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Résumé en francais

L’évolution des étres vivants par sélection naturelle est souvent présentée comme un proces-
sus impossible a prédire, car elle trouve sa source dans les mutations aléatoires qui affectent
le coeur du vivant, c’est-a-dire la molécule d’ADN, dont la séquence est le support princi-
pal de I'information biologique. Pourtant, s’il n’est pas possible d’identifier avec certitude
quelles mutations vont survenir en réponse a une pression de sélection donnée, ni lesquelles
parmi celles-ci vont étre fixées, de nombreuses expériences laissent penser que le chemin
que suit I'évolution n’est pas entierement dii au hasard. Cette observation n’est pas nou-
velle a ’échelle des organismes macroscopiques : Darwin la faisait déja dans 1'Origine des
Espéces (Darwin, 1859). Il 'exposa ensuite plus en détail dans la Variation des animaux et des
plantes sous Uaction de la domestication (Darwin, 1868), en décrivant de nombreuses plantes
et animaux sélectionnés et domestiqués par ’espece humaine depuis des dizaines de milliers
d’années. Ce caractere répétable est également observable a I’échelle des micro-organismes,
avec l’apparition sans cesse renouvelée de résistances aux traitements d’infections bacté-
riennes ou virales (Levy and Marshall, 2004). Ce n’est toutefois que depuis la fin du XXe
siecle, avec le développement du séquencage ADN, que l'on est capable d’essayer de com-
prendre les soubassements de cette répétabilité, et donc de cette prédictibilité phénotypique,
a ’échelle moléculaire. En effet, on peut désormais observer que c’est parfois le méme gene,
voire le méme nucléotide a I'intérieur d’un géne, qui est touché par des mutations lorsqu’on
répete une expérience de sélection pour une caractéristique donnée (Wortel et al., 2021). Dans
ce cas, ’évolution ne semble ainsi plus pouvoir suivre une multitude de chemins différents
pour parvenir au méme résultat visible, mais semble au contraire contrainte de s’en tenir a
un itinéraire bien défini.

L’un des mécanismes qui peuvent expliquer ce caractére répétable de I’évolution est
I’épistasie, ou le rdle que joue le contexte génétique sur l'effet d’'une mutation donnée. En
effet, il est possible qu'une mutation ait un effet favorable en présence d’'une autre muta-
tion, mais un effet défavorable en ’absence de celle-ci. Ces relations épistatiques peuvent
ainsi contraindre les options qui se présentent a I’évolution, en imposant qu'une mutation
dans un gene donné survienne avant une autre dans un second gene, afin que la seconde soit
favorable. Dans un contexte de compétition entre souches différentes au sein d’'une méme
population (par exemple, de bactéries pathogénes), mieux comprendre ces relations épista-
tiques permettrait alors par exemple de prédire plus finement la fixation ou non de futures
mutations, et par la la souche victorieuse, offrant la possibilité d’orienter plus finement un
traitement. Le type de relations épistatiques le plus souvent étudié est celui des interactions
entre mutations ponctuelles (c’est-a-dire entre mutations n’affectant qu’un seul nucléotide,
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ou parfois quelques nucléotides contigus) a I'intérieur d’'un méme géne, car ce sont les mu-
tations les plus faciles a détecter. Dans ce cas, le changement d’un acide aminé présent a
un certain endroit de la protéine codée par le gene peut voir son effet modulé par le chan-
gement d’un autre acide aminé de la protéine. Ces relations épistatiques sont de mieux en
mieux comprises, par exemple en mesurant exhaustivement la valeur sélective des 2N mu-
tants possibles pour un groupe de /N nucléotides d’intérét (voir Achaz et al. (2014) pour une
vue d’ensemble de telles expériences). D’autres types d’interactions épistatiques, plus com-
plexes et moins bien étudiés, existent toutefois. En particulier, il peut y avoir des interactions
épistatiques entre différents types de mutations, comme entre mutations locales et réarrange-
ments chromosomiques, ou entre génes jouant des roles de natures différentes, par exemple
entre un gene codant pour une protéine régulatrice et un autre géne dont ’expression est
régulée par cette protéine. Par exemple, la duplication d’une séquence a I'intérieur d’'un gene
donné peut étre suivie d’'une divergence et d’une spécialisation ultérieures de chacune des
parties répétées, comme dans la famille des spectrines (Thomas et al., 1997), protéines qui
jouent un role important dans la structure des cellules eucaryotes. Il y a alors épistasie entre
un réarrangement chromosomique - la duplication d’une partie d’'un geéne — et les muta-
tions ponctuelles qui la suivent : en ’absence de cette duplication, les mutations qui rendent
possible la spécialisation des parties dupliquées du gene seraient en effet déléteres.

Un cas particulier d’interactions épistatiques est celui des interactions entre les mutations
dans les génes régulant la superhélicité de 'ADN (que j’appellerai mutations de superhéli-
cité) et les mutations dans les genes eux-mémes régulés par la superhélicité. La superhélicité
de ’ADN, c’est-a-dire le niveau d’enroulement de ’ADN autour de lui-méme, joue en effet un
role important dans la régulation de la transcription des génes chez les bactéries, car le niveau
de transcription des génes dépend directement de la superhélicité au niveau de leur promo-
teur. L’intérét évolutif des mutations de superhélicité, ainsi que leur caracteére répétable, ont
été particulierement mis en exergue grace a la Long Term Evolution Experiment (LTEE) menée
dans le laboratoire de Richard Lenski (Lenski et al., 1991). Dans cette expérience, 12 souches
de la bactérie Escherichia coli évoluent depuis 1988 dans un environnement de laboratoire
et 11 des 12 souches de 'expérience ont vu leur niveau de superhélicité augmenter tres tot
au cours de celle-ci, grace a des mutations touchant un faible nombre de genes bien identi-
fiés (Crozat et al., 2010). Comme le niveau de superhélicité est finement régulé par lactivité
de plusieurs enzymes (appelées topoisomérases) et par la fixation de protéines sur ’ADN, une
mutation dans un géne codant pour I'une ou 'autre de ces protéines peut en effet engendrer
un changement de I'activité transcriptionnelle a I’échelle du génome entier. Les mutations
répétées de superhélicité apparaissant dans cette expérience pourraient donc étre le signe
d’un paysage d’interactions épistatiques biaisé, qui augmenterait la proportion de mutations
favorables pouvant apparaitre dans les génomes qui les contiennent, rendant par 1a plus pro-
bable le futur succes évolutif de leur lignée.

Le questionnement majeur sous-tendant les travaux que j’ai menés pendant ma thése a
donc été de déterminer a quel point la présence ou non de mutations de superhélicité dans
une lignée permet de prédire le futur succes de celle-ci, afin de comprendre plus généralement
I'influence des biais épistatiques dans la répétabilité et la prédictibilité de I’évolution. Pour
cela, j’ai étudié le role évolutif des mutations de superhélicité au cours de I’adaptation a un
nouvel environnement, en employant une approche d’évolution expérimentale in silico, qui
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s’inscrit dans le cadre plus large de la biologie évolutive des systémes (Beslon et al., 2021). J’ai
commencé par intégrer un modéle d’expression des génes prenant en compte le niveau de
superhélicité a I’échelle du chromosome dans un logiciel de simulation d’évolution existant
au sein de mon équipe de thése, le logiciel Aevol. Ce modéle et les premiers résultats obtenus a
I’aide de celui-ci sont présentés dans le chapitre 3 de la these. Les expériences menées dans ce
cadre ont permis d’obtenir un résultat évolutif qualitativement semblable a celui de la LTEE,
la superhélicité étant la cible de nombreuses mutations au début de I’évolution. Toutefois,
celle-ci se stabilise rapidement alors méme que le reste du génome des individus continue
d’évoluer, ne permettant pas de conclure sur de possibles interactions épistatiques.

Or, le role que tient le niveau de superhélicité de '’ADN dans la régulation de I'expression
des génes bactériens provient en réalité de son caractére extrémement dynamique (Martis B.
et al., 2019). Ce caractere dynamique de la superhélicité, tant dans le temps que le long du
génome, est en particulier da a la transcription elle-méme des geénes (Visser et al., 2022).
En effet, d’aprés un modele initialement proposé par Liu and Wang (1987), lorsqu’un géne
est en cours de transcription par une ARN polymérase, 'encombrant complexe qui en ré-
sulte ne peut pivoter autour de 'ADN aussi vite que ’ADN s’enroule autour de lui-méme.
Le couple ainsi exercé sur ’ADN provoque alors une accumulation de superhélicité en avant
du géne transcrit et un déficit de superhélicité en arriere de celui-ci. La transcription d’un
gene donné peut donc influer — par 'intermédiaire des changements locaux de superhélicité
qu’elle engendre — sur la transcription des génes a proximité de celui-ci et ainsi créer un
réseau d’interactions entre les niveaux d’expressions de genes proches sur le génome. Une
modélisation de la superhélicité prenant en compte les variations locales de celle-ci dues a la
transcription semble donc pertinente pour I’étude du role évolutif des mutations de super-
hélicité. Une approche aussi précise s’étant révélée délicate a mettre en place dans Aevol, j’ai
opté pour la création d’'un nouveau modeéle représentant plus abstraitement le génome, mais
décrivant plus fidelement le couplage entre superhélicité et transcription. J’ai implémenté ce
nouveau modele — appelé EvoTSC — en Python. Le code de celui-ci est disponible a I’adresse
suivante : https://gitlab.inria.fr/tgrohens/evotsc.

A l'aide d’EvoTSC, j’ai dans un premier temps montré que, dans un modéle ou le seul
mécanisme de régulation de ’activité des genes est le couplage médié par la superhélicité
entre les niveaux de transcription de genes proches, et ou les seules mutations possibles
sont les inversions chromosomiques (qui réorganisent les positions relatives des génes), il
est possible d’obtenir par sélection naturelle des individus dont les génes atteignent avec
précision des niveaux d’expression optimaux dépendant de I’environnement. En particulier,
il est possible d’obtenir des génes activés par une relaxation globale de ’ADN, alors que leurs
promoteurs sont intrinsequement inhibés par la relaxation de ’ADN. Ces premiers résultats
sont présentés dans le chapitre 4. Ils démontrent que la superhélicité peut jouer un role ma-
jeur dans la régulation de I'activité des genes bactériens en permettant 'existence de réseaux
de régulation génétique méme en ’absence de facteurs de transcription. Ils ont été publiés,
d’abord sous forme d’article dans la conférence ALIFE 2021 (Grohens et al., 2021), puis dans
une version étendue dans le journal associé, Artificial Life (Grohens et al., 2022b).

Dans un second temps, j’ai cherché a caractériser plus en détail 'impact évolutif de la
superhélicité sur la structure des génomes et des réseaux de régulations bactériens. Toujours
en utilisant le modele EvoTSC, j’ai montré qu’au niveau le plus local, des paires convergentes
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ou divergentes de geénes voisins se forment, conformément aux prédictions théoriques du
couplage entre superhélicité et transcription. J’ai montré que cette organisation a 1’échelle
locale du génome n’était toutefois pas entierement suffisante pour expliquer les niveaux d’ex-
pression des geénes observés dans le génome complet, mais que des sous-réseaux impliquant
jusqu’a plusieurs dizaines de génes peuvent au contraire étre nécessaires. Enfin, en utilisant
une approche par knock-out de géne, j’ai montré que, dans le génome des individus évolués,
c’est sous la forme d’un réseau unique et s’étendant a ’échelle du génome entier que s’or-
ganise la régulation de 'expression des génes dans le modele EvoTSC. Ce second ensemble
de résultats est présenté dans le chapitre 5 et a été mis en forme dans une prépublication qui
sera prochainement soumise a relecture par les pairs (Grohens et al., 2022a).

Dans le chapitre 6, je présente ensuite un ensemble d’expériences complémentaires qui
montrent la robustesse des résultats du modele EvoTSC présentés dans les chapitres précé-
dents, en réponse a des variations des principaux parametres du modeéle visant a représenter
la diversité des génomes bactériens et des changements environnementaux. J’ai finalement
incorporé dans EvoTSC un modéle d’évolution du niveau de superhélicité globale, afin de
pouvoir caractériser, de la méme maniére que dans les expériences menées avec Aevol, les
possibles relations épistatiques entre mutations de superhélicité et réarrangements chromo-
somiques. Je me suis en particulier intéressé a I’étude des paysages adaptatifs (fitness land-
scapes) résultant des mutations de superhélicité. Ces résultats sont présentés dans le cha-
pitre 7 et ouvrent la voie a la conclusion de ce manuscrit au chapitre 8.

L’annexe A présente les contributions logicielles que j’ai réalisées tout au long de ma these.
J’ai d’abord participé au développement d’Aevol et d’outils associés pour gérer des simula-
tions et analyser les résultats obtenus avec celles-ci. Ensuite, j’ai développé le modele EvoTSC,
ainsi qu’un ensemble d’outils pour visualiser et analyser les données produites par le modeéle.

Pour finir, lirruption de la pandémie de Covid-19 en France au printemps 2020 a per-
turbé le cours de ma these d'une maniere particuliére. Je me suis en effet porté volontaire
pour participer a une collaboration entre I’Assistance Publique-Hopitaux de Paris (AP-HP)
et un groupe de chercheur-ses et d’ingénieur-es Inria constitué a cet effet. Avec ’accord de
mon directeur de thése, j’ai alors interrompu mes travaux sur la superhélicité pour me consa-
crer pleinement a cet effort pendant plusieurs semaines en avril et mai 2020. Dans ce cadre,
jai participé a la construction d’'un modele de 1’épidémie de Covid-19 dans I'agglomération
parisienne, visant a aider les équipes de ’AP-HP a suivre en temps réel — et essayer de prédire
- I’évolution de cette épidémie a ’aide de données de régulation médicale. Ces travaux ont
par la suite mené a une publication (Gaubert et al., 2020), présentée dans ’annexe B.
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Chapter 1

Introduction

Note: this chapter is an English translation of the French summary at the start of the thesis.

The evolution of living organisms by natural selection is often presented as a process that
is impossible to predict, because it finds its source in the random mutations that affect the
heart of living beings: the DNA molecule, whose sequence is the main carrier of biological
information. However, if it is not possible to identify with certainty which mutations will
occur in response to a given selection pressure, nor which of these mutations will be fixed,
many experiments suggest that the course followed by evolution is not entirely random. This
observation is not new at the scale of macroscopic organisms, as Darwin already made it in
the Origin of Species (Darwin, 1859). He then exposed it in more detail in the Variation of An-
imals and Plants under Domestication (Darwin, 1868), in which he describes numerous plant
and animal species selected and domesticated by humans over the last tens of thousands of
years. This repeatability is also observable at the scale of microorganisms, with the con-
stantly renewed appearance of resistance to treatments of bacterial or viral infections (Levy
and Marshall, 2004). However, it is only since the end of the 20th century, with the devel-
opment of DNA sequencing, that we have been able to try and understand the basis of this
repeatability — and therefore of this phenotypic predictability — at the molecular level. In-
deed, we can now observe that it is sometimes the same gene, or even the same nucleotide
within a gene, that is affected by mutations when a selection experiment for a given trait is
repeated. In this case, evolution no longer seems to be able to follow a multitude of different
paths to the same visible result, but instead seems to be forced to stick to a well-defined path.

One mechanism that may explain this repeatability of evolution is epistasis, or the role
that the genetic context plays on the effect of a given mutation. Indeed, it is possible for a
mutation to have a favorable effect in the presence of another mutation, but an unfavorable
effect in its absence. These epistatic relationships can thus constrain the options that are
available to evolution, by requiring that a mutation in one gene occurs before another muta-
tion in a second gene, so that the second mutation is favorable. In a context of competition
between different strains within the same population (for example, of pathogenic bacteria),
a better understanding of these epistatic relationships would allow, for example, to predict
more accurately the fixation or not of future mutations, and thus the winning strain, offering
the possibility to guide treatments more accurately. The most often studied type of epistatic
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relationships is that of interactions between point mutations (i.e., mutations affecting only
one nucleotide, or sometimes a few contiguous nucleotides) within the same gene, as these
mutations are the easiest to detect. In this case, changing an amino acid present at a cer-
tain position in the protein coded by the gene can modulate the effect of changing another
amino acid in the protein. These epistatic relationships are now better and better understood,
for example by exhaustively measuring the selective value of the 2V possible mutants for a
group of N nucleotides of interest (see Achaz et al. (2014) for an overview of such experi-
ments). Other more complex and less well-studied types of epistatic interactions however
exist. In particular, there may be epistatic interactions between different types of mutations,
such as between local mutations and chromosomal rearrangements, or between genes play-
ing different kinds of roles, for example between a gene encoding a regulatory protein and
another gene whose expression is regulated by that protein. For example, the duplication of
a sequence within a given gene can be followed by a subsequent divergence and specializa-
tion of each of the repeated parts, such as in the spectrin family of proteins (Thomas et al.,
1997), which play an important role in the structure of eukaryotic cells. In that case, there
is epistasis between a chromosomal rearrangement — the duplication of a part of a gene -
and the point mutations which follow this duplication: in the absence of this duplication, the
mutations which make possible the specialization of the duplicated parts of the gene would
have been deleterious.

A particular case of epistatic interactions is the interactions between mutations in genes
which regulate DNA supercoiling (which I will call supercoiling mutations throughout this
manuscript) and mutations in genes themselves regulated by supercoiling. DNA supercoil-
ing, i.e. the level of twisting and writhing of DNA around itself, indeed plays an important
role in the regulation of gene transcription in bacteria, because the transcription level of
a gene depends directly on the level of supercoiling at its promoter. The evolutionary in-
terest of supercoiling mutations, as well as their repeatability, has been particularly high-
lighted in the Long Term Evolution Experiment (LTEE) conducted in the laboratory of Richard
Lenski (Lenski et al.,, 1991). In this experiment, 12 strains of the bacterium Escherichia coli
have been evolving since 1988 in a laboratory environment, and 11 of the 12 strains in the ex-
periment have seen their level of supercoiling increase very early in the experiment, thanks
to mutations affecting a small number of well identified genes (Crozat et al., 2010). Since the
level of supercoiling is finely regulated by the activity of several enzymes (called topoiso-
merases) and by the binding of nucleoid-associated proteins to DNA, a mutation in a gene
coding for any of these proteins might lead to a genome-wide change in transcriptional ac-
tivity. The repeated supercoiling mutations that appear in this experiment could therefore
indicate a biased epistatic interaction landscape, which would increase the proportion of fa-
vorable mutations that can appear in the genomes that contain these supercoiling mutations.
Such biased epistatic relationships could thereby make the future evolutionary success of the
lineages that bear these supercoiling mutations more likely.

The major question underlying my PhD work was therefore to determine to which ex-
tent the presence or absence of supercoiling mutations in a lineage can predict its future
evolutive success, in order to understand more broadly the influence of epistatic biases in
the repeatability and predictability of evolution. To this end, I investigated the evolutionary
role of supercoiling mutations during adaptation to a new environment through an in silico



experimental evolutionary approach, situated within the broader framework of evolutionary
systems biology (Beslon et al., 2021). I started by integrating a model of gene expression that
describes the level of supercoiling at the whole-chromosome scale into Aevol, an artificial
evolution software platform that has been developed in my research team. This model and
the first results obtained with it are presented in Chapter 3 of the thesis. The experiment
carried out in this framework led to results qualitatively similar to that of the LTEE, in that
the supercoiling level was the target of many mutations at the beginning of the evolution.
However, the supercoiling rapidly stabilized while the rest of the genome of the individu-
als continued to evolve, making it impossible to conclude on possible epistatic interactions
within these experiments.

The role that the level of DNA supercoiling plays in regulating bacterial gene expression
indeed actually stems from its extremely dynamic character (Martis B. et al., 2019). The dy-
namic character of supercoiling, both in time and along the genome, is in particular due to
gene transcription itself (Visser et al., 2022). Indeed, according to a model originally pro-
posed by Liu and Wang (1987), when a gene is being transcribed by an RNA polymerase, the
bulky complex that results cannot rotate around DNA as fast as DNA wraps around itself.
The torque exerted by this complex on DNA thus causes an accumulation of supercoiling in
front of the transcribed gene, and a deficit of supercoiling behind the gene. The transcription
of a given gene can therefore influence - through the local changes in supercoiling that it
generates — the transcription of genes near that gene, and thus create a network of interac-
tions between the expression levels of nearby genes in the genome. Modeling supercoiling
in order to take into account the local variations of supercoiling caused by transcription
therefore seems particularly relevant for the study of the evolutionary role of supercoiling
mutations. As such a precise approach proved to be difficult to implement in Aevol, I opted
for the creation of a new model representing the genome more abstractly, but describing
the coupling between supercoiling and transcription more faithfully. I implemented this
new model — called EvoTSC - in Python, and its code is available at the following address:
https://gitlab.inria.fr/tgrohens/evotsc.

Using EvoTSC, I first showed that, in a model where the only mechanism for regulat-
ing gene activity is the supercoiling-mediated coupling between the transcription levels of
nearby genes, and where the only possible mutations are chromosomal inversions (which
rearrange the relative positions of genes on the genome), it is possible to obtain through
natural selection individuals whose genes precisely reach environment-dependent target ex-
pression levels. In particular, it is possible to obtain genes that are activated by global DNA
relaxation, even though their promoters are intrinsically inhibited by DNA relaxation. These
first results are presented in Chapter 4. They demonstrate that supercoiling can play a major
role in the regulation of bacterial gene activity, by enabling the emergence of gene regulatory
networks even in the absence of transcription factors. These results were first published as
a paper in the ALIFE 2021 conference (Grohens et al., 2021), and then in an extended version
in the associated journal Artificial Life (Grohens et al., 2022b).

In a second step, I sought to characterize in more detail the evolutionary impact of su-
percoiling on the structure of bacterial genomes and regulatory networks. Still using the
EvoTSC model, I showed that at the most local level, convergent or divergent pairs of neigh-
boring genes are formed, in accordance with the theoretical predictions of the transcription-
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supercoiling coupling. I showed that this organization at the local genome scale is however
not entirely sufficient to explain the gene expression levels observed in the whole genome,
but that sub-networks involving up to dozens of genes may instead be required. Finally,
using a gene knockout approach, I showed that in the genome of evolved individuals, the
regulation of gene expression in the EvoTSC model is organized as a single genome-wide
network. This second set of results is presented in Chapter 5 and has been written up in a
pre-publication that will be submitted for peer-review (Grohens et al., 2022a).

In Chapter 6, I then present a set of complementary experiments that underline the ro-
bustness of the results that I described in the previous chapters in response to variations
in the main parameters of the model, which aim at representing the diversity of bacterial
genomes and possible environmental perturbations. Finally, I incorporated into EvoTSC a
model of the evolution of the global supercoiling level, in order to be able to characterize,
in the same way as in the experiments carried out with Aevol, the possible epistatic rela-
tionships between supercoiling mutations and chromosomal rearrangements. In particular,
I studied the fitness landscapes that stem from supercoiling mutations in the model. These
results are presented in Chapter 7 and set the stage for the conclusion of this manuscript in
Chapter 8.

Appendix A presents the software contributions that I made throughout my PhD. I first
participated in the development of the Aevol framework and of associated tools that manage
simulations and analyze their results. I then developed the EvoTSC model, as well as a set of
tools to visualize and analyze the data produced by the model.

Finally, the outbreak of the Covid-19 pandemic in France in the spring of 2020 disrupted
the course of my PhD in a particular way. At that time, I volunteered to participate in a col-
laboration between the Assistance Publique-Hépitaux de Paris (AP-HP) and a group of Inria
researchers and engineers formed for this purpose. With the agreement of my supervisor, I
interrupted my work on supercoiling to fully dedicate myself to this effort for several weeks
in April and May 2020. In this context, I participated in the construction of a model of the
Covid-19 epidemic in the Paris area, which aimed at helping the AP-HP teams to follow in
real time — and try to predict — the evolution of this epidemic using medical regulation data.
This work subsequently led to a peer-reviewed publication (Gaubert et al., 2020), which is
presented in Appendix B.



Chapter 2

Background

In this chapter, I introduce the biological concepts and methods that will be used throughout
this manuscript. I first present DNA supercoiling and its regulation in bacteria. I outline its
role in gene transcription, and the reciprocal effect of transcription on supercoiling, which
jointly result in what is called the transcription-supercoiling coupling (TSC). Then, I dis-
cuss a few cases studies in which supercoiling might have played an important evolutionary
role, and that illustrate the interest of studying DNA supercoiling through the lens of evolu-
tion. Finally, I briefly present the general method with which I tackle the questions raised in
Chapter 1 throughout the manuscript.

2.1 DNA Supercoiling in Bacteria

DNA is the material basis of genetic information. It is a flexible polymer that comprises two
strands of nucleotides that coil around each other, at a rate of 10.5 base pairs per turn in the
absence of external constraints. When subjected to torsional stress, DNA can either writhe
and form 3-dimensional loops, or twist around itself more or less tightly than in its relaxed
state (Travers and Muskhelishvili, 2005); both writhing and twisting are referred to as DNA
supercoiling. The level of supercoiling is measured as the relative density o of supercoils
in over- or under-wound DNA, as compared to relaxed DNA. DNA is positively supercoiled
(o0 > 0) when it is overwound, and negatively supercoiled (¢ < 0) when it is underwound.
In bacteria, DNA is normally maintained in a moderately negatively supercoiled state, with
a reference value of 0y, = —0.06 in Escherichia coli (Travers and Muskhelishvili, 2005). In
these organisms, the supercoiling level is an important regulator of gene transcription (Dor-
man and Dorman, 2016). Moreover, as transcription itself impacts DNA supercoiling (Liu
and Wang, 1987), this results in a coupling between these two processes, which Figure 2.1
presents an overview of. As a general rule, genes are transcribed at a higher rate when DNA
is more negatively supercoiled (A), following a sigmoidal response curve (B). Transcription
generates positive and negative supercoiling downstream and upstream of transcribed genes
respectively (C), resulting in a coupling between the expression levels of neighboring genes
that depends on their relative orientations (D).
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Figure 2.1: A. When DNA is underwound (0 < 0pq4sa, left), gene transcription rates are
higher than when DNA is overwound (0 > 0pgsai, right). B. Promoter activity (equivalently,
transcription level) e increases with the level of negative supercoiling —o. C. The transcrip-
tion of a gene by RNA polymerase (RNAP) generates a decrease in supercoiling upstream of
the transcribed gene, and an increase downstream of the transcribed gene. D. Transcription-
supercoiling coupling: the sign of the interaction between neighboring genes depends on
their relative orientation. Figure reproduced from Grohens et al. (2021).

2.1.1 Gene Regulation by DNA Supercoiling

The level of DNA supercoiling influences gene expression, as more negatively supercoiled
DNA facilitates the initiation of transcription (Figure 2.1 A). The thermodynamical reaction
of opening the DNA double strand, which is the initial step of gene transcription, is indeed
favored in more negatively supercoiled DNA (El Houdaigui et al., 2019), resulting in a sig-
moidal response curve of gene expression to DNA supercoiling (Figure 2.1 B).

Due to this effect, supercoiling has experimentally been shown to act as a broad regulator
of gene expression in several bacteria. In E. coli, Peter et al. (2004) showed that 7% of genes
were sensitive to a relaxation of chromosomal DNA, of which one third were up-regulated
by relaxation and two thirds down-regulated. Similar results were obtained for S. enterica,
in which 10% of genes were sensitive to DNA relaxation (Webber et al., 2013), and for S.
pneumoniae, in which around 13% of genes were sensitive to relaxation (Ferrandiz et al.,
2010). When instead inducing extreme negative supercoiling in D. dadantii, 13% of the genes
in the exponential phase and 7% in the stationary phase were affected (Pineau et al., 2022).

In D. dadantii, different genomic regions moreover exhibit markedly different responses
to changes in supercoiling (Muskhelishvili et al., 2019), allowing the expression of pathogenic
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genes only in stressful environments. Finally, DNA supercoiling might be an especially im-
portant regulator of gene activity in bacteria with reduced genomes, such as the obligate
aphid endosymbiotic bacterium Buchnera aphidicola. B. aphidicola is nearly devoid of tran-
scription factors, and supercoiling is therefore thought to be one of the sole regulation mech-
anisms available in this bacteria (Brinza et al., 2013).

2.1.2 A Dynamic DNA Supercoiling Level

The level of DNA supercoiling in bacteria is primarily controlled by topoisomerases, en-
zymes that alter DNA supercoiling by cutting and rotating the DNA strands (Duprey and
Groisman, 2021). The two main topoisomerases are gyrase, which dissipates positive super-
coiling by introducing negative supercoils at an ATP-dependent rate, and topoisomerase I,
which oppositely relaxes negative supercoiling (Martis B. et al., 2019). But numerous other
processes also impact the level of DNA supercoiling, either by generating new supercoils or
by constraining their diffusion.

In particular, according to the twin-domain model of supercoiling (Liu and Wang, 1987),
the transcription of a gene by RNA polymerase generates both positive and negative su-
percoils. As a consequence of the drag that hampers the rotation of the RNA polymerase
complex around the DNA sequence during transcription, positive supercoiling builds up up-
stream of the transcribed gene, and negative supercoiling downstream of the transcribed
gene (Visser et al.,, 2022). This phenomenon is pictured in subfigure C of Figure 2.1. More-
over, while the intrinsic flexibility of the DNA polymer would in principle allow supercoils
to propagate freely along the chromosome, many nucleoid-associated proteins such as FIS,
H-NS or HU bind to bacterial DNA (Krogh et al., 2018), in addition to RNA polymerases.
These DNA-bound proteins create barriers that block the diffusion of supercoils, resulting in
what have been named topological domains of supercoiling (Postow et al., 2004).

The level of DNA supercoiling can furthermore be affected by numerous environmen-
tal stresses in bacteria. Salt shock transiently increases negative DNA supercoiling in E.
coli (Hsieh et al., 1991); the acidic intracellular environment relaxes DNA in the facultative
pathogen Salmonella enterica var. Typhimurium (Marshall et al., 2000); and higher temper-
atures relax DNA in the plant pathogen Dickeya dadantii (Hérault et al., 2014). These con-
straints overall paint the picture of a very dynamic DNA “supercoiling landscape” in bacte-
ria (Visser et al., 2022), with a supercoiling level that varies in both time and space during
the bacterial lifecycle and along the chromosome.

2.1.3 Supercoiling and Evolution

Gene regulation by DNA supercoiling can itself be subject to evolution by natural selection,
as a mechanism through which gene expression levels can be adapted to new environments.
In the Long-Term Evolution Experiment (LTEE) (Lenski et al., 1991), 12 populations of E. coli
have been maintained for over 80,000 generations, evolving and adapting to a glucose-limited
environment. In 11 of the 12 populations in the experiment, an increase in fitness was linked
to mutations in genes which participate directly or indirectly in the regulation of the super-
coiling level, such as topA, fis, or dusB (Crozat et al., 2010). When inserted into the ancestral
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strain, the mutant topA and fis alleles increased the level of negative supercoiling as well as
the bacterial growth rate, demonstrating that supercoiling mutations can play a role in the
adaptation to new environments through their broad regulatory effect (Crozat et al., 2005).
From an epistasis perspective, the repeated fixation of supercoiling mutations in the LTEE
suggests that these mutations could confer an evolutionary advantage on the lineages in
which they appear by favoring the apparition of compensatory mutations in supercoiling-
regulated genes; but this possible epistatic role should nonetheless be disentangled from their
direct fitness effect in order to draw clear conclusions.

The regulation of gene expression by DNA supercoiling could moreover be a force that
participates in shaping the evolution of the organization itself of bacterial genomes. Indeed,
supercoiling-sensitive genes tend to group in up- or down-regulated clusters in E. coli (Peter
et al.,, 2004), S. enterica (Webber et al., 2013) and S. pneumoniae (Ferrandiz et al., 2010). This
suggests the possibility of a phenotypic role in the co-localization of genes in these clusters,
through a common regulation of their transcription (Sobetzko, 2016). Synteny segments, or
clusters of neighboring genes that show correlated expression patterns, are indeed evolu-
tionarily conserved across E. coli and the distantly related Bacillus subtilis, strengthening the
hypothesis that these domains could play an important role in the regulation of bacterial
gene expression through supercoiling-mediated interactions (Junier and Rivoire, 2016).

2.2 The Transcription-Supercoiling Coupling

As shown in Figure 2.1C, the transcription of a given gene by an RNA polymerase generates
an accumulation of positive supercoiling downstream of that gene, and of negative super-
coiling upstream of that gene, because of the hindered movement of the polymerase (Liu and
Wang, 1987; Visser et al., 2022). If a second gene is located closely enough to this first gene on
the genome, the change in supercoiling at the location of the promoter of the second gene will
impact the transcription rate of that gene, as negative supercoiling usually facilitates gene
transcription (Forquet et al., 2021). In turn, the transcription of the second gene will also
generate a local change in supercoiling that affects the first gene, resulting in an interaction
between the transcription levels of these two genes, which has been called the transcription-
supercoiling coupling (Meyer and Beslon, 2014). Depending on the relative orientation of
these genes, the coupling can take several forms. Divergent genes increase their respective
transcription level in a positive feedback loop; convergent genes inhibit the transcription of
one another; and in tandem genes, the transcription of the downstream gene increases the
transcription of the upstream gene, while the transcription of the upstream gene decreases
the transcription of the downstream gene.

This supercoiling-mediated interaction between neighboring genes has been documented
in several bacterial genetic systems. In the E. coli-related pathogen Shigella flexneri, the virB
promoter is normally only active at high temperatures, but can be activated at low tem-
peratures by the insertion of a phage promoter in divergent orientation (Tobe et al., 1995).
Similarly, the expression of the leu-500 promoter in S. enterica can be increased or decreased
by the insertion of upstream transcriptionally active promoters, depending on their orien-
tation relative to leu-500 (El Hanafi and Bossi, 2000). The magnitude of the effect of the
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transcription-supercoiling coupling has also been explored in a synthetic construct, in which
the inducible ilvY and ilvC E. coli promoters have been inserted on a plasmid in divergent
orientations. In this system, a decrease in the activity of ilvY is associated with a decrease in
ilvC activity, and an increase in ilvY activity with an increase in ilvC activity as well (Rhee
et al., 1999).

There are, however, hints that the biological relevance of the transcription-supercoiling
coupling might not be confined to these few specific instances. Indeed, in E. coli, the typical
size of topological domains — inside which the positive and negative supercoils generated by
gene transcription can propagate — is usually estimated to measure around 10 kb (Postow
et al., 2004), while transcription-generated supercoiling could propagate up to 25 kb in each
direction around a transcribed gene (Visser et al., 2022). As genes measure on average 1 kb
and intergenic distances 120 bp in E. coli (Blattner, 1997), any single topological domain on
the E. coli chromosome therefore encompasses multiple genes that can potentially interact
via the transcription-supercoiling coupling. A statistical analysis of the relative position of
neighboring genes on the E. coli chromosome indeed shows that genes that are up-regulated
by negative supercoiling have more neighbors in divergent orientations, while genes that
are down-regulated by negative supercoiling have more neighbors in converging orienta-
tions (Sobetzko, 2016), further suggesting that the transcription-supercoiling coupling plays
a role in regulating the activity of genes located in the same topological domain.

2.3 Existing Models of the Transcription-Supercoiling
Coupling

Several mathematical and computational models have been proposed to describe the ef-
fect of the transcription-supercoiling coupling on the expression level of neighboring genes.
In Meyer and Beslon (2014), a quantitative model of the supercoiling level at a locus of interest
is proposed, in order to study the transcription-supercoiling coupling in a pair of adjacent
genes. In that model, DNA transcription is regulated by the opening free energy of DNA
around gene promoters, which directly depends on the supercoiling level. The reciprocal
influence of neighboring genes is then obtained by computing the difference in transcrip-
tion levels due to supercoiling and the subsequent variation in supercoiling, and iterating
this system until a fixed point is reached. A more detailed stochastic model is presented
in El Houdaigui et al. (2019). This model aims at making quantitative predictions of gene
expression levels, and introduces explicit RNA polymerases and topoisomerases that delin-
eate dynamic supercoiling domains inside which supercoils immediately propagate. In that
model, the transcription level of a genomic region of interest is simulated using discrete
time steps, during which RNA polymerases attach to the DNA template, progress along the
transcribed region while generating positive supercoiling in the downstream domain and
negative supercoiling in the upstream domain, and finally detach from DNA, merging the
two domains separated by the polymerase.

Another family of biophysical models aims at describing the movement of RNA poly-
merases along the genome during gene transcription and therefore model the level of DNA
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supercoiling, as supercoils impact the speed at which polymerases can progress forward.
In Brackley et al. (2016), a stochastic model of the transcription of co-oriented genes is pro-
posed in order to study transcriptional bursts. This model is qualitatively different from the
models presented above, as it explicitly models the level of supercoiling as a function of time
and position along DNA, whereas the former models consider supercoiling to be constant in
the intervals delimited by polymerases or nucleoid-associated proteins. A similar model is
introduced in Sevier and Levine (2017), in order to study the possible stalling of DNA poly-
merases due to excessive transcription-generated supercoiling in a single gene. This sec-
ond model has then been extended to accommodate the supercoiling-mediated interaction
of neighboring genes in Sevier and Levine (2018), making qualitatively similar predictions
of gene transcription rates as the first set of models presented above. This model has finally
been used to propose a toggle switch (Gardner et al., 2000) in which gene regulation by tran-
scription factors is replaced by regulation by transcription-generated supercoiling (Sevier
and Hormoz, 2021).

The common limit to all models described above is that these models focus on mechanis-
tic descriptions of the supercoiling-mediated local interaction between neighboring genes,
but do not try to generalize to the whole-genome scale nor to an evolutionary time frame. Ex-
ploring the role of the transcription-supercoiling coupling at the scale of complete bacterial
genomes, and the reaction of supercoiling-mediated interactions to the changes in relative
gene positions that can be caused by genomic rearrangement, however seems necessary in
order to decipher the evolutionary role of supercoiling mutations.

2.4 An Evolutionary Systems Biology Approach

The models of the transcription-supercoiling coupling presented above demonstrate that the
system that emerges from the coupled transcription of neighboring genes on a genome is
complex, in the sense that it presents behaviors that cannot be explained by modeling each
gene in isolation. Moreover, studying the epistatic interactions between mutations in genes
that regulate supercoiling and in genes that are regulated by supercoiling requires the ad-
dition of another layer of complexity, as the effect of supercoiling mutations or genomic
rearrangements on gene transcription levels cannot be directly predicted from the muta-
tions themselves. In order to tackle this problem, I followed the methodological approach of
evolutionary systems biology, which adapts the tools of systems biology to study not only
complex systems themselves but also their evolution - in the Darwinian sense — over time,
with the help of computer simulations (Beslon et al., 2021).

The core of this approach is represented in Figure 2.2, which describes the evolution
of a population of complex systems, or “digital organisms” (Adami, 2006). Each complex
system in the population is represented by means of a data structure D.S;, which represents
an instantiation of underlying system with a particular set of parameter values. Using this
data structure, we can evaluate the systemic properties of interest .S; of this individual, and
its fitness value f;. A new population of complex systems can then be created by selecting
reproducers based on fitness, and making their underlying data structure undergo stochastic
mutations that can affect both their systemic properties and their fitness. This cycle can then
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Figure 2.2: Template of an evolutionary systems biology simulation. In a population of com-
plex systems, each individual i is represented by an inner data structure DS;. Systemic prop-
erties of interest S; emerge from this data structure, which is also used to compute a fitness
level f;. The population can then evolve by following an evaluation-selection-variation-
replication loop. Figure reproduced with permission from (Beslon et al., 2021).

be repeated for a given number of generations, resulting in an experimental framework called
“in silico experimental evolution”, as it adapts the traditional in vivo experimental evolution
methodology to the computational study of the evolution of arbitrary complex systems.
Both Aevol (introduced in Chapter 3) and EvoTSC (introduced in Chapter 4), the in silico
artificial evolution platforms that I developed and used during my PhD, follow this method-
ology. In both platforms, each complex system represents an individual that is described by
its genome; the models diverge in the data structure with which they represent genomes,
as Aevol is a nucleotide-level model, whereas EvoTSC is a “string-of-pearls” model, in which
genomes are represented by a series of genes separated by non-coding sections (see Hin-
dré et al. (2012) for an overview of these formalisms). The fitness of individuals is obtained
in both platforms by evaluating their gene transcription levels, and comparing these tran-
scription levels to an implicit (in Aevol) or explicit (in EvoTSC) target. Finally, the systemic
properties of individuals differ in each model, according to their choice of underlying data
structure: Aevol can be used to study properties such as genome size or the proportion of
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coding bases, whereas EvoTSC can be used to study the arrangement of genes on the genome.

2.5 Conclusion

The level of DNA supercoiling is an interesting property of bacterial genomes, standing at
the crossroads of many processes: it is finely regulated by the joint action of topoisomerases
and nucleoid-associated proteins, but remains sensitive to the external influence of environ-
mental stress, and to the internal influence of gene transcription. The repeated mutations
targeting the regulation of the supercoiling level in the LTEE demonstrate the role that su-
percoiling can play - through its central position in genome biology — in the adaptation of
bacterial populations to new environments, and make it an ideal example to study the role of
epistatic interactions in guiding evolutionary trajectories. Moreover, as gene transcription
itself depends on DNA supercoiling, the resulting interplay between transcription and su-
percoiling generates a complex web of interactions between neighboring genes in the dense
bacterial genomes: the transcription-supercoiling coupling. While the effect of this coupling
has already well been studied at the scale of a few neighboring genes, expanding this analysis
to the whole-genome scale seems necessary in order to have a qualitative understanding of
the phenotypic consequences of supercoiling mutations, and hence of their possible epistatic
interactions.

Finally, an in silico experimental evolution approach seems to be the most promising way
to tackle the study of the evolutionary role of these mutations, as this methodology enables
the combination of a complex model of the transcription-supercoiling coupling — an integral
part of gene regulation by DNA supercoiling — with an evolutionary model that allows for
the emergence of complex epistatic interactions that can influence evolutionary trajectories.



Chapter 3

Looking for Supercoiling Epistasis in
Aevol

In this chapter, I present the first main line of work of that I undertook during my Ph.D. In
order to understand the role of epistasis in the prediction of evolution, I focused on the study
of the specific case of mutations affecting the DNA supercoiling level in bacteria, which were
shown to be repeatable at the phenotypic level, and partially repeatable at the molecular level,
in an experimental evolution setting. In order to replicate these results in the easier to study
in silico artificial evolution setting offered by the Aevol software platform, I implemented a
model of supercoiling in Aevol, and tried to detect epistatic interactions in the evolutionary
trajectories of populations that evolved in the model.

3.1 Introduction

In the Long-Term Evolution Experiment (LTEE), started by Richard Lenski in 1988 (Lenski
et al.,, 1991), 12 populations of E. coli cells, originating from the same ancestral strain, were
placed to evolve in a new environment, an Erlenmeyer flask containing a glucose-limited
medium. Every day since the beginning of the experiment, which has reached over 75,000
generations of bacteria and is still running, a sample from each population has been propa-
gated into fresh medium, and samples have been cryogenically conserved every 500 gener-
ations, resulting in the longest-running evolution experiment in the lab. The LTEE demon-
strated that fitness can keep on increasing for much longer than originally expected in a
constant environment (Good et al., 2017). As sequencing capacity and synthetic biology sub-
sequently developed in the late 1990s and early 2000s, identifying the precise DNA mutations
underpinning these increases in fitness became possible. When sequencing the conserved E.
coli lineages in the LTEE, beneficial mutations — mutations that confer on their bearer a
higher growth rate than the ancestral strain in the conditions of the experiment — were in
particular found in the topA gene and the fis gene, in one of the twelve lineages (Crozat et al.,
2005).

The genes affected by these mutations are involved in the regulation of DNA supercoiling:
Topoisomerase I (encoded by topA) directly modifies the supercoiling level by introducing

13



14 CHAPTER 3. LOOKING FOR SUPERCOILING EPISTASIS IN AEVOL

supercoils, and FIS (encoded by fis) is a nucleoid-associated protein which helps regulate
supercoiling by binding to DNA. This makes these mutations extremely interesting in two
regards. First, there is no direct phenotypic link between the supercoiling level of the chro-
mosome and the growth rate of the bacteria, and yet these mutations, when inserted into the
genetic background of the ancestral strain, still confer a fitness advantage. Second, muta-
tions affecting supercoiling-regulating genes, especially in gyrA and fis, were subsequently
found in 11 of the 12 replicates of the experiment after 20,000 generations of evolution, a
rate that is much higher than for randomly chosen genes (Crozat et al., 2010). A possible
interpretation of this repeated mutational targeting of supercoiling-regulating genes is that,
by globally altering the transcriptional landscape of the bacteria (as the level of supercoiling
directly affects gene transcription), these mutations enable the exploration of new evolution-
ary pathways that would have been deleterious in the ancestral strain, and enable the lin-
eages that bear these mutations to evolve faster than the competing strains. In other words,
there could be positive epistatic relationships between these mutations and the subsequent
adaptive mutations that they enable through rewiring the fitness landscape of their bearer
lineages.

In this chapter, I describe how I leveraged the Aevol in silico experimental evolution plat-
form in order to test this evolutionary hypothesis in the simpler, more controlled setting of
artificial evolution. Aevol is a model that is particularly well-suited to this problem, for sev-
eral reasons. First, the genome biology of individuals is modeled very precisely in Aevol. The
genome is described at the nucleotide level, and the transcription and translation stages that
constitute the core of biological gene expression are accurately represented in the model.
Second, Aevol incorporates a rich variety of mutational operators. It includes both genomic
rearrangements such as inversions and translocations or duplications and deletions, and lo-
cal mutations such as indels and switches. The richness of the genome-level description of
Aevol therefore makes it an ideal tool for the study of epistatic relationships.

The chapter starts with a brief overview of the Aevol model; then, I present the model of
supercoiling and its effect on transcription that I incorporated into the model, and describe
the experiment that I performed in order to test the presence of epistasis between supercoil-
ing mutations and other kinds of mutations.

3.2 The Aevol model

3.2.1 Overview

The Aevol platform, developed in the Inria Beagle team (Rutten et al., 2019), is a software suite
designed to run artificial evolution experiments on a computer, rather than at the bench. It
was originally created to investigate the influence of classical population genetics parameters
such as population size, mutation rate, or selection pressure on genomes themselves, seen as
an integral part of the phenotype and not only as the source of genetic information. In Aevol,
individuals have a very abstract phenotype, in exchange for a genome that is modeled down
to the nucleotide level, and follows the “central dogma of molecular biology” (Crick, 1958),
with an accurate representation of RNA transcription and gene translation. This approach
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Figure 3.1: Broad overview of the Aevol model. In Aevol, an evaluation-selection-replication
evolutionary loop is applied to a population of individuals defined by their genome, encoded
as a circular string of nucleotides (A, central ring), on which RNA sequences and genes are
decoded (A, black segments). The resulting proteins (B, in black) are mapped to an abstract
phenotypic space, and summed in order to obtain the phenotype of the individual (C, in
black), which is compared to an optimal phenotype (that implicitly represents the environ-
ment — B and C, in pink), in order to compute its fitness. In the model, the population is laid
out on a square grid (D), with one individual per cell. In order to produce a new generation,
the ancestor of the new individual in each cell is chosen at random among the neighboring
individuals, proportionally to their fitness (F). Once this ancestor is chosen, its genome un-
dergoes a series of random mutations, including rearrangements and local mutations (G), in
order to obtain the genome of the new individual in the cell at the next generation (H).
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contrasts with other artificial evolution platforms such as Avida (Adami and Brown, 1994;
Ofria and Wilke, 2004), which aim at studying the evolutionary process itself, rather than
its impact on biological organisms. For instance, Aevol has been used to study the effect
of mutation rate on genome size (Knibbe et al., 2005), or of the selection pressure on the
percentage of non-coding bases and number of genes on the genome (Batut et al., 2013).
As an excellent and very thorough description of Aevol (in French) can be found in Liard
(2020), the following presentation of the model will be kept short and focused on the aspects
relevant to this research. Figure 3.1 provides a comprehensive overview of the evolutionary
algorithm at the core of Aevol.

3.2.2 The Genotype-Phenotype Map in Aevol

A genome or genotype in Aevol consists in a sequence of binary characters (0 or 1), which
represents a double-stranded circular sequence of DNA. The genome sequence explicitly
describes the first (forward) strand of DNA, while the second (reverse) strand is obtained by
complementing the sequence, replacing 0 by 1 and vice-versa. In order to turn this genotype
into a phenotype (Figure 3.1 C), the decoding algorithm starts by looking for sequences that
code for RNAs, reading the forward strand left-to-right and the reverse strand right-to-left.
An RNA starts with a promoter sequence, which has to match a consensus sequence with
up to d;q, errors, and ends with a hairpin-like terminator. Then, each RNA is scanned for
genes, which start with a ribosome binding site followed by a 3-nucleotide start codon, which
defines the reading frame. Reading continues until a stop codon is found in the same frame,
and the resulting string of codons is then translated into a protein, or discarded if no stop
codon is found in frame before the end of the RNA sequence. An RNA can thus contain zero,
one, or several protein-coding genes.

As the genetic alphabet is binary in Aevol, there are 8 different 3-nucleotide codons, and 6
codons can therefore be used to encode protein data, in addition to the start and stop codons.
These codons are grouped into three pairs, each respectively encoding the width w, height
h, and mean position m of a triangle kernel function from [0, 1] to [0, 1] (as represented
in Figure 3.1 B). The mean m represents the main function that the protein fulfills in the
abstract phenotypic space, the height / the intensity with which it does, and the width w the
pleiotropic ability of the protein to fulfill neighboring phenotypic functions.

In order to obtain the final contribution of the protein to the phenotype, the constitutive
height h of the gene is weighted by the expression level e of the RNA that carries the gene,
which depends on the activity of the promoter of that RNA. In the model, the promoter
activity decreases linearly with the difference d between its sequence and the consensus
sequence, and vanishes when d > d,,,,,. The expression level of the RNA is then given by
the following equation: e = 1 — %. Finally, in order to compute the complete phenotype
of the individual from the set of its proteins, the kernel functions representing each gene are
summed, resulting in a piecewise-linear phenotype function. As the maximum degree to
which each phenotypic function can be fulfilled is bounded by 1, the phenotype function is
finally capped using Lukasiewicz operators in order to keep within this limit.
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3.2.3 Fitness

Once the phenotype of an individual has been decoded from its genome, we can compute its
fitness. As the environment is indirectly specified by an optimal phenotype, we first compute
a phenotypic gap as the integral of the absolute value of the difference between the phenotype
of the individual and the optimal phenotype, taken over the range of phenotypic values (the
L' distance between the functions). Then, we compute the fitness as the inverse exponential
of the phenotypic gap, multiplied by a selection coefficient: the higher the coeflicient, the
larger the difference in fitness between individuals with the same difference in gap.

3.2.4 Mutational Operators

Once the ancestor of a new individual has been chosen, a set of random mutations are ap-
plied to its genome to obtain the new genome. These mutations are split into two classes,
depending on the proportion of the genome that they can affect: genomic rearrangements,
and local mutations.

Genomic rearrangements can affect up to the whole genome, and comprise four kinds of
structural changes: duplications, deletions, inversions, and translocations. In each of these
rearrangements, the two endpoints of the affected segment are first drawn randomly on the
genome. In a large duplication, an additional insertion point is randomly selected on the
genome, and the genetic content located between the endpoints is copied at the insertion
point. In a large deletion, the genetic content that was present between the endpoints is sim-
ply discarded. In an inversion, the segment is reinserted left-to-right between the endpoints,
reversing the orientation of every gene located on the inversion. Finally, in a translocation,
the genetic content is removed, turned into a circular plasmid, cut at a random point in the
plasmid, and reinserted at another insertion point in the genome.

Local mutations, on the contrary, comprise small insertions, small deletions (collectively
known as indels), and switches. In a small insertion or deletion, up to 6 contiguous bases are
either inserted (choosing each base at random) or deleted at a random point in the genome.
In a switch, the value of a random nucleotide is switched, from 1 to 0 or vice-versa.

3.3 Modeling DNA Supercoiling in Aevol

In order to model the effect of supercoiling on gene transcription in Aevol, I chose to start
with very simple approximations, concerning the level of supercoiling itself and its effect on
transcription, as the Aevol model is already quite complex on its own.

3.3.1 Level of DNA Supercoiling

First, I consider the supercoiling level as constant along the genome and over time, which can
be interpreted as taking the spatial and temporal average of the (actually dynamic) super-
coiling level. To implement this model inside Aevol, I changed the genotype of individuals by
adding, alongside the string-of-nucleotides genome, a single parameter v which represents



18 CHAPTER 3. LOOKING FOR SUPERCOILING EPISTASIS IN AEVOL

Activation A “Phenotype”
level

Functional
space

Target
function

Activation A “Phenotype”

scale : 471 bp [

Target
function

Activation A “Phenotype”

Activation
level

Target
function

Figure 3.2: Effect of supercoiling on the phenotype of an Aevol individual. Left: genome
(central ring) and genes (black rectangles) of the individual. Middle: kernel function encoded
by every gene in the phenotypic space, affected by an excess of positive supercoiling (top), no
extra supercoiling (middle), or an excess of negative supercoiling (bottom). Right: phenotype
of the individual in each situation, compared to the optimal phenotype (in pink).

the relative variation in the supercoiling level o of this individual compared to a reference
supercoiling level oy: 7 = &2,

g0

3.3.2 Gene Expression

To keep the model as simple as possible, I also chose to model the effect of supercoiling on
transcription as having the same linear effect on the transcription rate of every RNA on the
genome. I therefore updated the computation of the gene expression e to take supercoiling
into account, in addition to promoter activity:

d
= 1—7

The effect of supercoiling on the phenotype of an example (pre-evolved) individual in the
model is presented in Figure 3.2. When v < 0 (top row) — when there is an excess of positive
supercoiling compared to the baseline — the expression of every gene is decreased. When ~y
is equal to 0 (middle row) — when the supercoiling level is equal to the baseline — there is no
change to gene expression levels, which replicates the behavior of the original Aevol model.
Finally, when v > 0 (bottom row) — when there is more negative supercoiling than in the
baseline — the expression of every gene is increased.

) (1+7) (3.1)
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3.3.3 Mutational Operator

In biological organisms, the supercoiling level is not only a direct property of the DNA
molecule, but is also controlled by topoisomerases and nucleoid-associated proteins that are
not modeled in Aevol (as the phenotypic space is completely abstract), and changes in the
supercoiling level come from mutations affecting the genes that encode these proteins, such
as gyrA or fis (Crozat et al., 2005). In order to model mutations in the supercoiling level in
Aevol, I chose a continuous model, in which a small variation in 7y indirectly reflects the effect
of a mutation in one of the supercoiling-controlling genes.

When an individual reproduces, we first use a Bernoulli trial, with a probability p that
represents the probability that a supercoiling-protein gene undergoes a non-synonymous
mutation, to decide whether to change the supercoiling level. Then, if the supercoiling
level should change, we draw a variation in relative supercoiling A+ according to a nor-
mal distribution A/(0, s?), and finally set the relative supercoiling level 7/ of the offspring to
~" = v+ A~. The parameters of these laws are parameters of the simulation, and their values
are given in Table 3.1. Throughout this chapter, I will for the sake of clarity refer to the usual
DNA-affecting mutations presented in 3.2 as genomic mutations, and to the mutations in the
supercoiling level presented here as supercoiling mutations.

3.4 Results

As presented in the introduction of this chapter, the goal of implementing a supercoiling
model in Aevol was twofold. The first aim was to see to which extent adding a new dimen-
sion to the phenotypic space, and a new mutational operator to explore this new dimension,
would allow populations to evolve faster than allowed by the original model, thanks to the
wide jumps in the phenotypic landscape that are made possible by the supercoiling muta-
tions. The second aim was to disentangle the possible epistatic effects between supercoiling
mutations and genomic mutations in Aevol. In this section, I first present the experimental
setup that I used in order to answer these questions. Then, I show that adding regulation
by supercoiling did not measurably increase the rate of adaptation of populations compared
to the control, and that supercoiling indeed follows a very constrained evolutionary trajec-
tory in these experiments. Finally, I conclude that I could not find any observable epistasis
between supercoiling and other mutations, when using the supercoiling model presented in
Section 3.2.

3.4.1 Experimental Setup

In order to tackle these questions, I ran two sets of simulations: the experimental runs using
the supercoiling model, and the control runs using the vanilla version of Aevol. Each set of
runs comprises 5 replicate populations, which were evolved for 1,000,000 generations, each
starting from a clonal population. Each of the initial individuals was obtained by randomly
drawing 5,000 bp-long genomes, until a genome with a non-zero fitness (i.e., at least one
protein-coding gene partially matching the phenotypic target) was found. The simulations
were run on a 24-core Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz server with 128 GB of
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Parameter Symbol Value
Population size N 1,024 (32x32 grid)
Initial genome size 9o 5,000 bp
Local mutation rate tioe 1077 bp~l.gen™!
Rearrangement rate trear 1076 bp~l.gen!
Initial supercoiling level Yo 0
Supercoiling mutation probability D 107!
Supercoiling mutation variance s? 1072
Generations T 1,000,000
Number of replicates n 5

Table 3.1: Table of parameter values used in the Aevol evolutionary runs. The top part de-
scribes parameters common to the experimental and control set of rules, the middle part the
supercoiling-related parameters introduced in the supercoiling model, and the bottom part
simulation-specific parameters.

RAM, and lasted approximately a week for each set of replicates. The limited number of
replicates for each set of simulations was chosen to balance their energy expenditure with
the preliminary character of the work, which alleviates the need for statistical strength in the
resulting data. All the data from this experiment is available online on the Zenodo platform.

3.4.2 Studying Lineages

The data that is presented in the rest of this section was obtained by reconstructing the lin-
eage, starting from the initial generation, of a random individual at the last generation of
each replicate. Studying a given lineage, rather than the best individual at every genera-
tion (which need not sire one another), allows us to reconstruct the precise set of mutations
that happened throughout the evolutionary history of this lineage, and therefore gives us
information about the possible causal link between these mutations, and hence about their
possible epistatic relationships.

As a theoretical haploid Wright-Fisher population with /V individuals coalesces on aver-
age in 2N generations without mutation or selection (Felsenstein, 2019), we chose to analyze
the data from generation 0 to 990,000 of every replicate (excluding the last 10,000 gener-
ations), ensuring that the last individual in each lineage is indeed ancestral to the whole
population of the last generation of that replicate.

3.4.3 Evolution of the Fitness Level

Figure 3.3 presents, on the left-hand side, the fitness of the individual at every generation
of the lineage of the final population, or lineage individual, in each replicate. In each case,
fitness follows a broadly sigmoid shape (noting that both axes are logarithmic): the fitness of
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Figure 3.3: Left: Evolution of the fitness at every generation throughout the lineage of the fi-
nal population of each replicate of the experimental (green) and control (red) runs. Both axes
follow logarithmic scales. Right: Fitness of the lineage individual at the 990,000th generation
of each run, separated between supercoiling (green) and control (red) runs.

each run quickly increases from generation 100 up to generation 100,000, then slows down
for the remaining 900,000 generations, but never completely ceases to progress, mirroring
in Aevol the open-ended evolution observed in the LTEE. The right-hand side of Figure 3.3
shows the fitness of the lineage individual at the 990,000th generation of each run.

With the limited number of replicates of each run, there is no discernible difference in
fitness between the two experimental conditions, with and without mutations in the su-
percoiling level. Adding the new phenotypic dimension of the supercoiling level, and the
associated supercoiling mutational operator, therefore does not seem to play an important
role in the rate of evolution of the populations modeled in Aevol.

3.4.4 Evolution of the Supercoiling Level

Figure 3.4 shows the evolution of the supercoiling level throughout the lineage in each of the
5 replicates. In every run, the supercoiling level evolves only at the very beginning of the
run, stabilizing in a few tens of thousands of generations, and remains essentially constant
afterwards. This is in strong contrast to the fitness of the runs (presented in Figure 3.4),
which keeps increasing until the end of the runs.

It therefore seems that the supercoiling level might play a role in the early evolution of
the runs, but not in their long-term fitness improvement. This result is in a sense slightly
disappointing but was not entirely unexpected. Indeed, in the early evolution of individ-
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Figure 3.4: Evolution of the relative level of supercoiling at every generation of the lineage
of each of the experimental runs.

uals in Aevol, the phenotypic target is only very imperfectly approached by the proteins
expressed by the individual. At that stage, mutations in the supercoiling level, which affect
the expression level of every protein equally, could indeed have a positive effect by bringing
the whole phenotype closer to the optimum, in a very broad stroke. Indeed, as individuals
in Aevol evolve from an ancestor with a single good gene, phenotypic functions are often
under-performed by individuals at the early stages of evolution in the model, as the width
and height of the kernel functions of their genes can be small, and as the expression level of
their RNAs can be quite low if their promoters contain too many errors. The different su-
percoiling values towards which each of the replicates tends to converge in Figure 3.4 could
therefore be interpreted as a founding effect coming from the genome of the original indi-
vidual in that run, which could be confirmed by a more detailed analysis of the series of
mutations that happened in each lineage.

However, as evolution progresses, and as the optimal phenotype is more and more closely
matched by the individual, changing the whole expression profile at once becomes less and
less susceptible to be favorable. This case is represented in Figure 3.2: any change in super-
coiling, be it positive or negative, will decrease the fitness of the individual, and supercoiling
mutations are therefore less and less susceptible to be picked up in the lineage.

These results tend to show that the model in which supercoiling has a global, linear effect
on gene expression levels is too simplistic in order to produce phenotypic effects that are
variable enough to have a chance to be picked up by selection; and therefore that this model
is insufficient to study the interplay between supercoiling mutations and genomic mutations
in Aevol.
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3.4.5 Looking for Epistasis

Waiting Intervals Before and After Mutations In order to detect signs of positive or
negative epistasis between the different kinds of mutations, I used the following approach,
which considers the waiting intervals before and after mutations happen: if, for a given mu-
tation type, the average interval until a new favorable mutation fixes in the lineage after a
mutation of that type is smaller than the average interval since the last favorable mutation
before that mutation, this could be interpreted as a sign that the mutation has increased the
probability of a favorable mutation happening; in other terms, as a broadening of the evo-
lutionary paths available to the genome, or a sign of positive epistasis between that kind of
mutation and other kinds of mutations. On the contrary;, if it takes longer for a new favorable
mutation to fix in the lineage after that mutation, it would be a sign that the evolutionary
paths have been constrained by the inversion: a sign of negative epistasis.

The data obtained following this approach is presented in Figure 3.5. For each mutation
type, it shows the average number of mutations of that type that fixed in the lineage of each
replicate, as well as the average time after which a mutation of that types fixes after a non-
neutral mutation (left), and before a non-neutral mutation fixes after a mutation of that type
(right), in the control runs (top) and in the experimental runs (bottom).

Epistasis of Duplications and Deletions In the control, a faint pattern seems to be dis-
cernible for large-scale inversions and deletions: the average time to a new mutation after a
deletion is slightly higher than the time before a deletion, hinting that deletions could present
a negative epistasis with other mutations. Conversely, the time to a new mutation after a du-
plication is slightly lower than the time before the mutation, hinting that duplications could
on the contrary present positive epistasis with other mutations. Local mutations, as well as
rearrangements and inversions, do however not seem to swing one way or the other.

In the experimental runs, no such pattern is visible at first sight, including for the super-
coiling mutations, and the global average waiting intervals are smaller than in the control,
which is consistent with the introduction of a new mutation type. There therefore seems
to be no sign of epistasis between supercoiling mutations and genomic mutations, when
following the approach explained above.

Role of the Genome Size A hypothesis that could explain the pattern visible in the con-
trol runs for large deletions and duplications is that the difference in waiting intervals -
positive or negative epistasis — is simply due to the change in the genome size caused by
these mutations. All mutation rates in the model are indeed proportional to the genome size,
and the expected number of mutations at each generation therefore increases and decreases
with the genome size (assuming that there is no fitness effect or selection). However, in the
experimental runs, the probability of a supercoiling mutation does importantly not depend
on the genome size. A hypothesis to explain the disappearance of the signal (possibly) there
in the control for duplications and deletions could therefore be that supercoiling mutations
tick according to their own clock, which depends on their parameters p and s, but not on
the state of the genome itself. For example, if a certain beneficial indel is allowed to happen
because of a duplication and indeed happens sometime after that duplication in the lineage,
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Figure 3.5: Average time before and after a mutation of each kind, in the control runs (top)
and the experimental runs (bottom). For each kind of mutation, the times presented show
the wait time until a neutral mutation of that kind after a non-neutral mutation of any kind,
and the time until the next non-neutral mutation of any kind after a mutation of that kind.
The bars show the average over the five replicates, and the colored dots show the value for
every replicate. The average number of neutral mutations of each type is displayed at the
bottom of the corresponding bar.
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but a supercoiling mutation has happened between the duplication and the indel, then the
signal from this particular epistatic relationship will have been hidden by that supercoiling
mutation.

3.5 Conclusion

The goal of this initial work was to study how supercoiling mutations affect the fitness land-
scape of individuals in Aevol, that is the possible epistatic interactions between supercoiling
mutations and other kinds of mutations. In order to tackle this question, I implemented a
model of the effect of the supercoiling level on gene expression, as well as a model of mu-
tations in the supercoiling level, in Aevol. Using this version of the model, I ran evolution-
ary experiments, in which I compared the evolution of populations with supercoiling with
control populations by analyzing the fitness, supercoiling level, and mutations fixed in the
lineage of individuals that leads to the final population of every replicate.

With the limited data that was available, I could not find a difference in the evolution rates
of each set of experiments, and deduced that supercoiling does not seem to play an important
evolutionary role in this model; this result was substantiated by the fact that the supercoiling
level converges very quickly to a fixed level in the evolutionary history of each population.
I then tried to detect signals of positive or negative epistasis between the different kinds of
mutations, by looking at the waiting intervals between each kind of mutation. While this
approach did not lead to meaningful results in the experimental runs, it did hint at a possible
epistatic link between duplications or deletions and the other mutation kinds, due to their
effect on genome size, in the control runs, which seems promising for further investigation.

The verdict of these preliminary experiments was that the model of supercoiling that I
implemented in Aevol, in which supercoiling is kept constant along the genome and affects
the expression level of all genes equally, was probably too simplistic to obtain meaningful
results. Rather than pursuing this avenue of research further by implementing a more pre-
cise model in Aevol, I chose instead to go in a different direction. In order to decouple the
complexity of the Aevol model from the study of the evolutionary role of supercoiling, I de-
cided to simplify the individual model, genotype-phenotype map, and mutational operators
as much as possible, in order to model the effect of supercoiling on gene expression more
precisely while keeping the overall complexity of the model in check. The results of this
renewed approach are presented in the following chapters.






Chapter 4

Evolution of Environmental Sensing
through DNA Supercoiling

This chapter presents the proof-of-concept version of the EvoTSC model, and the first results
that I obtained with that version of the model: I show that the evolution of differentiated
expression levels in different environments is possible when gene expression is only regu-
lated by the transcription-supercoiling coupling. The text of the chapter is a slightly edited
version of an article published in the Artificial Life journal (Grohens et al., 2022b); the main
difference is that most of the introduction of the journal version has been subsumed into
Chapter 2 of this manuscript.

Both the importance of gene regulation via supercoiling and the detailed mechanisms of
the transcription-supercoiling coupling, at the local scale, have already been studied exten-
sively in the literature (see Section 2.1). However, a thorough analysis of the effect of the
transcription-supercoiling coupling on gene expression at the whole-genome scale — and of
its possible evolutionary use by natural selection — remains lacking, in particular in the dense
prokaryotic genomes, in which large groups of genes are likely to interact through this cou-
pling. In this chapter, we describe a new model which incorporates a high-level model of
global supercoiling regulation and of the transcription-supercoiling coupling within an in
silico experimental evolution setting. Using this model, we first investigate the non-linear
variation in gene transcription levels at the whole-genome scale in response to variations in
the global supercoiling level. Then, we study the evolutionary trajectory of gene activation
patterns in individuals subjected to different environments.

We show that in our model, a genome-scale gene interaction network emerges from local
supercoiling-mediated interactions, and creates a reaction norm in response to the change
of a single parameter, the global supercoiling level, caused by different environments. More-
over, we demonstrate that, using genomic inversions as the only mutation operator, and
therefore only changing the relative positions and orientations of genes on the genome, evo-
lution can select genomes displaying qualitatively different phenotypes in different environ-
ments characterized by different global supercoiling conditions.

27
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4.1 A Genome-Wide Model of the
Transcription-Supercoiling Coupling

Figure 4.1: Genes along an example genome and local variations in supercoiling (outer ring),
and the associated gene interaction network (inner ring). The outer ring color shows locally
high (¢ > o0y, red) or low (0 < 0y, blue) supercoiling levels due to gene transcription.
In the inner ring, closer genes interact more strongly (black arrows) than genes that are
farther apart (gray arrows), either positively (pointed arrows) or negatively (rounded arrows)
depending on their relative orientations.

Our model consists in an individual-based simulation, written in Python. Its source code is
available at https://gitlab.inria.fr/tgrohens/evotsc/-/tree/alife-journal. It is
also preserved for long-term archival using the Software Heritage online archive (Di Cosmo,
2020). An individual in the model is represented by a circular genome (representative of most
bacterial genomes), comprising a fixed number of genes, separated by non-coding intergenic
regions. Each gene is described by the following characteristics: its locus on the genome, its
orientation, and its basal transcription (or expression) level. As we are mainly interested in
the interplay between supercoiling and transcription, we voluntarily do not make the differ-
ence between gene expression levels, understood as mRNA or protein concentrations, and
transcription levels, the immediate rate of mRNA production. Indeed, assuming a separation
of timescales between the fast equilibrium of the transcription-supercoiling coupling, and


https://gitlab.inria.fr/tgrohens/evotsc/-/tree/alife-journal
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the slow degradation of mRNAs, the concentration of a given mRNA is directly proportional
to the transcription rate of its source gene.

Figure 4.1 illustrates the role played by the transcription-supercoiling coupling in an ex-
ample genome. It includes the local supercoiling variations due to gene transcription, and
the resulting gene interaction network, with each gene possibly activating or inhibiting its
neighbors, depending on their relative orientations. Importantly to our approach, here genes
do not interact only with their closest neighbors, but also with more distant genes, as is likely
to be the case in the gene-rich bacterial genomes: E. coli gene promoters are around one
thousand base pairs apart (Peter et al., 2004), and the transcription-generated supercoiling
propagates around a few thousand base pairs on each side of the transcription site (Postow
et al., 2004).

4.1.1 Mathematical Description of the Model

We model the transcription-supercoiling coupling between an individual’s genes as a system
of equations, which relate the supercoiling level at the locus of each gene o; (for ¢ ranging
from 1 to n, the number of genes of the individual), and the expression level of every gene
e;. The parameters of the system are described by the genome of the individual, as will be
detailed below.

In our model, the supercoiling at a given locus on the genome depends on three fac-
tors: the individual’s basal supercoiling level 0,54, the variation in supercoiling due to en-
vironmental conditions o.,,, and the variation in supercoiling due to the transcription of the
neighboring genes. We compute this local variation in supercoiling at the locus of each gene
with the help of a gene interaction matrix, whose coefficient at position (4, j) describes the
influence of gene j on gene i. The coeflicients are given by the following equation:

d(i, j)
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More precisely, the interaction level between two genes depends on the relative orienta-
tion of the genes, as the transcription of a gene increases supercoiling at the locus of down-
stream genes and decreases supercoiling at the locus of upstream genes (remember that an
increase in supercoiling means a decrease in transcription). Therefore, we choose n = 1 if
gene ¢ is downstream of gene j and = —1 otherwise (if ¢ = 7, n» = 0 as a gene does not
interact with itself). The interaction level also depends on gene distance, as genes that are
further apart on the genome interact less strongly, so the strength of the interaction linearly
decreases with the intergenic distance d(i, j), and reaches 0 when d(7, j) = d;;44, the max-
imum distance above which the interaction vanishes. Finally, an interaction coefficient c is
applied to adjust the strength of the coupling.

Using this interaction matrix, we compute the level of supercoiling o; at the locus of
every gene, which depends on the transcription level of all the other genes, on the basal
supercoiling level, and on the environmental supercoiling level:
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The transcription level e; of every gene as a function of total supercoiling is then modeled
with a sigmoidal activation curve, following El Houdaigui et al. (2019). The equation is given
below:

1

= T o (4.3)

i

In this equation, oy is a parameter that represents the inflexion point of the sigmoid, that
is the supercoiling level at which the gene is at half its maximum transcription rate, and ¢
a scaling factor that represents the strength of the dependence of the transcription level on
the supercoiling level.

Finally, in order to obtain the phenotype of an individual, we numerically compute a so-
lution to the system of equations 4.2 and 4.3, using a fixed point algorithm. This solution
represents the state (of gene expression and supercoiling at every locus) towards which the
individual would converge over time. Let f(e;) be the function that computes new supercoil-
ing levels o) from e; using equation 4.2, and then computes new expression levels e/ from the
new o/ using equation 4.3, and finally returns €. In order to compute a fixed point of f, that
is a set of transcription levels €] such that f(e!) = e}, we start with basal transcription levels
¢? (that are a property of each gene), and iterate the sequence e} "' = 1(e! + f(e!)), until the
difference between two successive iterations is below a given threshold. In our setting, this
algorithm has empirically always converged to a solution that is a stable fixed point of the
function, and that is therefore interpretable from a biological perspective.
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Figure 4.2: Left: genome (outer ring) and stable state level of supercoiling ¢ (inner ring) of
an example individual with 13 genes in the model. Right: transcription levels of the individ-
ual’s genes during the iterations of the fixed point computation, in an environment given by
Oenv = 0.05. Solid lines represent genes in forward orientation, and dashed lines represent
genes in reverse orientation.

Figure 4.2 shows the genome (left, outer ring) of an example individual with a genome of
13,000 bp and n = 13 genes evenly spaced along the genome, and with a basal supercoiling of
Opasal = —0.06. The basal transcription level of each gene is randomly chosen between 0 and



4.1. A GENOME-WIDE MODEL OF THE TRANSCRIPTION-SUPERCOILING COUPLING 31

1, and all the iterations of the fixed point algorithm that result in the final gene transcription
levels are shown on the right. In this individual, the non-linear effect of the interaction
between neighboring genes is clearly visible. Indeed, six genes (A, B,D,E,H,andI)endup ata
high transcription rate at the fixed point (or solution) of the system, while the others end up at
low transcription rates. These activated genes can be grouped into 3 pairs (A and B, D and E,
H and ), all of which are pairs of adjacent genes in divergent orientations. Even though gene
D has a low (around 0.3) basal transcription rate, it eventually reaches a high transcription
state because of its positive interaction with gene E. Conversely, genes F and G start with
a high transcription rate, but are repressed by their neighbors H and E, and are therefore
silenced as the system converges. We can also observe complex behaviors in the model, as the
gene expression levels pass through very different states during convergence to the solution.
Indeed, the transcription level of gene K initially increases due to its interaction with gene
J, but both genes end up in a low transcription state, as they are inhibited by the very active
gene L. The final supercoiling level along the genome (left, inner ring) moreover demonstrates
the effect of the transcription-supercoiling coupling on local supercoiling. Highly transcribed
genes, such as A and B, generate a large variation in the supercoiling level on their upstream
and downstream sides, and the positive feedback loop between genes in divergent pairs is
made clear by the very high negative value of the supercoiling level between each of the
genes in these two pairs.
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4.1.2 Effect of the Environmental Supercoiling on Gene Activation
Levels
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Figure 4.3: Influence of the environment supercoiling o.,,,, on the stable state local supercoil-
ing level (top row) and gene transcription levels (bottom rows) of the example individual.
From left to right and top to bottom: at o.,, = 0.1, no genes are activated (e > 0.5); at
Oeny = 0.0 and at 0.,,, = —0.1, 8 genes are activated; at 0.,,, = —0.2, 10 genes are activated.
Lower values of 0., result in the activation of more genes, reflecting the in vivo effect of
higher negative supercoiling.

Figure 4.3 captures the influence of the environmental change in supercoiling o.,, on the
local supercoiling level due to the transcription-supercoiling coupling (top row) and on the
repartition of genes between the activated and inhibited states (bottom rows), again using
the example individual already shown in Figure 4.2. From left to right and top to bottom: at
a high value of 0., = 0.1, meaning that DNA is severely overwound compared to normal,
no gene is activated (with an expression level e > 0.5) at all. As the external influence of
the environment on supercoiling decreases to o.,, = 0, corresponding to normal relaxation
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of DNA, and then to o.,, = —0.1, 8 out of the 13 genes of the individual reach an activated
state. Finally, for o.,, = —0.2, there is a strong environmental pressure towards high gene
transcription levels, and most genes are indeed activated; however, even at this level of o,
some genes remain shut down, because of the high amount of positive supercoiling (in red)
generated by the transcription of their neighbors.

4.1.3 Influence of Relative Gene Positions on Gene Activation
Levels
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Figure 4.4: Genome, local supercoiling and gene expression levels of a new individual ob-
tained from the individual in Figure 4.2 by switching the positions and orientations of genes
B and C.

Figure 4.4 again shows the local supercoiling and gene expression levels of the individual
in Figure 4.2, after reversing the positions and orientations of genes B and C. This is an
example of a genomic inversion, which will be presented in further detail in section 4.2.3.
The starting point of this inversion falls between genes A and B and its end point between
genes C and D; this results in the reversal of segment [BC] relative to the rest of the genome.
Here, we can see that the diverging orientation that was present between genes A and B
has vanished, replaced by a set of genes in colinear orientation, from A to D. This genomic
reorganization results in the loss of the activation of genes A and B, as gene B is now more
strongly inhibited by gene D due to its closer genomic location, and as genes A and B are
not in a positive feedback loop - due to diverging orientations — any longer; only the pairs
of genes D and E, and H and I, remain activated.

Based on these observations, we can confirm that in our model, the transcription-super-
coiling coupling generates complex networks of genome-wide interactions between genes,
and that these networks directly depend on the architecture of the genome.
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4.2 An Evolutionary Genome-Wide Model of the
Transcription-Supercoiling Coupling

After evidencing that transcriptional activity depends on the organization of the genome, we
now question to which extent evolution can simultaneously leverage the organization of the
genome and the transcription-supercoiling coupling in order to adapt gene regulatory activ-
ity to different environments. Indeed, as has been observed in Dickeya dadantii (Muskhel-
ishvili et al., 2019), different phenotypes can evolve as a response to different supercoiling
levels induced by the environment, and the transcription-supercoiling coupling could play a
role in enabling the existence of this reaction norm.

In this section, we expand our model into an evolutionary simulation. At each generation
of the simulation, all individuals are evaluated and their fitness values are computed, based
on their gene transcription levels. Then, the individuals of the new generation are chosen
by picking their ancestor from the current generation, with a probability proportional to the
ancestor’s fitness. The model is panmictic, meaning that any individual in the population
can be chosen as the ancestor of any new individual. Finally, during replication, the genome
of each new individual stochastically undergoes a number of mutations, before the new in-
dividual is evaluated again; importantly, these mutations do not impact genes themselves,
but only the spatial organization of the genome: gene orientations, syntenies, and intergenic
distances.

4.2.1 Evolutionary Model: Evolution in Two Separate Environments

We model the evolution of populations of individuals that experience two different environ-
ments, named A and B. Each environment is defined by its value of o.,,, respectively o4
and o, which represent the change in the supercoiling level due to the environment (Dor-
man and Dorman, 2016). In order to have environments with distinct effects, we choose a
value of 04 = 0.1, for which isolated genes are effectively inhibited (as in the top-left panel
of Figure 4.3), and a value of o = —0.1, for which some but not all genes are activated
(bottom-left panel).

We separate genes into three classes, based on the environments in which they must be
activated: either in both environment A and environment B (AB genes), only in environment
A (A genes), or only in environment B (B genes). These classes allow us to define optimal
phenotypes for both environments: in environment A, both A and AB genes should be acti-
vated, whereas B genes should be inhibited. Conversely, in environment B, only B and AB
genes should be activated, but not A genes.

4.2.2 Fitness

In order to compute the fitness of an individual, we define an optimal phenotype é* (resp.
éP), corresponding to the vector of the expected expression level ¢ for each gene i in en-
vironment A (resp. environment B). We choose an expected expression level of ¢ = 1 for
genes that should be activated, which corresponds to the maximum possible expression level
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of a gene in our model. Similarly, we choose € = 0 for genes that should be inhibited, which
is the minimum expression level that is attainable. Then, in each environment, we compute
the gap g4 (resp. gp), or average square distance of the individual’s gene transcription levels
e’ (the vector constituted by the transcription level e of each gene i) to the optimal levels

¢4 (resp. e? and éP). The gap g4 is computed as follows:

gale) = =3 (e — &)’ (4.4)
i=1

The gap gp is computed in the same way. Finally, we compute the fitness of the in-
dividual by summing the gap in each environment, and applying an exponential scaling:
f = e Fl9at9n) where k is a scaling factor representing the selection pressure. A higher
value of £ means that well-adapted individuals, those which have a smaller gap, will have an
even higher fitness value compared to other individuals; we typically use £ = 50, meaning
that a small decrease in the gap compared to other individuals yields a large reproductive
advantage.

4.2.3 Mutational Operator: Genomic Inversions

We introduce only one kind of mutation in our model, which is genomic inversions: we
choose two breakpoints randomly on the genome, and reverse the genomic content between
these points. Genes are then reinserted in the genome in the opposite orientation and order,
taking care to update all intergenic distances appropriately. Note that in our model, genes
have a length of zero and the breakpoints can therefore not fall inside a gene. Moreover, an
inversion has no effect if both breakpoints fall between two neighboring genes (as only an in-
tergenic region would be affected), but can impact any number of genes otherwise. Genomic
inversions hence affect gene syntenies and orientations, and therefore affect gene expression
levels as presented in subsection 4.1.3. When mutating a genome during reproduction, we
draw the number of inversions £ to perform from a Poisson law with parameter A\ = 2, giv-
ing an average of 2 inversions between an individual and its ancestor; the probability of not
undergoing any mutations is P(k = 0) = e=* &~ 0.136.
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Figure 4.5: Result of the inversion of a genomic segment containing genes B and C from the
individual presented in Figure 4.1. The gene interactions which have changed due to the
inversion are drawn in red. This illustration genome corresponds to the actual individual in
our model presented in Figure 4.4.

Figure 4.5 presents a genome obtained by performing an inversion on the genome shown
in Figure 4.1. As aresult of this inversion, genes B and C have been switched from the forward
to the backward orientation, and the intergenic distances between A and C on the one hand,
and B and D on the other hand, have been modified; however, the relative orientation of B
and C, and hence their interaction subnetwork, remain unchanged. This results in changes
to the gene interaction network: instead of mutual activation between genes A and B and
mutual inhibition between genes C and D, all four genes now lie in colinear orientations,
in which each of these genes activates its upstream neighbor but represses its downstream
neighbor.

4.2.4 Experimental Setup and Parameter Values

We initialized the simulation with a clonal population of N = 100 copies of an initial individ-
ual with the following genome: 60 genes in random orientations, uniformly distributed along
a 60,000 bp genome, and equally divided between the AB, A and B classes. We chose a maxi-
mum interaction distance of d,,,, = 2500, meaning that each gene initially interacts with its
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2 closest neighbors in each direction through the transcription-supercoiling coupling. Note
that as inversions may change intergenic distances, genes can move closer or further apart
during evolution. We set the basal supercoiling level 03,5, to the average supercoiling level
in E. coli of -0.06 (Crozat et al., 2005), and o to —0.06 as well, so that in the absence of other
sources of supercoiling (either environmental or through the coupling), the default activity
level of a gene is 0.5. Finally, we set ¢ = 0.3, in order to have comparable values for the
variations in supercoiling due to the environment and due to the transcription-supercoiling
coupling, and € = 0.03, so that the variations in supercoiling have a qualitatively mild effect
on gene expression.

In order to run the simulations, we evolved 15 different populations for 250,000 gener-
ations; the simulation lasted for approximately 48h on a computer with Intel Xeon E5-2640
v3 @ 2.60GHz CPUs, using around 100 MB of RAM per replicate. All the data from the
experiment is available online on the Zenodo platform.

4.2.5 Adaptation of Gene Expression Levels to Different
Environments

Figure 4.6 summarizes the differences in the proportion of activated genes for each of the
three sets of genes, between environments A and B, averaged over the 15 repetitions. In the
figure, we consider a gene to be activated if its activity at the end of the lifecycle is over
0.5, and we look at the average proportion of activated genes in the best individual of every
replica. Let us recall that the evolutionary target for AB genes is an expression level of 1 in
both environments, for A genes an expression level of 1 in environment A and 0 in B, and vice-
versa for B genes. After 250,000 generations of evolution, individuals have acquired genomes
that allow all AB genes to be activated in both environments, and that allow all B genes to be
activated in environment B and inhibited in environment A. On average, over 60% of A genes
are activated in environment A, which imposes a positive change in supercoiling (g4 = 0.1)
and makes gene activation harder. Conversely, less than 5% of A genes are activated in
environment B, in which gene activation is easier (65 = —0.1). The final expression levels
of A genes therefore show that specific sets of genes can be activated by the transcription-
supercoiling coupling despite environmental hurdles.


https://doi.org/10.5281/zenodo.6556310
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Figure 4.6: Fraction of activated genes of each type in each environment at the end of the life-
cycle, averaged over the best individuals in the last generation of each replica. The boxplots
represent the median and quartiles, and the dots flier data points. For A genes and B genes,
activation levels differ depending on the environment: p-value 2.40 x 10~'7 for A genes, and
p-value < 1 x 102" for B genes (Student’s ¢-test for dependent samples).

Furthermore, in each of the 15 replicates, the fitness of the best individual in the popu-
lation increases continuously over the course of evolution, as shown in Figure 4.7. As their
respective fitness keeps increasing until the end of the simulation, this suggests that fitter
phenotypes remain reachable through further evolution by genomic rearrangements. The
rhythm of evolution is however progressively slower and slower (note the logarithmic time
scale in the figure), as the pool of available favorable mutations decreases.
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Figure 4.7: Evolution of the fitness of the best individual of each replicate at every generation.

Finally, details of the evolution of one of the 15 replicate populations are shown in Fig-
ure 4.8. We can first see that the number of activated AB genes of the best individual at
each generation quickly rises to 20 (out of 20 genes of that type) in both environment A
and environment B; this shows that evolving a phenotype that is resistant to environmen-
tal perturbations, having genes that are always activated, is easy in the model. For A genes
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and B genes, we observe an asymmetric tendency during the course of evolution towards
activation in the target environment, and inhibition in the opposite environment. However,
the difference in the number of activated B genes between environment A and environment
B is much higher than for A genes. As already mentioned above, this asymmetry comes
from the different requirements expected of A genes and B genes: gene activation is easier
in environment B than in environment A, as it is easier for a gene to become activated in an
environment with a lower overall supercoiling level. A genes therefore have to be activated
in a harder environment, and inhibited in a simpler environment, whereas B genes have to
do the opposite.
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Figure 4.8: Number of activated genes of each type and fitness of the best individual at every
generation of replicate 13, with a population size of N = 100, for 250,000 generations. The
number of active AB genes increases until it reaches 20, in both environment A (top) and
environment B (bottom). The number of active A (resp. B) genes increases in environment A
(resp. B) and decreases in environment B (resp. A) over time, thus converging towards their
evolutionary target.

This is shown in more detail in Figure 4.9, which shows the supercoiling level and gene
activation levels of the best individual of the last generation of replicate 13, in both envi-
ronments. The phenotypes displayed in each environment present clearly distinct gene ex-
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pression patterns. In environment A (top), nearly all genes converge directly towards their
final state, whereas in environment B (bottom), most A genes (in red) and some B genes
(in green) show a complex trajectory of activation levels before reaching their stable state.
Moreover, genomic domains with markedly different supercoiling levels emerge through the
transcription-supercoiling coupling, with both very overwound and very underwound zones.
These domains also show qualitatively different responses to different environments: in some
domains, the supercoiling level is very similar (around gene 0, gene 15 or gene 55 for exam-
ple), while in others supercoiling is completely different in each environment (between genes
20 and 35). This shows the plasticity of the response to environmental change at the local
supercoiling level.
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Figure 4.9: Local supercoiling along the genome and gene transcription levels of the best in-
dividual in replicate 13 after 250,000 generations. Environment A is on top and environment
B at the bottom. AB genes are colored blue, A genes colored red, and B genes colored green.

Our experimental results show that, in a model of gene transcription that is structured
around the transcription-supercoiling coupling, complex gene interaction networks can in
fact evolve. These gene interaction networks are sensitive to environmental variations,
which are mediated in our model by a single parameter: o.,,, the amount of global super-
coiling that is due to the environment.
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4.2.6 Robustness of Gene Network Evolution

In order to ensure that our results remain experimentally valid over a broad range of param-
eter values, we ran additional sets of simulations. We changed respectively the sensitivity of
gene promoters to supercoiling changes (¢ in equation 4.3), the interaction coefficient used in
computing the local supercoiling due to the transcription-supercoiling coupling (c in equa-
tion 4.1), and the strength of the change in supercoiling imposed by the environment (o 4 and
o). We chose sets of logarithmically-spaced values for each parameter, and ran 5 replicates
of the evolution experiment for 250,000 generations for each parameter value. Note that, for
extreme parameter values, gene expression levels did in some cases not converge to stable
states by the maximum number of computation steps. In this situation, we chose to retain
the gene expression levels at the last step as the phenotype of the affected individuals.
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Figure 4.10: Average fraction of activated genes in each environment at the end of evolution,
for increasing values of ¢, from top to bottom and left to right. Every replicate is shown as
a dot, and the bottom-left panel (¢ = 0.03) recalls data from the main run (which has 15
replicates) for comparison. For all values of € except 0.1, the behavior from the main run is
qualitatively replicated.

The results of these additional simulations are presented in figures 4.10, 4.11 and 4.12.
For €, we chose values of ¢ = 0.003, ¢ = 0.01, and € = 0.1, compared to an initial value
of ¢ = 0.03, and the results are shown in Figure 4.10. For the values of ¢ lower than the
default (top row), representing a higher sensitivity of promoters to supercoiling, we observe
the evolution of differentiated gene expression levels as in the main run (bottom-left panel),
whereas for the higher value of ¢ (bottom-right panel), A genes are still not expressed in
environment A by the end of evolution. In this case, promoters are not sensitive enough to
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the supercoiling variations caused by the transcription-supercoiling coupling, and genes are
unable to overcome the highly positive supercoiling of environment A.
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Figure 4.11: Average fraction of activated genes in each environment at the end of evolution,
for increasing values of ¢, from top to bottom and left to right. Every replicate is shown as a
dot, and the top-right panel (¢ = 0.3) recalls data from the main run for comparison. For all
values of c except 0.1, the behavior from the main run is qualitatively replicated.

For ¢, we chose values of ¢ = 0.1, ¢ = 1.0, and ¢ = 3.0, for an initial value of ¢ = 0.3,
and the results are shown in Figure 4.11. Similarly to ¢, when c is too low (top-left panel),
genes do not interact strongly enough for a differentiated phenotype to evolve as a function
of the environment, whereas higher values of ¢ (bottom row) show the same evolutionary

behavior as the main run (top-right panel).
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Figure 4.12: Average fraction of activated genes in each environment at the end of evolution,
for more and more distinct environments 04 and o, from top to bottom and left to right.
Every replicate is shown as a dot, and the bottom-left panel (¢4 = 0.1, o = —0.1) recalls
data from the main run for comparison. For all values except 04 = 0.2 and o5 = —0.2, the
behavior from the main run is qualitatively replicated.

Finally, we also investigate different amplitudes in the difference in supercoiling level
between the two environments, by choosing values of 04 = 0.01, 04 = 0.05 and 04 =
0.2, and o = —o4 respectively in each case (for an initial value of 04 = 0.1 and o5 =
—0.1). We observe that, when 04 = 0.2 (bottom-right panel), the environmental supercoiling
constraint is too high and A genes are not activated in environment A by the end of the runs.
However, for environments closer to each other than the default (top row), evolution is able to
leverage the differences in supercoiling between these environments to evolve differentiated
phenotypes, as in the main run (bottom-left panel), showing that our model remains sensitive
to small changes in environmental supercoiling.

To conclude, in our model, the gene interaction network is therefore able to respond to
different environments and can evolve an efficient regulation of gene expression under a
broad range of parameter values, reinforcing the hypothesis that a supercoiling-mediated
coupling between gene expression levels could indeed play a functional role in biological
organisms.

4.3 Discussion and Perspectives

DNA supercoiling plays a fundamental role in the regulation of gene transcription in bacteria,
and an important part of this role could be mediated by the local variations in supercoiling
that are caused by the transcription-supercoiling coupling. While the influence of the global
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supercoiling level on gene transcription (Lal et al., 2016; Ma and Wang, 2016; Dorman and
Dorman, 2016; Martis B. et al., 2019), the evolutionary importance of supercoiling regula-
tion (Crozat et al., 2005, 2010; Duprey and Groisman, 2021) and the mechanistic details of the
transcription-supercoiling coupling (Meyer and Beslon, 2014; El Houdaigui et al., 2019) have
all already been studied, no existing work did to our knowledge tackle the question of the
possible role of the transcription-supercoiling coupling both at the whole-genome scale and
on an evolutionary time scale.

In this work, we have developed a genome-wide model of the influence of DNA supercoil-
ing on gene transcription, incorporating both the global influence of the environment and
the local variations in the supercoiling level that are due to the transcription-supercoiling
coupling. We have shown that, in our model, complex interactions implicating several genes
emerge from the coupling between supercoiling and transcription. Indeed, A genes display
an activation pattern that would not be obtainable without the network of interactions that
results from the coupling. Thanks to this network, A genes are activated in an environment
where isolated genes would be inhibited, and inhibited in an environment where isolated
genes would be activated. The transcription-supercoiling coupling therefore enables the se-
lective activation or inhibition of specific sets of genes, providing a non-monotonic response
to environmental variations through changes in the level of DNA supercoiling. Furthermore,
we have shown, using an in silico experimental evolution approach, that natural selection can
leverage this biophysical mechanism to selectively turn on or off several pools of genes, us-
ing only the very simple mutation operator of genomic inversions, that affect the relative
positions and orientations of genes on the genome but do not change genome length or
basal gene transcription rates, and that this behavior is able to evolve under a wide range
of parameter values. This response of gene transcription levels to DNA supercoiling reflects
a phenomenon which has been observed in vivo in the expression of pathogenicity-related
genes in specific environments, such as the normally lethal inside of the macrophage for the
mammalian pathogen S. enterica (Cameron et al., 2013), or plant tissue for D. dadantii (Hérault
et al., 2014).

Our model voluntarily stays very simple, only incorporating the most important feature
of the transcription-supercoiling coupling, which is the non-linear interaction between the
expression levels of neighboring genes. This simplicity therefore hints at the possible per-
vasiveness of this regulation mechanism throughout the prokaryotic realm. Nonetheless, in
order to go further and represent more accurately the diversity of gene behaviors found in
real life, several more dimensions could be integrated to the model. At present, the target for
genes in our model is bistability, meaning that genes should end up fully activated or fully
inhibited. A more biologically plausible approach would be to relax this restriction and give
genes arbitrary expression targets, in order to determine to which extent the transcription-
supercoiling coupling is able to finely regulate gene expression. Furthermore, unlike in our
model (in which all genes have the same response curve to DNA supercoiling), the genes
of biological organisms can show different responses to the supercoiling level. These differ-
ences are partly caused by the GC content at the gene promoter (Forquet et al., 2021), and
some genes can even respond in the opposite direction to DNA relaxation, that is to say be
activated rather than inhibited by less negatively supercoiled DNA. This behavior is for in-
stance present in the gyrA and gyrB genes that encode the gyrase subunits in E. coli (Peter
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et al., 2004). Moreover, while our model studies its role in an abstract transcription model,
supercoiling intervenes during different parts of the initiation and termination of transcrip-
tion, as well as in in transcript elongation (Martis B. et al., 2019). Incorporating such precise
mechanistic processes into our model could give more accurate information on the link be-
tween the position of genes on the genome and their transcription rate. Similarly, increasing
the number of genes of individuals in our model to match bacterial gene numbers might
provide more fine-grained results, but is computationally intractable in the current imple-
mentation of the model. Furthermore, investigating the behaviors of individuals when they
are placed successively in different environments, rather than evaluated separately in each
environment, would also bring more information on the plasticity of the network of gene in-
teraction levels that emerges from the transcription-supercoiling coupling. Finally, another
valuable approach in order to bring this model closer to biology would be to incorporate
it into a larger existing framework, such as the Aevol in silico experimental evolution plat-
form (Rutten et al., 2019), which models the bacterial genome in much more detail, in order
to leverage the power of a well-understood digital organism model.

To conclude, as we have seen with this evolutionary model, the transcription-supercoil-
ing coupling has a strong enough effect on gene expression to allow for the evolution of
supercoiling-mediated gene regulation in response to different environments. As this reg-
ulation is encoded by the position itself of genes on the genome, studying the structure of
evolved genomes in the model could both help understand in finer detail the mechanics of
this mode of regulation, and provide us with possible clues to explain the organization of
bacterial genomes.






Chapter 5

Structure of Supercoiling-Mediated
Gene Regulatory Networks

This chapter presents the second version of the EvoTSC model and the results obtained with
that version. The second version of EvoTSC builds upon the proof-of-concept presented in
the previous chapter by using a more precise model of promoter sensitivity to supercoiling,
and by using experimentally obtained parameter values in order to obtain more biologically
meaningful results. Using this overhauled model, I study the structure of the gene regulatory
networks that enable the transcriptional response of evolved genomes to different environ-
ments. The text of the chapter is a slightly edited version of the bioRxiv preprint (Grohens
et al., 2022a); the main difference is that the introduction of the journal version has been
reshaped as Chapter 2 of this manuscript.

In the previous chapter, we demonstrated the theoretical possibility of the evolution of con-
ditional gene activation or inhibition in different environments in a simple model in which
the sole regulatory mechanism is the local level of DNA supercoiling, and in which the only
mutational operator is genomic inversions. In this chapter, we now focus on exploring the
range of genomic organizations that can be generated by selection to regulate gene expres-
sion levels in different environments through the transcription-supercoiling coupling. To
that end, we start by presenting a version of the model that represents more closely bacterial
genomes, as the transcription-supercoiling coupling has been proposed to be an important
factor in shaping the organization of bacterial genomes in particular. Using this more precise
model, we observe the emergence of complex environment-driven patterns of gene expres-
sion, and characterize the spatial organization of genes along the genome that underlie these
patterns. We first show that genes are locally organized in convergent or divergent pairs that
leverage the transcription-supercoiling coupling for mutual activation or inhibition, and ob-
serve the emergence of relaxation-activated genes, as described in bacterial genomes. Then,
we show that this local organization is not entirely sufficient to fully account for the complex
gene expression patterns that we observe in the model, but that gene inhibition in particular
requires the interaction of a large number of genes. Finally, we show that, in our model,
genes form a dense genome-wide regulatory network, providing insight into the regulatory
role of the organization of bacterial genomes.

47
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5.1 An Evolutionary Model of the
Transcription-Supercoiling Coupling

5.1.1 Individual-Level Model

We define the genotype of an individual in our model as a single circular chromosome that
is representative of a bacterial chromosome. The chromosome consists in a fixed number
of protein-coding genes, which are separated by non-coding intergenic segments of varying
sizes, and has a basal supercoiling level 0y,5,;. Each gene on the chromosome is characterized
by its starting position (genes cannot overlap in our model), its orientation (on the forward
strand or on the reverse strand), its length, and its basal expression level. We define an en-
vironment by the shift do.,, that it imposes to the supercoiling level of the chromosome.
We then define the phenotype of an individual in a given environment as the gene expres-
sion levels that are solution of the system given by the interaction of its genes through the
transcription-supercoiling coupling (described below), on a chromosome with a background
supercoiling level of 044501 + 0T en-
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Figure 5.1: Left: genome (outer ring) and level of supercoiling generated by transcription
(orsc, inner ring) of an example genome with 20 genes placed at random positions and ori-
entations and colored by position, with a gene length and average intergenic distance of
1 kb each, and a basal supercoiling level of 0,5,y = —0.066. The individual is evaluated
in an environment in which do.,, = 0. Right: evolution of the expression level of each
gene of the individual during the computation of the solution to the system given by equa-
tions 5.2, 5.3, and 5.4, starting from random initial values. Solid lines represent genes on the
forward strand, dashed lines genes on the reverse strand, and gene colors are the same as on
the genome.

The genome of an example individual with 20 genes and a basal supercoiling op4501 =
—0.066 is shown on the left-hand side of Figure 5.1. Inside the genome is the resulting local
level of DNA supercoiling when this individual is evaluated in an environment with a super-
coiling shift of do.,,, = 0. As expected given the twin-domain model of supercoiling, we can
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observe a buildup in negative supercoiling (blue) between genes in divergent orientations,
such as genes C and D or F and G, and a buildup in positive supercoiling (red) between genes
in convergent orientations, such as genes J and K or Q and R. The right-hand side panel of
Figure 5.1 shows the computation of the stable state of gene expression levels for this indi-
vidual. Note that, in this model and throughout this chapter, we conflate gene transcription
rates with mRNA concentrations, as we assume that mRNAs degrade at a constant rate, and
as transcription rates in our model are only affected by the effect of supercoiling on transcrip-
tion. We furthermore conflate transcription rates with expression levels, as we again assume
proteins to be translated at a rate proportional to the associated mRNA concentrations and
to degrade at a constant rate.

Effect of Transcription on Supercoiling For an individual with a genome containing n
genes, each expressed at a level e;, we model the influence of the transcription of each gene
on the level of supercoiling at the promoter of every other gene in the form of an n-by-n

interaction matrix. The coefficient 2% at indices (7, ) in this matrix represents the variation

Oe;
in DNA supercoiling at the promoter of gene ¢ due to the transcription of gene j. The value

of this coeflicient is given by the following formula:

80’2‘
3ej

7 represents the sign of the interaction, which depends on the position and orientation of
gene j relative to gene 7, according to the twin-domain model. If gene j is upstream of gene
7, and if it is on the same strand as (or points towards) gene 7, then its transcription generates
a buildup in positive supercoiling at gene ¢ (n = 1). Conversely, if gene j is upstream of gene
¢ but on the other strand than (or points away from) gene 1, it generates a buildup in negative
supercoiling at gene i (n = —1). If gene j is instead located downstream of gene 7, the sign
of the interaction in each case is switched: 7 = 1 if the genes are on the same strand, and
n = —1 otherwise.

We then apply a torsional drag coefficient ¢, which represents the intensity to which
the transcription-generated torsion of DNA affects the local supercoiling level through drag.
Finally, the strength of the interaction decreases linearly with the distance d(i, j) between
the promoter of gene 7, which is the position where the local level of supercoiling affects the
probability that an RNA polymerase binds to the DNA and starts transcribing gene 7, and
the middle of gene 7, which is the average location of the RNA polymerases that transcribe
gene j, assuming that DNA is transcribed at a constant speed. When this distance reaches a
threshold of d,,,,,, the two genes are considered to be too far away to interact and the effect
vanishes; in other words, d,,,, represents the maximum interaction distance on either side
of the gene.

d(i, j)

dmam

=n-c-max(l — ,0) (5.1)

Effect of Supercoiling on Transcription In order to compute the transcription level of a
given gene, we first compute the opening free energy of its promoter, which depends on the
local supercoiling level, following a sigmoidal curve that increases with negative supercoiling
until a saturation threshold is reached (Forquet et al., 2021). In order to model this effect, we
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adapted the equations and parameter values presented in El Houdaigui et al. (2019), which
are based on the in vitro analysis of the transcription of model bacterial promoters. We first
compute the local level of supercoiling o; at the promoter of gene 7, which is the sum of the
background supercoiling level 044501 + 00eny (Which is constant along the genome for any
given individual), and of the local variation in supercoiling caused by the transcription of
every other gene (represented in Figure 5.1 as o75¢):
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We compute the expression level of the gene using a thermodynamic model of transcrip-

tion. First, we compute the opening free energy U, of the promoter of gene ¢, which depends

on o;, the level of supercoiling at the promoter and on o, the level of supercoiling at which

the opening free energy is at half its maximum level, according to the following sigmoidal
function:

1

U’i = 1+ eloi—o0)/e

(5.3)

The, we compute the expression level e; of gene ¢ using the promoter opening free energy,
with a scaling constant m:

e; = emUimD) (5.4)

The transcription level of a gene is therefore expressed in arbitrary units between e,

the minimum expression level when the promoter is most hindered by supercoiling (when
U; = 0), and 1, the maximum expression level, when the promoter is most activated by su-
percoiling (when U; = 1). Throughout this chapter, we will describe a gene as activated if its
transcription level is above the mean of these two values ¢/, = %(e*m + 1), and inhibited
otherwise.

Computation of Gene Expression Levels We define the phenotype of an individual in
an environment (described by do.,,,) as the set of gene expression levels that is solution to
the system given by equations 5.2, 5.3 and 5.4, in that environment. In order to compute this
phenotype, we numerically compute a solution to the system of equations using a fixed-point
iteration algorithm, and starting from an initial state in which all genes are expressed at e 5.
A representative example of this computation can be found in Figure 5.1: After an initially
unstable phase, the algorithm quickly converges to a fixed point of expression levels.

5.1.2 Evolutionary Model

Equipped with a model of the coupling between DNA supercoiling and gene transcription
at the whole-genome scale, we now extend it into an evolutionary framework. In order to
study the transcriptional response of individuals placed in different environments, we model
the evolution of a population of individuals, each behaving as described in subsection 5.1.1,
in two distinct environments named A and B. Environment A is a DNA relaxation-inducing
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environment, with a supercoiling shift of do.,, = do4 > 0, and environment B is a DNA
hypercoiling-inducing environment, with a supercoiling shift of do.,,, = dop < 0. We then
define three classes of genes with environment-specific target expression levels: AB genes
should be expressed in both environments, akin to housekeeping genes; A genes should be
expressed in environment A but not in environment B; and, conversely, B genes should be
expressed in environment B but not in environment A; both classes represent environment-
specific genes such as the pathogenic genes of S. enterica or D. dadantii (Cameron and Dor-
man, 2012; Hérault et al., 2014).

Fitness Let (¢4, e, e’ ) be the average gene expression level per gene type of an indi-

vidual with n genes in environment A, (¢%, 5, ef ;) the average gene expression per type
in environment B, and (&4, é4,é4 ;) and (€5, 5,5 ;) be target expression values for each
gene type in each environment. For environment A, we choose to set ¢4 = ¢4 = 1, and
¢4 = e~™, which are respectively the maximal and minimal attainable gene expression lev-
els in the model. Similarly, for environment B, we set ¢é5 = ¢5, = 1, and é§ = e™™. We then
compute the sum g of the squared error between the mean and targeted expression levels for

each gene type in each environment:

A 2A)? B _ =B\?
g= > (et + X (P-eP) (5.5)
1€{A,B,AB} i€{A,B,AB}
Finally, we define the fitness of the individual as f = exp(—k - g), where k is a scaling
factor representing the intensity of selection: as £ increases, the difference in fitness, and
hence in reproductive success, between individuals with different values of g also increases.

Generational Evolutionary Algorithm At each generation, we compute the fitness of
each individual, by computing their gene transcription levels in each environment, as previ-
ously described. In order to create the next generation, we choose a parent from the current
population for each individual in the new population, with a probability proportional to the
fitness of the parent. Then, we create the genome of the new individual by stochastically
applying mutations to the genome of its parent.

Mutational Operator: Genomic Inversions As this work aims at studying genome or-
ganization, we chose to use genomic inversions as the only mutational operator, so that genes
can be reordered on the chromosome through evolutionary time; note that other genomic re-
arrangements, such as translocations, can be modeled as a series of well-chosen consecutive
inversions, and are therefore implicitly present in our model.

In order to perform a genomic inversion, we choose a start point and an end point uni-
formly at random, in the non-coding intergenic sections. This ensures that genes cannot
be broken apart by inversions, as we assume that gene losses are lethal and therefore never
conserved. Having chosen the ends of the inversion, we extract the DNA segment between
these ends and insert it in the reverse orientation. The inversion therefore switches the ori-
entation of every gene inside the segment, but conserves the relative positions and distances
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of these genes. Note that, contrary to the intergenic sections that are inside of the inver-
sion, the intergenic sections that are at its boundaries change according to the position of
the start and end points of the inversion, allowing the distances between genes to change
over evolutionary time.

When mutating an individual, we first draw a number of inversions to perform from a
Poisson law of parameter A = 2, meaning that the offspring of the individual will on average
undergo two inversions, and then perform each inversion in succession to obtain the final
mutated offspring.

5.2 Results

In this section, we first show that, as in the proof-of-concept model presented in (Gro-
hens et al., 2021), populations of individuals in the model presented in Section 5.1 evolve
gene expression levels that match their targets in each environment. Then, we show that,
consistently with the theoretical expectations of the twin-domain model, the genomes of
evolved individuals are enriched in pairs of divergent or convergent genes that leverage the
transcription-supercoiling coupling to regulate gene expression. Finally, we show that the
gene regulatory network generated by the transcription-supercoiling coupling cannot sim-
ply be recapitulated by these local interactions, but rather encompasses the whole genome.

5.2.1 Experimental Setup

We evolved 30 populations of 100 individuals, each starting from clones of a random individ-
ual with 60 genes (20 of each type), for 1,000,000 generations. The parameter values that we
used are given in Table 5.1, and can be broadly grouped into genome-level parameters (gene
length, intergenic distance, basal supercoiling level and supercoiling transmission distance)
and promoter-level parameters (promoter opening threshold and energy, crossover width).
Both the genome-level parameters that describe the chromosome and the promoter-level
parameters used to compute the transcriptional response to supercoiling were taken from
experimental values measured in E. coli. In our model, we introduced the torsional drag co-
efficient as a new parameter that represents the influence of torsional drag on the local level
of supercoiling, and empirically chose its value so that this effect is of the same magnitude
as that of the other sources of supercoiling variations.
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Parameter Symbol  Value Reference

Gene length [ 1,000 bp Blattner (1997)
Initial intergenic distance do 125 bp Blattner (1997)
Supercoiling transmission distance  d,;q, 5,000 bp Postow et al. (2004)
Basal supercoiling level Obasal -0.066 Crozat et al. (2005)
Torsional drag coefficient c 0.03

Promoter opening threshold Oopt -0.042 El Houdaigui et al. (2019)
Inverse promoter opening energy  m 2.5 El Houdaigui et al. (2019)
Crossover width € 0.005 El Houdaigui et al. (2019)

Table 5.1: Table of parameter values used in the evolutionary runs. The upper set of parame-
ters is the genome-level parameters, the lower set the promoter-level parameters, both taken
from the E. coli literature; the middle parameter is a new addition from our model.

The simulation was implemented in Python, with computationally heavy parts optimized
using the numba package (Lam et al., 2015). The source code for the simulation, as well as the
data analysis code, are available online at https://gitlab.inria.fr/tgrohens/evotsc.
Running the complete simulation took around 36 hours of computation on a server using
a 24-core Intel Xeon E5-2620 v3 @ 2.40GHz CPU, with each replicate running on a single
core and using approximately 300 MB of RAM. All the data from this experiment is available
online on the Zenodo platform.

5.2.2 Evolution of Regulation by the Transcription-Supercoiling
Coupling

100 101 102 103 10 105 106
Generation

Figure 5.2: Geometric average of the fitness of the best individual in each of the 30 replicates,
at every generation. Lighter lines represent the first and last decile of the data.


https://gitlab.inria.fr/tgrohens/evotsc
https://doi.org/10.5281/zenodo.7062757
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In our simulations, the fitness of the best individual in each population increases over evo-
lutionary time, as shown in Figure 5.2, meaning that evolution is able to select phenotypes
that are closer and closer to the target. More precisely, the expression levels of the genes of
each type in individuals in our model therefore evolve towards their respective targets, as
previously defined in Section 5.1.2.
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Figure 5.3: Genome of the best individual at the last generation of replicate 21, evaluated in
environments A (left) and B (right). In addition to Figure 5.1, the outer ring shows the state
of each gene: dark color, activated - light color, inhibited. The inner ring shows the level of
transcription-generated DNA supercoiling at every position on the genome: Shades of blue
represent negative supercoiling, and shades of red positive supercoiling.

The genome of an example evolved individual at the end of the simulation is depicted in
Figure 5.3, along with its level of local supercoiling and gene activity in each environment.
Different activation patterns for each gene class are clearly visible on the genome of this
individual. Indeed, all AB genes except one are activated (dark blue) in each environment,
whereas 19 out of 20 B genes are correctly inhibited (light green) in environment A (left)
and 18 correctly activated (dark green) in environment B (right). Conversely, 16 A genes are
activated (dark red) in environment A, and 16 inhibited (light red) in environment B.

The transcription-generated supercoiling that is represented in the inner ring further-
more changes consistently with the gene activation patterns between the two environments:
red zones, where DNA is positively supercoiled, contain inhibited genes, whereas blue zones,
where DNA is negatively supercoiled, contain activated genes. This individual therefore
shows that it is possible for evolution to adjust the gene expression levels of an individual in
our model to an environment-dependent target, by relying only on the transcription-super-
coiling coupling and on the relative positions of genes on the genome.
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Figure 5.4: Average number of activated genes (with an expression level above e 5) of each
type, out of 20, in the best individual at every generation, averaged over the 30 replicates,
in environments A (left) and B (right). Lighter lines represent the first and last decile of the
data.

Evolution of Class-Specific Gene Expression Levels These results are however not
specific to this particular individual. Figure 5.4 shows that, averaging over all replicates, the
number of activated genes in each class evolves towards their respective target. In each envi-
ronment, the average number of activated AB genes quickly reaches nearly 20, its maximum
value, as expected from their target; B genes follow the same behavior, evolving towards
nearly full activation in environment B and nearly full inhibition in environment A. A genes
follow a slightly different course, as the number of activated A genes seems to converge
to approximatively 15 out of the expected 20 in environment A, but continues to decrease
towards the expected 0 in environment B by the end of the simulations.

The incomplete match to their target of A genes does however not come as a complete
surprise. Environment A is indeed characterized by a positive supercoiling shift o4 > 0,
while environment B is characterized by a negative supercoiling shift dop < 0. As positive
supercoiling hinders promoter opening, it is more difficult for a gene to have a high tran-
scription rate in environment A than in environment B. A genes must therefore complete
the more difficult task of being activated in the “hard” environment A, while being inhib-
ited in the “easy” environment B. Differentiated expression levels nonetheless evolve in our
model for each type of gene, as a result of the different supercoiling levels imposed by the
environmental conditions.
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Figure 5.5: Average gene expression level for each class of gene (A, B, and AB), as a function
of the background supercoiling level 044541 + 00eny, averaged over the best individual of each
of the 30 replicates. The dash-dotted light blue line represents the average expression level
of genes on a random genome, and the dashed light blue line represents the expression level
of a single neighbor-less gene. The black vertical lines represent environments A and B, in
which individuals evolve during the simulation, and the pink horizontal line marks ¢, 2, the
threshold above which a gene is considered active.

Evolution of Relaxation-Activated Genes In our model, the expression level of a gene
increases exponentially with the opening free energy of its promoter, which itself increases
as a sigmoidal function of negative supercoiling. When measuring the response of an indi-
vidual’s genes to variation in the background supercoiling 04454 + 00 epny, one could therefore
expect a qualitatively similar response.

Figure 5.5 shows the responses of genes of different types to the background supercoiling
level (as explained in equation 5.2), and highlights striking differences between the expres-
sion of evolved, random, or isolated genes, as well as between the different gene types in
evolved genomes. The light blue lines in the figure serve as a reference point, showing the
response of an isolated, non-interacting gene to environmental supercoiling (dashed line),
and the average response (dash-dotted line) of genes on 30 random genomes, generated us-
ing the parameters from Table 5.1. While AB and B genes (blue and green curves) display
an expression level that decreases with the level of negative supercoiling, and that remains
qualitatively similar to the behavior of random genes (dash-dotted line), A genes display a
completely different behavior. These genes show a non-monotonic response to environmen-
tal supercoiling, as their expression level decreases until a local minimum in expression at
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do g, then increases again even though negative supercoiling decreases until a local maxi-
mum at 0o 4, before decreasing again like the other kinds of genes. In other words, A genes
present a phenotype of activation by environmental relaxation of DNA, for values between
dop and do 4, even though the promoter activity of an isolated A gene decreases with DNA
relaxation.

The transcription-supercoiling coupling therefore provides a regulatory layer that me-
diates the transcriptional response to the global variation in DNA supercoiling caused by
different environments. Indeed, it remarkably allows in our model for the evolution of a re-
sponse that is opposite not only to the response displayed by a non-interacting, neighborless
gene, but also to the response of genes placed at random on a similar genome, demonstrating
the importance of the relative position of genes on the genome.

5.2.3 Evolution of Local Genome Organization

Having characterized the different patterns of gene transcription that evolved in our simu-
lations in response to the two different environmental conditions, we sought to determine
the genome organization that necessarily underlies these patterns, since the only difference
between individuals in our model is the relative position and orientation of the genes on
their genome.

We started by studying genome organization at the local level, and measured the relative
abundance of pairs of neighboring genes in every relative orientation: convergent, divergent,
or in tandem. The relative orientation between neighboring genes determines the mode
of interaction between these genes, by applying the twin-domain model of transcription-
generated supercoiling to the promoter of each gene: mutual activation for divergent genes,
mutual inhibition for convergent genes, and activation (resp. inhibition) of the upstream
(resp. downstream) gene by the downstream (resp. upstream) gene.

As the different gene types must evolve different activation patterns in each environment
to have a high fitness in the model, we separated the pair counts by the type of each gene in
the pair, resulting in 9 kinds of pairs. Finally, in order to quantify the actual strength of the
coupling between the genes in a given type of pair, we summed the total level of positive and
negative supercoiling generated by the transcription of each gene in the pair at the promoter
of the other gene for all relative orientations. The results are presented in Figure 5.6, with the
left-hand side panel showing the number of pairs of each kind, and the right-hand side panel
the corresponding transcription-generated supercoiling levels. Several patterns markedly
emerge from the data.
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Figure 5.6: Interactions between pairs of neighboring genes. The left-hand side panel shows
the number of pairs of each kind, split by the type of the first gene (sub-row) and of the
second gene (sub-column) in the pair, and by relative orientation (bars in each sub-panel:
convergent, divergent, upstream, or downstream). For instance, the top-right panel shows
the influence of AB genes on B genes, and the bottom-left panel the influence of B genes
on AB genes (in the same pairs). In that case, there are on average 7.8 AB genes directly
upstream of a B gene (in red), or 7.8 B genes directly downstream of an AB gene (in green) on
an evolved genome. The right-hand side panel shows, for each kind of pair, the total amount
of positive (red) and negative (green) transcription-generated supercoiling due to each gene
type (sub-row) measured at the promoter of each gene type (sub-column), summing over all
orientations, but in each environment. All data is averaged over the best individual of each
of the 30 replicates, and box plots indicate the median and dispersion between the replicates.

Genomes Are Enriched in Divergent AB/AB Gene Pairs The most frequently found
kind of gene pair in the evolved genomes is divergently oriented AB/AB pairs. 13 such pairs
are found on average (see the AB/AB sub-panel on the left-hand side of Figure 5.6), out of a
possible maximum of 20 (since any given gene can only be part of a single divergent pair),
meaning that two-thirds of AB genes are part of a divergent pair with another AB gene. The
mostly divergent ABAB gene pairs generate an average negative supercoiling of around -
0.012 at their promoters, in both environments (summing the positive and negative bars in
the AB/AB sub-panel on the right-hand side of Figure 5.6). This value is comparable in mag-
nitude to but has the opposite sign than the shift in supercoiling caused by environment A
(0oa = 0.01), showing that the interaction between neighboring genes can locally coun-
teract the global shift in supercoiling caused by this environment in order to maintain high
gene expression levels.

Genomes also contain divergent A/A and B/B gene pairs, although less frequently than
divergent AB/AB pairs. As both A genes and B genes must be conditionally expressed or in-
hibited depending on the environment, the unconditionally positive feedback loop resulting



5.2. RESULTS 59

from a divergent orientation seems less evolutionarily favorable for A/A or B/B pairs than for
AB/AB pairs. Divergent A/A and B/B pairs moreover result in slightly weaker interactions
(middle and bottom-right sub-panel of the right-hand side of Figure 5.6), in the environment
in which these genes are active. On the contrary, divergent A/B gene pairs are almost never
found, and this is consistent with theoretical expectation, since A and B genes must no be
expressed in the same environment.

The local organization of the genome in divergent AB/AB gene pairs therefore seems
to be favored by evolution, as this pattern allows for a high expression of these genes in
both environments, while divergent A/B gene pairs, which would lead to a lower fitness, are
oppositely very rarely found in evolved genomes.

Genomes are Enriched in Convergent A/B Gene Pairs The pattern in which B genes
appear most frequently, and A genes very frequently (just after divergent A/A pairs), is in
convergent A/B gene pairs. In this case, each gene in the pair should theoretically inhibit the
expression of the other gene. In environment A, A genes indeed generate an average positive
supercoiling variation of 0.01 at the promoter of convergently oriented B genes (the effect
of B genes on convergent A genes in environment B is similar), decreasing their expression
with a strength that is again comparable to the environmental change in supercoiling, whiles
B genes are mostly inhibited and therefore do not impact A genes. In environment B, it is
instead B genes that strongly inhibit A genes through the generation of positive supercoiling.

Convergently oriented A/B gene pairs therefore form toggle switches, or bistable gene
regulatory circuits, in which the expression of one gene represses the expression of the other
gene (Gardner et al., 2000). In accordance with the targeted expression patterns of A and B
genes, we therefore observe that the local organization of the genome into toggle switches,
like the divergent A/B pairs, is favored by evolution in order to produce environment-depen-
dent differentiated expression levels.

5.2.4 Local Interactions Do Not Recapitulate the Regulatory
Network

In order to understand the extent to which the gene regulatory network generated by the
transcription-supercoiling coupling can be reduced to the local organization into pairs of
genes described above, we expanded our scope to study the behavior of subnetworks of
neighboring genes of increasing sizes.
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Figure 5.7: Top: subnetworks of size 3 (left) and 5 (right) centered around gene 31 (of type B,
in bold) of the best individual at the end of replicate 21, evaluated in environment A. Bottom:
subnetworks of size 7 (left) and 9 (right), centered around gene 6 (of type A, in bold) of the
same individual, evaluated in environment B.

For every odd subnetwork size k£ between 1 and the genome size, and for every gene
on the genome, we extracted the subnetwork of k£ consecutive genes centered around that
gene, and computed the expression level of every gene in this subnetwork, in the same way
as for a complete genome, in each environment. This allowed us to compute the minimum
subnetwork size at which a gene has the same activation state as in the complete genome,
which we interpret as an indicator of the complexity of the interaction network necessary
to produce the activation state of that gene in the complete genome. Two representative
examples are presented in Figure 5.7, and the complete results are then shown in Figure 5.8.

Figure 5.7 depicts the subnetworks that are needed in order to obtain the inhibition of a
representative gene of type A in environment B, and of a representative gene of type B in
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environment A, taken from the genome of an evolved individual. The B gene is not inhibited
by a subnetwork of size 3, but needs a subnetwork of size 5 to be inhibited, and similarly,
the A gene is not inhibited by a subnetwork of size 7, but needs a subnetwork of size 9 to be
inhibited. In each case, increasing the size of the subnetwork by two (one gene on each side)
completely changes the resulting gene expression levels, alongside with the associated level
of transcription-generated supercoiling. Indeed, in the top example, all 3 genes in the small
subnetwork switch states when evaluated inside the larger subnetwork, and in the bottom
example, the two B genes and two out of the three central A genes switch activation states
when moving from the small to the large subnetwork. In these examples, the activity of a
gene is therefore not only dependent on its closest neighbors, but on a quite larger section
of the genome.
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Figure 5.8: Minimal contiguous subnetwork size needed for the central gene in the subnet-
work to have the same activation state as in the complete genome, for each gene type, and
in each environment, for every gene of the best individual at the end of each replicate. In
each case, a box plot showing quartiles and fliers is overlaid on a violin plot representing the
whole distribution, and the mean is represented by a smaller tick. The data is computed only
for genes which present the correct activation state in both environments, which represents
97,7% of AB genes, 92,7% of B genes and 53,2 % of A genes.

We averaged this data over every gene that presents the correct activation state in each
environment, in the best individual of every replicate, and very different patterns once more
appear, depending on whether the targeted behavior for the gene is activation or inhibition,
as depicted in Figure 5.8. For AB genes in both environments, as well as for A genes in
environment A and B genes in environment B, the experimentally obtained minimum sub-
network size is 1, which is consistent with the expression profile of an isolated gene, shown
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in Figure 5.5: With a basal supercoiling value of 0445qs = —0.06, an isolated gene already
experiences a high expression level in both environments, even without interactions.

When the evolutionary target of the gene is inhibition, that is for A genes in environment
B and for B genes in environment A, the picture is however quite different. In this case, a
significantly larger subnetwork is needed in order to obtain inhibition of the central gene:
The median subnetwork size is 9 (4 genes on each side) for A genes. For B genes, the me-
dian size is smaller than for A genes, but higher than when the target is activation: Genes
always need at least a subnetwork of size 3 (1 gene on each side), and several outliers need a
subnetwork of more than 20 genes.

The gene regulatory networks evolved through the transcription-supercoiling coupling
therefore exhibit a structure that cannot always be summarized by the pairwise interactions
between neighboring genes, but that can on the contrary require the participation of a sig-
nificantly larger number of genes in order to make genes display the same activation state
as in the full genome.

5.2.5 A Whole-Genome Gene Regulatory Network

The effect of the transcription of every gene on the local supercoiling at every other gene
(which decreases linearly with distance) provides a natural graph to represent the interac-
tions between the genes in the genome of an individual. However, as the effective impact
of a gene on the expression of other genes depends on the transcription level of that gene,
this theoretical graph provides an inaccurate picture of the gene interactions that actually
take place, as every gene ends up expressed at a different level. In order to characterize more
finely the gene regulatory networks that evolve in our experiments, we therefore constructed
a different graph, which we call the effective interaction graph, using transcriptional gene
knockouts.
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Figure 5.9: Knockout of gene 36 (of type AB, in bold, colored white) of the best individual
at the end of replicate 21, evaluated in environments A (left) and B (right). Hatched genes
represent genes whose activation state was switched by the knockout compared to their state
in the original genome. The inner ring represents the absolute difference in the level of local
supercoiling | Aorsc| between the knockout genome and the original genome (in Figure 5.3).

Transcriptional Gene Knockouts A transcriptional gene knockout (or simply a gene
knockout in this chapter) completely suppresses the transcription of a gene, adapting the
principle of gene knockouts to the transcription rather than the translation step of gene ex-
pression. In order to knock out a gene in an individual in our model, we simply set the
transcription rate of that gene to zero during every step of the computation of the gene
expression levels of that individual. This virtually removes the knocked-out gene from the
genome, while keeping the intergenic distance between its upstream and downstream neigh-
bors unchanged, and mimics a loss of function its the promoter. The result of such a knockout
on the genome of an evolved individual is shown in Figure 5.9. The knocked-out gene is gene
36, which is of type AB and originally activated in both environments (see Figure 5.3 for the
original genome). We can see that, in environment A, knocking out this gene results in a
switch of the activation state for 7 genes (hatched in the left-hand side of Figure 5.9), that are
not all contiguously located, and in local supercoiling changes that propagate to the bottom
left third of the genome, to a distance that is larger than the gene interaction distance. In
environment B, knocking out this gene results in milder supercoiling changes that do not
lead to the switch of any gene. In this example, knocking out even a single gene can there-
fore substantially affect gene expression levels, significantly switching the activation state of
other genes on the genome, even when they are out of reach of direct interaction with the
knocked-out gene.
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Figure 5.10: Left: effective interaction graph of the best individual at the last generation of
replicate 21, obtained by knocking out each gene and measuring the resulting gene switches
in each environment. Activation edges are drawn in green, and inhibition edges in red. The
numbering of the genes is the same as in Figures 5.3, 5.8 and 5.9. Right: distribution of
weakly connected component (WCC) sizes in the effective interaction graphs of the evolved
individuals (left) and the random individuals (right).

Constructing Effective Interaction Graphs In order to construct the effective interac-
tion graph introduced above, we simply add an edge from a gene to every other gene whose
activation state is switched by knocking out that gene, in one environment or the other. If
the knockout switches off a gene that was activated in the complete genome, we mark the
edge as an activation edge, meaning that the knocked-out gene was necessary to activate the
switched gene. If the knockout switches on a gene that was inhibited in the complete genome,
we conversely mark the edge as an inhibition edge. If knocking out a gene switches the same
gene in the two environments, we only add the edge once (we do not build a multigraph).
The effective interaction graph of our example individual is presented on the left-hand side
of Figure 5.10. In the case of this individual, there is a single weakly connected component
(WCC), meaning that all genes interact as part of a single whole-genome regulatory network;
this is the case in the best individual of 26 out of the 30 replicates.
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Structure of the Effective Interaction Graphs We computed the effective interaction
graph of the best individual in each replicate, and compared these graphs with the effective
interaction graphs of 30 random individuals drawn using the same genome parameters (in
Table 5.1). The results are presented on the right-hand side of Figure 5.10. The effective
interaction graphs of evolved individuals are clearly different from the interaction graphs
of random individuals. We can see that the evolved genomes have WCC sizes of 58 to 60
genes, comprising nearly every to every gene on the genome, along with very few single-
gene WCCs (left). On the other hand, WCC sizes in the random genomes span the whole
range from single-gene to whole-genome WCCs, with most of the connected components
counting less than 10 genes (right).
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Figure 5.11: Left: average out-degree (number of genes switched by knocking out a given
gene) of the nodes in the effective interaction graph, separated by gene type, for evolved and
random individuals. Right: average in-degree (number of genes whose knockout switches
a given gene) of the nodes in the effective interaction graph, separated by gene type, for
evolved and random individuals.

The evolved genomes are indeed much more connected than the random genomes, as we
can see in Figure 5.11, which presents the out- and in-degree of genes (averaged by gene type)
in the effective interaction graphs of the genomes. The left-hand side of Figure 5.11 shows the
average out-degree of each gene type, or the number of genes that are switched by knocking
out a gene of that type. While knocking out a gene in a random genome switches the state
of just under 2 other genes on average, the figure is much higher in the evolved genomes.
Knocking out A and B genes switches 4 other genes on average, and knocking out AB genes
up to 7 other genes; AB genes therefore play a quantitatively more important regulatory role
than A genes or B genes, which can be explained by the fact that AB genes are activated in
both environments, while most A and B genes are inhibited in one environment or the other.

When looking at the in-degree of the genes, or the number of genes whose knockout
will make a given gene switch activation states, we can see that the evolved genomes are
again much more connected than the random genomes, and that the in-degree depends on
the type of the gene. Indeed, AB genes are only switched by one other gene on average,
meaning that their activation state is robust to perturbations in the regulatory network. The
robustness of AB gene state is expected, as these genes must have the same activation state
in both environments. On the contrary, A genes and B genes have an in-degree that is much
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higher, meaning that their activation state relies on the regulatory action of a large number
of other genes, making them more sensitive to the variations between the two environments.

The evolution of the the relative positions of genes on the genome, by leveraging the
feedback loop between the transcription of neighboring genes that is mediated by DNA su-
percoiling, therefore results in our model in the emergence of gene regulatory networks that
connect the whole genome into a single entity, rather than a juxtaposition of independent
subnetworks. The network structure that evolves furthermore allows genes to dampen, or
amplify, the result of the environmental shift in supercoiling on their activation states, as
required by their evolutionary targets.

5.3 Discussion and Perspectives

DNA supercoiling, through its effect on promoter activation (Forquet et al., 2021), is an
important actor of the regulatory response of bacteria to changing environmental condi-
tions (Martis B. et al., 2019). But supercoiling itself is in return impacted by transcription,
as presented in the twin-domain model of Liu and Wang (1987). Indeed, transcription has
been shown to play a major role in shaping the bacterial DNA supercoiling landscape (Visser
et al., 2022). Taken together, these observations raise the question of the extent to which the
position itself of genes on the genome can regulate their activity, via the coupling of the
transcription levels of neighboring genes through local changes in DNA supercoiling.

In order to assess the theoretical possibility of the evolution of such a gene regulatory
network, and to determine the potential consequences of the evolution of such a network
on the organization of the genome, we developed in this work an evolutionary model of the
transcription-supercoiling coupling (expanding upon a proof-of-concept presented in Gro-
hens et al. (2021)), in which populations of individuals must evolve differentiated gene ex-
pression levels in response to different environmental conditions, with the transcription-
supercoiling coupling as the only regulatory mechanism and inversions as the only mu-
tational operator. As a the dynamic supercoiling level between actively transcribed genes
would be very difficult to model quantitatively, our model voluntarily stays very simple in
this regard, and focuses instead on providing a qualitative overview of the range and com-
plexity of the regulatory interactions between neighboring genes that can be mediated by
the transcription-supercoiling coupling.

We showed that, in this model, gene regulation by DNA supercoiling is indeed a suf-
ficient mechanism to evolve environment- and gene-specific patterns of activation and in-
hibition. In particular, we observed the emergence of genes that are more expressed in a
relaxation-inducing environment (or relaxation-activated genes), even though this behavior
goes against the facilitated opening of the -10 promoter element by RNA polymerase dur-
ing the initiation of transcription (Forquet et al., 2021). This property has been analyzed in
detail in vivo in the classical example of the gyrA promoter, and was shown to result from
the unusual sequence of that promoter (Menzel and Gellert, 1987), but for many other genes,
this property is less firmly established and depends on the experimental conditions, with
experiments finding a proportion of relaxation-activated genes varying between 27% and
70% in S. enterica (Pineau et al., 2022). Our results demonstrate that this behavior can re-
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sult not only from the specific sequence of the promoter (as for the gyrA promoter), or the
length of its spacer (Forquet et al., 2022), but also from the local genomic organization (as
suggested in El Houdaigui et al. (2019)), and confirm the importance of this additional mode
of regulation for the first time in an evolutionary simulation.

We found that evolved genomes in the model are enriched in divergent pairs of always-
active genes, as well as in convergent pairs that act as bistable toggle switches (Gardner
et al., 2000; Johnstone and Galloway, 2022); the evolution of such systems substantiates the
theoretical predictions made by models that explicitly describe the movement of RNA poly-
merases during gene transcription, such as Sevier and Hormoz (2021). Then, we showed
that the local organization of the genome into convergent or divergent pairs of genes is not
sufficient to explain the transcriptional response of individuals to different environments,
but that larger subnetworks can be required to selectively inhibit genes in specific environ-
ments. Such regulation of gene expression through interaction with groups of neighboring
genes could help explain the evolutionary persistence of synteny groups between E. coli and
S. enterica (Junier and Rivoire, 2016), as well as through the evolutionary history of B. aphidi-
cola (Brinza et al., 2013). Indeed, we show that local interactions can play a role in regulating
the expression of neighboring genes, and genomic rearrangements might disrupt these local
interactions. Finally, we used transcriptional knockouts, adapting the classical tool of gene
knockouts (Baba et al., 2006) to our transcription-centric model, in order to characterize
the evolved gene regulatory networks in further detail. We first showed that these regula-
tory networks integrate the entire genome of evolved individuals into a single connected
unit, in opposition to the sparser, disconnected regulatory networks displayed by randomly
generated individuals. Then, we showed that the structure of these networks leverages the
transcription-supercoiling coupling to increase or decrease the sensitivity of genes to per-
turbations in the regulatory network, strengthening the differentiated expression patterns
that are the evolutionary target for each gene type.

All in all, our simulations demonstrate that the transcription-supercoiling coupling pro-
vides a regulatory mechanism that is precise enough for the evolution of complex regulation
patterns that only depend on the arrangement of genes on the genome.

Several work directions still remain open to investigation. From an evolutionary perspec-
tive, the experimental framework in which we tested our model is at present very simple,
and could be extended. The desired gene expression levels in our model are binary, target-
ing maximal or minimal transcription, but could be replaced by an arbitrary level between
these values for each gene, in order to see whether the local organization into pairs as well
as the whole-genome regulatory network that we described are preserved under these less
constrained conditions. Similarly, we could refine the environmental challenge faced by in-
dividuals by evaluating them in each environment in succession, rather than separately, or
by continuously changing the environment over evolutionary time. From a theoretical per-
spective, a range of mechanistic biophysical models of the transcription-supercoiling cou-
pling have been put forward, with different hypotheses underpinning the coupling: Brack-
ley et al. (2016) shows a phase transition in the transcription regime as the number of tran-
scribing RNA polymerases increases; Sevier and Hormoz (2021) shows that bursty transcrip-
tion can emerge from the transcription-supercoiling coupling; and Meyer and Beslon (2014)
and El Houdaigui et al. (2019) try to predict gene expression levels quantitatively from the
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local DNA supercoiling level. An important vindication of these theoretical approaches to
the interplay between supercoiling and transcription would therefore be to verify the extent
to which these models, including ours, conform to one another as the level of abstraction
changes. Moreover, integrating a model of gene regulation by DNA supercoiling into a more
comprehensive evolutionary model of the genome that allows for classical gene regulation
via transcription factors, such as the model presented in Crombach and Hogeweg (2008),
would help shed light on the coevolution between the different modes of gene regulation
that are available to bacterial genomes. Finally, from an experimental perspective, a better
understanding of the regulatory interactions caused by the transcription-supercoiling cou-
pling could help design more reliable synthetic genetic constructs, as explored in Johnstone
and Galloway (2022).

To the best of our knowledge, our work is the first to model the regulatory role of supercoil-
ing on transcription at a many-gene scale, using evolutionary simulations. It demonstrates
the importance of the direct interactions between genes that are mediated by local changes in
DNA supercoiling on their transcription rates, as well as the precision and versatility of the
regulatory activity stemming from these interactions. For experimentalists, it provides an
underlying theory that could help explain the heterogeneous transcriptomic response (with
both up- and down-regulation of multiple genes) observed in bacteria confronted to super-
coiling variations, due among others to virulence-inducing environments (Dorman, 2019) or
to gyrase-inhibiting antibiotics (de la Campa et al., 2017). For evolutionists, it provides a
plausible evolutionary rationale for the observed conservation of local gene order between
closely related bacteria (Junier and Rivoire, 2016) and along evolutionary histories (Brinza
et al,, 2013). Finally, for synthetic biologists, it provides a theory to help predict in finer detail
the gene transcription levels that can be expected from a given gene syntax (Johnstone and
Galloway, 2022), which could help design more robust genetic circuits.



Chapter 6

Evaluating the Robustness of the
EvoTSC Model

In this chapter, I explore the robustness of the characteristics of evolving populations to vari-
ations in the parameters of the EvoTSC model. To this aim, I present several sets of additional
evolutionary simulations. In these simulations, I first measure whether populations are able
to evolve differentiated gene expression patterns as a response to different environments in
the model variants. I then compare the speed of evolution of these populations with the main
runs presented in Chapter 5. I first explore the sensitivity of the model to the genome-level
parameters (see Table 6.1 below): the maximum interaction distance for the transcription-
supercoiling coupling, the mean intergenic distance, and the strength of the environment-
caused shift in background supercoiling. I then investigate simulating a higher number of
genes on the genome. Finally, I discuss the evolutionary effect of allowing intergenic dis-
tances to mutate, by introducing indels in intergenic sections as a new mutational operator
in the model. The data from this experiment is available online on the Zenodo platform.

Parameter Symbol Value # of Replicates
Interaction distance Amaz 5 kb 30
(Section 6.1) 25 kb 15
10 bp 15

Mean intergenic size Amean 125 bp 30
(Section 6.2) 1,000 bp 15
10,000 bp 15

0.0001 15

Environment supercoiling shift ~ do4/p 0.001 15
(Section 6.3) 0.01 30

Table 6.1: Table of the parameters and associated values explored in additional experiments
(separated by horizontal lines). For each experiment, the row in bold font corresponds to the
parameter values used in the main run described in Chapter 5, and is shown for reference.
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6.1 Interaction Distance

The size of the topological domains of bacterial genomes, inside which DNA supercoils can
freely propagate, has historically been estimated to be on the order of a few thousand base
pairs (El Hanafi and Bossi, 2000; Postow et al., 2004; Kouzine et al., 2013). Recent work has
however suggested that the size of transcription-generated twin domains could be much
larger than this, and reach up to 25 kb on either side of the transcribed gene (Visser et al.,
2022). As the size of the topological domains sets a limit to the number of genes that can
interact through the transcription-supercoiling coupling, it is likely to play an important
role in the structure of the supercoiling-mediated gene regulatory networks. By increasing
the number of genes a given gene is coupled with, a larger interaction distance could make
genomic inversions more deleterious by making them disrupt a larger part of the regulatory
networks at their boundaries, but it could also allow more robust regulatory networks to
evolve through a higher connectivity. In this section, I present simulations run with an
interaction distance of 25 kb, a five-fold increase from the value used in the main runs, in
order to test these hypotheses.
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Figure 6.1: Evolution of the number of activated genes in environment A (left) and environ-
ment B (right), with an interaction distance of 25 kb. Lighter lines represent the first and last
decile of the data.

Figure 6.1 shows the evolution of the number of activated genes of each type in the sim-
ulations with the interaction distance of 25 kb, over 250,000 generations (to be compared to
Figure 5.4 in Chapter 5). As in the main run, the number of activated genes of each type
evolves towards their respective target. Differentiated activation patterns can therefore still
evolve even when the topological domains are 5 times larger.
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Figure 6.2: Average fitness during evolution with an interaction distance of 25 kb (light blue),
and in the main run (dark blue). Lighter lines represent the first and last decile of the data.

Figure 6.2 shows the evolution of the average fitness of the best individual in each repli-
cate of the simulation with a larger interaction distance, compared with the evolution of
fitness in the main run, over 250,000 generations. While fitness is systematically lower
throughout evolution with the larger interaction distance, it nonetheless follows a quali-
tatively similar curve, and keeps on increasing until the end of the runs, suggesting that it
could eventually reach the same value as in the main run (presented in full in Figure 5.2).
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Figure 6.3: Average gene expression by type as a function of background supercoiling, with
an interaction distance of 25 kb. The dash-dotted line represents the average expression of
genes on a random genome with an interaction distance of 25 kb.
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Figure 6.3 shows the average gene expression by type of evolved individuals, as a func-
tion of the background supercoiling level. As in the main run, A genes display a relaxation-
activated phenotype. AB and B genes are relaxation-inhibited, but nonetheless display quite
different behaviors than the (dash-dotted light blue) curve for genes on a random genome
with the same parameters, which present a much flatter response curve to background su-
percoiling than with the default interaction distance of 5 kb (shown in Figure 5.5).
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Figure 6.4: Average gene expression as a function of background supercoiling in random
genomes with increasing interaction distances (full lines), and theoretical expression level of
an isolated gene (dashed line).

Comparing the effect of background supercoiling variation on the transcriptional activ-
ity of genes on random genomes with an interaction distance of 5 kb (Figure 5.5) or 25 kb
(Figure 6.3) seems to indicate that a larger interaction distance buffers the effect of the back-
ground supercoiling on gene expression in the model. In order to test this hypothesis, I
measured the average gene expression as a function of background supercoiling in random
genomes with maximum interaction distances ranging from 1 kb to 50 kb, with an average
intergenic distance remaining constant at 125 bp. For each interaction distance, I generated
100 genomes, and made each genome undergo 100 replication events to shuffle the genes on
the genome via genomic inversions. Figure 6.4 shows the result of this experiment. As the
interaction distance increases, the response curve of genes to a changing background super-
coiling level indeed becomes flatter and flatter, which can be interpreted as a buffering of the
effect of the environmental perturbation on gene expression by the supercoiling-mediated
interaction of a higher and higher number of genes. Conversely, as the interaction distance
gets closer to zero, the curve is closer and closer to that of an isolated, non-interacting gene.



6.2. MEAN INTERGENIC SIZE 73

45 45

| Gene type | Gene type
40 AR 40 B AB
351 Il A 354 A
] I B Q ] I B
3 30 9_) 30
—_
825— §25
-g 201 g 201
— 154 O 154
10 10+
5’ 5,
0- " 0 "
25 kb 5 kb (main) 25 kb 5 kb (main)

Figure 6.5: Average out-degree (left) and in-degree (right) of the genes in the effective in-
teraction graph, separated by gene type, for individuals with an interaction distance of 5 kb
(main run) or 25 kb.

Figure 6.5 finally presents the average in- and out-degree of the genes in the effective
interaction graph obtained with gene knockouts, compared to the same data from the main
run. As could be expected, the gene regulatory networks are much more connected with
the larger interaction distance, but the behavior for each gene type remains qualitatively the
same as in the main run.

Overall, the evolution of supercoiling-mediated gene regulatory networks that are able to
show environment-specific activation patterns, and in particular relaxation-activated genes,
therefore seems robust in our model to a larger interaction distance. Even when the networks
are more densely connected, buffering gene expression, the reorganization of the genome via
genomic inversion allows for specific behaviors for each gene type.

6.2 Mean Intergenic Size

In the main run, I set the initial intergenic distance between every gene to 125 bp, or a gene
density of 88%, representing the average E. coli intergenic distance (Postow et al., 2004). Bac-
teria actually present a wider range of gene densities, from 51% in Sodalis glossinidius, a
bacteria that is undergoing massive pseudogenization after recently adopting an endosym-
biotic lifestyle (Toh et al., 2006), up to 95% in Thermotoga maritima, an extremophile bacteria
living in heated marine sediment (Nelson et al., 1999). Like the interaction distance, the
mean intergenic distance plays a role in the connectivity of the gene regulatory networks
that stem from the transcription-supercoiling coupling: when the mean intergenic distance
is small, more genes can on average be affected by the transcription of any given gene. Con-
versely, when the mean intergenic distance is large compared to the interaction distance, the
emergence of regulatory subnetworks isolated from each other by large intergenic regions
becomes possible. In this section, I test the robustness of the results with regard to the range
of gene densities found across living organisms. I present simulations with mean intergenic
distances increasing logarithmically from 10 bp (or a gene density of 99%), comparable to the
median intergenic distance of 3 bp found in Pelagibacter ubique, a free-living marine bacte-
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ria (Giovannoni et al., 2005), up to 10 kb (or a gene density of 10%), akin to the gene-scarce
eukaryotic genomes (Davila Lopez et al., 2010).
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Figure 6.6: Average number of activated genes per gene type in environment A (left) and
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(main run), 1 kb, and 10 kb. Lighter lines represent the first and last decile of the data.

Figure 6.6 shows the evolution of the number of activated genes for each gene type in
each environment, with mean intergenic distances increasing from top to bottom, for 250,000
generations. For intergenic distances of 10 bp and 1 kb, the number of activated genes con-
verges towards the target in each environment, as in the main run (which has a mean inter-
genic distance of 125 bp). For a mean intergenic distance of 10 kb, the behavior is however
qualitatively different. While AB genes and B genes evolve towards the correct activation
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state in each environment, the proportion of activated A genes stays close to 50% in each
environment, showing that A genes do not evolve a well-differentiated expression pattern
depending on the environment.
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Figure 6.7: Average fitness during evolution for average intergenic distances of 10 bp, 125 bp
(main run), 1 kb, and 10 kb. Lighter lines represent the first and last decile of the data.

Figure 6.7 shows the evolution of the average fitness of the best individual in each repli-
cate of the simulations, for each value of the mean intergenic distance, including the main run
for comparison. It confirms the results seen in the previous figure: for intergenic distances
from 10 bp to 1 kb, populations evolve successfully towards differentiated gene activation
patterns. For an intergenic size of 10 kb (in light blue), however, fitness increases much more
slowly, and seems to converge towards a much smaller value.
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Figure 6.8: Average gene expression as a function of background supercoiling, with an inter-
genic distance of 10 kb.

Figure 6.8 shows the average gene activity as a function of background supercoiling, for
the best individual in each of the replicates with a mean intergenic distance of 10 kb. In
this case, we do not observe the clear relaxation-activated phenotype for A genes that was
present in the main simulation. Instead, the average expression level of A genes is indeed
slightly lower in environment B than in environment A, but remains close to half expression
for background supercoiling values between -0.08 and -0.05; on the contrary, both B and AB
genes display expression curves that closely match their respective targets. Note also that,
with an intergenic distance of 10 kb, the average activity of genes on random genomes is
almost identical to that of an isolated gene (as could be expected).
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Figure 6.9: Average gene expression as a function of background supercoiling in random
genomes with increasing mean intergenic distances (full lines), and theoretical expression
level of an isolated gene (dashed line).

Figure 6.9 shows the expression level as a function of background supercoiling for genes
on random genomes with increasing mean intergenic distances. For distances from 10 bp to
1 kb, the curves are qualitatively similar to one another, and quite different to the expression
of an isolated, non-interacting genes. In particular, gene expression levels are sensibly lower
than the maximum in both environment A and environment B. On the other hand, for a mean
intergenic distance of 10 kb (in light blue), genes behave very closely to an isolated gene, and
are all almost fully activated in both environments. This behavior is also visible in Figure 6.6
(bottom row) at the beginning of evolution, and explains the initially much lower fitness at
an intergenic distance of 10 kb compared to the other values in Figure 6.7.

Several hypotheses could explain the incomplete fulfillment of the evolutionary target
in simulations with a mean intergenic distance of 10kb. First, individuals begin evolution
at a much lower fitness with a mean intergenic distance of 10 kb. This initial impediment
however does not explain why the number of activated A genes remains similar in both en-
vironments throughout evolution, contrary to the other runs. Another possible explanation
could come from the mutational operator — genomic inversions — used during evolution.
As the endpoints of the genomic inversions are chosen by picking two bases uniformly at
random in the intergenic regions, the number of fully neutral inversions increases with the
size of these regions. Indeed, if the two endpoint of an inversion fall in regions that are not
within interaction distance of any gene, the inverted region does not interact with the rest
of the genome, and the inversion is therefore completely neutral. The increased proportion
of neutral mutations when the intergenic distance is too large could make the exploration
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of the fitness landscape more difficult for populations, by creating hard to cross fitness val-
leys or plateaus between fitness peaks. There is indeed no theoretical reason why genomes
with large intergenic distances could not reach comparable fitnesses to the other intergenic
distances in the mode, as a genome in which most of the intergenic content is compacted
into a single intergenic region would have a qualitatively similar behavior, except for the
few bordering genes on each side, to the same genome with a short intergenic region in the
same position.

Evolution of gene regulation by supercoiling is therefore overall resilient to the range of
gene densities seen in bacteria, but the evolution of relaxation-activated genes breaks down
at the lower gene densities that are more characteristic of eukaryotes.

6.3 Environmental Shift in Supercoiling

In the model, the environmental shifts in supercoiling 04 and op represent the effect of
external stresses, such as salt shock, or pH or temperature changes, on the DNA supercoiling
level, as they affect for example topoisomerase activity. In this section, I tested the robustness
of the evolution of differentiated expression levels when the shift in supercoiling caused by
the environment o4 and o is 10 times and 100 times smaller than in the main run, i.e. when
the stress is of a lower intensity. The approach is similar to the one presented in Section 4.2.6,
which however uses the proof-of-concept version of the model.
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Figure 6.10: Evolution of the number of activated genes in environment A (left) and envi-
ronment B (right), with environmental supercoiling shifts 04 = 1072 and o3 = —1072 (top)
and o4 = 107" and o5 = —10~* (bottom). Lighter lines represent the first and last decile of
the data.

Figure 6.10 shows the evolution of the number of activated genes for each gene type
in each environment, with environmental shifts in supercoiling 10 times smaller than the
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main run (top) and 100 times smaller (bottom), for 250,000 generations. In both cases, differ-
entiated gene expression patterns evolve, although evolution seems to be slower when o4
and op are 100 times smaller than in the main run. This shows that evolution of different
gene expression levels as a response to externally-induced perturbations in the supercoil-
ing level can therefore take place even when these perturbations are very minute compared
to translation-generated supercoiling, and reinforces the plausibility of the hypothesis that
DNA supercoiling can be used as an sensory device for the regulation of gene expression in
response to environmental stress.

—— 0, =|0g| =1072 (main)
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Figure 6.11: Average fitness during evolution, with environmental shifts in supercoiling loga-
rithmically decreasing in absolute value: 04 = 1072 and 0z = —10~2 (main run), o4 = 1073
and o = —1072 (10 times smaller than in the main run) and 04 = 10~* and o = —107*

(100 times smaller than the main run). Lighter lines represent the first and last decile of the
data.

Figure 6.11 shows the evolution of the average fitness of the best individual in each repli-
cate, for each pair of environmental supercoiling values. It confirms the results seen in the
previous figure: fitness keeps increasing throughout the simulation in all cases, but more
slowly when the environmental perturbation is the smallest.



80

CHAPTER 6. EVALUATING THE ROBUSTNESS OF THE EVOTSC MODEL

Environmental shift in supercoiling (60¢n,)

—0.04 —0.02 0.00 0.02 0.04 0.06
1 1 UB IUA 1 1 1

1.0

© © o o
N H (o)} oo
1 1 1 1

Average gene expression by type

o
o
1

AB
A
B
Random
Isolated gene

-0.12

-0.10 —0.08 —0.06 -0.04 -0.02
Background supercoiling (Opasas + 6Teny)

Figure 6.12: Average gene expression as a function of background supercoiling, with envi-
ronmental supercoiling shifts 04 = 1072 and o5 = —1073,

Figure 6.12 shows the average gene expression per gene type as a function of background
supercoiling, for the best individuals at the end of evolution with environmental shifts in
supercoiling of 04 = 1073 and 0 = —1073. Even though the difference between the two
environments is 10 times smaller than in the main run, A genes are still able to evolve a
relaxation-activated phenotype, and B genes are still able to quickly transition from high
activation to high inhibition in a much shorter range of supercoiling values.
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Figure 6.13: Average gene expression as a function of background supercoiling, with envi-
ronmental supercoiling shifts 04 = 107* and 03 = —107%. The inset at the top right of the
figure shows a 150x zoom on supercoiling shift values near zero.

Figure 6.13 similarly shows average gene expression per gene type as a function of back-
ground supercoiling, this time with environmental supercoiling shifts 04 = 10~ and op =
—10~*. Strikingly, A genes and B genes are still able to evolve different expression levels in
the two environments, even though they are 100 times closer than in the original experiment
(see the inset for the precise expression levels between o and 0 4). Even when the environ-
ments have an effect that is around 100 times smaller than the transcription-generated su-
percoiling (see Figure 5.3 for an example genome and the associated transcription-generated
supercoiling values), the gene regulatory networks that evolve in the simulations are still
able to separate the different environments and lead gene expression levels to very different
states.

These results further confirm the results of the parametric exploration of the proof-of-
concept version of EvoTSC, at the end of Chapter 4. They show that perturbations that have
little to no effect either on an isolated gene, or on a random genome (averaging over every
gene), can be picked up and amplified by supercoiling-mediated gene regulatory networks,
and result in clearly differentiated gene expression levels.

6.4 Number of Genes

All the simulations presented up to now were run with n = 60 genes on the genomes of indi-
viduals. Although genes in our model correspond to transcriptional units, and could describe
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operons that contain multiple genes, this number remains much lower than the real number
of genes in bacteria, which ranges from the 482 protein-coding genes found in Mycoplasma
genitalium, the bacteria with the smallest-known genome (Glass et al., 2006), up to over 9,000
predicted genes in Sorangium cellulosum (Schneiker et al., 2007). At first sight, increasing the
total number of genes in the model should not qualitatively change the simulation results,
as with a genome size of 60, genes already only interact via the transcription-supercoiling
coupling with a small proportion of the genome. In order to verify this hypothesis, I ran sim-
ulations with n = 300 genes, with maximum supercoiling interaction distances of d,q. =
5 kb (the value used in the main runs) and d,,,,, = 25 kb. As the algorithmic complexity of the
EvoTSC scales quadratically with the number of genes, the simulations were run for 100,000
generations only to keep their execution time manageable, but the simulations already show
qualitative results by that time.

1001 1001
0n e o~ - 0
Q g0/ ¢ 801 RPN
() ()
o 60; - | 2 601
s o
2 2
g 401 n=300 g 401 n=300
= — AB o s | S O bt
Q 20 A O 20 A
< <
— B — B
01 01
10° 10! 102 103 104 10° 10° 10! 102 103 104 10°
Generation Generation
100 100
] ]
2 801 c 807‘//‘—
() ()
O 4o o GO’M
el el
3 3 M
2 40+ n'=300 (dmax = 25 kb) 2 401 n=300 (dmax = 25 kb)
2 — AB ’"‘W\ £ 5] — AB
< = A < = A
— B — B
0 01
10° 10! 102 103 104 108 10° 10! 102 103 104 10%
Generation Generation

Figure 6.14: Evolution of the number of activated genes in environment A (left) and envi-
ronment B (right), with a genome containing 300 genes, and an interaction distance of 5 kb
(top) and 25 kb (bottom). Lighter lines represent the first and last decile of the data.

Figure 6.14 shows the evolution of the number of activated genes of each type in each
environment, for populations of individuals with a 300-gene genome, for 100,000 generations.
While these simulations lasted only for 100,000 simulations, the evolutionary trajectories are
already different from the ones taken by the main run (in Figure 5.4). Different numbers of
activated genes evolve in each case as a function of the environment supercoiling, but the
patterns differ depending on the interaction distance. With the shorter interaction distance,
the number of activated genes of each type seems to plateau after about 10,000 generations
(top). On the contrary, evolution seems to continue by the end of the runs for the wider
interaction distance (bottom).
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Figure 6.15: Average fitness during evolution, with a 300-gene genome, and an interaction
distance of 5 kb or 25 kb. Lighter lines represent the first and last decile of the data.

Figure 6.15 shows the evolution of the average fitness of the best individual in each repli-
cate of the simulations with 300 genes per individual, compared to the main run. As expected
given the high proportion of A genes with an incorrect activation state in each environment
that is visible in both sets of simulations in Figure 6.14, the fitness of the runs with 300 genes
remains much lower than the fitness of the main runs throughout evolution. Moreover, the
fitness trajectory in the runs with 300 genes also depends on the interaction distance, in ac-
cordance with the evolution of the number of activated genes in each environment presented
above. For an interaction distance of 5 kb, fitness indeed seems to plateau at a much lower
value than the main run by the end of the 100,000 generations, while it keeps on steadily
increasing for an interaction distance of 25 kb.

Figure 6.16 shows the average expression of genes for each gene type as a function of the
background supercoiling level, for interaction distances of 5 kb (top) and 25 kb (bottom). In
both cases, and similarly to the simulation with a 10 kb intergenic distance, A genes do not
seem to meaningfully evolve a relaxation-activated phenotype by the end of the simulations.
With 300 genes, the response of each gene type seems to diverge less from the behavior of
genes on a random genome than in the other simulations presented above. In particular, with
an interaction distance of 5 kb, the average activity of A genes is above the activation thresh-
old at o (i.e., in environment B), in contrast to all the other experimental settings except
when the mean intergenic distance is 10 kb (Figure 6.8). With an interaction distance of 25
kb, the average expression of A genes on the contrary goes below the activation threshold at
op and above the threshold at 04, which correlates with the higher fitness observed for this
value of the intergenic distance.
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Figure 6.16: Average gene expression as a function of background supercoiling, with a 300-
gene genome and an interaction distance of 5 kb (top) and 25 kb (bottom).

A possible hypothesis for the slower evolution of the runs with n = 300 genes lies in
the much larger size of the fitness landscape to explore during evolution through genomic
inversions, and in the combinatorics of these inversions. As an inversion is defined by two
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points chosen on the genome, the number of different inversions grows with the square of its
size; if we disregard the role of the intergenic sequences (which have an average length of 125
bp in all the runs in this section), this number grows with the square of the number of genes.
The number of inversions to explore in order to find beneficial relative gene positions could
therefore be much higher in larger genomes; as the number of inversions does not depend
on genome size, larger genomes could take more time to explore the fitness landscape. A
second hypothesis also depends on the number of genes affected by inversions, but in a
slightly different way. As the end points of genomic inversions are chosen at random, the
average size of an inversion is of half the genome with all parameter values, but the absolute
distance between the end points of the inversion changes with the number of genes on the
genome. In larger genomes, the genes located near one of the end points of an inversion
are therefore further apart from the genes located near the other end point of the inversion,
and could therefore be more rarely part of the same gene regulatory network than in smaller
genomes. In particular, inversions affecting only a few genes could be rarer, making it more
difficult to locally adjust gene regulatory networks, even though the relative orientation of
neighbors and local networks play an important role (see Chapter 5). This would in particular
explain why the runs with 300 genes but a larger interaction distance evolve better, as the
breadth of the regulatory networks increases with the interaction distance.

A further investigation of the behavior of the model with larger number of genes could
therefore seem warranted, but the overall qualitative evolution of different gene activation
levels in response to environmental perturbations remains present when increasing the num-
ber of genes on the genome in the model, at least when the interaction distance is large.

6.5 Introducing Indels

In Section 6.2, we saw that the evolution of differentiated gene expression patterns depends
on the mean intergenic distance: at low to intermediate values (akin to bacterial genomes),
genes present environment-specific activity levels, while A genes fail to do so at the largest
tested intergenic distance (akin to eukaryotic genomes). In order to understand more finely
the role of intergenic distances in the evolution of the regulatory networks underpinning
these expression patterns, I introduced a new mutational operator which allows these dis-
tances to evolve, through the addition or deletion of a small number of bases between genes
(indels). The last set of simulations presented in this chapter tackle the exploration of the
model with this additional mutational operator.

In order to perform an indel in the model, we first pick a number of base pairs to add
or delete, by drawing from a normal distribution N'(0, s?), with s> = 10. Then, we draw
uniformly at random a gene, and add or remove the corresponding number of bases from
the intergenic section starting immediately after that gene, in the forward direction. If the
intergenic section is too small to delete the chosen number of base pairs, we try drawing an-
other gene at random, before giving up after a certain number of tries. For these simulations,
I ran 15 replicates for 1,000,000 generations (as in the main runs in Chapter 5), in order to
allow for the mean intergenic distance to converge. The initial value of the mean intergenic
distance was set to 125 bp, in order to match the main set of simulation.
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Figure 6.17: Average intergenic distance during evolution with indels, compared with the
constant average intergenic distance in the main run. Lighter lines represent the first and
last decile of the data.

Figure 6.17 show the evolution of the mean intergenic distance, averaged over the best
individual of each replicate, at every generation, compared to the initial value of 125 bp.
The average intergenic distance actually decreases during evolution, and seems to converge
to a value of around 40 bp. This result is opposite to what could have been expected, as
the highest fitness when varying intergenic distances is actually reached for a value of 1 kb
(Figure 6.7). There therefore seems to be a selection pressure towards reducing intergenic
distances through indels, even though this does not lead to the highest attainable fitness.
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Figure 6.18: Evolution of the number of activated genes per gene type in environment A (top)
and environment B (bottom), with indels. Lighter lines represent the first and last decile of
the data.

Figure 6.18 shows the evolution of the number of activated genes of each type, in each
environment. Similarly to the main run, differentiated expression levels evolve in the two
environments, with in particular around 75% of A genes activated in environment A and 75%
of A genes inhibited in environment B.
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Figure 6.19: Average fitness during evolution, with indels and without indels (main run).
Lighter lines represent the first and last decile of the data.

Figure 6.19 shows the average fitness during evolution of the individuals in the simula-
tions with intergenic distance mutations, compared to the main simulations. As in the runs
with an intergenic distance of 10 bp (in Figure 6.7), evolution progresses quite similarly to the
main run. Consistently with the observed evolution of the mean intergenic distance, but still
surprisingly as evolution towards higher intergenic distances could be possible, populations
with indels attain a lower fitness after 1,000,000 generations (1.12 - 1073) than populations
with a constant mean intergenic distance of 1 kb after 250,000 generations (3.78 - 1072).
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supercoiling, with indels.
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Finally, Figure 6.20 shows the average gene activity for each gene type as a function
of background supercoiling, for the simulations with indels. Consistently with the results
obtained in Section 6.2, we can see that A genes display a relaxation-activated phenotype.

These results seem to suggest that, even though evolving towards higher intergenic dis-
tances would allow populations to reach greater fitnesses, there is a stronger selection pres-
sure that keeps intergenic distances at a low value. As in section 6.4, this selection pressure
could be related to the combinatorics of genomic inversions. As the number of different in-
versions grows quadratically with the number of intergenic bases, reducing the mean inter-
genic distance diminishes the size of the evolutionary space that is available through genomic
inversions. If beneficial inversions happen more often in individuals with reduced genomes
than with larger genomes, that is if the evolvability of reduced genomes is higher than that of
larger genomes, then a small mean intergenic distance could provide a short-term evolution-
ary advantage even though it leads to a lower fitness peak in the long term. Although this
hypothesis warrants further investigation, these results could be interpreted as an indirect
conflict between direct selection favoring a higher-dimensional fitness landscape with higher
peaks, and indirect selection favoring a lower-dimensional fitness landscape with more easily
reachable peaks.

6.6 Discussion

The simulations carried out with the different parameter values presented above show that
the results obtained with the model are overall quite robust, as differentiated gene expression
by type and environment evolve over a wide range of biologically relevant values. In par-
ticular, these results are robust with regard to the size of topological domains, which corre-
sponds to the maximum interaction distance for the transcription-supercoiling coupling and
has been given different experimental values; to the mean intergenic distance, in a range that
is representative of the bacterial species; and to the intensity of changes in the background
supercoiling that represent environmental sources of stress. The gene regulatory networks
that evolve in the model can indeed differentiate between environments that create much
smaller differences in local supercoiling than those due to transcription itself.

Overall, changing the value of each parameter in the model has two main consequences.
The first — direct — consequence is to affect the phenotype of individuals, by modulating
the effect of the transcription-supercoiling coupling on gene expression (for example, by in-
creasing the number of neighbors a gene interacts with). This direct effect is illustrated in
Figures 6.4 and 6.9. The second - indirect — consequence is to change the structure of the
fitness landscape that underlies the possible evolutionary trajectories, by possibly affecting
its dimension, its ruggedness, or the number and proportion of beneficial, neutral, and dele-
terious mutations. This indirect effect is illustrated in Figures 6.7 and 6.15. The fact that
genomes with a higher number of genes or intergenic distances (above 10 kb) are not able
to evolve a fitness as high as that of the smaller genomes exemplifies the strength of this
second effect. Indeed, as the number of available mutations using the mutational operator
of genomic inversions scales quadratically with the number of base pairs on the genome (as
described above), the proportion of possible genotypes that can be explored over a given
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number of generations with a constant number of individuals diminishes with as genome
size increases. In order to quantify this effect, an interesting experiment would be to run
additional simulations in which every length-related parameter (maximum interaction dis-
tance, mean intergenic distance, and gene length) is scaled down by the same factor. This
would indeed allow us to control the number of available mutations and therefore the speed
of evolution, but should in principle not affect the biological relevance of the model.

Finally, introducing indels as an additional mutational operator reveals further charac-
teristics of the fitness landscapes that emerge in the model. Indeed, it is in simulations with
an intergenic distance of 1 kb that populations reached the highest fitness, but the intergenic
distances in the simulations with indels surprisingly evolved towards smaller intergenic dis-
tances, resulting in a comparatively lower fitness. As the simulations with indels started
with an intergenic distance of 125 bp, it would be interesting to explore different initial val-
ues of this parameter to see whether populations always converge towards lower intergenic
distances, or if there is a threshold above which the higher fitness peak observed at high
intergenic distances can be reachable. In particular, a possible hypothesis to explain the at-
traction to low mean intergenic distances in simulations with indels could again be related
to the genomic inversions, through a second-order selection for robustness or evolvabil-
ity. If larger genomes have descendants that more frequently have lower fitness because of
deleterious inversions than smaller genomes (or respectively less frequently have higher fit-
ness), there could be a short-term indirect selection pressure towards smaller genomes, even
though the fitness peak that is reachable in the long-term is lower than with larger genomes.
In order to quantify the effect of these second-order selection pressures, both the robustness
and evolvability of individuals in the model could be estimated experimentally, by measuring
the average fitness of a large number of descendants of individuals taken from populations
evolved with different parameter values.

The structure of the fitness landscape, as it emerges from the interplay between the bio-
logical parameters that control the supercoiling-mediated interaction between neighboring
genes and the mutational operators that generate new genomes, therefore seems to play a
fundamental role in determining the evolutionary trajectories that are available to evolv-
ing populations in the model. However, in bacterial genomes, mutations can also affect the
supercoiling level, resulting in changes to the structure itself of this fitness landscape over
the course of evolution. For this reason, a better understanding of the evolution of this fit-
ness landscape, or equivalently of the role that supercoiling mutations play in determining
the evolutionary trajectories that are available to populations, could help shed light on the
epistatic interactions between mutations in the EvoTSC model.






Chapter 7

Looking for Supercoiling Epistasis in
EvoTSC

The results obtained with the EvoTSC model that I have presented up until now tackle the
role that DNA supercoiling plays in the evolution of the structure of bacterial genomes, via
the transcription-supercoiling coupling. In this chapter, I take the EvoTSC model in another
direction, and go back to the idea of epistasis between mutations in the supercoiling level and
other mutations, which was the question at the root of the research agenda of my PhD. In the
experiment conducted with Aevol and presented in Chapter 3, the main hypothesis to explain
why I was not able to detect a signal of epistasis between supercoiling mutations and other
kinds of mutations is that the model of supercoiling that I implemented could have been too
simplistic. That model might indeed not leave room for supercoiling mutations to open up
evolutionary paths in the fitness landscape, and allow the lineages that bear these mutations
to evolve faster than other lineages. In EvoTSC, supercoiling is on the contrary sufficiently
finely modeled to allow the evolution of regulatory networks based on local variations in
the supercoiling level (as shown in the previous chapters), which indicates that supercoiling
mutations could present such an evolutionary role in this model.

In this chapter, I present an experiment — inspired by the LTEE — in which I measure
whether previously evolved individuals can adapt faster to new environmental conditions
with or without supercoiling mutations, in order to verify this hypothesis using the EvoTSC
model. In the LTEE, supercoiling mutations have indeed been shown to evolve repeatedly,
and to confer direct fitness benefits (Crozat et al., 2005, 2010). In order to let the supercoiling
level of individuals in EvoTSC evolve, I introduce a mutational operator similar to the one
used in the Aevol experiment presented in Chapter 3. Unlike in the Aevol experiment, the
non-linear effect of the basal supercoiling level on gene expression in the EvoTSC model could
allow populations with supercoiling mutations to follow qualitatively different evolutionary
trajectories than populations with a constant supercoiling level in this model. In this chapter,
I first present the methodology of this experiment, including the new mutational operator
for the evolution of the supercoiling level. Then, I show that in this experiment, populations
indeed adapt faster to new environments with supercoiling mutations than without super-
coiling mutations. Finally, in order to understand this evolutionary advantage, I investigate
the fitness landscapes that result from supercoiling mutations in the EvoTSC model.

91
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7.1 Experimental Framework

Performing exactly the same experiment as the Aevol experiment described in Chapter 3
by measuring the waiting intervals before and after supercoiling mutations is not possible in
EvoTSC (at the time of writing), as the ancestry tree of the population throughout generations
and the precise set of mutations at each reproduction event are not recorded. Studying the
lineage of the final population in order to study the properties of the mutations that fixed in
the lineage is therefore not possible in EvoTSC. In order to evaluate the possible epistatic in-
teractions between supercoiling mutations and other mutations in EvoTSC, I instead devised
another experiment, which reproduces the setup of the LTEE in an in silico setting.

This experiment consists in two successive evolutionary runs. First, I let two sets of pop-
ulations — with and without supercoiling mutations - evolve for 1,000,000 generations, and
extracted wild-type individuals from these evolved populations. To obtain these wild-types,
I reused the 30 populations that already evolved without supercoiling mutations that I pre-
sented in Chapter 5, and let 10 fresh populations evolve with supercoiling mutations. Then,
I subjected these wild-types to new environmental conditions, replicating the beginning of
the LTEE. In order to model these new conditions within the EvoTSC model, I reassigned at
random the types (A, B or AB) of every gene in the genome of the wild-type individuals, while
keeping constant the number of genes of each type in the genomes. As the environment in
EvoTSC is represented by a pair of environments (A and B) with different gene expression tar-
gets, this corresponds to replacing the original environments with new environments A’ and
B’, in which different subsets of genes (A’, B, or AB’) must be activated or inhibited. Through-
out this chapter, I will refer to this change of environment as an environmental shock, and
to the individuals with shuffled gene types as shocked individuals. For the sake of clarity, I
also refer to the new environments as A and B, and to the new gene types as A, B and AB.
Note that, as there are three gene types, any given gene has a one in three chance of keeping
the same type (and expression target) after the shock, and a two in three chance of having
a new type. I then used these shocked individuals to create new populations, and let these
populations evolve again in the new environments in order to study their re-adaptation.

7.1.1 Introducing Supercoiling Mutations

The mutational operator that I used for the mutations in the basal supercoiling level 0,54, of
individuals in EvoTSC is similar to the one that I implemented in Aevol and that is presented
in Section 3.3.3. When mutating an individual, we first decide whether to mutate its basal
supercoiling level with a probability p, and draw a small change d04s4 to be added to the
supercoiling level according to a normal law N'(0,s?). In this experiment, p = 0.1 and
52 = 0.0001. Then, exactly as in the main experiment, the individual can undergo a series of
genomic inversions which rearrange the relative position of genes on its genome.

Figure 7.1 presents the average fitness (top) and basal supercoiling level (bottom) of the
best individual in each replicate during the evolution of the wild-type populations, with and
without supercoiling mutations. We can first see that, in the wild-types that evolve with su-
percoiling mutations (light blue), fitness evolves in a qualitatively similar fashion to the main
run, and is slightly higher by the end of evolution than without supercoiling mutations (dark
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Figure 7.1: Top: average fitness of the best individual in every replicate during evolution, for
the 10 wild-types with (light blue) and the 30 wild-types without (dark blue) supercoiling
mutations. At the last generation, the fitness of populations with supercoiling mutations
is significantly higher than the fitness of populations without supercoiling mutations (p =
7.3 - 107, Student’s t-test for independent samples). Bottom: average basal supercoiling
level of the best individual in every replicate during evolution of the wild-types with (light
blue) and without (dark blue) supercoiling mutations. Lighter lines represent the first and
last decile of the data.
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Figure 7.2: Genome of one of the wild-types that evolved with supercoiling mutations (left),
and shocked individual created from that individual (right), both evaluated in environment
A. The gene type (color) and activity (light or dark) of two-thirds of the genes changes, but
not the local supercoiling level, as relative gene positions and gene expression levels remain
constant.

blue, see the statistical test in the caption of the figure). Then, looking at the basal super-
coiling level, we can see that the average level of negative supercoiling decreases over time
during evolution. This indicates that the supercoiling level can indeed be targeted by selec-
tion in the model, and that there is a clear selection pressure towards reducing the amount
of negative supercoiling in the specific context of this experiment. A possible hypothesis
to explain both the higher fitness and lower negative supercoiling level of wild-types with
supercoiling mutations comes from recalling that, with the initial basal supercoiling level
of opesar = —0.066, genes tend to have a high expression level in both environments (see
the dash-dotted curve of Figure 5.5). As a consequence, decreasing the level of negative
supercoiling of the genome corresponds to shifting the background supercoiling in both en-
vironments to a less negative value. This decreases the bias towards high gene expression
that is present in both environments, and therefore facilitates gene inhibition when required
by the environment (data not shown).

7.1.2 Environmental Shock

In order to simulate the effect of an environmental shock on a given individual, that is to say
of replacing environments A and B by new environments A’ and B’, we assign a new type at
random to every gene on the genome of this individual, ensuring that the number of genes
of each type remains constant. As there are 3 gene types (A, B, and AB), each gene has one in
three chances of effectively staying of the same type, and two in three chances of effectively
changing types. This represents the fact that some genes that had to be activated (resp.
inhibited) in environment A or B must now be inhibited (resp. activated) in environment A’
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or B’. Note that the only element of the environments that changes is the subset of genes
that must be activated in each environment, but not the shift in supercoiling o4 or op that
is caused by either environment.

A representative example of an environmental shock is depicted in Figure 7.2. On the
left-hand side is the genome of a wild-type individual that evolved with supercoiling mu-
tations, and on the right-hand side is the result of applying an environmental shock to this
individual. The type (color) of two third of the genes changes, but not the local supercoiling
level along the genome, as the gene positions themselves — and hence their expression level,
as determined by the transcription-supercoiling coupling - remain unchanged. As a result, a
large number of genes end up wrongly activated or inhibited, which opens the door to future
compensatory mutations in the re-adaptation to this new environment: while the fitness of
the wild-type was 1.34 - 1072, the fitness of the shocked individual is only 3.08 - 10727

7.1.3 Experimental Protocol

The populations that I used for the wild-types without supercoiling mutations are the main
populations already presented in detail in Chapters 5 and 6. For the wild-types with super-
coiling mutations, I evolved 10 new populations, for the same number of generations as the
main runs, with all other parameters kept exactly the same. I then chose 5 representative
wild-types at random from each set of simulations. From each of these wild-type individuals
that evolved with or without supercoiling mutations, I created 5 different shocked individ-
uals with shuffled genes, resulting in a total of 25 shocked individuals. For each shocked
individual, I then created 5 populations, each initialized with clones of that individual but
using different seeds, and let each population evolve for 50,000 generations, in order to re-
cover from the environmental shock. This allowed me to compare the speed of the initial
evolution after the shock in 125 populations with supercoiling mutations, and 125 popula-
tions without supercoiling mutations. All the data from this experiment is available online
on the Zenodo platform.


https://doi.org/10.5281/zenodo.7304834
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7.2 Results

7.2.1 Evolution after an Environmental Shock

20 20

e T

—
SC mutations SC mutations
AB

AB .
— A
— B — B

Em——

—
wu
=
wu

(S}

Activated genes
w5

Activated genes
=
o

— A

o
o

10° 101 102 103 104 10° 10 102 103 104
Generation Generation

20

N
o

) 4 _/‘,\M/M
2 15 2 15
9] \\—_‘——/ o
(o)} (o)}
© ©

10
fof— . \
© No SC mutations © No SC mutations
2 5 — AB 2 5 — AB
< — A < — A

— B — B
0 0
10° 10! 102 103 104 10° 10! 102 103 104
Generation Generation

Figure 7.3: Average number of activated genes of each type in environment A (left) and B
(right) during evolution, with (top) and without (bottom) supercoiling mutations. Lighter
lines represent the first and last decile of the data.

Figure 7.3 shows the evolution of the average number of activated genes of each type in each
environment after the environmental shocks, averaged over the 125 simulations without
supercoiling mutations (top) and the 125 simulations with supercoiling mutations (bottom).
As could be expected after the shock — as it does not affect gene positions and orientations
- and given the example individual in Figure 7.2, the initial number of activated genes is
initially very similar for each type (note that the first shown generation is the first non-
clonal generation after the shock, and that one round of mutation and selection has therefore
already taken place). However, the number of activated genes of each type then quickly
evolves towards their respective targets, as in the previous simulations conducted with the
model. Starting from a genome in which genes have been positioned (by selection) to form a
regulatory network adapted to the environments before the shock therefore does not seem to
hinder the evolution of a regulatory network adapted to new environments after the shock.

In the LTEE, the repeated fixation of supercoiling mutations in 11 out of the 12 replicates
shows that, in each of these replicates, the lineages that bear these mutations were able to
outcompete the other lineages present in the replicate. A similar pattern can be observed in
this experiment in the evolution of populations with supercoiling mutations, compared to
the evolution of populations without supercoiling mutations, after an environmental shock.
Figure 7.4 shows the evolution of the average relative fitness of the best individual of each
population compared to the fitness (before the environmental shock) of the wild-type indi-
vidual that the population originates from (top), and the evolution of the basal supercoiling
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Figure 7.4: Top: Evolution of the average fitness relative to the wild-type before the envi-
ronmental shock, for the populations with (light blue) and without (dark blue) supercoiling
mutations. At the last generation, the relative fitness of populations with supercoiling mu-
tations is significantly higher than the relative fitness of populations without supercoiling
mutations (p = 5.8 - 107, Student’s t-test for independent samples). Bottom: Evolution of
the average basal supercoiling level of the populations with supercoiling mutations (light
blue), compared to the basal supercoiling level of populations without supercoiling muta-
tions (dark blue). Lighter lines represent the first and last decile of the data.
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level in populations with supercoiling mutations. Similarly to the evolution of the wild-
types, it seems that populations in which supercoiling can evolve perform better over time
than populations in which it cannot. In particular, populations with supercoiling mutations
end up with a higher average fitness than populations without supercoiling mutations, after
only 50,000 generations of evolution (see the statistical test in the caption of the figure). Av-
eraging over all 125 populations with supercoiling mutations, the supercoiling level (bottom)
seems to evolve towards a slightly less negative level than just after the shock. However, as
the supercoiling level had not clearly converged by the end of the evolution of the wild-types
(see Figure 7.1), this trend could equally well be the same as in the wild-types or a sign of
adaptation to new environments after the shock.

7.2.2 Supercoiling Fitness Landscapes

In the LTEE, two main hypotheses have been put forward to explain the repeated fixation of
supercoiling mutations that has been observed in the lineages of the experiment. These muta-
tions could indeed provide an evolutionary advantage to the lineages in which they appear,
by increasing their evolvability through epistatic interactions with supercoiling-regulated
genes. However, some of these mutations have been shown to be directly advantageous, in
that they already confer a fitness benefit when inserted into the ancestral strain (Crozat et al.,
2005). It is therefore possible that these mutations were simply selected for their immediate
benefit, and did not play a particular role in shaping evolutionary trajectories in the fitness
landscape through epistatic interactions. As these hypotheses also apply to the results of this
experiment, I decided to further study the direct fitness effect of supercoiling mutations in the
EvoTSC model, by examining the associated fitness landscapes. As a first step, I computed the
empirical fitness landscapes for supercoiling mutations of the wild-type individuals before
and after the environmental shock, and after re-adaptation to their new environments, in or-
der to see to which extent these fitness landscapes are explored in practice during evolution
in the model.

The fitness landscape represents fitness as a function of the genotype. As we are inter-
ested in the fitness effect of supercoiling mutations, we consider the genotype of individuals
as consisting only in their basal supercoiling level, while considering their genomic organi-
zation — and the associated gene regulatory networks — constant. The fitness landscape is
hence one-dimensional, and can be easily explored and represented. The fitness landscapes
of the wild-type individuals are presented in Figure 7.5. The 5 wild-types that evolved with
supercoiling mutations are shown in the top panel, and the 5 wild-types that evolved without
supercoiling mutations are shown in the bottom panel. In each landscape, the star represents
the basal supercoiling level of the individual itself. For the wild-types that evolved without
supercoiling mutations, all wild-types have a basal supercoiling level 0,5,; = —0.066, but
this is not the case for the wild-types that evolved with supercoiling mutations (see Fig-
ure 7.1 (bottom) for the evolution of the average of their supercoiling level). All fitness land-
scapes have a roughly pyramidal shape, with a well-defined main fitness peak, surrounded
by descending slopes that contain small local peaks. All wild-types, which are the result of
1,000,000 generations of evolution, are located at the global peak of their respective fitness
landscape. This indicates that, for these individuals, no higher fitness is reachable through
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supercoiling mutations only, meaning that when supercoiling mutations are available, both
the supercoiling level and the genomic organization coevolve in order to reach the summit
of the fitness landscape. Even in the absence of supercoiling mutations, the fitness landscape
that emerges from genomic rearrangements is nonetheless shaped in such a way that the
supercoiling level of the individual stands on a fitness peak.

Figure 7.6 shows the fitness landscapes of 5 shocked individuals obtained from one of
the wild-types that evolved with (top) or without (bottom) supercoiling mutations, and the
circle on each curve represents the fitness of each shocked individual. First, we can see
that the fitness peaks on these landscapes are much lower than in the wild-type individuals
in Figure 7.5, which shows that environmental shocks greatly affect the fitness landscape.
Moreover, none of the shocked individuals stand on a fitness peak any longer, which shows
that even with the same genomic organization, the optimal supercoiling level is different
after an environmental shock for these individuals.

Finally, Figure 7.7 shows for comparison the fitness landscapes at the end of the 50,000
generations of evolution for 5 replicates of one of the shocked wild-types, originating from
a population that evolved with (top) or without (bottom) supercoiling mutations. In both
cases, after only 50,000 generations, the fitness landscape already has a comparable shape to
that of the wild-type individuals, with a single fitness peak at which the evolved individual is
located. Even after an environmental shock, and no matter whether supercoiling mutations
are available to evolution or not, the best individual at the end of evolution is therefore at
the global peak of the supercoiling fitness landscape that emerges through the evolution of
its genomic organization.

7.2.3 Evolution with Supercoiling Mutations Only

In order to understand to which extent the exploration of these supercoiling fitness land-
scapes is actually driven by supercoiling mutations, rather than by the genomic inversions
which alter these fitness landscapes, I re-ran the tape of evolution after the environmental
shock. This time, I let only the supercoiling level of individuals evolve, but not their genomic
organization, and ran these new simulations only for the 5 wild-types which had already
evolved with supercoiling mutations.

The evolution of the average fitness in these simulations is shown in Figure 7.8. Dur-
ing the 50,000 generations of evolution, the average fitness of each population with only
supercoiling mutations (light blue) does increase, but to a much smaller extent than when
genomic rearrangements are allowed (dark blue). For each wild-type, the basal supercoiling
level evolves over time, indicating that selection is taking place, but the fitness increase re-
sulting from these mutations nonetheless remains considerably smaller than what is possible
with genomic inversions.

Figure 7.9 shows the evolution of the basal supercoiling level of all replicates of the 5
shocked individuals created from one of the wild-types that evolved with supercoiling mu-
tations, when only supercoiling mutations are allowed. For each shocked individual, the
supercoiling level of each of their replicates seems to converge to nearly identical values
by the end of evolution. This shows that, when only supercoiling mutations are available,
evolution seems to be fully repeatable. In simulations in which only the supercoiling level
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Figure 7.8: Evolution of the average fitness relative to the wild-type before an environmental
shock, for populations with only supercoiling mutations (light blue) and populations with
both supercoiling mutations and genomic rearrangements (dark blue). Lighter lines represent
the first and last decile of the data.
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Figure 7.9: Evolution of the basal supercoiling level of each replicate of all the shocked in-
dividuals created from the wild-type presented in Figure 7.2. For each shocked individual,
the 5 replicates are drawn in the same color to highlight the repeatability of the final basal
supercoiling level.
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Figure 7.10: Fitness landscapes of the 5 shocked individuals obtained from one of the wild-
types that evolved with supercoiling mutations. The circles represent the initial basal su-
percoiling level of each shocked individual (the same as in the top panel of Figure 7.6), and
the stars represent the basal supercoiling level of each of the 5 replicates of each shocked
individual at the end of evolution. Note that for all shocked individuals, the 5 stars of each
of their evolved replicates are superimposed.

can evolve, the shape of the fitness landscape does indeed not change, as it depends on the
(constant) organization of genes on the genome. In these simulations, it is therefore possible
to compare the evolved individuals with the original shocked individuals directly on their
fitness landscape. The fitness landscapes of the same shocked individuals are presented in
Figure 7.10, along with the original supercoiling level of each shocked individual (circles)
and the evolved supercoiling level of each replicate (stars).

We can first observe that the basal supercoiling level (circle) of each of shocked individual
does not stand on a peak of their respective fitness landscape anymore, after these landscapes
have been altered by an environmental shock. At the end of evolution, the basal supercoiling
level of each replicate (stars) of these shocked individuals however always reaches a peak of
the altered fitness landscape, but not necessarily a global one. For each shocked individual,
the 5 evolved replicates of that individual seem to reach the same fitness peak, as the 5 stars
on each landscape are virtually stacked at the same location. In this case, when the only
mutations allowed are supercoiling mutations, the evolutionary process therefore seems to
be completely reproducible (as is also shown in Figure 7.9). Moreover, while the evolved
populations all reach local fitness peaks, they do not all cross the fitness valleys that separate
their local fitness peaks from higher, but further located, peaks. Indeed, while populations
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generated from shocked individuals 1 and 2 in particular were able to cross fitness valleys
and reach the global peak of their respective fitness landscape, populations 3, 4 and 5 were
not. In particular, the basal supercoiling level of population 4 evolved towards a local fitness
peak that is located in the opposite direction to the global peak of the fitness landscape of
that population.

Overall, the evolutionary trajectories of populations in which only supercoiling muta-
tions are allowed show us that in the EvoTSC model, supercoiling mutations do have an
evolutionary effect, but that this effect is very weak compared to that of genomic rearrange-
ments. In this model, supercoiling mutations seem to play a role in finding local optimizations
on the fitness landscape that stems from the genomic organization of individuals, rather than
in opening new evolutionary paths through a broad regulatory effect on gene activity.

7.3 Discussion

In this chapter, I presented a new experiment that I conducted with the EvoTSC model, with
the aim of evaluating the role of supercoiling mutations in evolution after a change in en-
vironmental conditions, following the example of the LTEE. In the LTEE, such supercoiling
mutations were indeed found in all but one of the lineages, and the repeated character of
these mutations therefore seems to indicate that they played an important role in adapting
to the new conditions of the experiment. However, as these mutations were shown to be
directly beneficial in the ancestral strain, the extent to which these mutations could addi-
tionally have been indirectly selected because of their epistatic interactions remains unclear.

In order to study this question in the in silico setting of the EvoTSC model, I first evolved
wild-type populations with supercoiling mutations, and showed that these populations were
able to reach higher fitness than populations that evolved without supercoiling mutations.
I then subjected wild-type individuals extracted from both populations to environmental
shocks and let populations seeded with these individuals evolve again. I showed that popu-
lations in which the supercoiling can evolve re-evolved higher fitness — when compared to
their wild-type ancestor before the shock - than populations in which it cannot, after 50,000
generations of evolution. As in the LTEE, supercoiling mutations in EvoTSC therefore seem
to provide a relative advantage to the lineages in which they appear.

In order to have a more quantitative idea of the evolutionary possibilities afforded by
these supercoiling mutations, I then computed empirical fitness landscapes as a function of
supercoiling in the wild-type and re-evolved individuals. I showed that, in the wild-types
that evolved both with or without supercoiling, the supercoiling level of evolved individuals
corresponds to the global peak of the one-dimensional supercoiling fitness landscape. As
these fitness landscapes are rooted in the organization of the genes on the genome (via the
transcription-supercoiling coupling), these results show that supercoiling mutations are in
fact not necessary to reach the peak of the fitness landscape, even though the peaks are on
average higher with supercoiling mutations (as shown during the evolution of the wild-types
themselves). I then ran another set of simulations in which only the supercoiling level is al-
lowed to evolve, in order to evaluate precisely the extent to which supercoiling mutations
enable the exploration of the supercoiling fitness landscape. I showed that, while supercoil-
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ing mutations do allow populations to repeatably reach local fitness peaks (as could naively
be expected), they are by themselves not sufficient to allow populations to reach the global
peak of their respective fitness landscape.

Taken all together, these observations seem to indicate that, in the EvoTSC model, super-
coiling mutations allow for a local exploration of the fitness landscape generated by genomic
rearrangements rather than for the opening of new evolutionary paths that would otherwise
remain inaccessible. These mutations could nonetheless provide a significant enough fit-
ness advantage to the lineages in which they appear, by finding a locally optimal level of
supercoiling, for these lineages to be repeatedly selected. The perfect repeatability of the
discovery of local fitness peaks through supercoiling mutations in the context of this exper-
iment echoes the repeated fixation of supercoiling mutations in the LTEE, suggesting that
these mutations could indeed have been selected for their direct fitness effect rather than for
their indirect effect on evolvability or robustness. A further answer to this question could be
obtained with the help of the complete lineages and mutation histories of populations which
evolve in the EvoTSC model. This data would indeed allow us to reconstruct the succession
of fitness landscapes — known as the fitness seascape — generated by successive genomic
inversions, and to assess the extent to which supercoiling mutations indeed allow evolving
populations to reach the successive peaks of this fitness seascape during evolution.



Chapter 8

Conclusion

8.1 Summary

The overarching scientific question at the root of the work I conducted during my PhD is the
following: how can evolution, an inherently random process, sometimes be reproducible? In
order to refine this far-reaching problem into a more actionable research program, I focused
on the study of the epistatic interactions between different kinds of mutations, and asked the
following question: can an improved understanding of the beneficial or deleterious nature of
epistatic interactions help us predict which strain within a given population has the highest
potential to harbor future favorable mutations and thus outcompete other strains, given its
current genetic background? Inspired by results obtained in the Long-Term Evolution Exper-
iment (Lenski et al., 1991), I singled out DNA supercoiling as a prime example with which
to try to corroborate this suggestion (Chapter 2). The level of DNA supercoiling is indeed at
the same time intricately governed by many cellular processes - that are subject to possible
mutations — and a fundamental actor in the regulation of gene transcription and expression.
The central role of DNA supercoiling, which bridges the physical structure of the genome
with the molecular phenotype of the cell, makes mutations that influence its level prime
suspects in the shaping of evolutionary trajectories by epistatic interactions.

In order to tackle this problem, I first implemented a simple model of the level of super-
coiling and of its effect on transcription in the Aevol in silico experimental evolution platform,
but was not able to establish that supercoiling mutations played a measurable role in speed-
ing up evolution after they occur (Chapter 3). As I estimated this lack of results to be due to
the inner complexity of the Aevol model and the resulting overly simplistic representation
of supercoiling that I could incorporate into the model, I designed and implemented a new
multi-scale model, called EvoTSC. This new model trades off the precise genome description
of Aevol for a much more detailed modeling of the coupling between transcription and su-
percoiling. I first validated the relevance of this new model by showing that its description
of supercoiling is rich enough to allow for the evolution of differentiated expression patterns
in response to environmental perturbations (Chapter 4), even when the only available mu-
tations are genomic inversions, and observed the emergence of relaxation-activated genes
in the model (Chapter 5). I then characterized the gene regulatory networks, mediated by
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the transcription-supercoiling coupling, that are at the root of these differentiated transcrip-
tional responses. In particular, I showed that these regulatory networks are based on the
relative positions of genes on the genome, and that they require the interaction of multiple
genes to function, spanning wide swathes of the genome.

In order to reinforce the degree of confidence that we can have in the conclusions hith-
erto drawn from the EvoTSC model, I then ran additional sets of simulations with the same
model but using different parameter values (Chapter 6). I showed that the results presented
above are robust with respect to the size of the topological domains (the distance at which
supercoiling propagates), to the size of the intergenic regions (within the range of observed
bacterial values), and to the intensity of the environmental perturbations (in particular when
the perturbations are very small compared to the other sources of supercoiling). Overall, I
was able to make two main conclusions with the help of the EvoTSC model regarding the
transcription-supercoiling coupling. First, I showed that this coupling provides a material
basis for gene regulation even in the absence of transcription factors, as well as a mecha-
nism that could explain the activation of certain genes by DNA relaxation. Second, I showed
that this coupling also plays a plausible role in the shaping of the organization of bacterial
genomes over evolutionary time, via the supercoiling-mediated gene regulatory networks
that evolve through successive genomic rearrangements.

These results, even though they provide some insight into the evolution of bacterial
genomes, do however not yet answer the original question of the epistatic interactions be-
tween supercoiling mutations and other mutations, which was left inconclusively answered
in Chapter 3. I therefore addressed this question again, this time using the EvoTSC model, by
introducing supercoiling mutations alongside the original genomic inversions and studying
the associated supercoiling fitness landscapes (Chapter 7). I first showed that populations in
which supercoiling can mutate along genomic inversions evolve a slightly higher fitness after
the same number of generations than populations in which it cannot. Then, replicating the
environmental shock present at the beginning of the LTEE into the EvoTSC model, I showed
that populations with supercoiling mutations additionally recover faster from an environ-
mental shock than populations without supercoiling mutations, echoing the experimental
results from the LTEE (Crozat et al., 2010). Finally, I showed that on their own, supercoiling
mutations are only able to provide a local exploration of the supercoiling fitness landscape
that stems from the organization of genes on the genomes, but that they do so in a repeatable
manner despite their inherent randomness.

In this work, I used an evolutionary systems biology approach to study the evolution of
gene regulation by DNA supercoiling in bacteria. Using both the Aevol and EvoTSC in silico
experimental evolution platforms, I showed that supercoiling mutations seem to be selected
for their direct fitness benefits, rather than for the increased evolvability that they could
provide to their bearer through biased epistatic interactions. These results indicate that the
repeated supercoiling mutations observed in the LTEE could similarly have been selected as
a result of their direct benefits.

The results that I obtained with the EvoTSC model nonetheless underline the significant
role that supercoiling could play in gene regulation in bacteria. Indeed, these results show
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that, far from being limited to the direct biophysical effect of DNA supercoiling on tran-
scription, gene regulatory networks that are expressive enough to activate or inhibit subsets
of genes can evolve when the only regulator of gene expression is the supercoiling gener-
ated by gene transcription. In particular, regulation by supercoiling is sufficient to generate
relaxation-activated genes, such as the ones found in E. coli, S. pneumoniae or D. dadan-
tii (Peter et al., 2004; Ferrandiz et al., 2010; Pineau et al., 2022). It could moreover explain the
evolutionary conservation of the relative positions of groups of neighboring genes, or syn-
tenies, that has been for example observed between E. coli and S. enterica, as these groups
of genes could coordinate their expression levels through local changes in supercoiling (Ju-
nier and Rivoire, 2016). Finally, these results reinforce the hypothesis that DNA supercoiling
could play an important regulatory role in bacteria with streamlined genomes such as B.
aphidicola, which is nearly devoid of traditional transcription factors (Brinza et al., 2013).

8.2 Perspectives

The work presented in this manuscript could be furthered along at least two main directions.
The first direction would be to continue the investigation of supercoiling as a representative
example of the role that epistatic interactions play in the structure of fitness landscapes, in
order to better understand the repeatability of the apparition and fixation of such mutations
in the LTEE. A first step in this direction would be to pursue in more detail the analysis of
evolutionary trajectories in the EvoTSC model, by recording individual lineages during evo-
lution and explicitly reconstructing the associated mutational histories. This would allow the
same experiment as the one presented in Aevol (in Chapter 3) to be performed in a model in
which supercoiling mutations have an effect on the fitness landscape - and hence on evolu-
tionary trajectories — that is less independent from the rest of the genotype, and in particular
from genome structure. Studying the fixation times of mutations in the EvoTSC model would
in particular provide data that could prove easier to interpret than in Aevol, as there are only
two possible kinds of mutations (genomic inversions and supercoiling mutations) in EvoTSC,
compared to the 8 kinds of local and global mutations in Aevol. Another natural, but slightly
more difficult to carry out, step in that direction would be to instead implement the more
precise model of supercoiling used in EvoTSC in Aevol. Replicating the results already ob-
tained in EvoTSC in a model in which genomes can evolve in additional ways in response
to supercoiling mutations would provide an additional degree of confidence in the results
presented in this work.

The common thread at the root of both these directions is to build models in which super-
coiling mutations are sufficiently finely modeled to allow these mutations to cause jumps in
the fitness landscape that are substantial enough to guide evolution towards different paths,
conditionally to their occurrence in a lineage. Such models indeed seem necessary in order
to definitely answer the question of the nature of the evolutionary role of supercoiling mu-
tations from a theoretical perspective. Whether in EvoTSC or in Aevol, it seems promising
to explore this direction more quantitatively by computing the distribution of fitness effects
of supercoiling mutations in either model, or the fitness of double mutants (coupling a ge-
nomic inversion with a supercoiling mutation), instead of relying on the random occurrence
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of these mutations in evolving populations. This more local — but more detailed — analysis of
the fitness landscape could shed further light on the possible bias of supercoiling mutations
towards beneficial epistatic interactions with other mutations.

The second main direction in which to pursue the work presented in this manuscript
would be to move away from questioning the evolutionary role of supercoiling and instead
towards a quantitative description of the regulatory role of the transcription-supercoiling
coupling, at the mesoscale of bacterial topological domains. As supercoiling has been hy-
pothesized to play an important role in bacterial gene regulation (E1 Houdaigui et al., 2019),
it would be very interesting to obtain a model that explicitly accounts for the supercoil-
ing level when predicting the expression levels of genes in a given — possibly synthetic -
genetic system. In this regard, one of the main drawbacks of the model of the interaction
between transcription and supercoiling that is used in EvoTSC is its lack of an explicit time
scale. As such, EvoTSC therefore models the expected average behavior of genes subject to
this interaction, but cannot adequately picture the dynamic nature of gene transcription by
RNA polymerases. Yet, the stochasticity of this process plays an important role in the accu-
rate modeling of gene transcription dynamics, as exemplified in Sevier and Hormoz (2021).
Incorporating an explicit description of the movement of polymerases along DNA, of the
resolution of supercoils by topoisomerases, and of the formation of supercoiling barriers by
nucleoid-associated proteins into EvoTSC would provide us with a model able to disentangle
the contribution of these processes to gene transcription and to provide quantitative predic-
tions of gene expression levels. Another recently evidenced component of the effect of DNA
supercoiling on bacterial gene transcription is the effect of promoter discriminator sequence
and spacer length on transcription initiation (Forquet et al., 2021, 2022; Pineau et al., 2022).
Incorporating this neglected effect into the model would further reinforce the quality of the
prediction of gene expression levels by the model. Within the evolutionary framework of
EvoTSC, such a quantitative model would moreover allow the study of the transcriptional re-
sponse of genetic systems to perturbations caused by mutations in each of their components,
be it gene order, promoter sequence, or topoisomerase activity, and hence the prevision of
possible future evolutionary trajectories.



Appendix A

Software Contributions

A.1 Aevol

For the first year of my Ph.D., I mainly used the Aevol in silico experimental evolution
platform, which is available here: https://gitlab.inria.fr/aevol/aevol, to run ex-
periments. Aevol has been in development in the Inria BEAGLE team for over 17 years,
and contains over 90,000 lines of C++ code. It has been used to run experiments that re-
sulted in numerous publications, among which Knibbe et al. (2005), Batut et al. (2013), or
Rutten et al. (2019). While I was using Aevol, I took an active part in the maintenance of
its complex code base, and particularly focused on fixing memory leaks, and on improv-
ing the overall quality of the code. The associated commits can be found here: https:
//gitlab.inria.fr/aevol/aevol/-/commits/main?author=Théotime%20Grohens.

A.1.1 DNA Supercoiling in Aevol

As presented in Section 3.3, I developed during my Ph.D. a version of Aevol that incorporates
the effect of supercoiling on gene transcription. This version can be found here: https:
//gitlab.inria.fr/tgrohens/aevol/-/tree/rebased-supercoiling. Developing this
extension of the model required extensive changes in the evaluation of individuals, in order
to take supercoiling into account. I had to update both the code handling the mutations — as
I added a new kind of mutations to the model — and the Aevol post-treatments, the code that
analyses experimental data after the main simulation is complete.

A.1.2 Tooling for Aevol

While using Aevol, I developed a set of Python tools, aevol-utilities (available here: https:
//gitlab.inria.fr/tgrohens/aevol-utilities), in order to make it easier to carry out
full-fledged experiments. The default Aevol executables indeed do not provide the most ac-
cessible interface to an untrained user, and do not reflect the way the platform is used to run
experiments at present. The typical use case of Aevol consists in the following steps, for each
replicate of a given experiment:

111


https://gitlab.inria.fr/aevol/aevol
https://gitlab.inria.fr/aevol/aevol/-/commits/main?author=Th�otime%20Grohens
https://gitlab.inria.fr/aevol/aevol/-/commits/main?author=Th�otime%20Grohens
https://gitlab.inria.fr/tgrohens/aevol/-/tree/rebased-supercoiling
https://gitlab.inria.fr/tgrohens/aevol/-/tree/rebased-supercoiling
https://gitlab.inria.fr/tgrohens/aevol-utilities
https://gitlab.inria.fr/tgrohens/aevol-utilities

112 APPENDIX A. SOFTWARE CONTRIBUTIONS

1. Creating an initial random individual and an initial population using this individual,
with a different seed for each replicate.

2. Running the proper evolution experiment for a given number of generations.

3. Picking an individual in the final population, and tracing its lineage since the original
population.

4. Computing a series of statistics over this lineage, by recovering every individual in the
lineage.

5. Analyzing and plotting the resulting data.

The aevol-utilities repository comprises a Python library (named aevol.py), and a series
of Jupyter notebooks that are built upon this library. The Runner aevol notebook automates
the first four steps of the pipeline above. It takes care of creating properly initialized repos-
itories in order to minimize the risk of data loss, of starting concurrents Aevol jobs with a
parametrizable level of parallelism (cores per job and number of parallel jobs), can handle
restarting interrupted simulations, and can run Aevol post-treatments once the main simula-
tion is finished. The package also contains Jupyter notebooks that give easily approachable
and modifiable examples of how to analyse Aevol data. Finally, the aevol-utilities tools are
in use by other members of the team, and could be part of a larger move towards a new
high-level Python interface for Aevol.

A.2 EvoTSC

In the second part of my Ph.D., I developed EvoTSC, a Python simulation that implements
an individual-level model of the transcription-supercoiling coupling and a population-level
in silico artificial evolution platform. The software is accessible here: https://gitlab.
inria.fr/tgrohens/evotsc. EvoTSC has been used in several publications. Chapter 4,
based on Grohens et al. (2021) and on Grohens et al. (2022b), presents a first version of the
transcription-supercoiling coupling model and the results obtained using a corresponding
version of EvoTSC. Chapter 5 presents a more realistic version of the individual-level model
and the associated results, which have been published as a preprint (Grohens et al., 2022a)
and will be submitted to peer review. The corresponding versions of the code, and accompa-
nying data analysis notebooks, can be found in the alife-model (Grohens et al., 2021) and
alife-journal (Grohens et al., 2022b) branches of the git repository.

The current version of EvoTSC used in Chapters 6 and 7 implements the more detailed
genome model presented in Section 5.1, and is available on the phd branch of the repository.

A.2.1 Technical Description

EvoTSC is written in Python, and measures around 1,800 lines of Python code. It comes as
an installable pip package, and is licensed under a 3-clause BSD license. The evotsc.py
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file contains the main classes (Gene, Individual and Population) that are used in the sim-
ulations. The core.py files contains the computationally heavy parts of the code, which
are accelerated using numba (Lam et al., 2015). The run.py contains the code responsible
for initializing a simulation, and data input and output. The 1ib.py contains miscellaneous
functions used throughout the notebooks. Finally, the plot.py file contains the code re-
sponsible for plotting, using the matplotlib library (Hunter, 2007). This file contains in
particular the plot_genome_and_tsc function used to create all the circular genome plots
in the manuscript.

A.2.2 Tooling

In order to analyze the results of EvoTSC simulations more easily, I developed an extensive
set of notebooks for data analysis and visualisation. The notebooks are available in a sep-
arate repository: https://gitlab.inria.fr/tgrohens/evotsc-notebooks, and are also
licensed under the BSD 3-clause. In particular, these notebooks contain the code responsible
for the computation of gene expression as a function of supercoiling (such as in Figure 5.5),
for the generation of contiguous gene subnetworks (Figure 5.8), and for the gene knock-out
analysis (Figure 5.9, 5.10 and 5.10).

A.2.3 Use

I have up until now been the only user of EvoTSC. However, the code has been written to be
readily reusable and extendable. It is in particular documented with a README . md file, and
extensive comments throughout the code.
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Appendix B

Covid-19 Task Force

At the start of the Covid-19 pandemic (March-April 2020), I took part in an Inria task force
that was created to provide scientific expertise to external stakeholders. In particular, we
worked with the Assistance Publique-Hopitaux de Paris (AP-HP), in order to help the AP-
HP better understand and model the progression of the Covid-19 epidemic in the four central
departments of the Paris metropolitan area. We proposed a model that used emergency call
regulation data, such as the total number of calls, the number of calls resulting in the dispatch
of an emergency vehicle, the number of patients hospitalized with Covid-19, and the number
of patients in Intensive Care Units (ICUs), as input data to estimate the progression of the
epidemic. Using this model, we were able to show that there were strong discrepancies
between the different departments, and that it was possible to predict the evolution of the
number of cases from the emergency call regulation data.

The rest of this appendix comprises the journal article (Gaubert et al., 2020), published
in the Comptes-Rendus Mathématique of the French Academy of Sciences, that describes this
work in detail.
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Abstract. We portray the evolution of the Covid-19 epidemic during the crisis of March-April 2020 in
the Paris area, by analyzing the medical emergency calls received by the EMS of the four central departments
of this area (Centre 15 of SAMU 75, 92, 93 and 94). Our study reveals strong dissimilarities between these
departments. We show that the logarithm of each epidemic observable can be approximated by a piecewise
linear function of time. This allows us to distinguish the different phases of the epidemic, and to identify the
delay between sanitary measures and their influence on the load of EMS. This also leads to an algorithm,
allowing one to detect epidemic resurgences. We rely on a transport PDE epidemiological model, and we
use methods from Perron-Frobenius theory and tropical geometry.

Comprendre et surveiller I’évolution de 1’épidémie de Covid-19 & partir des appels au
numéro 15: 'exemple de 'agglomération parisienne

Résumé. Nous décrivons I’évolution de ’épidémie de Covid-19 dans I’agglomération parisienne, pendant
la crise de Mars-Avril 2020, en analysant les appels d’urgence au numéro 15 traités par les SAMU des quatre
départements centraux de I’agglomération (75, 92, 93 et 94). Notre étude révele de fortes disparités entres
ces départements. Nous montrons que le logarithme de toute observable épidémique peut étre approché par



une fonction du temps linéaire par morceaux. Cela nous permet d’identifier les différentes phases d’évolution
de I’épidémie, et aussi d’évaluer le délai entre la prise de mesures sanitaires et leur effet sur la sollicitation de
I’aide médicale urgente. Nous en déduisons un algorithme permettant de détecter une resurgence éventuelle
de I’épidémie. Notre approche s’appuie sur un modele d’EDP de transport de I’évolution épidémique, ainsi
que sur des méthodes de théorie de Perron-Frobenius et de géométrie tropicale.

1 Introduction

The outbreak of Covid-19 in France has put the national Emergency Medical System (EMS), the SAMU, in
the front line. In the Ile-de-France region, one most affected by the epidemic, the SAMU centers of Paris
and its inner suburbs experienced a major increase in the number of calls received and of the number of
ambulance dispatches for Covid-19 patients.

We show that indicators based on EMS calls and vehicle dispatches allow to analyze the evolution of the
epidemic. In particular, we show that EMS calls are early signals, allowing one to anticipate vehicle dispatch.
We provide a method of short term prediction of the evolution of the epidemic, based on mathematical
modeling. This leads to early detection and early alarm mechanisms allowing one either to confirm that
certain sanitary measures are strong enough to contain the epidemic, or to detect its resurgence. These
mechanisms rely on simple data generally available in EMS: numbers of patient records tagged as Covid-19,
and among these, numbers of records resulting in medical advice, ambulance dispatch, or Mobile Intensive
Care Unit dispatch. We also provide a comparative description of the evolution of the epidemic in the four
central departments of the Paris area, showing spatial dissimilarities, including a strong variation of the
doubling time, depending on the department.

Our approach relies on several mathematical tools in an essential way. Indeed, the Covid-19 epidemic has
unprecedented characteristics, and, given the lack of experience of similar epidemics, one needs to rely on
mathematical models. We use transport PDE to represent the dynamics of Covid-19 epidemic. Transport
PDE capture epidemics with a significant time interval between contamination and the start of the infectious
phase (in contrast, ODE models without time delays allow instantaneous transitions from contamination to
the infectious phase). In the early stage of the epidemic, in which the majority of the population is susceptible,
this dynamics becomes approximately linear and order preserving. Then, it can be analyzed by methods
of Perron—Frobenius theory. Our main theoretical result shows that the logarithm of epidemic observables
can be approximated by a piecewise linear map, with as many pieces as there are phases of the epidemic
(i.e., periods with different contamination conditions), see Theorem 1. This methods allows us to identify,
the phases of the epidemic evolution, and also to evaluate the time interval between sanitary measures and
their impact on epidemic observables, like vehicle dispatch. The idea of piecewise linear approximation and
of “log glasses”, a key ingredient of the present approach, arises from tropical geometry.

The present work started on March 13", and led to the algorithm presented here. A preliminary version
of this algorithm was used, on March 20", to forecast the epidemic wave, anticipating that the peak load of
SAMU (which occurred around March 27'") would be different depending on the department of the Paris
area. We subsequently applied our method to provide Assistance Publique — Hopitaux de Paris (AP-HP), on
April 5** with an early report, quantifying the efficiency of the lockdown measures from the estimation of the
contraction rate of the epidemic in the different departments. This algorithm is now deployed operationally
in the four SAMU of AP-HP. This work may be quickly reproduced in any EMS.

Although it was developed for Covid-19 and for EMS calls, the present monitoring method is generic. It
may also apply to other medical indicators, see Section 3.4, and to other epidemics, for instance, influenza.

This paper is a crisis report, giving a unified picture of a work done jointly by a team of physicians of
the SAMU of AP-HP and applied mathematicians from INRIA and Ecole polytechnique. Medical, epidemi-
ological, and mathematical aspects are intricated in this work. We received help from several physicians,
researchers and engineers, not listed as authors, and also help from several organizations. They are thanked
in the acknowledgments section.

This paper should be understood as an announce. The results will be subsequently developed in several
papers, with different subsets of coauthors. It is intended to be read both by a medical and a mathematical



audience. The first part of the paper, up to Section 6 included, and the conclusion, are intended to a broad
audience. Mathematical tools are presented in Section 7, Section 8, Section 9 and in the appendix.

The present work shows the epidemiological significance of the calls received by the EMS, it focuses on
the mathematical modeling aspects, on the description of the evolution of the epidemy in the Paris area,
and on prediction algorithms. The current work! with an intersecting set of authors, is coordinated with
the present one. It focuses on medical aspects. It makes a case study of the Covid-19 crisis of March-April
2020, in Paris, considering the EMS and the hospital services in a unified perspective. It shows that the calls
received by SAMU are early predictors of the future load on ICU.

2 Context

The mission of the SAMU centers is to provide an appropriate response to calls to the number 15, the French
toll-free phone number dedicated to medical emergencies. This service is based on the medical regulation of
emergency calls, in the sense that for each patient, a physician decides which response is most appropriate.
Thus, depending on the evaluation over the phone of the severity of the case and the circumstances, the
response may be a medical advice, a home visit by a general practitioner, the dispatch of a team of EMTs
(Emergency Medical Technicians) of either a first aid association or the Fire brigade, or an ambulance of a
private company. A Mobile Intensive Care Unit (MICU), staffed by a physician, a nurse and an EMT, is sent
to the scene as a second or a first tier, when a life threatening problem is suspected. The role of the SAMU
in the management of disasters or mass casualties has been described elsewhere [18, 4]. The city of Paris
and its inner suburbs are covered by 4 departmental SAMU Center-15 : Paris (75), Hauts-de-Seine (92),
Seine Saint-Denis (93), and Val-de-Marne (94), see the map on Figure 3. They serve a population of 6.77
million inhabitants. These four Center-15 are part of the public hospital administration, AP-HP (Assistance
Publique — Hopitaux de Paris). They operate identically and use the same computerized call management
system. Since the outbreak of the Covid-19 epidemic, the French government instructed the public that
anyone with signs of respiratory infection or fever should not go directly to the hospital emergency room
to limit overcrowding, but should call number 15 for orientation. To comply with the recommendations of
the health care authorities, the four Center-15 applied the same procedures: after medical call regulation,
only patients with signs of severity or significant risk factors were transported by EMTs and ambulances
to hospitals, either to Emergency Room (ER) or newly created Covid-19 Units. The cases presenting a
life-threatening emergency, mostly respiratory distress, were managed by an MICU team and then admitted
directly in Intensive Care Unit (ICU). All other cases were advised to stay at home and isolate themselves.
When necessary, these patients were also eligible for a home visit by a general practitioner or a consultation
appointment the following days.

In order to maintain a rapid response when a major increase in the number of calls was observed, the four
Center-15 implemented specific procedures. Switchboard operators and medical staff was reinforced, and for
calls related to Covid-19 an interactive voice server —triaging the calls to dedicated computer stations— was
developed. Patient evaluation and management were improved by introducing video consultation, sending
of instruction using SMS, giving the patient the option to be called back. Prehospital EMT teams were also
significantly reinforced by first aid volunteers, and additional MICU were created. Since January 20" 2020
all calls and patient records related to Covid-19 were flagged in the information system of Center-15 and a
daily automated activity report was produced.

3 Methods

In this section, we describe the methods used in this work, in a way adapted to a general audience. Mathe-
matical developments appear in Sections 7 to 9 and in the appendix.

1COVID19 APHP-Universities-INRIA-INSERM, Emergency calls are early indicators of ICU bed requirement during the
COVID-19 epidemic, medRxiv:2020.06.02.20117499, June 2020.
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Figure 1: Flowchart: from calls to Center 15 to admission in hospital units. The numbers are summed over
the departments 75, 92, 93 and 94 of the Paris area.

3.1 Classification of calls

In order to develop a mathematical analysis of the evolution of the epidemic, we classified the calls tagged
as Covid-19 in three categories, according to the decision taken:

Class 1: calls resulting in the dispatch of a Mobile Intensive Care Unit;
Class 2: calls resulting in the dispatch of an ambulance staffed with EMT;

Class 3: calls resulting in no dispatch decision. Such calls correspond to different forms of medical advice
(recommendation to consult a GP, specific instructions to the patient, etc.).

We shall denote by Ymicu(t) (resp. Yemr(t) and Yaqy(t)) the number of MICU transports (resp. the
number of ambulances transport and the number of medical advices) on day ¢, for patients tagged with
suspicion of Covid-19. We shall call these functions of time the observables, in contrast with C(¢), the actual
number of new contaminations on day ¢, which cannot be measured. We developed a piece of software that
computes these observables by analyzing the medical decisions associated with the patient records, made
accessible daily by AP-HP.

3.2 Mathematical properties of the observables

To analyze these observables, we shall rely on a mathematical model.

A standard approach represents the evolution of an epidemic by an ordinary differential equation (SEIR,
ODE), representing the evolution of the population in four compartments: “susceptible” (S), “exposed” but
not yet infectious (E), “infectious” (I), and finally, “removed” from the contamination chain (R), either by
recovery or death. A refinement of the SEIR model splits the S and E compartments in sub-compartments
corresponding to different age classes. It includes a contact matrix, providing differentiated age-dependent
infectiosity rates [27]. Another refinement includes additional compartments, representing, for instance,
patients at hospital [13].

In contrast with such ODE models, we use a partial differential equation (PDE), i.e., an infinite dimen-
sional dynamical system, described in Section 7. Our approach is inspired by the PDE model of Kermack



and McKendrick [22]. We use PDE, rather than ODE, to take into account the presence of delays in the
contamination process: the median incubation period of Covid-19 is estimated of 5.1 days, with a 95% con-
fidence interval of 4.5-5.8 and an heavy tail [25], in line with other human coronaviruses having also long
incubation times, like SARS [35] and MERS [34]. (This may be compared with a median incubation time of
1.4 days [95% CI, 1.3-1.6] for the toxigenic Cholera [2], or with an interval of 36 hours between infection by
pneumonic plague and first symptoms in Brown Norway rats, with rapid letality, 2-4 days after infection [1].)
ODE models assume exponentially distributed transitions times from one compartment from another. This
entails that the interval elapsed between contamination and the time an individual becomes infectious can
be arbitrarily small, so ODE models are more adapted to epidemics with a short incubation time. Using
PDE, as is done in Section 7, takes delays into account.

We shall limit here our analysis to the early stage of the epidemic, assuming that the population that has
been infected is much smaller than the susceptible population. This approximation is reasonable at least in
the initial part of the epidemic, according to the study [32] which gives an estimate of 5.7% for the proportion
of the population in France that has been infected prior to May 11", 2020. Then, the dynamics becomes
linear and order-preserving. The latter property entails that the observables are an increasing function of
the size of the initial population that is either exposed or infected.

Results of Perron—Frobenius and of Krein-Rutman theory, which we recall in Section 7, entail that, if the
sanitary measures stay unchanged, there is a rate A, such that the number of newly contaminated individuals
at day t grows as C(t) ~ K¢ exp(At), as t — oo, where K¢ is a positive constant.

The number 6 := (log2)/A, when it is positive, represents the doubling time: every § days, the number
of new contaminations per day doubles. When ¢ is negative, the epidemic is in a phase of exponential decay.
Then, the opposite of § yields the time after which the number of new contaminations per day is cut by half.
For the analysis which follows, it is essential to consider, instead of C(t), its logarithm, log C(t) ~ log K¢+ At.
The exponential growth or decay of C(t) corresponds to a linear growth or decay of the logarithm.

We shall also see in Section 7 that all the epidemiological observables evolve with the same rate. E.g.,
assuming that all the patients transported by MICU were contaminated mvicy days before the transport,
and that a proportion mycy of the contaminated individuals will require MICU transport, we arrive at
Ymicu (t) = WMICUC(t — TMICU): and so log Ymicu (t) ~ log mmicu + log Ko + )\(t — TMICU)~ Similar formulee
apply to Yemr and Y.qy, and to other observables based for instance on ICU admissions or deceases. A
finer model of observables, taking into account a distribution of times m\icu, instead of a single value, is
presented in Section 7.3.

For the analysis which follows, we shall keep in mind that the logarithm of all the observables is asymp-
totically linear as t — oo, and that the rate, A\, is independent of the observable.

3.3 Piecewise linear approximation of the logarithm of the observables

When the sanitary measures change, for instance, when lockdown is established, the rate A changes. So, the
logarithm of the observables cannot be approximated any more by a linear function. However, a general
result, stated as Theorem 1 below, shows that this logarithm can be approximated by a piecewise linear
function with as many linear pieces as there are phases of sanitary policy. This result stems from the
order preserving and linear character of the epidemiological dynamics, and so, it holds for a broad class of
epidemiological models; several examples of such models are discussed in Section 7.

In the Paris area, there are three relevant sanitary phases to consider from February to May, 2020: initial
growth (no restrictions); “stade 2”7 (stage 2) starting on Feb. 29" (prevention measures), and then lockdown
from March 17*" to May 11*". Sanitary phases are further described in Section 5.1.

Since the number v of sanitary phases is known (here v = 3), we can infer the different values of A
attached to each of these phases, by computing the best piecewise linear approximation, £(t) with at most
v pieces of the logarithm of an observable Y (¢). To compute a robust approximation, we minimize the ¢;
norm, y_, |£(t) —log Y (t)|, where the sum is taken over the days ¢ in which the data are available. Finding
the best approximation £ is a difficult optimization problem, for the objective function is both non-smooth
and non-convex. Methods to solve this problem are discussed in Appendix A.



3.4 Epidemic alarms based on doubling times

To construct epidemic alarms, we shall compute a linear fit, £(¢t) = o + (¢, to the variables log Y (¢), where
Y is an epidemic observable. The principle is to trigger an alarm when the doubling time becomes positive,
or equivalently, when the slope 8 becomes positive.

Assuming that values of Y (¢) are known over a temporal window, there are simple ready-to-use methods
for computing estimates B for the slope 3. We can also determine the probability p* that the slope is
positive. These methods are detailed in Section 9. On their basis, we propose the following alarm raising
mechanism, allowing one to deploy a gradual response.

This mechanism relies on the two following observables, Y,q4y, the number of calls resulting in medical
advice, and Ygisp := YemT + YMmicu, the number of dispatched vehicles. The consolidation of the observables
YewmT and Yancu is justified, because the two time series both correspond to the stage of aggravation, albeit
with different degrees, and so they evolve more or less at the same time.

First define a temporal window of days ¢ over which the linear fit L4y (f) = dtagy + Badvt to log Yaay (t) is
made. By default we consider the last ten days prior to the current day. Similarly, we compute a linear fit
Laisp(t) = aqisp + Bdispt to log Yaisp (£) over the same time window.

Our algorithm will generate both a warning and alarms. A warning is a mere incentive to be careful. An
unjustified warning is bothersome but generally harmless, so we accept a high probability of false positive
for warnings. An alarm may imply some actions, so we wish to avoid false alarms. For this reason, we shall
consider two different probability thresholds, Ja1arm and Yyam, 58y Yalam = 75% and Oyam = 25%. With
this setting, we will be warned as soon as the probability of the undesirable event is > 25%, and we will be
alarmed when the same probability becomes > 75%. Of course, these thresholds can be changed, depending
on the risk level deemed to be acceptable. We shall denote by p:dv the probability that the slope Saqgyv is
positive, and by pc'ﬁsp the probability that Sqisp is positive. These probabilities are evaluated on the basis of
statistical assumptions detailed in Section 9.

1. A warning is provided when pidv > Ywarn, meaning that the probability that the slope SB.qy of the
curve of the logarithm of the calls for medical advice over the corresponding time window be positive
is at least ¥warm- This should be interpreted as a mere warning of epidemic risk: choosing ¥yarm as
above, the odds are at least 25% that the epidemic is growing.

2. This warning is subsequently transformed into an alarm when pidv > Yalarm. Choosing Pa1arm as
above, the odds that the epidemic is growing are now at least 75%.

3. Such an alarm is then subsequently transformed into a confirmed alarm if we still have p:dv = Yalarm,
and if, in addition, pjisp > Yalarm, Mmeaning that the probability that the slope of the logarithm of the
curve of ambulances and MICU dispatches be positive is now above ¥q1arm- Again, this estimate is
defined in terms of a time window over which fBaisp is estimated. We use the same default values of
ten days and Ya1arm as above.

As shown in Section 4, the indicators based on vehicle dispatch are by far less noisy than the indicators
based on calls for medical advices, but their evolution is delayed. This is the rationale for using medical
advice for an early warning and early alarm, and then vehicle dispatch for confirmation.

Instead of considering the probability p*, we could consider the upper and lower bounds of a confidence
interval 3., 3] for the estimated slope 3, with a probability threshold e. Then we may, trigger a warning
when S > 0, and an alarm when 3. > 0. This leads to an essentially equivalent mechanism. We prefer the
algorithm above as it allows to interpret the thresholds in terms of false positives and false negatives.

Given the severity of the risk implied by Covid-19, it may be desirable to complete the previous alarm,
based only on tail probabilities of the slope, by a different type of alarm, based on a threshold of doubling
time, D. The alarm will be triggered if the odds that the doubling time be positive and smaller than D
are at least one half. An indicative value of D might be 14 days: a doubling of the number of arrivals of
Covid-19 patients in hospital services every 14 days may be quite challenging, justifying an alarm, and the
slope corresponding to this doubling time seems significant enough to avoid false alarms. Again, the value of



D can be changed arbitrarily depending on the acceptable level of risk. Moreover, this other type of alarm
can still be implemented in two stages: early alarm, with the medical advice signal, and then confirmed
alarm, with the vehicle dispatch signal.

In addition, Section 9 provides more sophisticated ready-to-use methods for obtaining sharper confidence
intervals or probabilities for the slope 3, resulting in more precise alarm mechanisms, when different time
series are available. We require, however, that these series correspond to events occurring approximately at
the same stage in the pathology unfolding. Here, we used the trivial aggregator, Yais, = YemT + YMmicu-
There is an optimal way to mix different series to minimize the variance of the composite estimator, explained
in Section 9.

This methodology is generic. It could thus also apply to obtain a sharper confidence interval for the
early indicator by combining its estimate fBaqy with that of other time series associated with signals that
correspond to the same stage in pathology unfolding. Specifically, the count Ygp(t) of patients consulting
general practitioners for recently developed Covid-19 symptoms, if available, provides such a signal. A
linear fit to log Yap(t) would then yield an estimate BGP which can be combined with ﬁadv to refine the
corresponding confidence interval. In this way, we can mix several early but noisy indicators to get an early
but less noisy consolidated indicator.

4 Results — data analysis

4.1 Key figures and graphs

From February 15" to May 15*", we counted a total of 170,166 patient files tagged with a suspicion of
Covid-19, distributed as follows in the different departments: 53,646 in Dep. 75; 36,721 in Dep. 92; 49,703
in Dep. 93; and 30,096 in Dep. 94.

The flow of calls to the SAMU of the Paris area, and its impact on ER and ICU, is shown on Figure 1.
The data concerning the ER and the ICU are taken from the governmental website SPF (Santé Publique
France) [15], it is available only from March 191

On Figure 2, we represent, in logarithmic ordinates, the numbers of events of different types, summed
over the four departments of the Paris area (75, 92, 93 and 94): (i) the number of patients calling the
SAMU (including patients not calling for Covid-19 suspicion); (ii) the number of calls tagged as Covid-19
not resulting in a vehicle dispatch (i.e., as discussed in §3.1, all kinds of medical advices); (iii) the number
of calls tagged as Covid-19 resulting in an ambulance or MICU dispatch,

We obtained the data (i) by analyzing the phone operator log files. Since a patient may call the Center
15 several times, we eliminated multiple calls to count unique patients. To compute data (ii) and (iii), we
developed a software to analyze the “medical decision” field of the regulation records.

Using logarithmic ordinates is essential on Figure 2, as it allows to visualize on the same graph signals
of different orders of magnitude (e.g, there is a ratio of 20 between the peak number of patients calling and
the peak number of vehicles dispatched).

The evolution of the number of vehicles dispatched (MICU and ambulances) is shown on Figure 3, for
each department of the Paris area (still with logarithmic ordinates).

We provide in Table 1 the doubling times of the number of vehicles dispatched (ambulances and MICU),
for the different departments, measured in days (abbreviation “d”).

We now draw several conclusions from the previous analysis.

4.2 The increase in the number of calls for medical advice provides an early,
but noisy, indicator of the epidemic growth
As shown in Figure 2, the peak of the number of calls for medical advice was on March 13**. However, this

date, four days before the lockdown (March 17'"), is not consistent with epidemiological modeling. This
peak seems rather to be caused by announcements to the population, see the discussion in Section 6.1.
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Feb. 28— Mar. 15"  Mar. 15"~ Mar. 29"  Mar. 29*P— April 240

75 59d 9.8d -9.4d
92 4.9d 10.6 d -8.3d
93 42d 8.5d -10.2d
94 4.6d 6.9 d -7.7d

Table 1: Doubling time of the number of MICU and ambulances dispatched, for different periods, for each
department, obtained by a least squares approximation of the logarithm of this number. The opposite of a
negative doubling time yields the halving time.

4.3 The epidemic kinetics vary strongly across neighboring departments

In the initial phase of the epidemic (Feb. 28'1-March 15'"), the doubling time was significantly shorter
in the 93 department (4.2 d) than in central Paris (5.9 d). The 93 department, with 1.6M inhabitants, is
less populated than central Paris (2.1M inhabitants). Another difference between the departments concerns
mobility. Movement from the population from central Paris to smaller towns and cities or to countryside
were observed, after March 12", the date of the first presidential address concerning the Covid-19 crisis.

In order to quantify this mobility, we requested information from Enedis, the company in charge of the
electricity distribution network in France, and also from Orange and SFR, two operators of mobile phone
networks.

Enedis provided us with an estimation of the departure rates of households, based on a variation of the
volume of electricity consumed, aggregated at the level of departments and districts (i.e., arrondissements).

SFR provided us with estimates of daily flows from the Paris area to other regions, again aggregated
at the scale of the departments or districts, based on mobile phone activity, confirming this decrease of
population.

Orange Flux Vision provided us with daily population estimates, at the scale of department, based
on mobile phone activity. By March 30*", the population, during the night, was estimated to be 1.6M
inhabitants in central Paris, versus 1.35M in the 93.

However, the epidemic peak was higher in the 93 than in the 75 (338 dispatches versus 296). The
contraction rate in the period after the peak (March 29"-Apr. 24'h) was also smaller in the 93, with a
halving time of 10.2 days, to be compared with 9.4 days in the 75. Possible explanations for these strong
spatial discrepancies are discussed in Section 6.5.

5 Results — mathematical modeling

5.1 Delay between implementation of sanitary policies and its effect on hospital
admissions

We explained in Section 3.3, based on Theorem 1 below, that the logarithm of an epidemic observable can
be approached by a piecewise linear map with as many pieces as there are stages of sanitary measures.

So, we look for the best approximation, in the ¢; norm, of the logarithm of the number of vehicles
dispatched (ambulances and MICU), by a piecewise linear map with at most three pieces. This best approx-
imation is shown on Figure 4. It is computed by the method of Appendix A.

In order to evaluate the influence of a sanitary measure on the growth of the epidemic, an approach is to
compare the date of the measure with the date of the change of slope of the logarithmic curve, consecutive
to the measure. This method is expected to be more robust than, for instance, a comparison of peak values,
because the best piecewise-linear approximation is obtained by an optimization procedure taking the whole
sequence into account. Indeed, a local corruption of data will not change significantly the date of change of
slope, if the problem is well conditioned. This is the case in particular if the difference between consecutive



slopes is sufficiently important. In other words, we can identify in a more robust manner the time of effect
of a strong measure than of a mild one.

Let us recall the main changes of sanitary measures in the Paris area, between February and May 2020.
We may distinguish the following phases:

- Initial development of the epidemic, no general sanitary measures in the Paris area, until Feb 29",
first day of so-called “stade 2”7 by the authorities (following “stade 1”7 in which measures intended to
prevent the introduction of the virus in France — like quarantine in specific cases— were taken).

- “Stade 27 (stage 2) measures: general instructions of social distancing given to the population (e.g., not
shaking hands), ban on large gatherings. Moreover, some large companies created crisis committees,
and decided to take more restrictive measures than the ones required by the authorities, including for
instance banning meetings with more of 10 people, and banning business travels. Restrictive measures
in companies were deployed gradually during the work week from March 2°4 to March 6.

- School closure on March 16,

- Lockdown on March 17*". The lockdown ended on May 11", throughout the country.

Hence, we may interpret the variations in the slope in the piecewise linear approximation of the logarithm
of the number of ambulances and MICU dispatched, shown on Figure 4, as the effect of sanitary measures.
The dates where the slope changes are represented in the figure by dotted lines. Thus, the latest breakpoint
of the piecewise linear approximation of the 75 curve (in blue) arises on March 26", to be compared with
March 30*" in the 93 (red curve). The dates of breakpoints in the 92 and 94 are intermediate. Given the
first strong measure (closing of schools) was taken on March 16", we may evaluate the delay between a
sanitary measure and its effect on the ambulances and MICU dispatch to be between 10 and 14 days. This
corresponds to a delay between contamination and occurrence of severe symptoms.

5.2 Construction of statistical indicators of epidemic resurgence based on emer-
gency calls

We implemented the alarm mechanism based on the inference of doubling times described in Section 3.4 and
further explained in Section 9. The method is illustrated on Figure 5. Given a time period where the data
is known, we perform a linear regression on the number of medical advices and vehicles dispatched.

The light shaded, tubular areas around the curves are based on confidence intervals for the fluctuations
of the observed log-counts. The dark-shaded, trapezoidal areas prolongate the tubular areas with straight
lines, the slopes of which correspond to confidence intervals for the slope of the linear regression. We display
such confidence domains for the last known data in May, performing a 6-day forecast based on the last ten
days. In order to validate the method, we also display these domains for older data in March and April,
performing for each a 6-day forecast based on a number of past days. For these time-periods, the short-term
confidence domains are seen to satisfactorily contain the data of the following days. Observe how the shape
of the confidence trapezoids depends on the number of points and the variance of the data used to compute
them.

The needle-shaped (or clock hand) indicators depicted in each trapezoidal confidence domain illustrate
the alarm mechanism of Section 3.4. For each slope inference, there is a ¥yarm = 25% probability that the
real-value of the slope we estimated using recent data is greater than the slope of the thin needle on the
picture. Likewise there is a J.arm = 75% probability that the real slope is greater than the slope of the
fat hand. As a result, a warning (resp. an alarm) on the dynamics of the medical advice curve should be
triggered as soon as the thin needle (resp. the fat needle) has a positive angle with respect to the horizontal.
We have depicted the horizontal with dashed lines to enhance readability.

On May 25", no warning nor alarm is triggered, since all the needle-indicators are below the positivity
threshold, indicating with at least a 75% confidence level that based on the last ten days, the two observed
signals are on a decreasing trend. Note that due to the relative stagnation of the medical advice curve in the

10



{;-norm best approximation of vehicles dispatch by SAMU in Paris area for Covid-19

| . —_ 75
' ncontrolled gro th E éctﬁ‘u stade 2| E cct o lockdo n| o
500 1 S anemeney . . _ — e
94
2001
2
<
% 1
21001 :
;5 i
o
2 501
g
s=}
(3
=
<
220
»n
2
=]
5 104
e}
£
=
5
24 Is closure
1 Source INRIA- , SAMU - 2- 3- AP-HP

Figure 4: Logarithm of the number of ambulances dispatched: the effect of the successive sanitary measures

Medical decisions for Covid-19 calls 75 ith ¢5 con dence intervals

—— Ambulances and M C dispatch
—— Medical advice

-_— arning indicator
o Alarm indicator

500 10
- - - - - Positivity threshold

200 A

100 1

ot
(=}
L

Do
o
L

umber o decisions (log scale)

104

5

924

1 Source INRIA- ', SAMU AP-HP
Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun Sun

1 Mar 8 Mar 15 Mar 22Mar 29 Mar 5Apr 12Apr 19 Apr 26 Apr 3 May 10 May 17 May 24 Mav 31 May

Figure 5: Short term predictor for SAMU 75, with confidence regions and warning and alarms indicators

11



two first weeks of May, computing our indicators a few days earlier (such as May 22"%) would have raised
an warning to arouse vigilance due to the uncertainty on the future trend, but no alarm.

The numbers Vyarn and Ya.om need to be carefully calibrated, and for this, additional data for the
forecoming weeks may be helpful.

6 Discussion

6.1 Calls resulting in medical advice are highly influenced by the instructions
given to the population

The blue curve on Figures 2 and 5 counts the number of times medical advices was given, of all kinds (calls
resulting in recommendations given to the patient but no vehicle dispatched). It is generally associated
with early events in the unfolding of the pathology, and in particular occurrence of the first symptoms. An
estimate of 5.1 days between the date of contamination and the date of the first symptoms is given in [25],
so we may assume that calls for medical advice are made by patients 5-8 days after contamination. We
observed in Section 4.2 that the peak in the number of calls resulting in medical advice was on March 13",
Hence, assuming the peak of contaminations was just before lockdown, the peak of the curve of new symptom
occurrences should occur only several days after the lockdown time (March 17*h). This indicates that the
curve of calls resulting in a medical advice did not give a reliable picture of the epidemic growth around
March 13*". Indeed, this curve is very sensitive to changes in the instructions given to the population and
to political announcements, notable examples of which include the following: recommendation to patients to
call emergency number 15, instead of going directly to emergency departments (to avoid contamination and
overcrowding); — the presidential announcement on March 12" of more restrictive measures to be deployed
from March 16*", making the population more aware of the growth of the epidemic.

6.2 The indicators of medical advice given and ambulances and MICU dispatch
can be used to monitor the epidemic

Setting aside perturbations due to political announcements or changes in the policy for calling SAMU, the
curve of calls for medical advice should be a reliable and early estimate of the curve of ambulances dispatched,
which is triggered at a later stage in the unfolding of the pathology when symptom severity increases. Thus,
it gives an early signal allowing both SAMU and hospitals to anticipate by several days an increase in load.

We can give a rough estimate of this delay by considering the peak dates in Figure 2. Epidemiological
modeling indicates that the number of new contaminations grows exponentially until a sanitary measure that
is strong enough to contain the epidemic is taken. In the present case, the candidates for such strong measures
are the school closing (March 16'") or the lockdown (March 17*"). Considering the last day previous to the
measures, we may assume that the peak date for new contaminations was on March 15" or March 16", As
mentioned above, according to [25], the time between contamination and first symptoms is estimated to be
5.1 days. Hence, if calls for medical advice were representative of first symptoms, the peak value for these
calls would have been between around March 20th or March 21%%. The peak of the number of dispatches of
ambulances and MICU was on March 27", This leads to an estimate of 6-7 days for the delay between the
curve of the true need for medical advice and the curve of vehicles dispatch.

The alarm mechanism was developed during the crisis, after March 20'". Had it been available before,
in the 75, the early warning would have occurred by February 24 (for both Covid-19 indicators on medical
advice and vehicle dispatch), alarm would have been been triggered on February 25" based on medical
advice, and a confirmation alarm would have occurred on February 27" based on ambulance and MICU
dispatch.

Tracking the same signal at a finer spatial resolution (a neighborhood rather than a department) may
enable epidemic surveillance during the period following the lifting of measures such as travel bans. Indeed
in view of the spatial differentiation in doubling times at the department level, it appears plausible that
disparities may also be present at much finer spatial granularities, with resurgences localized to towns or
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neighborhoods. Deployment of alarm mechanisms constructed from event counts at finer spatial granularities
could be used to identify clusters of resurgence early on, and guide subsequent action.

Seasonal influenza, whose early symptoms can be mistaken for those of Covid-19, can also trigger a linear
growth of the logarithms of the number of calls, or vehicle dispatched. However the slope of this logarithmic
curve is expected to be shallower, owing to the lower contagiosity of influenza. One could thus distinguish, on
the basis of the observed slope, whether one is confronted with seasonal flu or with an outbreak of Covid-19.

6.3 Jumps of the curves of the number of calls may be caused by large clusters
or influenced by neighboring countries

The curves of the number of calls for medical advice, and of vehicles dispatched (Figure 2), both jump
between February 230 and 25". Epidemiogical models are unlikely to produce shocks of this type in the
absence of exceptional factors. Several significant epidemic events occurred at nearby dates, including:

1. The development of the Covid-19 epidemic in the north of Italy, a region closely tied to France (the
first lockdowns occurred around February 21%% in the province of Lodi). The school vacation ended
on February 23*"in the Paris area. A significant number of parisians went back from Italy during the
week-end of February 22°4-23%" (end of school vacation).

2. A large Evangelist meeting (Semaine de Caréme de I'Eglise La Porte Ouverte Chrétienne de Bourtzwiller,
Haut-Rhin), from February 17" to February 21, identified by Agence Régionale de Santé Grand Est
as the source of a cluster phenomenon [12].

The potential influence of the north Italy epidemic was pointed out by Paul-Georges Reuter (private commu-
nication). At this stage, the essential factors are not yet known. The influence of mobility on the development
of the epidemic in the Paris area will be studied in a further work.

6.4 Patients from different areas tend to call the SAMU at different stages of
the pathology

Considering the piecewise linear curves in Figure 4, we note that in the 93, the date of the break point is
shifted of 3 days, by comparison with the 75, suggesting that by this time, the patients of 93 were calling
Center 15 at a later stage of the evolution of the disease. This hypothesis is confirmed by an examination
of the ratio of the number of MICU dispatched over the number of ambulances dispatched. For instance,
on March 30", there were 9 MICU dispatches and 276 other dispatches in the 75, to be compared with 25
MICU dispatches and 262 other dispatches in the 93, i.e., ratios of 3.3% in the 75 and 9.5% in the 93.

In the same way, the first breakpoints of the curves give an indication of the times at which “stade 2”
measures influence the epidemic growth. These dates range from March 15" (for 92) to March 22" (for
75). It may be the case that these dates are dispersed because the change of slope is relatively small,
meaning that the effect of stade 2 is mild. Indeed, the milder the slope change, the more the estimation
of the corresponding date is sensitive to noise. Another effect which may have perturbed the curves is the
important mobility of the population in the 4 departments, between March 12" and March 16,

6.5 The strong spatial heterogeneity of the evolution of the epidemic may be
explained by local conditions

We observed in Section 4.3 that in the initial phase of the epidemic (Feb. 28'"-March 15'"), the doubling
time was significantly shorter in the 93 department, whereas in the contraction phase, the halving time was
significantly higher.

One may speculate that the contraction rate in the lockdown phase is influenced by intra-familial con-
taminations. In this respect, according to a survey of INSEE, the national institute of statistics, the average
size of a household is of 2.6 in the 93, versus 1.9 in the 75 (values in 2016 [19]).

13



We also remark that just after the peak on March 27, and up to April 6, the curve of the department
93 on Figure 3 has the shape of a high, oscillating plateau, decaying more slowly than the curve of the
department 75. This may be caused by changes in the nature of the dominant mode of contaminations,
intra-familial contamination becoming an essential part of the kinetics during lockdown.

One may also speculate that the blowup rate in the initial phase is higher when the population is more
dependent on public transport, or working in jobs with more contamination risk. These aspects will be
further studied elsewhere.

After Stade 2 was announced, during the period from March 2" to March 6", a number of large com-
panies took specific measures (e.g., forbidding avoidable small group meetings, enforcing travel restrictions,
restricting office access), in addition to the general measures (not shaking hands, forbidding large meet-
ings) enforced by the authorities. This may have led to a decrease of the number of contamination on the
workplace, and one explanation for the increase of the doubling time.

7 Epidemiological model based on transport PDE

7.1 Taking delays into account: a transport PDE SEIR model

We now introduce a multi-compartment transport PDE model, representing the dynamics of Covid-19.
As explained in Section 3.2, in contrast to ODE models, that assume that the transition time from a
compartment to the next one has an exponential distribution, PDE models capture transition delays bounded
away from zero, an essential feature of Covid-19. An interest of this PDE model also lies in its unifying
character: it includes as special cases, or as variations, SEIR ODE models that have been considered [27, 13].

We shall keep the traditional decomposition of individuals in compartments, “susceptible” (S), “exposed”
(E), “infectious” (I), and “removed” from the contamination chain (R), as explained in Section 3.2, but the
state variables attached to the F and I compartments will take the time elapsed in the compartment into
account, and thus, will be infinite dimensional.

For all ¢ > 0, we denote by ng(x,t) the density of the number of individuals that were contaminated x
time units before time ¢, and that are not yet infectious at time %, i.e., the number of exposed individuals
that began to be exposed at time t — z. Then, the size of the exposed population at time ¢ is given by

E(t) = /000 ng(z,t)de . (1)

Similarly, we denote by ny(z,t) the density of the number of individuals that became infectious x time units
before time ¢, and that are not yet removed from the contamination chain at that time. Then, the size of
the infectious population at time ¢ is given by

I(t) = /00<> ny(z,t)de . (2)

Finally, we denote by S(¢) the number of susceptible individuals at time ¢, and by R(t) the number of
individuals that have been removed from the contamination chain before time ¢.
The total population at time ¢ is given by

N(t) = 8(t) + E(t) + I(t) + R(t) .
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We consider the following system of PDE and ODE, with integral terms in the boundary conditions:

% - 7% /Ooo Kim(@, ting (e, ) do | (3a)
n(0,1) = % /Ooo K1 nr (e, t) de | %‘E(gg,t) + ag—f(m) + Kpo1(z, Hnp(z,t) =0 , (3b)
nr(0,1) = /O " Ko r (o np (e, t) da | %@;,t) + %(m) + Ky r(z, g (z,6) =0 (3c)
%f - /0  Krn(m On () do (3d)

We assume that an initial condition at time 0, S(0), ng(-,0), ns(-,0) and R(0) is given.

This is inspired by the so called “age structured models” considered in population dynamics. Kermack
and McKendrick developed the first model of this kind to analyze the Plague epidemy of Dec. 1905 — July 1906
in Mumbai [22]. Von Forster [37] studied a similar model. Nowadays, these models are used as a general
tool in population dynamics, with applications to biology and ecology [31, 28],

In these models, “age” refers to the age elapsed in a compartment — each transition to a new compartment
resets to zero the “age” of an individual. In contrast, in the classical SEIR literature based on ODE, the
standard notion of age (time elapsed since birth) is taken into account, via a contact matrix tabulating age-
dependent infectiosity rates [27]. These two notions of age should not be confused. In the sequel, we shall
use quotes, as in “age”, to denote the age in a compartment, and will omit quotes to denote the ordinary
age (since birth).

We suppose that K; g, Kgp; and K;_,r are given nonnegative functions. The value Kg_,(z,t)
gives the departure rate from the compartment E to the compartment I, for individuals of “age” z in the
compartment F, at time t. Similarly, K7, g(x,t) gives the departure rate from the compartment I to the
compartment R. As in the classical SEIR model, the departure term from the susceptible compartment, i.e.,
the right-hand-side of (3a) is bilinear in the number S(t) of susceptible individuals and in the population of
infectious individuals n;(-,t), and we normalize by the size of the population N(¢). The term K;_, g(z,t)
can interpreted as an infection rate.

Differentiating N(¢) with respect to time, using the system above, and assuming that for all ¢ > 0,
ng(z,t) and ny(z,t) vanish when x tends to infinity, we verify that the total population N (¢) is independent
of time.

When the functions K7 g, Kp—,; and K;_, g are constant, taking into account (1) and (2), we recover
the classical SEIR model from the dynamics (3):

. S

S = —NK]*)EI 5 (4&)
. S

E= NKI%EI - Kg I, (4b)
I=Kp E— K gl , (4c)
R=K gl . (4d)

In the sequel, we shall consider (3) instead of (4), and we shall assume that the rates Kg_,;(z,t) =
Kg_,i(z) and K;_,g(z,t) = K;_, g(x) are functions of z, independent of time. The rate K;_, 5 will have the
product form

Krp(z,t) = p(t)(z) .

The function ¥ (-) is fixed, it is nonnegative and not a.e. zero. In this way, the infectiosity of an individual
depends on his “age” in the infectious phase, whereas the term p(t) represents the control of the epidemic
by sanitary measures (social distancing, wearing masks, closing schools, lockdown, etc.). We shall assume
that the infectiosity rate K;_,g(z,t) is the only parameter which can be controlled, hence, pu(-) is a decision

15



variable. A variant of the ODE model (4), in which K;_,r depends on time, but not on z, is considered
in [9].

For epidemics in their early stages, i.e., when the number of individuals in the exposed, infectious, or
removed compartments is negligible with respect to the number of susceptible individuals, the classical SEIR
model is well-approximated by a linear system (see e.g. [22, 3]) tracking only the populations in the (E) and
(I) compartments. As noted in Section 3.2, the fraction of the French population exposed prior to May 11 is
estimated of 5.7% (see [32]), which justifies reliance on this linear approximation in our context. The same
approximation applies to the present PDE model. This is translated to the assumption S(t)/N(t) ~ 1, and
we are reduced to the following system:

ng(0,t) = / wt)(x)ng(z,t)de | ag—tE(x,t) + aan—xE(ac,t) + Kgr(z)ng(z,t) =0, forxz >0, (ba)
0

n1(0,1) :/ Kpr()ng(z,t)de, %(x,t)+%(m,t) + Ko p(@)nr(z,t) =0, forz>0. (5b)
0

This is a two-compartment generalization of the renewal equation, studied in Chapter 3 of [31].

In the sequel, we shall assume that there is a maximal “age” z7 of an individual in the exposed state.
Similarly, we shall assume that is a maximal “age” z7 of an individual in the infectious state. These
assumptions, which are consistent with epidemiological observations [25], will be incorporated in our model
by forcing all remaining exposed individuals of “age” x}, to become infectious, with “age” 0. Similarly, all
the remaining infectious individuals are removed when reaching “age” x7. So, the function ng is now only
defined on the interval [0, 2};], and similarly, n; is only defined on [0, z}]. This leads to the following system:

np(0.0) = [ uOv@nie) e, E )+ FE ) + Ker@ng(n,) =0, for0<s<ap,
0

ot
(6a)
ny(0,1) :/0 Kg_(z)ng(z,t)de + ng(zy, t), (6b)
%(I,t) + %(Lt) + Kror(@)ng(z,t) =0, for0O<az <z}, (6¢)

dR e .
E(t):/o K r(z)ni(z, t)de +ns(zy) - (6d)

This system may be obtained as a specialization of (5), in which K, ;() is replaced by K 1(x)1(g 2% () +
dz3 (), where 1 denotes the indicator function of a set, and ¢ denotes Dirac’s delta function.
We shall assume, in the sequel, that the following assumption holds.

Asssumption 1. The functions Kg_,1(-), defined on [0,z%], and ¢ (-) and K g(-), defined on [0,z7], are
nonnegative, measurable and bounded. Moreover, the function ¢ does not vanish a.e. and the point x7 is the
maximum of the essential support of the function .

Indeed, considering the boundary condition in (6a), we see that a population of “age” x > max esssupp v
in the infected (I) compartment will not participate any more to the contamination chain. Hence, the last
part of Assumption 1 is needed to interpret R has the number of all the removed individuals.

Systems of PDE of this nature have been studied in particular by Michel, Mischler and Perthame,
see [28, 31], and also, with an abstract semigroup perspective, in the work by Mischler and Scher [29].

Then, using the boundedness of the coefficients (Assumption 1), and arguing as in the proof of The-
orem 3.1 of [31] — which concerns the case of a single compartment — one can show that the system (6)
admits a unique solution in the distribution sense n := (ng,n;) with ng € C(Rso, L'([0,2%])) and n; €
C(Rxo, L([0,23])). Hence, we can associate to the PDE (5) a well defined family of time evolution linear
operators (T, )i>s>0, acting on the space L'([0,z%]) x L*([0,2%]). The operator Ts; maps an initial con-
dition at time s > 0, that is a couple of functions n(:,s) := (ng(-,s),nr(-,s)), to the couple of functions
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n(-,t) = (ng(-,t),ns(-,t)) at t > s. These operators are order preserving, meaning that, if n!(-,s) and
n?(-,s) are two initial conditions such that nk(z,s) < n%(z,s) and ni(z,s) < n?(z,s) for all z > 0, then
the inequalities nk(x,t) < n%(z,t) and n}(z,t) < n?(z,t) hold for all z > 0 and for all t > s.

An alternative modeling, more in the spirit of [22], would be to consider a single compartment, describing
the evolution of the density n(z,t) of individuals that were contaminated at time ¢ — x by the system:

n(0,t) = /Ooou(t)w(x)n(x,t) dz, %(m,t) + g—;(x,t) + K(x)n(z,t) =0, for0<z <z, (7

*
Tg

where z* > x7}, is fixed, and ¢(x) = 0 for x < 7,. Then, E(t) = [” n(x,t)dz yields the size of the exposed
compartment. However, we prefer the model (6) as it allows us to represent variable incubation times.

The system (6d) can be extended to represent infectiosity rates that depends on the ages (time elapsed
since birth) of individuals, with infectiosity rates given by a contact matrix, as in [27]. It suffices to split
each compartment in sub-compartments, corresponding to different age groups. This will be detailed in a
further work.

7.2 A Perron-Frobenius Eigenproblem for Transport PDE

When the control p(t) is constant and positive, the family of time evolution operators (Ts)i>s>0 is deter-
mined by the semigroup (S; = To+)¢>0, and the long term evolution of the dynamical system (3) can be
studied by means of the Perron—Frobenius eigenproblem

5(0) = / V@@ de S ) (3 Kpor(@)s) =0 for 0 <z <o, (8a)
0
ny(0) = /OxE Kg_(z)ng(z)de + ng(zy) , %(m) + AN+ Kiog(x))n(z) =0 for0<z <z}, (8b)

where 71 := (77(+), ng(-)) is a nonnegative eigenvector, and A is the eigenvalue.
Since the functions Kg_,; and K;_,r are independent of time, the existence of an eigenvector is an
elementary result:

Proposition 1. Suppose that Assumption 1 holds. Then, the eigenproblem (8) has a solution (71, \), where
n = (ng,nr), the functions ng and ny are continuous and positive, and X\ € R. Moreover, the eigenvalue
s unique, and the eigenvector n satisfying the latter conditions is unique up to a multiplicative constant.

The proof of this proposition exploits a classical argument in renewal theory, see Lemma 3.1 p. 57
of [31]. We give the proof, leading to a semi-explicit representation of the eigenvector, which we shall need
in Section 8.

We note first that the uniqueness of A can be deduced from a general observation, of independent interest:

Lemma 1. Let w = (wg,wr), with wg € L*([0,2%]) and wy € L*([0,23]), be such that
an < w < pn 9)
for some a, 8 > 0. Then,
aexp(At)n < Siw < Bexp(At)n, forallt >0 . (10)

Proof. This follows from the order preserving and linear character of the semigroup S, together with Sin =

exp(At)7i. O

Therefore, Lemma 1 shows that A is the growth rate of n(-,t) ast — oo, for all initial conditions w = n(-, 0)
satisfying (9). In particular, A is unique.
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We next provide a semi-explicit formula for the eigenvector. We set
x xT
Fa_ (z):= / A+ Kpor(2))dz, for 0 <z <aly Frgpx):= / A+ K4 gr(2))dz, for 0 <z < z7.
0 0

Integrating the differential equations (8), we see that a nonnegative eigenvector . = (7ig, ;) necessarily
satisfies:

np(x) = exp ( - Fgﬁl(x))ﬁE(O), for0<z <y nsr(y) =exp ( — FI)‘HR(y))ﬁI(O), for 0 <y <a7. (11)

We deduce from the above relations that 7ig(-) is continuous on [0, 2%, and that 77 (+) is continuous on [0, ].
Using the boundary condition in (8b), we deduce that if 7ng(0) = 0, then 7 is identically 0, a contradiction.
Hence, 7 is everywhere positive. Moreover, (11) and (8b) entail that the eigenvector @ is unique, up to a
scalar multiple.

Using the boundary conditions in (8), and specializing (11) to x = z}, and y = 7, we deduce that
pG*ng(0) = ng(0), where

> — (/093}‘ (z) exp ( — Ff;R(x))dx) (/0””*;5 Kg_1(y)exp ( — Fgﬁj(y))dy—f—exp ( - Fé%[(xE))) )

Therefore, to find an eigenvector, we must solve the equation uG* = 1 (the so-called “characteristic equation”

in renewal theory). Since the functions Kg_,;, K;_,r and 9 are integrable, and v is nonzero on a set of

positive measure, we deduce that limy_, _oc G* = 4+00. We also have limy 400 G* = 0. Moreover, the map

A — G* is continuous. Since p > 0, by the intermediate value theorem, we can find A such that uG* = 1,

and this A is the eigenvalue. This concludes the proof of Proposition 1. O
The asymptotic bound (10) can be reinforced, by showing that, for all positive initial conditions w,

Syw = Cy(w)fexp(At) + O(exp(Aqat)) ast— oo , (12)

for some positive constant Cq(w), and A2 < A. This result, with an explicit control of A2, can be obtained
as follows. We make a diagonal scaling, using the positive eigenvector, and we normalize the semigroup to
make the Perron eigenvalue A equal to zero. This leads to the semigroup

(S’tw)(m) = exp(=Mt)a "1 (x)[S; (wn)] (x) .

In potential theory, a version of this scaling is known as Doob’s h-transform (see e.g. [14]). The semigroup
S, obtained in this way is associated with a Markov process, and, so, the spectral gap of this semigroup
can be bounded in terms of Doeblin’s ergodicity coefficient [16, 5], leading to (12). These aspects will be
detailed elsewhere. Alternatively, the relative entropy inequality technique of [28] allows one to establish the
convergence of n(-,t) to the eigenvector, modulo multiplicative constants, as ¢ tends to infinity.

7.3 Universality of the log-rate of epidemic observables

Epidemic observables are obtained by applying a continuous linear form to the state variable. Supposing
that ny(-,t) is a continuous function, an epidemic observable will be of the form

Yo(t) = p(n(-, 1)) = / Y (1) dr() | (13)

where dk(z) is a nonnegative nonzero Borel measure. Epidemic events anterior to the infectious phase, like
contamination, are by nature hard to detect, so the observable depends only on nj.

Proposition 2. Suppose that Assumption 1 holds, let (A, 1) denote the solution of the Perron-Frobenius
eigenproblem (8), and suppose that for some T > 0, there exist positive constants «, 8 such that an <
n(-,T) < Ba. Then, for all epidemic observables of the form (13), the map t — log Y, (t) — At is bounded. A
fortiori,

1
lim glogYﬁ(t) =X\

t—o00
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Proof. Taking w = n(-,T) in Lemma 1, we deduce that
aexp(At)n < Sppen(,0) =n(, T +t) < Bexp(At)i, for t >0 .
Tt follows that loga+ At +log o(n) < log Vi (T +¢) < log 8+ At + log (7). O

A simple example of observable, discussed in Section 3.2, consists of pure delays. For instance, we
assumed that the number of dispatches of MICU is given by Yyicu(t) = mmicuC(t — maicu) where C(t)
is the number of contaminations at time ¢, myicy the proportion of contaminated patients who will need a
MICU transport, and myvicu a fixed delay. This can be obtained as a special case of (13), taking Kg_,; = 0,
so that the transition tom E' to I occurs always at time 2%, and dk := TmicUGryicy —2,» Where § is the Dirac
¢ function.

Other events can be considered: medical advice, EMT dispatch, admission to ICU, or decease. These
events corresponds to different values of the proportion m and of the delay 7. By Proposition 2, the rate
lim; ot~ log Y (¢) will be the same for all the corresponding observables, although the convergence of the
function ¢t~!log Y (t) to its limit will be observed in a delayed manner, for observables corresponding to the
latest stages of the pathology.

7.4 Discrete versions of the epidemiological model

The reader interested in ODE model of epidemics might wish to note that the previous analysis applies to
such finite dimensional models. Instead of the transport PDE (5), we may consider an ODE of the form

v = Mv (14)

where v(t) € R™ and M is a n X n matrix with non-negative off-diagonal terms, a so-called Metzler matriz.
In the original SEIR model [3], the matrix M, obtained by considering the (E, I')-block equations (4b), (4c),
with S/N ~ 1, is of dimension 2. In the generalizations of the SEIR model considered in [27, 13], the
dimension n is increased to account for other compartments. One can also discretize the PDE system (5)
using a monotone (upwind) finite difference scheme, and this leads to a system of the form (14).

In all these finite dimensional models, the matrix M is Metzler and irreducible. Then, the Perron—
Frobenius theorem for linear, order-preserving semigroups (see [7]) implies that M admits a unique eigenvalue
A of maximal real part. Furthermore A is algebraically simple and real, and its associated eigenvector u has
strictly positive coordinates. Then, it follows from the spectral theorem that

v(t) = exp(At)u + o(exp(Aat))

as t — oo, where \o is the maximal real part of an eigenvalue of M distinct from A. Again, in this discrete
model, an epidemic observable Y (¢) is obtained by applying a nonnegative linear form to the vector v(¢), i.e,
Y (t) = ¢ Tv(t), for some nonnegative column vector ¢.

8 Tropicalization of the logarithm of nonnegative observables of
switched Perron—Frobenius dynamics

8.1 Hilbert’s geometry applied to piecewise linear approximation

We introduce an abstract setting, which captures epidemiological models in which most individuals are
susceptible. This setting applies, in particular, to the transport PDE model of (5), when the transition
functions are supported by compact intervals, and to the general finite dimensional Metzler model (14).

We consider (V, <), a partially ordered Banach space, with topological dual V’'. We denote by V¢ :=
{v €V | v >0} the set of nonnegative elements of V, which is a convex cone. This cone must be pointed
(i.e., V=0 N (=V50) = {0}), since the relation < is a partial order. We require this cone to be closed.
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We consider a sequence of m semigroups S* = (S{);>0, for i € [m], where [m] := {1,...,m}. We assume
that for all i € [m], and for all t > 0, S} is a bounded linear operator from V to itself, and that the semigroup
property holds, i.e., Si, , = S} o S.. We shall say that the semigroup S* is order preserving if, for all v € Vs,
and for all ¢t > 0, Siv € V5.

We shall consider commutation instants, to := 0 < t; < -+ < t;,_1, These instants will correspond to
significant epidemiological dates, for instance, dates at which sanitary measures are taken. We set ¢, := +o0.

We select an initial condition vy € V>0, and consider the abstract dynamical system obtained by switching
between the evolutions determined by the semigroups S',...,S™, at the successive times t1,...,t,_1. The
state of this dynamical system, at time ¢ € [t;,¢;4+1), is given by

i1 P
Vg 1= ng_tj e} ngftjfl o--:0 Stll —to (?}0) . (15)

Recall that a part of the closed convex cone Vg is an equivalence class for the relation ~ such that, for
v, w € V>0, we have v ~ w if and only if there exists two positive constants a and 5 such that av < w < Sv.
A part is trivial if it is reduced to the equivalence class of the zero vector. Hilbert’s projective metric dg is
defined on every non-trivial part of V> by the following formula

wv-som s |
(v, w) = loginf 5" a,8>0, av<w< Poy .

The infimum is achieved, since V> is closed. The map dg is nonnegative, it satisfies the triangular inequality,
and dy (v, w) vanishes if, and only if, v and w are proportional — this justifies the term “projective metric”.
This metric plays a fundamental role in Perron—Frobenius theory and in metric geometry, and also in tropical
geometry, see [26, 30, 10] for background.

When V5o = (Rx0)" is the standard orthant, and when all the entries of the vectors v and w are positive,
we have

dp (v, w) = max(log vy — logwg) — min (log vx — logwy) .
k€(n] k€(n]

Denoting by e the unit vector of R™, we observe that
dg(v,w) = || logv — log w|| g
where the notation log v is understood entrywise, and

Izl = 2min ||z — ce||oo -
ceR

In other words, up to a logarithmic change of variables, dy arises by modding out the normed space (R™, || -
lloo) by the one-dimensional space Re.
We shall suppose that every semigroup S* has an eigenvector v’ > 0, with eigenvalue A\*, meaning that

Siu' = exp(\'t)u', YVt =0 .

Since S} preserves Vs, this entails that A’ is real.
We choose a linear form ¢ € V' which we require to take nonnegative values on Vo. We shall think of
V has the state space and ¢ as an observable. We consider the following scalar observation of the dynamics

Yi = o(vr) -

We shall assume, in addition, that ¢ does not vanish on v, for all ¢ > 0. Then, we can define the image of
the observation by the logarithmic map

Yy = log Yy, vt>0 .

The following result shows that the logarithm of the observation stays at finite distance from a piecewise
linear map.
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Theorem 1. Suppose that the semigroups S',...,S™ are order preserving. Suppose in addition that the
initial condition vy and the eigenvectors u',... ,u™ all lie in the same non-trivial part of Vo, and that the
linear form ¢ takes positive values on this part. Then, there exists a constant C such that the piecewise
linear map t +— y;*°® defined, for t € [tj,tj11), by

P = Nt =) + Nt —tio) o+ Mt — L) + C

satisfies

lye — yi | < V>0,

A
5
where

A =dg(vo,u') +dg(ut,u®) + - +dg (™ u™) .

Proof. By definition of Hilbert’s projective metric, we can find positive constants ag, 8o, such that agu' <
vo < Boul and dp (vo,u') = log(Bo/c). Similarly, for all i € [m — 1], we can find positive constants «;, 3;,
such that c;u*! < vl < Bu™!, and dy (uf, ui™t) = log(B;/cvi). For all j > 0, with j < m — 1, and for all
te [tj,tj+1), we set

ze =Nt =)+ XNt —tj—1) + -+ Mt — o) -

Since the semigroups S* are linear and order preserving, we prove by induction
j+1 j+1
exp(z)aj ... aou! Tt < vy <exp(z)B) ... Bou! T

We observe that
i+1
Qlypy—1 « -+« ozj+1um < ILJ+ < Bm,1 e Bj+1um

and so
exp(z)am—1 ... aou"™ < vy < exp(2¢)fBm—1...LBou™ .

Applying the linear form ¢ to latter inequalities, taking the image by the log map, and setting
1 m—1
Ci=logp(u™) + 5 > log(Bja) ,
j=0

we arrive at the bound of the theorem. O

A general principle from tropical geometry states that using “logarithmic glasses” reveals a piecewise
linear structure [36, 20]. Theorem 1 is inspired by this principle. This motivates the notation y'*°P, for the
“tropicalization” of the logarithm of the observable Y.

Theorem 1 carries over to discrete time systems in a straightforward manner.

8.2 Application to the transport PDE model

Theorem 1 applies in particular to the transport model (6). Then, as noted above, the evolution operator of
the system (5) preserves the space V = L1([0, 2%]) x L' ([0, 2%]). Moreover, when the epidemiological control
term p(t) is constant, Proposition 1 shows that the eigenproblem (8) has a positive and continuous solution
n, with a real eigenvalue A. Different stages of sanitary policies correspond to successive values p!, ..., u™
of pu(t), leading to different semigroups S¢, i € [m]. Then, the solution v; := n(-,t) of (5) is determined as
in (15). Each semigroup S* yields a continuous and positive eigenvector u’ := f’ satisfying (8) associated
with a real eigenvalue A’ of S®. Two continuous and positive functions defined on a compact interval are
always in the same part of the cone of nonnegative functions of V', so Theorem 1 applies to this model.

We next give an explicit estimate for the Hilbert projective distances between eigenvectors, arising in
Theorem 1.
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Proposition 3. Suppose that Assumption 1 holds, and that for i = 1,2, (X', 7i%) is the solution (A, @) of the
Perron-Frobenius eigenproblem (8) when u = pu*. Then, we have

dy (', 7%) < M = Ael(2f; + )
The term x}, + «7 is the maximal time elapsed between contamination and the end of infectiosity.

Proof of Proposition 3. Suppose, without loss of generality, that n%(0) = 1 for i = 1,2. Let ¢p_(x) :=
— foz KE_U(Z)CIZ and ¢1_>R(.Z‘) = —fom K[_>R(Z)dz. Then, (11) yields

ﬁ%(x) = exp(—)\ix)@g_ﬂ(x) , (16)
ﬁg«»::QAmE]?EH1@0¢EH1@QeXp(fAdeI—F¢E4ﬂ(zE)exp@anE), (17)
= () = i ([ vt exp(-Xade) i 0) (18)

Let j € {1,2} be distinct from . Then, setting ¢+ := max(t, 0), bounding exp(—A’z) by exp(—Mz) exp (M —
)\i)+x*E) in (17), and applying a similar bound in (18), we obtain:
T(0) < 5 exp (W = X)F (& + 2)) s (0)
which yields p/ /u' < exp (M — A)F) (2§ + x5). We deduce that 7% (x) < @ij(x) exp (M — )+ (af + a%).
So, o
dy (A, ip), (M, 7)) < (N = M) (2] + 2fp) + (N = N) T (2] + 2fp) = [N = N|(a] + 7). O

The bound of Theorem 1 may be refined. This is left for further work.

9 Short term predictions

We now describe the basic methodology we propose to build confidence intervals for future occurrences of
medical events related to epidemic progression, and raise alarms about its potential resurgence. We first
consider a single time series of numbers of event occurrences. We then describe how to consolidate several
time series corresponding to distinct medical events in order to construct improved alarm criteria. The
simpler case of least squares fitting is considered first, the more robust ¢; alternative is described next.

Time series for a single type of events: Let X(1),...,X(n) be indices of days, and we aim to do
a forecast based on observations made on these days. Typically, on day dy, we may select n = 7 and let
X(1)=dyp—mn,...,X(n) =do— 1 to perform a forecast on the basis of the last seven days. Let Y (¢) denote
the count of medical events (for instance, dispatches of ambulances) on day X (¢), and let Z(t) = log Y (¢).
Based on the previous discussion (epidemiological modeling) we assume that for all ¢ =1,...,n,

Z(t)=a+X(t) + e

for constants «, /3, where ¢; denotes some random noise. For simplicity we assume here i.i.d. noise sequence
€1,...,€n, and that each ¢; admits a Gaussian distribution A(0,02) with zero mean and variance o2.

Least-square estimates for the parameters «, 8 are then provided by

LX) -X)Z-2) o s
ST XM —x)p 0 YT (19)

b=
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where

S 1 —
X= oy X, 2= 3 a0 (20)
t=1 t=1
The variance o2 can be estimated as
21
-~ (21)
t:l
where R .
Z(t) ==&+ BX(t). (22)

Under the assumptions of i.i.d. Gaussian errors ¢;, we have that, for each ¢ corresponding to a future day
day X (¢) (in particular, ¢ ¢ {1,...,n}), the three following variables:

—a B—8 Z(t) - Z(t)
<2 T 1 y o )
Nt e e O s eer ff\/ Lt 5+ sl oo
all admit a bilateral Student distribution with n — 2 degrees of freedom (see [21, Ch. 28] or [11]). Denote

by thL_Q the v-th quantile of this distribution. For e € [0, 1], this provides us with the following confidence
intervals with confidence 1 — e:

2 A 1 X2 2
o [0‘ - "\/ + zt, l(x t/) s xE e O+ U\/* LS (I etis e/z}

n—2 n—2
p { _U\/Zg, 1(X DEsri 5/2’/3+‘7 . t/) ST X=Xzt 5/2} (23)

(X(t)—X)? n—-2 5 ~ 1 (X#®)-X)?2 n—2
Z(t) S |:Z(t) \/1+ +th 6/27Z(t)+a\/1+n+wtl e/Q]

As an illustration, for n = 7 and € = 5%, we can plug in t5 975 = 2.571 in the last interval, and thus obtain
a 95%-confidence interval centered around Z(t) for Z(¢) = log Y (¢), the logarithm of the count Y(¢) on a
future day X (t), that is:

1 (X(t) — X)2

o) 957l %6 ] 1 (X()-X)
Y(t) —2.571 \/1+ +th X)X

,Z(t) +2.571 x J\/1+ + ST (X() - X)Z]
(34)
Although we could extend this definition of the confidence interval for the short terms predictions of the
value of Z(t), we propose a more conservative confidence domain, in the shape of a trapezoid. It is obtained
by extending the upper-bound Z(t)* (resp. the lower bound Z(¢)~ of the 95% confidence interval on Z ()
by a line with slope equal to the upper-bound 8% (resp. lower-bound 37) of 95% confidence interval on §3.
For a given day t, the upper and lower envelopes of the trapezoid have ordinates

Z(t) €

(B(t—tn)+2n> i( Var(B)(t — t,) + 82+Var(Zn)) 02,

If instead of the count Y (¢) on a particular day X (¢), we are interested in the trend of the epidemic,
whether exploding or contracting, we should then consider the confidence interval for parameter 8. Again
for n =7 and € = 5% this gives

~ ~ 1 3 o 1
Be [5 — 2,571 x U\/Z?f—l(X(t’) —xyE P 25T J\/Z?/-l(X(t') - X)2| (25)

One-sided confidence intervals may also be provided, and are in fact more natural for the definition of alarm
indicators.
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For concreteness, assume we want to raise an alarm when the doubling time, ¢ = (log2)/5, is * days or
less, where 0* could be 10 for instance. This is equivalent to 8 exceeding (log2)/6*. Thus ¢ is less than §*
days with confidence 1 — € when

log 2
(S*

<B-H2VV,

where

. 1
"= ‘V i (X () = X)2

Raising an alarm under this condition then amounts to calibrating the false positive probability at e. For
instance, for € = 5%, and n = 7, we would plug in #7 g5 = 2.015 in the above expression.
Alternatively, raising an alarm under the condition

log 2

5 < B4+ 12V,

corresponds to calibrating the false negative probability (probability of not raising an alarm while 6 < 10)
at e.

Our alarm indicators correspond to the first choice, i.e. calibration of a false positive rate, with §* set to
+00.

Alarm indicators based on multiple types of events: Assume that several types j of events are
available, and let J denote the corresponding set of events. For instance, we could distinguish between
dispatches of ambulances bringing patients to Intensive Care Units as opposed to Non-intensive Care Units,
thereby producing two distinct time series. Let X;(t), ¢ = 1,...,n; denote the days on which counts Yj(t)
of type j event occurrences are to be used. Let Z;(t) = logY;(t). We assume as before the linear regression
model

Zj(t) = Oéj +ﬂjXJ(t) +€j(t), t= 1,...7n-j .

Now for each of these times series, we can produce, based on the previous discussion, the estimator

5w TG0 = X5)(Z,(t) — Z)
’ (X - X)?
where N -
%=ty xwo 2=y 20
J_njt:1 J ’ J—njt:1] .

Suppose in addition that the noise terms €;(¢) are mutually independent, Gaussian, with zero mean and
variance 0]2- for errors €;(t). Suppose finally that the exponents ; all coincide with j, the exponent that is
characteristic of the epidemic’s progression. Denote by

(26)

V=67 !

j = - - = s
TV L (XG() - X5)?

where, reproducing the computations for a single time series, we let

=L S 20

J t=1

>
NN

and

Zj(t) = a; + B X; (1)
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As previously, Vj is our estimate of the variance of estimate Bj We finally propose to combine the individual
estimators 3; into

1A
o 2jes v P
S
jeJ V;
For the sake of simplicity, let us approximate the bilateral Student distribution with n—2 degrees of freedom
by the standard distribution A(0,1). We then have the approximate distributions 3; =~ N (3, V;), and hence

the approximate distribution 5 — 8 ~ N (0, V),

(27)

1
Ve (28)
ZjEJ %

Weighing the individual estimators Bj by the reciprocal of their variances as just done minimizes the variance
of the resulting estimator. The same approach as previously considered then leads to the following conditions
for alarm raising:

To raise an alarm when the doubling time § = (log2)/8 exceeds §* days (e.g., 6* = 10), if we target a
false alarm probability of €, we are led to raise an alarm when Condition

log 2

5 <B-gVV, (29)

where g1_. is the 1 — e-quantile of the standard Gaussian distribution.
If instead we target a false negative probability (probability of not raising an alarm) at e, we would then

raise an alarm when
log 2

More robust ¢;-based approach: The previous estimators and derived alarm conditions have the appeal
of simplicity, but can be advantageously replaced by more robust versions, that are less sensitive to the
presence of outliers.

A popular alternative is the following ¢; criterion. We again consider Z;(t) := logY;(t), where Y;(¢)
is the number of type j events on day X;(t). We then let &;, B]- achieve the minimum of the criterion

Z?;l la+BX7 —Y/|. They are obtained by solving a linear program. Here we assume that observatlons Z;(t)
are mutually independent and distributed according to density f;.(z) = 515 exp(—|z — oy — 3, X;(t)|/ )\ i)
In other words this corresponds to adding a Laplace observation noise with density 5} exp(— |z| / )\ j) to the
signal of interest a; + X;(¢)3;. The above ¢; minimization criterion corresponds to maximum likelihood
estimation of o, 3; in this observational noise model, as its log-likelihood is given by

nj

—|T|log(2A;) Z ﬂ7 st >|

A rich theory for the performance of the resulting estimators is available, see for instance [23]. The latter
work treats general i.i.d. errors, and do not restrict itself to e.g. Laplacian distribution of errors; recent work
like [33] experiments techniques to obtain confidence intervals when distribution of errors is unknown. Here
we make the choice of Laplace-distributed errors for sake of simplicity. In particular, the asymptotic theory
in [23] suggests the approximation

Bj ~ N(B,V;)

where

Z 1Z;(t) — &y — B; X (1)), (31)

Lt
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and
1

X5(6)? — (S0 X ()*

We again consider that multiple types j € J of time series are conjointly available, and that each B9 coincides
with S, the parameter to be estimated. Assuming the ﬁj to be independent with B N(ﬁj, i), leads us to
define the estimator

Vi = (4)? (32)

B

Yes ooy
3 7 ()2
8= 5 —, (33)
IET (X5)?
whose distribution is then given by 3 ~ N(8,V) where
1
V= e T IT I (34)
Z 2l X ()2 =002, X (#)2/n;
i€J (2)?

A symmetric (1 — €)-confidence interval for 5 is then provided by
Bel=|3- 91—6/2\/‘7754'91—6/2\/?} . (35)
Similarly, (1 — €)-confidence one-sided intervals for § are obtained by letting

Bel ==[B—g-VV, +0), BT = (—00,B+ g1-VV]. (36)

The doubling time ¢ is given by (log2)/8 if 8 > 0, and +oo otherwise. This gives the 1 — e-confidence
conditions for d:

A log 2
ifB—giVV >0,0el, = [0, } , (37)
6 - gl—e\/v
and
log 2
el = ~ , oo . 38
: [max(o,ﬁ+gls\/‘7) ) 38)

For concreteness assume we want to raise an alarm when 0 is 0* days or less, where §* could be 10. From
the above consideration, § is below §* days with confidence 1 — € when

log 2 R
6g* < 5 - glfe\/V-

Raising an alarm under this condition then amounts to calibrating the false positive probability at e.
Alternatively, we may consider to raise an alarm under the condition

log 2
0*

<B+ag_VV.

This would correspond to calibrating the false negative probability (probability of not raising an alarm while
0 < 0%)ate.

10 Conclusion
We have shown that monitoring of emergency calls to EMS allows to anticipate the evolution of an epidemic
by providing several early signals, each with specific characteristics in terms of time lag and reliability.

Our study illustrates the spatially differentiated nature of the epidemic kinetics, with significant doubling
time differences between neighboring departments.
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Such spatial differentiation, if present at a granularity finer than that of departments considered here,
could be exploited using the methods described in the present work in order to detect potential epidemic
resurgences at the corresponding spatial granularity. This shows great promise in enabling detection of
so-called epidemic clusters.

There is thus huge potential in the extension of this work and its application to finer spatial resolution.

Notwithstanding such extensions, monitoring epidemic kinetics through EMS calls at regional levels can
already be exploited to define region-specific sanitary measures, such as lifting of travel bans, proportionate
to the regional situation, and to allow early detection of epidemic resurgence. Importantly, we expect this
finding to be applicable in full generality to EMS organizations worldwide. Thus the methods introduced
here may be of wide applicability to combat Covid-19. Beyond Covid-19, EMS organizations have a unique
role to play in early detection of sanitary crises.

11 Acknowledgments

We thank the operational team of DSI of AP-HP, who helped to extract information records, especially
Stéphane Crézé, Laurent Fontaine, Pierre Cabot, Frangois Planeix, Fabrice Tordjman, Grégory Terrell and
Martine Spiegelmann.

We thank Pr. Renaud Piarroux for very helpful remarks. We thank Pr. Bruno Riou for his suggestion to
include quantitative statistical estimates in the present article. We thank Pr. Frédéric Batteux for having
provided epidemiological information. We thank Dr. Frangois Braun (SAMU 57) and Dr. Vincent Bounes
(SAMU 31) for providing comparison elements between their departments. We thank Dr. Nicolas Poirot for
introducing us to SAMU 31. We thank Dr. Paul-Georges Reuter (SAMU 92) for useful comments on the
interpretation of SAMU data relative to the Covid crisis.

We thank Ayoub Foussoul, for having developed a robust dynamic programming algorithm, allowing
one to consolidate the results of this manuscript concerning the best piecewise linear approximation of the
log of observables. We thank Jérome Bolte, for providing insights on non-convex and non-smooth best-
approximation problems.

We thank Tania Lasisz for her help in the administration of the project, and Guillermo Andrade Barroso,
Thomas Calmant and Matthieu Simonin for their contribution to software development.

We thank NXO France Integrator of communication solutions team and SIS Centaurel5 solution from
GFI World team for the help they provided and their availability for the project.

We thank Orange Flux Vision (especially Jean-Michel Contet) for having provided daily population
estimates, at the scale of the department, helping to calibrate our models.

We thank Enedis (especially Pierre Gotelaere and his team) for having provided an estimation of the
departure rate of households, aggregated at the scale of departments and districts, helping us to refine our
model.

We thank SFR Geostatistic Team (especially Loic Lelievre) for having provided estimates of flows between
Paris and province, aggregated at the scale of departments and districts, allowing us to incorporate mobility
in our model.

Stéphane Gaubert thanks Nicolas Bacaér for a decisive help, concerning epidemiological and mathemat-
ical analysis, provided during the week of March 16th-20th. He thanks Cormac Walsh for improvements
of the text. He also thanks Thomas Lepoutre for very helpful mathematical comments and suggestions
concerning Section 7.

The INRIA-Ecole polytechnique team thanks the Direction de Programme de la Plate Forme d’Appels
d’Urgences — PFAU at Préfecture de Police, DOSTL (Régis Reboul), and Brigade de Sapeurs Pompiers de
Paris (especially Gen. Jean-Marie Gontier and Capt. Denis Daviaud) for having provided precious elements
of comparison concerning the calls received at the emergency numbers 17-18-112.

27



References

1

[14]

[15]

[16]

[17]

D. M. Anderson, N. A. Ciletti, H. Lee-Lewis, D. Elli, J. Segal, K. L. DeBord, K. A. Overheim, M. Tre-
tiakova, R. R. Brubaker, and O. Schneewind. Pneumonic plague pathogenesis and immunity in brown
norway rats. Am. J. Pathol., 174(3):910-921, 2009.

Andrew S. Azman, Kara E. Rudolph, Derek A. T. Cummings, and Justin Lessler. The incubation period
of cholera: A systematic review. J. Infect., 66(5):432-438, 2013.

N. Bacaer. Un modele mathématique des débuts de I’épidémie de coronavirus en France. hal-02509142,
2020.

D. J Baker, C. Télion, and P. Carli. Multiple casualty incidents: the prehospital role of the anesthesi-
ologist in europe. Anesthesiology clinics, 25(1):179-188, 2007.

V. Bansaye, B. Cloez, and P. Gabriel. Ergodic behavior of non-conservative semigroups via generalized
doeblin’s conditions. Acta Applicandae Mathematicae, 166:29-72, 2020.

R. Bellman and R. Roth. Curve fitting by segmented straight lines. J. Am. Stat. Assoc., 64(327):1079—
1084, 1969.

A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. Academic Press,
1979.

G. C. Calafiore, S. Gaubert, and C. Possieri. Log-sum-exp neural networks and posynomial models

for convex and log-log-convex data. IEEE Transactions on Neural Networks and Learning Systems,
31(3):827-838, 2020.

Yi-Cheng Chen, Ping-En Lu, Cheng-Shang Chang, and Tzu-Hsuan Liu. A time-dependent SIR model for
COVID-19 with undetectable infected persons. http://gibbsl.ee.nthu.edu.tw/A_TIME_DEPENDENT_
SIR_MODEL_FOR_COVID_19.PDF, 2020.

G. Cohen, S. Gaubert, and J.-P. Quadrat. Duality and separation theorems in idempotent semimodules.
Linear Algebra and Appl., 379:395-422, 2004.

H. Cramér. Mathematical methods of statistics, volume 43. Princeton university press, 1999.

Agence Régionale de Santé Grand Est. Coronavirus Covid 19 en Grand Est: Point de situation. Press
release of March 8", available from https://www.grand-est.ars.sante.fr/system/files/2020-03/
Covid19_point_GrandEst080320.pdf, 2020.

L. Di Domenico, G. Pullano, Ch. E. Sabbatini, P.-Y. Boélle, and V. Colizza. Expected impact of
lockdown in Ile-de-France and possible exit strategies. Report #9 , www.epicx-lab.com/covid-19.html,
2020.

E.B. Dynkin. Boundary theory of Markov processes (the discrete case). Russian Math. Surveys, 24(7):1-
42, 1969.

Santé Publique France. Données hospitalieres relatives a ’épidémie de Covid-19, 2020. https://www.
data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/, Re-
trieved on May 10th, 2020.

S. Gaubert and Z. Qu. Dobrushin’s ergodicity coefficient for Markov operators on cones. Integral
Equations and Operator Theory, 81(1):127-150, 2015.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Ewvo-
lutionary Computation, 9(2):159-195, 2001.

28



[18]

[31]
[32]

[33]

[34]

M. Hirsch, P. Carli, R. Nizard, B. Riou, B. Baroudjian, Th. Baubet, V. Chhor, Ch. Chollet-Xemard,
N. Dantchev, N. Fleury, J.-P. Fontaine, Y. Yordanov, M. Raphael, C. Paugam-Burtz, L. Lafont, and
health professionals of AP-HP. The medical response to multisite terrorist attacks in paris. The Lancet,
386(10012):2535-2538, 2015.

Insee. Ménages selon la taille en 2016. Comparaisons régionales et départementales, 2019. https:
//www.insee.fr/fr/statistiques/2012714.

I. Ttenberg, G. Mikhalkin, and E. Shustin. Tropical algebraic geometry. Oberwolfach seminars.
Birkh&user, 2007.

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions. Wiley, New York,
1994.

W. O Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc.
R. Soc. Lond. A, 115:700-721, 1927.

R. W Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33-50, 1978.

J. C. Lagarias, J. A. Reeds, M. H. Wright, , and P. E. Wright. Convergence properties of the Nelder-
Mead simplex method in low dimensions. SIAM Journal of Optimization, 9(1):112-147, 1998.

S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, and
J. Lessler. The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed
cases: Estimation and application. Annals of Internal Medicine, 172(9):577-582, 2020. PMID: 32150748.

B. Lemmens and R. Nussbaum. Nonlinear Perron-Frobenius Theory, volume 189 of Cambridge Tracts
in Mathematics. Cambridge University Press, May 2012.

C. Massonnaud, J. Roux, and P. Crépey. Covid-19: Forecasting short term hospital needs in France.
Report available from Sfar.org, 2020.

P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustration on growth
models. J. Math. Pures et Appl., 84(9):1235-1260, May 11 2005.

S. Mischler and J. Scher. Spectral analysis of semigroups and growth-fragmentation equations. Annales
de Ulnstitut Henri Poincare (C) Non Linear Analysis, 33(3):849 — 898, 2016.

A. Papadopoulos and M. Troyanov. Weak Finsler structures and the Funk weak metric. Math. Proc.
Cambridge Philos. Soc., 147(2):419-437, 2009.

B. Perthame. Transport equations in biology. Birkh&auser, 2007.

H. Salje, C. Tran Kiem, N. Lefrancq, N. Courtejoie, P. Bosetti, J. Paireau, A. Andronico, N. Hoze,
J. Richet, C.-L. Dubost, Y. Le Strat, J. Lessler, D. Bruhl, A. Fontanet, L. Opatowski, P.-Y. Boélle, and
S. Cauchemez. Estimating the burden of SARS-CoV-2 in France. pasteur-02548181, 2020.

G. Stangenhaus, S. C. Narula, and F. F. Pedro. Bootstrap confidence intervals for the minimum sum
of absolute errors regression. Journal of statistical computation and simulation, 48(3-4):127-133, 1993.

Virlogeux V., Fang V. J., Park M., Wu J. T., and Cowling B. J. Comparison of incubation period
distribution of human infections with mers-cov in south korea and saudi arabia. Seci. Rep., 6(35839),
2016.

M. Varia, S. Wilson, Sh. Sarwal, A. McGeer, E. Gournis, Eleni Galanis, B. Henry, and Hospital Out-
break Investigation Team. Investigation of a nosocomial outbreak of severe acute respiratory syndrome
(sars) in toronto, canada. CMAJ, 169(4):285-292, 2003.

29



[36] O. Viro. Dequantization of real algebraic geometry on logarithmic paper. In Furopean Congress of
Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pages 135-146. Birkh&user, Basel,
2001.

[37] H. von Forster. Some remarks on changing populations. In Jr. F. Stohlman, editor, The Kinetics of
Cellular Proliferation, pages 382-407. Grune & Stratton, New York, 1959.

A Appendix: algorithms to compute a best approximation of the
logarithm of the number of events by a piecewise linear map

Given an epidemiologic observable Y (¢), we need to approximate log Y (¢) by a function

L(t) = min (At +¢;),
where v is the number of phases with constant sanitary policy during the considered time period. The
parameters A;, c¢; are assumed without loss of generality to satisfy Ay < A2--- < A,. The concavity
constraint imposed on the approximating function £(t) makes the problem different from standard function
approximation problems, and contributes to the robustness of the fitting procedure by reducing the amount
of overfitting.

The two most natural criteria for fitting function £(¢) to observations log Y () are to minimize either a
least squares, or {5 loss function Y-, |£(t) —log Y ()|, or an /1 loss function Y, .+ |L£(t) —log Y (t)|, where
T is a finite set of time instants at which observations have been made. As discussed in Section 9, the ¢,
formulation is more robust in being less sensitive to outliers, and is the one used on Figure 4.

The corresponding optimization problem over parameters \;, ¢; is non-convex as soon as v > 2. A
straightforward option is to use a derivative free procedure, like the Nelder-Mead [24] algorithm. Depending
on the initial point, this algorithm may converge to a local minimum, which may not be epidemiologically
significant. So, a possibility is to guide the algorithm by providing it a initial guess of the optimal solution.
To do, we start by an a priori selection of the time periods over which function £(t) is linear (which could
be obtained by prior knowledge of delay parameters 7 and times of policy changes, or found by brute force
search). We then determine a minimum cost linear fit of target function log Y (¢) over each such period, and
use the concave envelope of the resulting function as our initial condition for local search. This is how we
initially obtained the best ¢; approximation shown on Figure 4. We also used CMA-ES for comparison [17].
Both Nelder-Mead and CMA-ES algorithms appear to be sensitive to the initial conditions. Notice in
this respect that the objective function is linear on the cells of a polyhedral complex and that it can be
constant on certain unbounded cells of this complex, so a local search algorithm may be trapped in a cell in
which the function is constant. Another perspective is to observe that this best approximation problem is
equivalent to a learning problem, looking for the parameters of a neural networks with a single hidden layer
and min-type activation functions, see [8]. This allows one to apply (nonsmooth) optimization algorithms
used in learning, still leading in general to a local optimum. An approach leading to the global optimum
is dynamic programming, originating from Bellman [6]. Ayoub Foussoul (Ecole polytechnique) provided us
with a dynamic programming solver, implementing several refinements, and allowing us to certify the global
optimality of the approximation shown in Figure 4, up to a fixed precision.
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