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Abstract

DNA supercoiling—the level of twisting and writhing of the DNA molecule around itself—
plays an important role in the regulation of gene expression in bacteria by modulating
promoter activity. The level of DNA supercoiling is a dynamic property of the chromo-
some which varies both at local and global scales, in response to both external factors
such as environmental perturbations and internal factors including gene transcription.

As such, local variations in supercoiling could in theory couple the expression levels of
neighboring genes by creating feedback loops at the transcriptional level. However, the
impact of such supercoiling-mediated interactions on the regulation of gene expression
still remains uncertain. In this work, we study how this coupling between transcription and
supercoiling could shape genome organization and help regulate gene transcription. We
present a model of genome evolution in which individuals whose gene transcription rates
are coupled to local supercoiling must adapt to two environments that induce different
global supercoiling levels. In this model, we observe the evolution of whole-genome regu-
latory networks that provide control over gene expression by leveraging the transcription-
supercoiling coupling, and show that the structure of these networks is underpinned by
the organization of genes along the chromosome at several scales. Local variations in
DNA supercoiling could therefore help jointly shape both gene regulation and genome
organization during evolution.

Author summary

DNA, the carrier of genetic information, is a flexible molecule that can dynamically twist
and writhe around itself, a property known as DNA supercoiling. DNA supercoiling
plays a particular role in gene regulation, because it can both affect gene transcrip-

tion and be affected by it in return: genes located in underwound DNA are usually
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expressed more, and when a gene is being transcribed, DNA both overwinds down-
stream and underwinds upstream of the gene. In this work, we study the impact of this
coupling between gene regulation and DNA supercoiling on the organization of bacterial
genomes. We present a computational model in which simulated bacteria must adapt
the expression of their genes, which depends only on supercoiling, to different envi-
ronments by reordering their genomes through genomic inversions over generations.
We show that, in this model, environment-specific gene expression can indeed evolve,
and is the result of the formation of specific patterns of gene positions and orientations
along the genome, leading to the emergence of supercoiling-sensitive regulatory net-
works. Altogether, these results suggest that gene regulation via supercoiling can help
understand the organization of bacterial genomes through an evolutionary lens, and that
this mechanism should be accounted for when designing fine-tuned artificial genetic
constructs.

1. Introduction

DNA is the material basis of genetic information. It is a flexible polymer comprising two
strands of nucleotides that coil around each other. In the cell, DNA is subject to torsional
stress, inducing what is known as DNA supercoiling in the form of twist (deformation around
the helical axis) and writhe (3D deformation of the helical axis). The level of supercoiling o is
an important physiological parameter, and it is measured in a given DNA molecule as the rel-
ative difference between its linking number (the number of times its strands cross each other,
which is affected by twist and writhe) and that of a relaxed DNA molecule of the same length.
In bacteria, DNA is normally maintained in a negatively supercoiled state, with a typical value
of Opasal = =0.06 in Escherichia coli [1]. In these organisms, DNA supercoiling is an impor-
tant regulator of gene expression, as changes in the level of supercoiling directly affect gene
transcription rates [2-4].

Regulation of DNA supercoiling. In bacteria, the level of DNA supercoiling is primar-
ily controlled by topoisomerases, enzymes that alter supercoiling by passing DNA through
single- or double-strand breaks. The two main topoisomerases are gyrase, which introduces
negative supercoils at an ATP-dependent rate, and topoisomerase I, which oppositely relaxes
negative supercoiling without ATP [5]. The average chromosomal supercoiling level depends
on their relative activity, and changes depending on environmental conditions. A prime
example can be found in E. coli, where DNA is more negatively supercoiled during exponen-
tial growth, and more relaxed in stationary phase [1]. Supercoiling also responds to envi-
ronmental stresses: salt shock causes a transient increase in negative DNA supercoiling in E.
coli [6]; an acidic intracellular environment causes DNA relaxation in the facultative pathogen
Salmonella enterica var. Typhimurium [7]. In the plant pathogen Dickeya dadantii, higher
temperatures also relax DNA, and lead to the activation of a virulence gene [8], suggesting
that supercoiling could mediate the expression of pathogenic genes in response to stress in
this bacteria.

These responses are usually very well conserved among species [9], and the level of super-
coiling therefore constitutes a global regulatory parameter subject to cellular control. More-
over, supercoiling does not only vary through time, but also depending on chromosomal
location. In particular, according to the twin-domain model of supercoiling presented in [10],
the transcription of a gene by an RNA polymerase generates both positive supercoils down-
stream and negative supercoils upstream of the transcribing polymerase [11-13], as a con-
sequence of the drag that hampers the rotation of the transcriptional complex (polymerase,
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RNA, and associated ribosomes and proteins) around DNA during transcription. Further-
more, while the intrinsic flexibility of the DNA polymer allows supercoils to diffuse along
the chromosome, physical constraints induced by the 3D confinement of the nucleoid and
by DNA-bound proteins form topological obstacles and barriers that block its diffusion
[14-16]. As a result, bacterial chromosomes are estimated to be partitioned in topological
domains with an average size of 10 kb [14].

Global regulatory role of DNA supercoiling. The level of DNA supercoiling influences
gene expression in bacteria through several mechanisms [2-4]. In particular, more negatively
supercoiled DNA facilitates the initiation of gene transcription, as opening the DNA double
strand-the initial step of gene transcription-is thermodynamically favored in more nega-
tively supercoiled DNA regions [17]. In E. coli, [3] showed that 7% of genes were either up-
or down-regulated by a global relaxation (a less negative supercoiling level) of chromosomal
DNA. Similar transcriptional responses to DNA relaxation were obtained for S. enterica [18],
and for S. pneumoniae [19], and to an increase in negative supercoiling in D. dadantii [20].

DNA supercoiling might play an especially important regulatory role in bacteria with
reduced genomes, such as the obligate aphid endosymbiotic bacterium Buchnera aphidi-
cola. As B. aphidicola is nearly devoid of transcription factors, global and local changes in
supercoiling are thought to be one of the main mechanisms available to this bacteria for the
regulation of gene expression [21]. In Mycoplasma pneumoniae, another genome-reduced
bacterium, other work has also shown that supercoiling plays a global regulating role, and that
it might mediate transcriptional interference between convergent genes [22]. Finally, muta-
tions that alter the regulation of DNA supercoiling have also been shown to be evolutionarily
favorable in experimental settings. For example, in the so-called Long-Term Evolution Exper-
iment, 12 populations of E. coli cells seeded from a common ancestor have been adapting to
a laboratory environment for over 75,000 generations [23,24]. In this experiment, 10 out of
the 12 populations were shown to present a higher level of negative supercoiling relative to
their ancestor, with one population in particular presenting an increase of more than 17% in
negative supercoiling [25]. In this population, two distinct mutations were shown to increase
negative supercoiling when inserted back into the ancestral strain, and to provide a signifi-
cant growth advantage (that is, higher fitness) relative to the ancestral strain. This evolution-
ary trajectory was then shown to be repeatable not only at the phenotypic level, but also at
the genetic level, with a majority of strains harboring mutations in DNA supercoiling-related
genes [26]. In the context of the LTEE, supercoiling mutations therefore played a role in the
adaptation of E. coli strains to new environments, evidencing the important effect of DNA
supercoiling on bacterial gene regulation.

The transcription-supercoiling coupling. When two genes are located closely enough on
the genome, the supercoiling generated by the transcription of one gene can in theory affect
the transcription level of the other gene, and vice versa. This interaction has long been been
suspected to play a regulatory role [27,28], and, following [29], we will refer to it as to the
transcription-supercoiling coupling. This coupling can take several forms depending on the
relative orientation of the genes: divergent genes could increase their respective transcrip-
tion level in a positive feedback loop; convergent genes could inhibit the transcription of one
another; and, in tandem genes, the transcription of the downstream gene could increase the
transcription of the upstream gene, and the transcription of the upstream gene decrease the
transcription of the downstream gene.

Such supercoiling-mediated interactions between neighboring genes have been experimen-
tally documented in several bacterial genetic systems. In the E. coli-related pathogen Shigella
flexneri, the virB promoter is normally only active at high temperatures, but can be acti-
vated at low temperatures by the insertion of a phage promoter in divergent orientation [30].
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Similarly, the expression of the leu-500 promoter in S. enterica can be increased or decreased
by the insertion of upstream transcriptionally active promoters, depending on their orienta-
tion relative to leu-500 [31]. The transcription-supercoiling coupling has also been explored
in a synthetic construct in which the inducible ilvY and ilvC E. coli promoters were inserted
on a plasmid in divergent orientations [32]. In that system, a decrease in the activity of ilvY
was associated with a decrease in ilvC activity, and an increase in ilvY activity with a cor-
responding increase in ilvC activity. More recent work using plasmids in E. coli has shown
that induction of a divergently oriented gene can result in lower expression of a target gene
through slower transcription [33], or that a convergent or tandem orientation can result in
higher expression of a target gene than a divergent orientation [34,35], suggesting that the
twin-domain model can however not always be straightforwardly used to make quantitative
predictions.

The biological relevance of the transcription-supercoiling coupling might however
not be limited to such local interactions. Indeed, in E. coli, the typical size of topological
domains- inside which the positive and negative supercoils generated by gene transcription
can propagate—-is usually estimated to range around 10 kb [14], and transcription-generated
supercoiling has been shown to propagate up to 25 kb in each direction around some spe-
cific genes [13]. As genes stand on average 1 kb apart on the E. coli chromosome [36], any
single topological domain could therefore encompass multiple genes interacting via the
transcription-supercoiling coupling. Supercoiling-sensitive genes have indeed been shown to
group in local up- or down-regulated clusters, found all around the chromosome, in bacte-
ria such as E. coli [3], S. enterica [18] and S. pneumoniae [19]. In E. coli, a statistical analysis
of the relative position of neighboring genes on the chromosome indeed showed that genes
that are up-regulated by a global increase in negative supercoiling have more neighbors in
divergent orientations, while genes that are down-regulated in these conditions have more
neighbors in convergent orientations [37]. The co-localization of genes in such clusters has
therefore been hypothesized to play a phenotypic role by enabling a common regulation of
their transcription through local variations in the supercoiling level. At a larger scale, recent
advances in long-read sequencing have facilitated the detection of structural rearrangements
in bacterial genomes and the study of their impact on gene expression. In a long-term growth
experiment using S. enterica, genomic inversions were found to affect the expression level of
genes in the inverted region, with genes at the extremities of the inversion being affected the
most [38]. In particular, one of these inversions evolved twice during the experiment, sug-
gesting it provided an evolutionary advantage in that context. While proximity to the ori-
gin of replication and co-orientation with the replication machinery are important drivers of
differential expression of genes along the chromosome, supercoiling-mediated gene expres-
sion variation at inversion boundaries could also be partially responsible for the observed fit-
ness gains due to the inversion. In E. coli, prophage-mediated genomic inversions were also
detected in both lab and cattle strains, leading to increased virulence (and possible evolution-
ary advantage) in some of these strains [39]. Finally, synteny segments - clusters of neighbor-
ing orthologous genes that show correlated expression patterns — have been shown to be more
conserved than expected by chance in a study considering over 1,000 bacterial species, includ-
ing in particular the distantly related E. coli and Bacillus subtilis, possibly as a consequence of
co-regulation of the genes within these segments through supercoiling [40]. Overall, this body
of empirical evidence suggests that local variations in the supercoiling level, due to its cou-
pling with transcription, could indeed play a substantial role in the regulation of gene activity
and consequently impact the evolution of genome organization.

Multiple modeling works have recently addressed the simulation of the transcription-
supercoiling coupling, reporting contrasted results [17,41-44]. Quantitative regulatory rules
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that result from this coupling thus still remain to be fully characterized. Here, we address a
different question that has never been subject to detailed analysis: how the transcription-
supercoiling coupling may drive genome evolution. We present a two-level framework, in
which a whole-genome model of the transcription-supercoiling coupling is embedded within
an evolutionary simulation. The regulatory aspect of the model is voluntarily kept simple,
assuming that local negative supercoils always activate gene expression. In this framework,
individuals must evolve gene expression levels that are adapted to two environments, charac-
terized by different global supercoiling levels, using chromosomal rearrangements only. We
first show that complex environment-driven patterns of gene expression are able to evolve in
such a model, observing in particular the emergence of relaxation-activated genes. We then
characterize the spatial organization of genes along the genome that is responsible for these
expression patterns in the model, showing that genes are locally organized in patterns which
leverage the transcription-supercoiling coupling for either activation or inhibition, such as
toggle switches, but that larger-scale networks are required to strongly inhibit genes. Finally,
we show that, in our model, genes form a densely connected genome-wide interaction net-
work, overall demonstrating that supercoiling-based regulation could indeed coevolve with
genome organization in bacterial genomes.

2. Results

2.1. Evolution of gene regulation through the transcription-supercoiling
coupling

We introduce a model (detailed in the Methods section) in which populations of individuals
must evolve to adapt their gene expression levels to two different environments encountered
during their lifetime. In the model, individuals are described by a circular genome containing
a constant number of genes, placed at different positions and orientations along the genome.
The main assumptions of the model are that the expression level of a gene only depends on
the local level of supercoiling at the location of its promoter, and that this local supercoil-
ing level itself only depends on the following elements: the basal level of supercoiling of the
chromosome, a constant perturbation of this level in each environment, and the transcrip-
tion rate of neighboring genes, with a magnitude linearly decreasing with the distance to the
transcribed gene (see Equations 1 to 4 in Methods). Moreover, we assume that gene transcrip-
tion and DNA supercoiling are continuous functions of one another, and we assume that they
always reach a deterministic equilibrium state. We can thus define, for a given individual in a
given environment, a unique expression level for each gene and a unique level of supercoiling
at every genome position (see Fig 12 for an example individual illustrating the model).

The two environments used in the simulation are characterized by their respective impact
80 .ny o1 the background supercoiling level of the chromosome of each individual. The first
environment, named environment A, induces a global relaxation of DNA as in the acidic
macrophage vacuoles encountered by S. enterica [7]. In the model, we consider that this
relaxation decreases baseline gene expression (0., = 804 = 0.01). The second environ-
ment, named environment B, oppositely induces an increase in negative DNA supercoil-
ing, as observed for example when shifting E. coli cultures to a salt-rich medium [6]. In the
model, we consider this negative supercoiling to oppositely increase baseline gene expres-
sion (80,,, = dap = —0.01). These environments could also be considered to reflect the sta-
tionary phase of E. coli, in which DNA is more relaxed, versus the exponential growth phase
in which it is more negatively supercoiled [1]. In order to have high fitness, individuals must
display environment-specific gene expression patterns, obtained by the activation or inhi-
bition of three disjoint subsets of their genes—called A, B and AB-in each environment: A
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genes must be activated in environment A but not in environment B, B genes in environment
B but not in environment A, and AB genes must be activated in both environments. At every
generation of the simulation, we compute the fitness of every individual based on their gene
expression levels in each of these environments, then create the next generation by making
individuals reproduce proportionally to their fitness, and applying random mutations to their
offspring. Importantly, the only mutational operator that we use is genomic inversions, as our
focus is the evolution of genome organization. In the model, inversions do not affect genes
directly, but only change their relative positions and orientations along the chromosome. Due
to supercoiling-mediated interactions, this affects gene expression levels, and in turn fitness.
Evolution of environment-specific gene expression levels. Using the model presented
above, we let 30 populations of 100 individuals, each possessing 20 genes of each type for a
total of 60 genes, evolve for 1,000,000 generations. The genome of a typical individual at the
end of the evolutionary simulation is depicted in Fig 1, in environments A (left) and B (right).
In each case, the outer ring depicts gene position, orientation, type, and activation, and the
inner ring the local level of supercoiling due to gene transcription orsc. For ease of interpre-
tation, we discretize expression levels by considering that a gene is activated if its expression
is above the expression threshold e;,, and inhibited otherwise (see Methods). In this individ-
ual’s genome, different activation patterns are visible, for each gene type and as a function of
the environment. All the AB genes except one (gene 51) are correctly activated (dark blue) in
the two environments; 19 out of 20 B genes are correctly inhibited (light green) in environ-
ment A (left) while 18 are correctly activated (dark green) in environment B (right); and 16
A genes are activated (dark red) in environment A, while 16 are inhibited (light red) in envi-
ronment B. Note that this asymmetry between the number of A and B genes that are in the

-0.15
-0.10
-0.05
Gene type Gene type
3 0.00 B AB (on) [=J AB (off) BN AB (on) [ AB (off)
g B A(on) 3 A (off) B A(on) 3 A (off)

Il B (on) 3 B (off) Il B (on) 3 B (off)

Gene interaction distance : Gene interaction distance

0.15

Fig 1. Genome of the best individual at the last generation of evolution of replicate 21, evaluated in the two environments: A (relaxed DNA, left) and B (more
negatively supercoiled DNA, right). The outer ring shows the type, orientation, and expression of each gene on the genome (darker color: activated; lighter color:
inhibited). Genes are considered to be activated if their expression is above the threshold e/, and inhibited otherwise (see Methods). Genes are numbered clockwise
according to their position on the genome. The inner ring shows the level of transcription-generated DNA supercoiling orsc at every position on the genome. Shades
of blue represent negative supercoiling (orsc < 0), and shades of red positive supercoiling (orsc > 0).

https://doi.org/10.1371/journal.pchi.1013482.9g001
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expected state is due to an asymmetry in the effect of the environments themselves, which we
will discuss below in more detail.

The transcription-generated supercoiling that is represented in the inner ring can also be
seen to change consistently with the gene activation patterns between the two environments:
zones of negative DNA supercoiling (in blue) are delineated by divergently oriented acti-
vated genes, while zones of positive DNA supercoiling (in red) contain inhibited genes. The
genome of this evolved individual therefore shows that, in the context of this model, it is pos-
sible for evolution to adjust gene expression levels to an environment-dependent target solely
by rearranging relative gene positions and leveraging the transcription-supercoiling coupling
between neighboring genes.

This behavior is however not specific to this particular individual. Fig 2 shows that the fit-
ness of the best individual of each population, averaged over all populations, evolves smoothly
towards higher values over the course of the simulation. More precisely, Fig 3 shows that the

10—3_
10—7.
10—11 J

10—15 i

Fithness

10—19 4

10—23 4

100 10! 102 103 104 105 106
Generation

Fig 2. Geometric average of the fitness of the best individual in each of the 30 populations, at every generation. Lighter
lines represent the first and last decile of the data.

https://doi.org/10.1371/journal.pcbi.1013482.9002
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Fig 3. Average number of activated genes (expression higher than e;;;) of each type in the best individual at every generation, averaged over the 30 populations, in
environments A (left) and B (right). Lighter lines represent the first and last decile of the data.

https://doi.org/10.1371/journal.pcbi.1013482.9g003
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numbers of activated genes of each particular type also evolve towards their respective tar-
gets, in environment A (left) and B (right). In each environment, the average number of acti-
vated AB genes (in blue) quickly reaches nearly 20, its maximum value, as expected from their
target; B genes (in green) show the same behavior, evolving towards nearly full activation in
environment B and nearly full inhibition in environment A. A genes (in red) follow a slightly
different course, as the number of activated A genes seems to converge to approximatively 15
out of the expected 20 in environment A, but continues to decrease towards the expected 0 in
environment B by the end of the simulations.

The incomplete match of A genes with their evolutionary target—as compared to B genes-
could however be partially expected. Environment A is indeed characterized by a less nega-
tive global supercoiling level, while environment B is characterized by a more negative global
supercoiling level (recall that the basal supercoiling level is negative). As less negative super-
coiling reduces gene transcription, it is by construction more difficult for a gene to have a high
transcription rate in environment A than in environment B. A genes must therefore com-
plete the more difficult task of being activated in the inhibiting environment A, while being
inhibited in the activating environment B, whereas B genes must complete the comparatively
easier task of being activated in the “easier” environment B and inhibited in the “harder”
environment A.

Well-differentiated expression levels nonetheless do evolve in our model for both types of
genes, in response to the different supercoiling levels imposed by the environmental condi-
tions. These gene expression patterns are moreover remarkably robust to the magnitude of
the difference between the environments. Indeed, we still observe such patterns even when
repeating the experiment with environmental perturbations 10 and 100 times smaller in
magnitude (see Figs A and B in S1 Text).

Evolution of relaxation-activated genes. In our model, the expression of a gene that
doesn’t interact with its neighbors increases with the amount of negative supercoiling at its
promoter (see Equations 3 and 4 in Methods). One could therefore expect that the genes of
evolved individuals would present a qualitatively similar response. In order to verify this, we
measured the expression of every gene in the genomes of evolved individuals, not only in the
two discrete environments characterized by §o4 and o (as throughout the evolutionary
process), but instead as a function of a continuously varying 8c.,,. Fig 4 presents this data,
grouping genes by their type, and averaging over the 30 replicates.

Fig 4 highlights striking differences between the average response of each type of gene in
evolved genomes (red, green, and blue lines) on the one hand, and the responses of isolated,
non-interacting genes (dashed light blue line) or of genes in random non-evolved genomes
(dash-dotted light blue line) on the other hand. While AB and B genes (in blue and green
respectively) display an average expression level that decreases as supercoiling increases,
and that remains qualitatively similar to the behavior of random genes (dash-dotted line), A
genes (in red) display a completely different behavior. Indeed, A genes show a non-monotonic
response to the environmental perturbation in supercoiling, as their average expression level
decreases until a local minimum in expression at 5o, then increases—even though back-
ground negative supercoiling decreases—until a local maximum at §0 4, before decreasing
again similarly to other genes types. In other words, due to their interaction with other genes,
A genes present a phenotype of activation by environmental relaxation of DNA for pertur-
bations between dop and o4, even though the activity of an isolated A gene would decrease
with background DNA relaxation (dashed light blue line). The evolution of this relaxation-
activated phenotype is furthermore very robust to the magnitude of the environmental per-
turbations, as we can again observe it when replaying the main experiment with supercoiling
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Fig 4. Average gene expression level per gene type as a function of the environmental perturbation in supercoiling.
The full colored lines show average expression levels for each gene type (AB, A, and B in blue, red, and green respec-
tively), as a function of the perturbation 8Ty (top horizontal axis), or equivalently of the background supercoiling level
Opasal + OTeny (bottom horizontal axis), averaged over the best individual in each of the 30 populations. The dashed light
blue line represents the expression level of a single neighbor-less gene, and the dash-dotted light blue line represents the
average expression level of genes on 30 random genomes. The dashed vertical lines represent the perturbations 04 and
603 due to environments A and B, in which individuals evolved during the simulation, and the pink horizontal line marks
e1/2, the threshold above which a gene is considered active.

https://doi.org/10.1371/journal.pcbi.1013482.9004

perturbations that are 10 or 100 times smaller than in the main experiment (see Figs C and D
in S1 Text respectively).

In our model, the transcription-supercoiling coupling is therefore able to provide a
regulatory layer that mediates the transcriptional response to the global variation in DNA
supercoiling due to environmental perturbations. Remarkably, the coupling allows for the
evolution of activation by DNA relaxation, meaning that a global decrease in negative super-
coiling can lead to a localized increase in negative supercoiling, and therefore demonstrating
the importance of relative gene positions on the regulation of transcription.

2.2. Evolution of local genome organization

Having first shown that differentiated gene transcription patterns can evolve in our simula-
tions in response to environmental perturbations, we then sought to determine the genome
organization that necessarily underlies these patterns in our model, given that the only differ-
ence between individuals in the model is the relative position and orientation of the genes on
their genomes.
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In order to do so, we systematically enumerated all possible pairs and triplets of neighbor-
ing genes of different types and in different relative orientations, and measured their abun-
dances in evolved genomes, which we will describe starting with gene pairs. As the interac-
tion in a gene pair can be asymmetric if the genes are in tandem, we gave gene pairs an orien-
tation by considering that a pair consists of a focal gene which affects a target gene. We first
measured the abundance of such oriented gene pairs in each relative orientation (conver-
gent, divergent, focal gene upstream, or focal gene downstream), as the relative orientation
of two neighboring genes determines their mode of interaction through the transcription-
supercoiling coupling: mutual activation for divergent genes, mutual inhibition for conver-
gent genes, and activation (resp. inhibition) of the upstream (resp. downstream) gene by the
downstream (resp. upstream) gene. As, in our model, different gene types must evolve differ-
ent activation patterns in each environment for an individual to have high fitness, we further
stratified these pair counts by the type of each gene in the pair, resulting in 9 kinds of oriented
pairs. Finally, in order to quantify the actual strength of the coupling between the genes in a
given type of pair, we also measured the total level of positive and negative supercoiling gen-
erated by the transcription of the focal gene at the promoter of the target gene, for all relative
orientations. These data are presented in Fig 5.

Frequent gene pairs in evolved genomes showcase twin-domain behaviors. The most
frequent pair pattern found in evolved genomes is that of a convergently oriented A-B pair

Oriented pair counts by gene type and relative orientation Transcription-generated supercoiling by gene type and environment
- AB - A - B - AB - A - B
12 -0.02
T -0.01
2 0w Al S
° i 0.01 d A

conv. div. downstr. upstr. conv. div. downstr. upstr. conv. div. downstr. upstr. Env. A Env. B Env. A Env. B Env. A Env. B
12 -0.02
10
-0.01
T8 1
< 6 < 0.00 *
4 : ° ° ©
2 0.01
o
0
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o
0.01
o o
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Fig 5. Interactions in oriented pairs of neighboring genes. The left-hand side panel shows the number of oriented pairs of each kind, split by the type of the focal gene
(row) and of the target gene (column) in the pair, and by relative orientation (bars in each sub-panel: convergent, divergent, focal upstream, or focal downstream). For
instance, the AB — B top-right panel shows the influence of AB genes on B genes, and the B — AB bottom-left panel the influence of B genes on AB genes (in the same
pairs). In these pairs, there are on average 7.8 AB genes directly upstream of a B gene (top-right panel, in red), or equivalently 7.8 B genes directly downstream of an

AB gene (bottom-left panel, in green) on an evolved genome. The right-hand side panel shows, for each kind of oriented pair, the total amount of negative (green) and
positive (red) transcription-generated supercoiling due to the focal type (row) measured at the promoter of the target type (column), summed over all orientations, and
split by environment. All data is averaged over the final best individual of each of the 30 replicates. Box plots indicate the median and dispersion between replicates, and
circles denote outliers.

https://doi.org/10.1371/journal.pcbi.1013482.g005
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(or, equivalently, a B-A pair, using overhead arrows to denote relative gene orientation).
There are on average just over 10 such pairs in an evolved genome (blue bars in the A — B
and B — A panels on the left-hand side of Fig 5). In such pairs, according to the twin-domain
model of supercoiling, each gene theoretically inhibits the expression of the other gene in the
pair through the downstream generation of positive supercoiling. The right-hand side panel
of Fig 5 shows that, in environment A, A genes indeed generate an average positive supercoil-
ing variation of 0.01 at the promoter of convergently oriented B genes, and hence decrease the
expression of such B genes with a strength that is comparable to the supercoiling perturba-
tion due to environment A (504 = 0.01). In this environment, B genes are mostly inhibited,
and therefore do not strongly impact the expression of A genes. In environment B, it is oppo-
sitely B genes that strongly inhibit the expression of convergently oriented A genes, through
the generation of positive supercoiling at the promoter of such A genes. In evolved genomes,
convergent A-B gene pairs therefore seem to behave as toggle switches, or bistable gene reg-
ulatory circuits, in which the expression of one gene represses the expression of the other
gene [45].

The second most frequent pattern is that of AB genes placed immediately upstream of a B
gene, or AB-B pairs, with on average just under 8 such pairs found in an evolved genome.
This can be again understood in terms of the expression target of the genes in the pair: as vis-
ible in the right-hand side panel of Fig 5, AB genes in such pairs generate a large amount of
positive supercoiling at the downstream B gene, which is needed for inhibition in environ-
ment A, and compensated by the negative supercoiling perturbation of environment B.

Finally, divergently oriented pairs of all three kinds of genes are also frequently found in
evolved genomes. In particular, divergent AB-AB gene pairs generate an average negative
supercoiling of around —0.012 at their promoters, in both environments (summing the posi-
tive and negative bars in the AB — AB sub-panel on the right-hand side of Fig 5). This value
is comparable in magnitude to, but has the opposite sign than, the supercoiling perturbation
due to environment A (804 = 0.01). The interaction between neighboring genes can there-
fore locally counteract the global shift in supercoiling caused by this environment, in order
to maintain environment-agnostic high gene expression levels. This unconditionally positive
feedback loop would, on the contrary, seem less evolutionarily favorable for A-AorB-B
pairs than for AB-AB pairs, as both A genes and B genes must be conditionally expressed or
1nh1b1ted depending on the environment. We can indeed observe that divergent A-Aand
B-B pairs result in slightly weaker interactions (middle and bottom-right sub-panel of the
right-hand side of Fig 5), in the environment in which these genes are active. In contrast to
these frequent pairs, one can note that divergent A-B gene pairs are almost never found, con-
sistently with theoretical expectation, since A and B genes must not be expressed in the same
environment.

Gene triplet frequencies reflect pairwise interactions. Following the same approach
as for pairs, we then measured the observed frequencies of gene triplets, stratifying triplets
by the type and orientation of each gene they contain, which results in 3»3 * 23 216 possi-
ble trlplets We grouped symmetric triplets together (for example, AB-B-A together with
A-B-AB), keeping by convention triplets whose central gene is in leading orientation, thus
reducing the number of triplets under consideration to 108.

Fig 6 shows the gene triplet frequencies observed in the genomes of the best individuals at
the end of the simulations, sorted by gene type and orientation (top heatmap) or by decreas-
ing frequency (bottom bar and box plots). As in the case of pairs, triplet frequencies strongly
depend on their gene content: in particular, three specific triplets stand out as much more fre-
quent than all others. These triplets are visible as yellow-green squares in the heatmap at the
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Fig 6. Relative frequencies of gene triplets. Top: heatmap of relative gene triplet frequencies, with gene types on the X-axis and relative gene orientations on the
Y-axis. Note that we count symmetric triplets together, keeping by convention the triplet whose central gene is in leading orientation. Bottom: gene triplets sorted
by decreasing relative frequency (top to bottom and left to right), with relative gene orientations depicted as overhead arrows. All data is averaged over the best final
individuals of the 30 replicates. Box plots indicate the median and dispersion between replicates, and circles denote outliers.

https://doi.org/10.1371/journal.pcbi.1013482.q006

top of Fig 6: by decreasing frequency, AB-B-A (1), AB-AB-B (2), and A-A-B (3). The
fact that these are the most frequent triplets is consistent with the previously discussed dis-
tribution of frequent gene pairs, as each of these triplets contains either a divergent AB- AB

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013482 September 29, 2025

12/ 32


https://doi.org/10.1371/journal.pcbi.1013482.g006
https://doi.org/10.1371/journal.pcbi.1013482

PLOS COMPUTATIONAL BIOLOGY The evolutionary influence of supercoiling-regulated transcription on bacterial genomes

pair or a convergent A-B pair, and allow us to gain further insight about the regulation of
these pairs. Indeed, triplet (1) shows how the B gene of a convergent A-B pair can be under
inhibitory control of an AB gene (remember that, with a bacteria-like negative level of basal
supercoiling, it is harder to inhibit than to activate gene expression). Triplet (2) shows how an
AB gene in a strongly-expressed divergent AB-AB pair can inhibit a B gene, and the B gene
of the triplet can also be seen as reinforcing the expression of the dlvergent AB AB pair in
environment B. Finally, triplet (3) shows how the A gene of a convergent A-B pair can be
actlvated bya d1vergent A gene, and shows a possible synergy between overlapping divergent
A-Aand convergent A-B gene pairs. Similarly to gene pairs, it is noteworthy that 22 out

of 108 possible triplets never appear at all in evolved genomes (rightmost subplot of Fig 6),
and an additional 17 triplets appear only once, suggesting that those triplets are under strong
negative selection.

In the model, specific local genome organization patterns can therefore be evolutionar-
ily selected or counter-selected in order to attain favorable gene expression levels through
supercoiling-mediated interactions. In particular, we observed the formation of divergent
gene pairs or convergent toggle switches, that either regulate or are under the regulation of
their neighboring genes. However, there is no reason why phenotypically important inter-
actions should be limited to pairs or triplets of genes, as there are always more neighboring
genes just outside a given pair or triplet. As a systematic exploration would become combi-
natorially intractable and statistically meaningless for wider gene neighborhoods, we then
studied how the behavior of a given gene depends on its neighbors at all distances.

2.3. Gene inhibition requires medium-range interactions

As we just saw, the local organization of the genome seems to play an important role in the
regulatory response to environmental changes in supercoiling in the model. However, this
local response cannot suffice to completely explain the environment- and gene-type- spe-
cific activation patterns that we observed above. Indeed, in the dense bacteria-like genomes
of individuals in our model, genes do not only interact through supercoiling with their clos-
est neighbors, but also with genes located further away on the genome. In order to quantify
more precisely the range at which regulatory interactions take place in evolved genomes, we
therefore studied how gene expression changes when isolating genes into contiguous neigh-
borhoods of increasing sizes.

We applied the following algorithm: for every gene on a given genome, and for every odd
subnetwork size k between 1 and the genome size, we extracted the subnetwork of k consec-
utive genes centered around that gene. Then, for each such subnetwork, we computed the
expression level of every gene in the subnetwork (in the same way as for a complete genome)
in each environment, and compared the activation state of the central gene with its state in
the complete genome. This allowed us to compute the following metric: the minimum sub-
network size at which a gene presents the same activation state (that is, activated or inhibited)
as in the complete genome, in each environment. We interpret this metric as an indicator of
the complexity of the interaction network required to produce the behavior of that particu-
lar gene in that environment. Two representative examples of this algorithm are presented in
Fig 7, and complete data are then shown in Fig 8.

Fig 7 depicts the smallest subnetworks that are required in order to obtain the inhibition
of a representative gene of type B in environment A (top row, gene 31), and of a representa-
tive gene of type A in environment B (bottom row, gene 6), both taken from the genome of
the same evolved individual as in Fig 1. The central B gene in this example is not inhibited
by a subnetwork of size 3, but requires a subnetwork of size 5 in order to be inhibited, and,
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Fig 7. Top: contiguous subnetworks of size 3 (left) and 5 (right) centered around gene 31 (of type B, in bold) of the final best individual of replicate 21, evaluated
in environment A. Bottom: contiguous subnetworks of size 7 (left) and 9 (right), centered around gene 6 (of type A, in bold) of the same individual, evaluated in
environment B. In each case, when moving from the smaller to the larger subnetwork, the activation state of the central gene switches from activation to inhibition,
which is the original state of these genes in the complete genome of this individual (shown in Fig 1).

https://doi.org/10.1371/journal.pcbi.1013482.g007

similarly, the central A gene is not inhibited by a subnetwork of size 7, but requires a subnet-
work of size 9 in order to be inhibited. In each case, increasing the size of the subnetwork by
two (one gene on each side) drastically changes the expression level of the central gene, along-
side with the associated level of transcription-generated supercoiling. Indeed, in the two sub-
networks centered around the B gene (top), all 3 genes in the small subnetwork switch from
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activation in the small subnetwork to inhibition in the large subnetwork, and in the two sub-
networks centered around the A gene (bottom), the two B genes and two out of the three cen-
tral A genes also switch from activation to inhibition when moving from the small to the large
subnetwork. In both examples, the activity of a gene does therefore not only depend only on
its interaction with its closest neighbors, but with a broader section of the genome.

We then computed these minimal subnetwork sizes for every gene that presents the cor-
rect activation state in each environment in the final best individual of each of the 30 repli-
cates. Markedly different patterns again appear, depending on whether the targeted behavior
for the gene is activation or inhibition, as depicted in Fig 8. For AB genes in both environ-
ments, as well as for A genes in environment A and B genes in environment B, the experi-
mentally obtained minimum subnetwork size is 1, consistently with the supercoiling response
of an isolated gene (previously shown in Fig 4). Indeed, with a basal supercoiling value of
Opasal = —0.06, an isolated gene experiences a high expression level in both environments—even
without interactions—in the model, as in real-world bacteria.

When the expression target of the gene is inhibition, that is for A genes in environment B
and for B genes in environment A, the picture is however quite different. In this case, a sig-
nificantly larger subnetwork is required in order to obtain inhibition of the focal gene: The
median subnetwork size required to inhibit A genes in environment B is 9, or 4 genes on each
side. For B genes, the median subnetwork size for inhibition in environment A is lower than
that required for the inhibition of A genes in environment B, but higher than when the tar-
get is activation: Genes always need at least a subnetwork of size 3 (1 gene on each side), and
several outliers need a subnetwork of more than 20 genes in order to obtain inhibition.
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The gene interaction networks that evolve through the transcription-supercoiling coupling
therefore exhibit a structure that cannot be explained only by local interactions, but that can
on the contrary require the participation of a significant number of genes in order to allow
genes to reach their required environment-specific expression levels.

2.4. A whole-genome gene interaction network

Having shown that the transcription-supercoiling coupling plays a major role in the regula-
tion of gene expression in our model, and that supercoiling-mediated interactions can impli-
cate more than just neighboring genes, we then sought to describe these interactions in more
detail by viewing the genome as a network of interacting genes. The matrix of gene interac-
tions used to compute gene expression levels, whose coefficients %—‘2 represent the effect of the
transcription of every gene on the local level of supercoiling at every other gene (and decrease
linearly with distance, see Equation 1 in Methods), could seem to provide a natural graph
representation of the interactions between the genes in the genome of an individual. How-

ever, as this matrix does not take into account actual gene expression levels, using it directly
could provide an inaccurate picture of the effective interactions between genes (for example,
overestimating the influence of a weakly-expressed gene). We therefore constructed an effec-
tive interaction graph, by measuring instead the effect of gene knockouts on gene expression
levels.

Gene knockouts. Gene knockout is a genetic technique in which a gene of interest is inac-
tivated (knocked-out) in order to study its function (in our case, its possible role as part of a
gene interaction network). In order to knock out a given gene in an individual in our model,
we set the transcription rate of that gene to zero during the computation of gene expres-
sion levels (as described in Methods). This mimics a loss of function of the promoter of the
gene, while keeping the intergenic distance between its upstream and downstream neighbors
unchanged, thereby minimizing differences to the original individual. The result of a gene
knockout on the genome of an evolved individual is shown in Fig 9. The knocked-out gene
is gene 36 (bottom left of the genome), which is of type AB and originally activated in both
environments (see Fig 1 for the original genome of the same individual). We can see that, in
environment A, knocking out this gene results in a switch in the activation state of 7 genes
(hatched in the left-hand side of Fig 9), and that these genes are not all contiguously located.
This knockout also results in local supercoiling changes that propagate up to the bottom-left
third of the genome, outside of the direct influence of the knocked-out gene. In environment
B, knocking out this gene instead results in milder supercoiling changes that do not result
in any gene switching state. In this example, knocking out even a single gene can therefore
substantially affect gene expression levels, and lead to a switch in the activation state of other
genes on the genome, even when these genes do not directly interact with the knocked-out
gene.

Constructing the effective interaction graph. We construct the effecting interaction
graph in the following manner: we successively knock out every gene in the genome, and
each time add edges from the knocked-out gene to every other gene whose activation state is
switched by the knockout in either environment. If the knockout switches off a gene that was
originally activated in the complete genome, we mark the edge as an activation edge, mean-
ing that the knocked-nout gene was necessary in order to activate the switched-off gene. If the
knockout conversely switches on a gene that was originally inhibited in the complete genome,
we mark the edge as an inhibition edge. If knocking out a gene switches on or off the same
other gene in the two environments, we only add a single edge (even if one edge is an acti-
vation edge and the other an inhibition edge), as our main focus is on the connectedness of
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the resulting graph. The effective interaction graph of the example evolved individual in Fig 9
is presented on the left-hand side of Fig 10. In this individual, there is only one weakly con-
nected component (WCC), meaning that all the genes of this individual contribute to a single,
whole-genome interaction network.

Global structure of the effective interaction graphs. In order to characterize the effective
interaction graphs of evolved individuals, we compared them with the effective interaction
graphs of 30 random individuals drawn using the same genome parameters (shown in Table 2
in Methods) as the initial individuals used at the beginning of evolution. The distribution of
WCC sizes for each group of graphs are presented on the right-hand side of Fig 10. As we can
see, the effective interaction graphs of evolved individuals are clearly different from those of
random individuals. Indeed, evolved genomes have WCC sizes of 58 to 60 genes (left), com-
prising every or nearly every gene on the genome, along with very few single-gene WCCs. In
particular, in 26 out of the 30 evolved populations, the interaction graph of the best individual
comprises only a single WCC that includes every gene on the genome, similarly to the interac-
tion graph in Fig 10. In random genomes (right), on the contrary, WCC sizes span the whole
range from single-gene to whole-genome WCCs, with most of the connected components
counting less than 10 genes.

Local structure of the effective interaction graphs. Evolved genomes are indeed on aver-
age much more connected than random genomes, as we can see in Fig 11, which presents the
out- and in-degree of genes (averaged by gene type) in the effective interaction graphs. The
left-hand side of Fig 11 first shows the average out-degree of each gene type (i.e., the number
of genes that are switched either on or off by knocking out a gene of that type). While knock-
ing out a gene in a random genome switches the state of a little less than 2 other genes on
average, independently of the type of the knocked-out gene, this number is much higher in
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Fig 10. Left: effective interaction graph of the best individual at the last generation of replicate 21, obtained by knocking out every gene one by one and measur-
ing the resulting gene switches in either environment. Activation edges are drawn in green, and inhibition edges in red. Gene numbering is the same as in Figs 1, 8
and 9. Right: box plot representing the distribution of weakly connected component (WCC) sizes in the effective interaction graphs of evolved individuals (left)
compared to random individuals (right). Circles outside the box plot whiskers denote outliers.

https://doi.org/10.1371/journal.pcbi.1013482.g010

evolved genomes. Knocking out A or B genes switches 4 other genes on average, and knock-
ing out AB genes switches up to 7 other genes. Through this higher connectedness, AB genes
therefore play a quantitatively more important regulatory role than A genes or B genes. This
can be explained by the fact that AB genes are activated-and generate more supercoiling
through transcription, as shown in Fig 5-in both environments, while most A and B genes are
instead inhibited in one environment or the other.

When looking at the in-degree of genes (the number of genes whose knockout will switch
a given gene on or off) on the right hand-side of Fig 11, we can see that evolved genomes are
again much more connected on average than random genomes, and that the in-degree of
genes greatly depends on their type. Indeed, AB genes are only switched by one other gene
on average, meaning that their activation state is robust to perturbations in the interaction
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Fig 11. Left: average out-degree (number of genes switched by knocking out a given gene) of the nodes in the effective interaction graph, separated by gene type,
for evolved and random individuals. Right: average in-degree (number of genes whose knockout switches a given gene) of the nodes in the effective interaction graph,
separated by gene type, for evolved and random individuals. Box plots show the median and dispersion around the average value, and circles represent outliers.

https://doi.org/10.1371/journal.pcbi.1013482.q011

network. The robustness of AB genes could be expected, as these genes must have the same
activation state in both environments in order to attain high fitness. A genes and B genes have
an oppositely much higher in-degree, meaning that their activation state relies on the regula-
tory action of a large number of other genes. Similarly to AB genes, this high connectedness
could be expected, as a high in-degree could make A and B genes more sensitive to variations
between the two environments.

In our model, the evolution of relative gene positions on the genome therefore integrates
local supercoiling-mediated interactions between neighboring genes into a single genome-
wide interaction network, through which all genes interact in order to reach their targeted
expression levels.

3. Discussion and perspectives

DNA supercoiling, through its effect on promoter activation and hence on gene transcrip-
tion [4], is an important actor of the regulatory response of bacteria to diverse environmental
conditions [9]. In return, gene transcription impacts the level of DNA supercoiling, through a
mechanism first described in the twin-domain model of supercoiling [10], and plays a major
role in shaping the bacterial DNA supercoiling landscape [13], through what has been termed
the transcription-supercoiling coupling [27,29]. Taken together, these observations suggest
that supercoiling-mediated interactions between the transcription rates of neighboring genes
could play a part in regulating bacterial gene activity, and might hence influence the evolu-
tion of bacterial genome organization. A growing body of experimental assays is nowadays
increasingly lending support to this hypothesis (reviewed in Table 1). However, to the best of
our knowledge, no study has until now explored the impact of the transcription-supercoiling
coupling at the genomic scale, either from an experimental or computational perspective.

In this work, we thus sought to assess the possibility of the evolution of such supercoiling-
based gene regulation in an in silico bacteria-like model, and to determine potential hallmarks
on the local and global organization of bacterial genomes of this mode of regulation. To this
end, we developed an evolutionary model of the transcription-supercoiling coupling, in which
populations of individuals must evolve differentiated gene expression levels in response to
two different environmental conditions. We showed that, in this model, gene regulation by
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Table 1. Recent experimental results showing that genome organization can modulate gene expression through
the transcription-supercoiling coupling.

Experimental method Result and link to the TSC Reference
Measure gene expression in a 2-gene construct [Adding a gyrase binding site between the two genes  |[35]
with varying relative orientations, isolated increases transcription, showing that transcription

from the rest of the E. coli chromosome. affects and is affected by local supercoiling.

Measure gene expression in a 2-gene con- When the expression of the upstream gene is [44]
struct, in which genes are co-oriented and increased by changing promoter sequence, expres-

located on a plasmid in E. coli, with varying  [sion of the downstream gene is decreased, consistently
promoter sequences. with the twin-domain model.

Sequence diverse S. enterica strains and mea- |Within a large-scale chromosomal inversion, differ-  |[38]
sure differential gene expression between ential expression is stronger for genes close to the

strains. inversion boundaries.

Measure yfp fluorescence under the control of |When the yfp repressor is in a divergent or upstream |[49]
a 3-gene synthetic network inserted in trans  |position to the other genes, it is more active and

on the E. coli chromosome. fluorescence is lower.

Measure the gene expression response to Convergent genes are more strongly activated than [17]
environment-triggered DNA relaxation in E.  |divergent genes by DNA relaxation.

coli and D. dadantii.

Measure the gene expression response to Gene expression is globally anticorrelated for [22]
multiple environmental perturbations in M.  |convergent genes.

pneumoniae.

Compare gene expression by relative pair As the genome evolved to be more negatively super- |[17]
orientation between wild-type and evolved coiled, convergent genes saw a lower increase in

genomes after 20,000 generations in the LTEE. |expression than divergent genes, consistently with the
twin-domain model.

Measure gene expression in a 2-gene inducible |Gene expression reacts differently to the induction [34]

construct with varying relative orientations on |depending on relative orientation.

a plasmid in E. coli.

Insert a cassette with divergent genes on the E. |An increase in expression of the induced gene is [37]
coli chromosome and measure expression of |matched by an increase in expression of the divergent
one gene as the other is induced. neighbor.

https://doi.org/10.1371/journal.pchi.1013482.t001

DNA supercoiling is a sufficient mechanism to evolve environment- and gene- specific pat-
terns of activation and inhibition. In particular, we observed the emergence of relaxation-
activated genes that respond to supercoiling oppositely to the majority of genes, which are
classically inhibited by DNA relaxation [46]. Our results therefore demonstrate that, in the-
ory, this response to supercoiling can result not only from promoter sequence as in the case
of the relaxation-activated gyrA promoter [47] or spacer length [48], but also from genome
organization in itself, as had already been suggested by [37] or [17]. As such, these findings
suggest that supercoiling-mediated regulation could be a sufficient mechanism to adapt gene
expression in response to environmental constraints. This regulatory role could in partic-
ular be especially important in bacteria that lack other regulatory mechanisms, such as the
genome-reduced B. aphidicola [21] or M. pneumoniae [22].

Having shown that the transcription-supercoiling can be leveraged to tune gene expres-
sion levels in bacteria, we investigated the patterns of genome organization that underlie this
transcriptional response to different supercoiling environments. At the most local scale, we
found that evolved genomes are enriched in divergent pairs of always-on genes that form
positive feedback loops, as well as in convergent pairs that oppositely act as bistable toggle
switches controlled by supercoiling rather than by transcription factors [45]. The existence
of such supercoiling-mediated toggle switches had been earlier posited by using mechanistic
biophysical models that explicitly describe the movement of RNA polymerases during gene
transcription [42,43], and their emergence in our model suggests that such toggle switches
could indeed evolve as a means to regulate the expression of neighboring genes. Note that
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other models, such as [33], paint a more complex picture and suggest that divergently tran-
scribing polymerases could slow down transcription, leading to a more complex interaction
between neighboring genes, such as that observed in [35]. We additionally observed that, sim-
ilarly to pairs, the distribution of triplets of neighboring genes in evolved genomes is not uni-
form. Although the distribution of triplet frequencies partly reflects the non-uniformity of
the pairs that underlie these triplets (as discussed in the Results), this observation may reflect
more complex favorable three-way interactions such as external input leading to the activa-
tion of one or the other gene in a toggle switch-see a systematic exploration in [49]. Finally,
we showed that these local interactions between pairs or triplets are in fact not entirely suf-
ficient to selectively activate or inhibit genes in specific environments, but that interactions
between larger groups of genes can be required to do so. Such regulation of gene expression
through the interaction of groups of co-located genes could help explain the persistence of
synteny segments (clusters of genes that display correlated transcription levels at the supra-
operonic scale) that has been evidenced in bacterial evolutionary histories [40]. Indeed, if
local interactions play a role in regulating the expression of groups of neighboring genes,
genomic rearrangements that alter relative gene positions within these structures could dis-
rupt their regulation and hence be evolutionarily unfavorable. Finally, we characterized in
further detail the gene interaction networks that evolve in the model by adapting the classical
genetics tool of gene knockouts [50]. We showed that supercoiling-mediated interactions inte-
grate the entire genome of evolved individuals into a single connected network of interacting
genes, in opposition to the sparse, disconnected networks displayed by randomly generated
individuals. Moreover, we showed that genes play different roles in these networks depend-
ing on their type, corresponding to the type-specific responses to environmental variations
that genes must display in the model. Overall, our simulations therefore demonstrate that,

in this model, the transcription-supercoiling coupling provides a strong and precise regula-
tory mechanism that allows for the evolution of complex regulation patterns based solely on
the relative positions of genes on the genome, and that this regulation can be sensitive to even
very small environmental perturbations (see Figs A-D in S1 Text). Finally, our simulations
show that this particular mode of regulation could impact the structure of bacterial genomes
not only at a local scale, but also at a wider scale through supercoiling-mediated regulatory
networks.

In this work, we voluntarily kept our model as simple as possible in order to obtain easily
interpretable results, while retaining the core concept of the transcription-supercoiling cou-
pling. In particular, in order to keep simulations computationally tractable, we used small
genome and population sizes compared to real bacteria, but we do not expect these modeling
choices to impact our results (see Methods). In further work, an number of adjacent relevant
questions could also be studied by introducing other elements to the model. For example, we
chose to use a deterministic algorithm to compute the gene expression levels resulting from
the transcription-supercoiling coupling for a given value of §0.,,, but stochastic approaches
could be considered, such as averaging final expression levels over slightly perturbed initial
gene expression levels. We do not expect such model changes to qualitatively affect the results,
but they could provide additional information about the stability of the evolved gene regula-
tory networks. Increasing the number of environments that individuals face, and accordingly
increasing the number of gene types, might provide a larger panel of evolutionarily selected
local gene organizations that might reflect more accurately the real-world diversity of bacte-
rial genomes. In another direction, modeling more explicitly polymerases and topoisomerases
would allow us to study how including transcriptional read-through (the transcription of suc-
cessive genes by a single RNA polymerase) and topological barriers to supercoiling would
alter the regulatory genomic structures that evolve in our model. Indeed, this mechanism
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has been hypothesized to play a part in the evolutionary conservation of synteny segments in
bacterial genomes, by correlating the expression levels of genes in these segments [40]. Sim-
ilarly, letting the response to supercoiling of gene promoters coevolve with genomic organi-
zation could help understand the evolution of unusual promoters such as the gyrA promoter,
which is activated by relaxation due to its particular sequence [47]. Finally, integrating a clas-
sical model of gene regulation via transcription factors to our model, such as the one pre-
sented by [51], could also help shed light on the coevolution between the different modes

of gene regulation that are available to bacterial genomes. From a theoretical standpoint, a
range of mechanistic biophysical models of the transcription-supercoiling coupling have been
put forward, using different hypotheses in order to address related questions on this topic.
[52] show a phase transition in the transcription regime as the number of RNA polymerases
transcribing a given gene increases; [42] show that bursty transcription can emerge from the
transcription-supercoiling coupling; and [29] and [17] try to predict gene expression levels
quantitatively, as a function of the local level of DNA supercoiling. An important validation of
these complementary approaches would therefore be to investigate the extent to which these
models, including ours, conform to one another as the level of abstraction changes. From an
experimental standpoint, the advent of long-read DNA sequencing now allows for the study
of genome-scale structural variations in multiple strains of the same species, and such data
could be used to systematically study the link between genome organization and gene expres-
sion, furthering the work of [39] or [38]. However, such an analysis remains out of the scope
of the current paper. Finally, from a synthetic biology point of view, a better understanding of
the regulatory interactions that result from the transcription-supercoiling coupling could help
design more finely controlled artificial genetic constructs [35,43,44].

4. Conclusion

To the best of our knowledge, this work is the first to propose a model to investigate the

role of the coupling between gene transcription and DNA supercoiling in the evolution of
the structure of bacterial genomes. By integrating a biophysical model of the transcription-
supercoiling coupling into an evolutionary simulation, we have demonstrated the theoret-
ical possibility of the evolution of gene regulation through a supercoiling-mediated regula-
tory network that allows for precise responses to variations in the environment. For exper-
imentalists, this work builds up on a series of theoretical models that could help explain

the heterogeneous transcriptomic response (with both up- and down-regulation of multi-

ple genes) observed in bacteria confronted to supercoiling variations, due for example to
virulence-inducing environments [53] or to gyrase-inhibiting antibiotics [54]. It also sug-
gests further experiments that should help better understand the interaction between the
transcription-supercoiling coupling and bacterial genome organization. For evolutionists, this
work shows that genomic inversions can provide an unforeseen source of adaptive mutations
through supercoiling-mediated regulatory rewiring at their boundaries, explaining fitness
gains observed in strains harboring genomic inversions [38,39]. Overall, it therefore lends
further weight to the hypothesis that supercoiling-based regulation could help conserve local
gene order throughout evolutionary histories [40]. Finally, for synthetic biologists, it provides
a theory that could help predict more accurately the transcription levels that can be expected
to result from a given gene context [44], and could thus help in the design of new artificial
genetic circuits.
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5. Methods

This section details the model that we use throughout the manuscript to study the role of the
transcription-supercoiling coupling in the evolution of gene regulation and genome orga-
nization in bacteria-like organisms. The model consists in an individual-based evolutionary
simulation, in which individual whose phenotypes are computed according to a biophysi-
cal model of the effect of supercoiling on gene expression must adapt to two environments
presenting different supercoiling levels. It is based upon and refines our previous model pre-
sented in [55]. We start by presenting the individual-level biophysical model, and describe
how we compute gene expression levels based on their relative positions on the genome by
taking into account the transcription-supercoiling coupling. Then, we describe how we com-
pute the fitness of individuals by evaluating their adaptation to the two environments, and
describe how we create new individuals and populations with genomic inversions. Finally, we
present the experimental setup that we used in order to run the simulations presented in the
Results section, and discuss code and data availability.

5.1. Individual-level model of the transcription-supercoiling coupling

We define the genotype of an individual as a single circular chromosome, meant to repre-
sent a bacterial chromosome. The chromosome consists in a fixed number of protein-coding
genes, which are separated by non-coding intergenic segments of varying sizes, and is addi-
tionally characterized by a basal supercoiling level oy, Each gene on the chromosome is
characterized by its starting position (note that genes cannot overlap in our model), its orien-
tation (on the forward or reverse strand), its length, and its basal expression level. We always
consider individuals within an environment, which we define by the perturbation §o,,, that it
imposes to the background supercoiling level of the chromosome. We define the phenotype of
an individual in a given environment as the vector that holds the expression levels of all of its
genes. We compute this phenotype by solving the system of equations given by the interaction
of the individual’s genes with one another through the transcription-supercoiling coupling
(described below), on a chromosome with a background supercoiling level of 044501 + 8Ty -
Note that, while we do not have a formal proof that this system always has a single solution,
this is empirically the case in the parameter range used in the simulations.

The genome of an example individual with 20 genes is shown on the outer ring of the left-
hand side panel of Fig 12. The inner ring depicts the local level along the genome of DNA
supercoiling resulting from gene transcription, when this individual is evaluated in an envi-
ronment with a supercoiling shift of 5., = 0. As expected from the twin-domain model of
supercoiling, we can observe a buildup in negative supercoiling (in blue) between pairs of
genes in divergent orientations, such as the C-D or F-G gene pairs, and a buildup in posi-
tive supercoiling (in red) between pairs of genes in convergent orientations, such as the K-

J or Q-R gene pairs. The right-hand side panel of Fig 12 shows the computation of the gene
expression levels for this individual in the same environment (as detailed below). Note that, in
this model and throughout the manuscript, we conflate gene transcription rates with mRNA
concentrations, as we assume that mRNAs are degraded at a constant rate, and as transcrip-
tion rates in our model are only affected by the effect of supercoiling on transcription. We
additionally conflate transcription rates with expression levels (or protein concentrations),

as we again assume proteins to be translated at a rate proportional to the associated mRNA
concentrations and degraded at a constant rate.

Effect of transcription on supercoiling. For an individual with a genome containing n
genes, we model the influence of the transcription of each gene on the level of supercoiling at
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Fig 12. Left: genome (outer ring) and level of transcription-generated supercoiling (o rsc, inner ring) of an example individual with 20 genes placed at ran-

dom positions and orientations and colored by position, with a gene length and average intergenic distance of 1 kb each, and a basal supercoiling level of

Opasal = —0.066. The individual is evaluated in an environment in which 85, = 0. Right: evolution of the expression level of each gene of the individual (reusing

gene colors from the genome) during the computation of the solution to the system given by equations 2, 3, and 4, starting from initial expression levels of e;,. Solid

lines represent genes on the forward strand, dashed lines genes on the reverse strand, and the dotted pink line represents e}, the gene activation threshold.

https://doi.org/10.1371/journal.pcbi.1013482.9012

the promoter of every other gene in the form of an #n-by-n matrix, which we call the interac-

tion matrix. The coefficient gce’_" at indices (3,j) in this matrix represents the infinitesimal vari-
7

ation in DNA supercoiling at the promoter of gene i due to the transcription of gene j. The
value of this coefficient is given by Equation 1:

9ai =7-c- max(1 - d(i.j)
6ej max

,0) (1)

7 gives the sign of the interaction, which depends on the position and orientation of gene j
relative to gene i, according to the twin-domain model [10]. If gene j is upstream of gene i,
and if it is on the same strand as (points towards) gene i, then its transcription generates a
buildup in positive supercoiling at gene i (1 = 1). Conversely, if gene j is upstream of gene
i but on the other strand than (points away from) gene i, it generates a buildup in negative
supercoiling at gene i (1 = -1). If gene j is instead located downstream of gene i, the sign of
the interaction in each case is reversed: 7) = -1 if the genes are on the same strand, and 7 = 1
otherwise.

We then apply a torsional drag coeflicient ¢, which is a high-level representation of the
magnitude of the effect of transcription on the local supercoiling level. Finally, we model
this change in supercoiling as linearly decreasing with the distance d(i,j) between genes i and
j. More precisely, we consider the distance between the promoter of gene i, the position at
which the local level of supercoiling affects the probability that an RNA polymerase binds
to the DNA and starts transcribing gene i, and the middle of gene j, the average location of
the RNA polymerases that transcribe gene j, assuming that DNA is transcribed at a constant
speed. When this distance reaches a threshold of d,,,., we consider the two genes to lie too far
away to interact, and the effect vanishes. In other words, d,;,,, represents the maximum gene
interaction distance on either side of a gene (see Fig 12). Finally, we consider that genes do

do

not interact with themselves through supercoiling, so we set 3! to 0 for all i.
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Effect of supercoiling on transcription. In order to describe the effect of supercoiling on
transcription, we adapted the equations and parameter values presented in [17], which are
based on the in vitro analysis of the transcription of model bacterial promoters, for which
expression has been shown to increase sigmoidally with negative supercoiling [46,48]. We first
compute the local level of supercoiling o; at the promoter of gene i, which is the sum of the
background supercoiling level pgsq1 + 80,y (Which is constant along the genome for any given
individual in a given environment), and of the local variation in supercoiling caused by the
transcription of every other gene (represented in Fig 12 as orsc):

n

0i = Obasal + 5Genv + Z
1

do;
57; & ()

We then compute the expression level of the gene using a thermodynamic model of tran-
scription, in which transcription is approximated by a sigmoid that increases with negative
supercoiling until a saturation threshold is reached. More precisely, we compute the opening
free energy U; of the promoter of gene i, which depends on o;, the level of supercoiling at the
promoter, according to the following sigmoidal function:

1
- 1 + e(oi-o12)/e

i 3)

This sigmoid function has two fixed parameters: oy, the level of supercoiling at which the
opening free energy is at half its maximum level, and €, which tunes the sensitivity of pro-
moter opening free energy to supercoiling variations. We can then compute the expression
level e; of gene i, using an inverse effective thermal energy m:

e;=emUD (4)

The transcription level of a gene is therefore expressed in arbitrary units between e™™, the
minimum expression level when the promoter is most hindered by supercoiling (when U; =
0), and 1, the maximum expression level, when the promoter is most activated by supercoiling
(when U; = 1). Throughout the manuscript, we describe a gene as activated if its transcription
level is above the mean of these two values ey, = 5 (¢ + 1), and inhibited otherwise.

Computation of gene expression levels. Recall that we define the phenotype of an indi-
vidual in an environment (described by do.,,) as the vector of gene expression levels that is
solution to the system of equations given by Equations 2, 3 and 4, in that environment. In
order to compute this phenotype, we numerically compute a solution to the system of equa-
tions by using an iterative fixed-point algorithm, starting from an initial state in which all
genes are expressed at e;/,. Note that, while there might be several stable or unstable fixed
points of the system for a given genome and environment, our algorithm in practice always
converges to a fixed point. We therefore define this point as the gene expression levels of that
individual in that environment. A representative example of this computation is shown in the
right-hand side panel of Fig 12.

5.2. Evolutionary model

Equipped with a model of the coupling between DNA supercoiling and gene transcription at
the whole-genome scale, we now embed it into an evolutionary framework. More precisely,
we model the evolution of a population of individuals, each behaving as described in Sect 5.1,
which must simultaneously adapt to two distinct environments named A and B, as measured
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by an increase in fitness f (defined below) over time. Environment A induces DNA relaxation,
with a supercoiling shift of 0., = §04 = 0.01 > 0, and environment B induces negative DNA
supercoiling, with a supercoiling shift of §o,,, = §op = -0.01 < 0. In order to represent adap-
tation to these environments, we assign genes in the individual’s genomes to three categories,
representing different target gene expression levels, in equal proportions: AB genes should be
expressed in both environments, akin to housekeeping genes; A genes should be expressed

in environment A but not in environment B; and, conversely, B genes should be expressed in
environment B but not in environment A, both representing environment-specific genes, such
as the pathogenic genes of S. enterica or D. dadantii [8,56].

Fitness. The fitness of an individual is computed using its gene expression levels in each of
the two environments. Let (e}, e5, €4 ) be the 3-dimensional vector representing the average
gene expression level per gene type of an individual in environment A, and (€%, e5, €5 ;) be the
average gene expression per gene type of this individual in environment B. Let (3, &5, &4,
and (&%,&5, 25 ) be the target expression values for each gene type in each environment,
reflecting the gene type definitions presented above. For environment A, we set &} = &4, = 1,
and &3 = ™™, which are respectively the maximal and minimal attainable gene expression lev-
els in the model. Similarly, for environment B, we set & = &5, = 1, and & = ¢™. We can then
compute the sum g of the squared error (or gap) between the mean and targeted expression
levels for each gene type in each environment:

g= > (=) X (8- (5)
i€{ABAB} ic{A,BAB}

Finally, we define the fitness of the individual as f = exp(-k - ¢), where k is a scaling factor
representing the intensity of selection: as k increases, the difference in fitness, and hence in
reproductive success, between individuals with different values of g also increases.

Evolutionary algorithm. We consider populations of N individuals, which reproduce in
non-overlapping generations. At each generation, we first compute the fitness of each indi-
vidual in that generation, based on its gene transcription levels in each environment (as
described above). Then, in order to create the following generation, we draw N reproducers
at random, proportionally to their fitness, and with replacement (meaning that a high-fitness
individual can have several offspring) from the current generation. Finally, we create the off-
spring of each reproducer by randomly applying mutations to the genome of the reproducer,
resulting in the new generation.

Mutational operator: Genomic inversions. In order to model the evolution of genome
organization, the only mutational operator that we use is genomic inversions. This allows
for the reordering of genes on the genome through series of inversions, modeling observa-
tions in certain E. coli [39] or S. enterica strains [38]. We do not include large-scale duplica-
tions or deletions, as these rearrangements would possibly change the number of genes. In
other words, we assume gene loss or duplication to be lethal mutations in this model. Note
that translocations can be modeled as a series of well-chosen consecutive inversions, and are
therefore implicitly present in our model.

In order to perform a genomic inversion, we choose a start point and an end point uni-
formly at random in the non-coding intergenic sections of the genome. This ensures that
genes cannot be broken apart by inversions (remember that we assume that gene losses
are lethal). Having chosen the ends of the inversion, we extract the DNA segment located
between these points and reinsert it at the same position, but in the reverse orientation. The
inversion thereby reverses the orientation of every gene inside the segment, but conserves the
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relative positions and distances between these genes. The intergenic sections at the bound-
aries of the inversion can however grow or shrink depending on the position of its start and
end points, thereby allowing intergenic distances to change over evolutionary time. Note
that the total amount of intergenic material, which is a parameter of the simulation (see next
subsection), is itself kept constant by this operation.

Finally, when mutating an individual, we start by drawing the number of inversions to
perform from a Poisson law of parameter 4 = 2, meaning that the offspring of an individual
will on average undergo two inversions. Then, we perform each inversion in succession as
previously described, in order to obtain the final mutated offspring.

5.3. Experimental setup

In order to conduct the simulations presented in the Results section, we let 30 independent
populations of N = 100 individuals evolve for 1,000,000 generations. We initially seeded each
population with 100 clones of a randomly generated individual with 60 genes, or 20 genes of
each type (A, B and AB), using a different seed for each population. The parameter values that
we used are given in Table 2, and can be broadly grouped into genome-level parameters (gene

length, intergenic distance, basal supercoiling level and supercoiling transmission distance)
and promoter-level parameters (promoter opening threshold and effective thermal energy,
crossover width). Both the genome-level parameters that describe the chromosome and the
promoter-level parameters used to compute the transcriptional response to supercoiling
were taken from averaged experimental values measured in E. coli. Note that the supercoil-
ing transmission distance d,y is expected to be heterogeneous along a real chromosome; in
our experiments, choosing larger values of d,u,, did not lead to qualitatively different results,
but values smaller than 4 kb resulted in the loss of inhibition of genes A in environment B
(see Figs E and F in S1 Text). Also note that the torsional drag coeflicient ¢ is a new parameter
that we introduce in this model to represent the influence of torsional drag on the local level
of supercoiling. We have empirically chosen its value so that this effect is of the same magni-
tude as the other sources of supercoiling variations (i.e., environmental perturbations) in the
model.

5.4. Genome size, population size, and mutation rate

In order to keep simulations computationally tractable, we had to make trade-offs when
choosing parameter values for the size of individual genomes, the size of the population, and
the mutation rate. First, we restricted the number of genes in each individual to 60 (20 of each
type). While this is much fewer than the around 4,300 genes in the E. coli genome [36], our

Table 2. Parameter values of the transcription-supercoiling coupling model used in the evolutionary simula-
tions. The upper set of parameters is the genome-level parameters, the lower set the promoter-level parameters, both
taken from the E. coli literature; the middle parameter is a new addition from our model.

Parameter Symbol Value Reference
Gene length 1 1,000 bp [36]
Initial intergenic distance do 125 bp [36]
Supercoiling transmission distance Ainax 5,000 bp [14]

Basal supercoiling level Obasal -0.066 [25]
Torsional drag coeflicient c 0.03

Promoter opening threshold g1 -0.042 [17]
Supercoiling sensitivity of promoter opening |€ 0.005 [17]
Inverse effective thermal energy m 2.5 [17]

https://doi.org/10.1371/journal.pchi.1013482.t002

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013482 September 29, 2025 27/ 32



https://doi.org/10.1371/journal.pcbi.1013482.t002
https://doi.org/10.1371/journal.pcbi.1013482

PLOS COMPUTATIONAL BIOLOGY The evolutionary influence of supercoiling-regulated transcription on bacterial genomes

model importantly keeps chromosome size much larger than the supercoiling interaction
distance, so that each gene can only interact directly with a small proportion of the genome.
An increase in the number of genes in the model should therefore not affect the local- and
medium-scale patterns that we observe, nor the formation of large-scale interaction networks
(although such genomes might possibly harbor several large weakly connected components
rather than a single one).

We also chose a population size N much smaller, and a mutation rate A much higher, than
encountered in real bacterial populations. This rescaling approach is common in computa-
tional studies, and preserves the value of NA (the expected number of mutations, or genetic
diversity, per generation) while allowing for faster simulations, as runtime is approximatively
proportional to N only. To check empirically that this choice does not affect our results, we
ran additional simulations with constant NA, but increasing N (and decreasing 1) by a fac-
tor of 10 and of 100 respectively. As can be seen in Figs G and H in S1 Text, fitness evolves
qualitatively similarly in the three setups, as well as differentiated gene expression levels by
environment for each gene type, empirically validating our decision to run the main exper-
iment with a small population size. While fitness and gene activation levels can be seen to
evolve more slowly per generation in simulations with larger N, this could be due to two
non-linearities in the rescaling. First, favorable mutations take longer to fix on average in
larger populations [57]. Second, rare mutational events that require two inversions on the
same genome happen with a frequency proportional to A%. These events could play an impor-
tant role in the evolutionary process by providing a mechanism for the escape of local fitness
peaks, but rescaling by increasing population size and decreasing mutation rate proportion-
ally actually makes these events occur less frequently.

5.5. Supplementary simulations

For the simulations presented in Figs A-F in S1 Text, we let 15 additional independent pop-
ulations evolve for 250,000 generations, for each set of environmental perturbation values
(04 =0.001 and o = -0.001, and o4 = 0.0001 and o = -0.0001 respectively). For the simu-
lations presented in Figs G and H in S1 Text, we let 10 populations evolve for 100,000 gener-
ations only, due to the computational cost of simulating populations with 1,000 and 10,000
individuals.

5.6. Reproducibility and data availability

We implemented the simulation in Python, and optimized the computationally heavy parts
using the numba package [58]. The source code for the simulation, as well as the notebooks
used for data analysis, are available online at the following address: https://www.github.com/
tgrohens/evotsc and on the Software Heritage archive at the following address: https://archive.
softwareheritage.org/swh:1:dir:dc7169fdc35871aa456a7fecd095f7¢0758bc368.

Running the complete set of simulations took around 36 hours of computation on a server
using a 24-core Intel Xeon E5-2620 v3 @ 2.40GHz CPU, with each replicate running on a sin-
gle core and using approximately 300 MB of RAM. The data from the main run of the exper-
iment is available online on the Zenodo platform, at the following address: https://doi.org/
10.5281/zenodo.7062757. The supplementary data is available at the following address: https:
//doi.org/10.5281/zenodo.17077963.
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