. Solid lines represent
forward genes, and dashed lines reverse genes.

Figure 4 shows the lifecycle of an example individual with
a genome of 13,000 bp and n = 13 genes, over t.pq = 51
time steps. Initial gene expression levels are randomly cho-
sen between 0 and 1. The non-linear effect of the interaction
between neighboring genes can be clearly seen in this indi-
vidual. Six genes (A, B, D, E, H, and I) reach the activated
state by the end of the individual’s lifecycle, while the oth-
ers reach the inhibited state. These activated genes can be
grouped into 3 pairs (A and B, D and E, H and 1), all of
which are pairs of adjacent genes in divergent orientations.
Even though gene A starts at an expression level well below
the activation threshold for an isolated gene, it reaches the
activated status thank to the positive interaction with gene
B. Moreover, we can see that this dynamic system shows
complex behavior, as the activation level of gene D begins
by decreasing until it is activated by the increasing expres-
sion of gene E.

Figure 5 captures the influence of 3 on the repartition of
genes between the activated and inhibited states, in an ex-
ample individual with 10 genes. From left to right: at a low
value of 3 = —15%, meaning that DNA is overwound com-
pared to normal, only one gene is activated by the end of
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Figure 5: Influence of the relative global SC 8 = (0 — 09)/0( on the lifecycle of an individual with 10 genes. From left to
right: 8 = —15%, 1 genes on; 8 = 0, 2 genes on; 8 = 15%, 3 genes on; S = 30%, 6 genes on. Higher values of S result in the
activation of more genes, reflecting the in vivo effect of higher negative SC.

the lifecycle. As the relative change in SC /3 increases to
0, corresponding to normal relaxation of DNA, the positive
interaction of the second activated gene with the first gene
makes it go over the activation threshold, and it reaches the
activated state before the end of the lifecycle. At an even
higher value of 5 = 15%, even more genes reach activa-
tion; however, some of them later go back to the inhibited
state, demonstrating the complex genome-scale interactions
produced by the TSC. Finally, for 8 = 30%, the activation
threshold becomes so low that most genes are activated, and
stay strongly activated until the end of the lifecycle.
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Figure 6: Individual differing from the individual in figure 4
by a segment inversion affecting genes B and C (in shades
of red); see figure 7 for details of the inversion.

Figure 6 again shows the lifecycle of the individual in fig-
ure 4, after a slight change in its genomic architecture due
to a segment inversion. The start point of this inversion falls
between genes A and B and its end point between genes C
and D; this results in the reversal of segment [BC] relative
to the rest of the genome. Here, we can see that the di-
verging orientation that existed between genes A and B has
vanished, replaced by a set of genes in colinear orientation,
from A to D. This genomic reorganization results in the loss
of the activation of genes A and B, even though the initial
expression level of gene B is above the required threshold
for the activation of an isolated gene, as the two genes no
longer interact positively; only the pairs of genes D and E,
and H and I, remain activated.

Based on these observations, we can confirm that in
our model, the transcription-supercoiling coupling generates
complex networks of genome-wide interactions between
genes, and that these networks are directly dependent on the
architecture of the genome.

Evolutionary Genome-Wide TSC Model

Having shown that transcriptional activity depends on the or-
ganization of the genome, we now question to which extent
evolution can leverage genome organization to adapt gene
regulatory activity to different environments.

In this section, we expand our model into an evolutionary
simulation. At each generation of the simulation, each indi-
vidual is evaluated and its fitness value is computed, based
on its transcriptional activity. Then, the individuals of the
new generation are chosen by picking their ancestor from
the current generation, with a probability proportional to the
ancestor’s fitness. The model is panmictic, meaning that any
individual in the population can be chosen as the ancestor of
any new individual. Finally, the genome of each new indi-
vidual stochastically undergoes a number of mutations, be-
fore the new individual is evaluated again; these mutations
importantly do not impact genes themselves, but only the
spatial organization of the genome.

Fitness In order to compute the fitness of an individual,
we define an optimal phenotype € and compute the gap, or
average L? distance of the individual’s gene expression lev-
els e to the optimal levels € (2 for genes to be activated, and
0 for genes to be inhibited), averaged over the At last time
steps, with the expression:

1 tend

gle) = Az Z % Z(ef — &) (5)

t=tepg—At+1 =1

Then, we rescale this fitness by applying an exponential
scaling: fitness(e) = e *9(¢), where k is a scaling fac-
tor representing the selection pressure. A higher value of
k means that more-adapted individuals, those which have a
smaller gap, will have an even higher fitness value compared
to other individuals; we typically use £ = 50, meaning that



a small decrease in the gap compared to other individuals
yields a large reproductive advantage.

Mutational operator: genomic inversions We introduce
only one kind of mutation in our model: genomic inver-
sions. In an inversion, two points are chosen randomly on
the genome, and the genomic content between these points
is reversed: genes are reinserted in the genome in the oppo-
site orientation and order, taking care to update all intergenic
distances appropriately. An inversion has no effect if both its
endpoints fall in-between the same two genes, and can im-
pact any number of genes otherwise.

Figure 7: Result of the inversion of a genomic segment con-
taining genes B and C from the individual presented in fig-
ure 2. The gene interactions which changed due to the in-
version are drawn in red.

Figure 7 presents a genome obtained by performing an
inversion on the genome in figure 2. As a result of this in-
version, genes B and C have been switched from the forward
to the backward orientation, and the intergenic distances be-
tween A and C on the one hand, and B and D on the other
hand, have been modified; however, the relative orientation
of B and C, and hence their interaction subnetwork, remain
unchanged. This results in changes to the gene interaction
network: instead of mutual activation between genes A and
B and mutual inhibition between genes C and D, all four of
those genes now lie in colinear orientations, in which each
of these genes activates its upstream neighbor but represses
its downstream neighbor.

When mutating an individual, we draw the number of in-
versions k to perform from a Poisson law with parameter
A = 2, giving an average of 2 inversions between an in-
dividual and its ancestor; the probability of not undergoing
any mutations is P(k = 0) = e~* ~ 0.136.

Evolution of Gene Expression Levels in
Different Environments

In this section, we describe an experiment aimed at deter-
mining whether, in our simple mathematical model, differ-
ent phenotypes can evolve as a response to different SC lev-
els induced by the environment, as has been observed in
Dickeya dadantii (Muskhelishvili et al., 2019).
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Figure 8: Lifecycle of the best individual in replicate 3 after
200,000 generations. Environment A is on top and B at the
bottom. Blue: AB genes, red: A genes, green: B genes.

Experimental setup We model the evolution of popu-
lations of individuals facing two different environments,
named A and B. Each environment is defined by its value
of f3, respectively B4 and Bp, which represent the relative
change in the SC level o due to the environment. In order
to have environments with relatively high number of acti-
vated genes, we chose 84 = 15% and g = 30%; these
correspond to the two rightmost subfigures of figure 5.

We separate genes in three classes, based on the environ-
ments in which they must be activated: either both A and B
(AB genes), only A (A genes), or only B (B genes). These
classes allow us to define optimal phenotypes for both envi-
ronments: in environment A, both AB and A genes should be
activated, whereas B genes should be inhibited. Conversely,
in environment B, only AB and B genes should be activated,
but not A genes; see figure 8 for the lifecycle of an individual
in both environments.

We define the phenotype E 4, E'p of an individual as the
pair of temporal series of its gene expression levels in each
environment, which is computed as in the model descrip-
tion. Then, we compute its average gaps g4 and gp in each
environment over the last At = 5 time steps of its lifecycle
(5), and finally its fitness as f = e~ k(9a+95),
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Figure 9: Gene activation levels and fitness of the best individual at every generation of replicate 3, with a population size of
N = 100, for 200,000 generations. The proportion of active AB genes increases until it reaches 1, in both environment A (left)
and B (right). The proportion of active A (resp. B) genes increases in environment A (resp. B) and decreases in environment B

(resp. A) over time. Fitness keeps increasing until the end of the run, suggesting that fitter phenotypes remain reachable.

We initialize the simulation with a clonal population of
N = 100 copies of an initial individual with the following
genome: 60 genes in random orientations, uniformly dis-
tributed along a 60,000 bp genome, and equally divided be-
tween the AB, A and B classes. We choose a maximum in-
teraction distance of d,,4, = 2500, meaning that each gene
initially interacts with its 2 closest neighbors in each direc-
tion through the TSC. Note that as inversions may change in-
tergenic distances, genes can become closer or further apart
during evolution.

Finally, we evolved 15 different populations for 200,000
generations; this lasted approximately 24h on a computer
with an Intel Xeon E5-2640 v3 @ 2.60GHz CPU, using
around 1GB of RAM.
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Figure 10: Evolution of the fitness of the best individual of
each replicate at every generation.

Adaptation of gene expression levels to different environ-
ments The evolution of one of the 15 replicate populations
is shown in figure 9. We can first see that the proportion of
activated AB genes quickly rises to 1 in both environments
A and B; this shows that evolving a phenotype that is resis-
tant to environmental perturbations is easy in the model. For
A genes and B genes, we observe an asymmetric tendency
towards activation in the target environment, and inhibition
in the opposite environment; the difference in the proportion
of activated B genes between environments A and B is much
higher than that of A genes. This asymmetry can be under-
stood from the model, as the environments are themselves

not symmetric (54 = 15%, g = 30%), and gene activa-
tion is easier in environment B than in environment A; this
means that an isolated gene that is activated at 5 = (34 is
necessarily activated at 5 = (p, while the opposite is not
true.

Figure 8 focuses on the lifecycle of the best individual of
the last generation of replicate 3, in both environments. The
phenotypes displayed in each environment present clearly
distinct gene expression patterns, showing that a specific
gene expression pattern for each environment can evolve
through natural selection in a single genome.
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Figure 11: Mean proportion and 95% confidence intervals
(Wilson score for binomial proportions) of activated genes
in each environment at the end of the lifecycle of the final
best individual. For A and B genes, activation levels differ:
p-value 1.07 x 1071 for A genes, and p-value 7.38 x 102!
for B genes (Student’s ¢-test for dependent samples).

The evolution of the fitness of the best individual in each
replicate is presented in figure 10. In all 15 cases, fit-
ness gradually increases, albeit at a progressively slower
rhythm (note the logarithmic time scale in figure 10). All
runs progress during the 200,000 generations, suggesting
that adaptation would continue were the experiment to run
longer. Finally, figure 11 summarizes these differences in
gene expression levels, between environments A and B, for
each of the three sets of genes, averaged over the 15 repeti-
tions.

These results show that, in a gene transcription model
that is structured around the transcription-supercoiling cou-



pling, complex gene interaction networks, sensitive to envi-
ronmental variation, can arise as an adaptation to different
environments, mediated by the influence of a single param-
eter: the variation in global SC level 5.

Discussion and Perspectives

DNA supercoiling plays a fundamental role in the regula-
tion of gene transcription in bacteria, a significant propor-
tion of which is mediated by the transcription-supercoiling
coupling. While the role of basal SC (Lal et al., 2016;
Ma and Wang, 2016; Dorman and Dorman, 2016; Martis B.
etal., 2019), its evolutionary importance (Crozat et al., 2005,
2010) and the mechanistic details of the TSC (Meyer and
Beslon, 2014; El Houdaigui et al., 2019) have all already
been well studied, no existing work did to our knowledge
answer the question of the possible role of the TSC at both
the whole-genome and evolutionary levels.

In this work, we have developed a genome-wide model of
the influence of DNA SC on gene transcription, incorporat-
ing both a response to global SC level and the transcription-
supercoiling coupling. We have shown that, in our model,
the effect of the TSC is not limited to the local scale, but
globally affects gene expression levels and enables a non-
linear response to DNA SC changes due to environmental
influences, via the selective activation or inhibition of spe-
cific genes. Furthermore, we have shown, using an in sil-
ico experimental evolution approach, that natural selection
can leverage this biophysical mechanism to finely tune the
expression levels of several pools of genes, in order to ex-
hibit two qualitatively different phenotypes when exposed
to different environments, as has been observed in vivo in
pathogenic bacteria (Martis B. et al., 2019).

Our model voluntarily stays very simple, but it incorpo-
rates the most salient feature of the TSC, the non-linear
interaction between neighboring genes; in our evolution-
ary simulations, complex phenotypes emerge despite the
simplicity of the mutation operator, which does not affect
genome length or basal gene expression levels. Integrating
more dimensions to the model, such as promoter-specific
responses to the SC level, inducible promoters, or more
mutation operators such as gene deletions, duplications, or
translocations, would doubtlessly yield interesting results.
In order to bring this model closer to biology, a valuable
approach would be to incorporate it into a larger frame-
work, such as the Aevol in silico experimental evolution
platform (Batut et al., 2013), in order to leverage the power
of a well-understood digital model organism.
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