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Bounds on heat transfer have been the subject of previous studies concerning convection
in the Boussinesq approximation: in the Rayleigh–Bénard configuration, the first result
obtained by Howard (J. Fluid Mech., vol. 17, issue 3, 1963, pp. 405–432) states that the
dimensionless heat flux Nu carried out by convection is such that Nu < (3/64 Ra)1/2

for large values of the Rayleigh number Ra, independently of the Prandtl number Pr.
This is still the best-known upper bound, only with the prefactor improved to Nu − 1 <

0.02634 Ra1/2 by Plasting & Kerswell (J. Fluid Mech., vol. 477, 2003, pp. 363–379). In
the present paper, this result is extended to compressible convection. An upper bound is
obtained for the anelastic liquid approximation, which is similar to an anelastic model
used in astrophysics based on a turbulent diffusivity for entropy. The anelastic bound is
still scaling as Ra1/2, independently of Pr, but depends on the dissipation number D and
on the equation of state. For monatomic gases and large Rayleigh numbers, the bound is
Nu < 25.8 Ra1/2/(1 − D/2)5/2.

Key words: Bénard convection

1. Introduction

An important landmark of fluid mechanics has been to show that rigorous upper
bounds could be obtained from the governing equations on quantities such as energy
dissipation (or pressure gradient) in a pipe with a given flow rate, or heat flux between
walls maintained at different temperatures (Howard 1963). Concerning Rayleigh–Bénard
convection, the method of Howard (1963) consisted of identifying two integral constraints
based on energy conservation and on the limit of an entropy balance in the Boussinesq
approximation. In the large space of all possible temperature fields, not necessarily
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satisfying the pointwise governing equations, but satisfying the boundary conditions and
the integral constraints, an upper bound on the heat flux was determined. A second method,
the so-called ‘background’ method, was developed in the 1990s by Doering & Constantin
(1996) and is based on a decomposition of the temperature field into an arbitrary vertical
profile (the background profile) satisfying the boundary conditions and an homogeneous
three-dimensional, time-dependent field. A spectral condition is said to hold when the
‘dissipation’ contained in the background profile (in fact, the L2 norm of its derivative) is
larger than the total possible dissipation of the convective flow. This spectral condition has
been shown to be related to the same eigenvalue problem as that involved in the energy
stability (Joseph 1976) of the background profile. The problem is finally turned into finding
the background profile with the minimum possible dissipation. Kerswell (1999) proved that
both methods were dual approaches to the same problem of optimisation. A third method
was obtained recently by Seis (2015), with a more intuitive approach. The average heat flux
must be constant over height, but cannot be carried by conduction after some distance to
the bottom wall and convection must take over. This implies that sufficiently strong vertical
velocity components exist there, which is necessarily associated with deformation (hence,
viscous dissipation) as those vertical components are zero at the bottom. However, the total
viscous dissipation is related to the heat flux and imposes a limit to the convective flux.
That constraint leads to the same scaling as that of Howard. Finally, Chernyshenko (2022)
makes the connection between what he calls the auxiliary functional method (Howard’s
method can be considered as a very particular instance of this more general method), the
background method (by Doering & Constantin) and the direct method (a formulation of
Seis’s method).

Upper bounds of the heat flux have not been derived for compressible convection
until now. Here, in § 2, we consider a simple model of compressible convection, the
anelastic liquid approximation (Anufriev, Jones & Soward 2005). As an anelastic model,
acoustic modes have been filtered out. Moreover, entropy is supposed to depend on the
superadiabatic temperature only, so that pressure is not a relevant thermodynamic variable.
An anelastic model is also used in astrophysics (Lantz & Fan 1999) with nearly the
same equations as the anelastic liquid model, although the path to get there has taken
a different direction. From a general anelastic model, a subgrid model for turbulence is
used to change the conduction term (gradient of temperature) into a gradient of entropy.
Again, this anelastic model depends only on a single thermodynamic variable, entropy. We
also use a simple equation of state, that of the ideal gases. Finally, we consider a simple
geometry, that of a plane layer, in a uniform gravity field perpendicular to the plane layer.
The horizontal extent of the layer can be infinite or finite. The vertical depth of the layer is
such that compressible effects range from negligible (Boussinesq limit) to extreme values
(adiabatic temperature profile reaching zero kelvin at the top).

The maximum principle for parabolic equations plays an important role in our derivation
of an upper bound. This also plays a crucial role in the work by Seis (2015). In the
Boussinesq model, temperature is bounded below by the cold temperature imposed at the
top and bounded above by the hot temperature imposed at the bottom. In a compressible
model, adiabatic compression and decompression as well as viscous heating imply that
these limits not longer hold for temperature. Instead, we show in § 3 that entropy has
a minimum value imposed at the top boundary but no obvious maximum value. That
property will be used several times in the paper.

In § 4 we derive an equation for the logarithm of entropy (up to a constant), a quantity
that we call log-entropy. We show that, similarly to the entropy flux, the flux of that
log-entropy increases with height, or decreases only slightly. Otherwise stated, the sources
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Anelastic model for Rayleigh–Bénard convection

of log-entropy are either positive (possibly unbounded) or slightly negative (bounded from
below). With that equation, we can bound the integral of the gradients of the log-entropy
in the layer. The derivation follows then the same principle as that of Seis (2015). Two
cases have to be discussed, a case of small Nusselt number and a case of large Nusselt
number that is expected to hold when the Rayleigh number is large. In the latter case, a
lower bound of vertical velocities (root mean square) is found to be necessary to carry the
flux of log-entropy at some finite distance to the lower boundary, leading to a lower bound
of viscous dissipation required to generate these velocity components. Coming back to
the entropy equation (not log-entropy) in § 5, we obtain an upper bound for dissipation. As
shown in § 6, the condition that the lower bound is less than the upper bound of dissipation
leads to an upper bound for the heat flux in terms of the governing parameters. Formally,
the absolute upper bound is the maximum of the small Nusselt number case and the upper
bound obtained under the assumption of a larger Nusselt. As discussed in § 7, the case of
large Nusselt numbers should apply to most, if not all, convective flows. In Appendices A
and B, we discuss the choice of constants and optimisation of the bound. Appendix C
is devoted to the application of our method to an anelastic model with turbulent thermal
diffusivity.

2. Governing equations and dimensionless numbers

The fluid (a monatomic ideal gas) is contained in a horizontal layer, between altitudes
0 and d, in a uniform gravity field g. A superadiabatic temperature difference �Tsa is
imposed in addition to the adiabatic gradient between the bottom and top boundaries. The
governing equations in the anelastic liquid approximation are written in a dimensionless
form as follows (see Anufriev et al. 2005):

∇ · (ρav) = 0, (2.1)

ρa

Pr
Dv

Dt
= −ρa∇

(
P
ρa

)
+ Raρasez + ∇ · τ, (2.2)

ρaTa
Ds
Dt

= D
Ra

ε̇ : τ + ∇2T, (2.3)

where ez is the vertical unit vector (ex and ey are the horizontal unit vectors) and where
the dimensionless governing parameters are the Prandtl Pr, Rayleigh Ra and dissipation
D numbers,

Pr = ηcp

k
, Ra = ρ2

0cpg�Tsad3

T0ηk
, D = gd

cpT0
, (2.4a–c)

where the viscosity η, the thermal conductivity k and the heat capacity cp of the gas are
uniform and constant. The dimensionless tensors of deformation rate and stress, in the
Stokes approximation of zero bulk viscosity (proven correct for monatomic ideal gases;
Emanuel 1998), are the following:

ε̇ij = 1
2

(
∂ivj + ∂jvi

)
, (2.5)

τij = 2ε̇ij − 2
3 (∂kvk)δij. (2.6)

The average temperature T0 and average density ρ0 of the adiabatic profiles are chosen to
express dimensionless temperature and density adiabatic profiles (hydrostatic, isentropic)
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as follows (Curbelo et al. 2019):

Ta(z) = 1 − D
(

z − 1
2

)
, (2.7)

ρa(z) = D/
(
1 − γ −1)

(1 + D/2)γ /(γ−1) − (1 − D/2)γ /(γ−1)
[Ta(z)]1/(γ−1) , (2.8)

where γ = cp/cv is the ratio of heat capacities (for example, γ = 5/3 for monatomic
gases). The dimensionless gradient of adiabatic temperature is −Dez, uniform and vertical.

Superadiabatic temperature T and entropy s are scaled using �Tsa and cp�Tsa/T0,
respectively. Space coordinates (x, y, z), time t, velocity v, rate of deformation tensor
ε̇, stress tensor τ and pressure P are made dimensionless using d, ρ0cpd2/k, k/(ρ0cpd),
k/(ρ0cpd2), kη/(ρ0cpd2) and kη/(ρ0cpd2), respectively.

In the anelastic liquid model, entropy s (or, rather, the superadiabatic entropy in addition
to a uniform base value) is assumed to depend on superadiabatic temperature T only,

s = T
Ta

. (2.9)

A consequence is that pressure P has no effect on thermodynamic variables. In this model,
pressure P is only a Lagrange multiplier associated with the conservation of mass (2.1).

The boundary conditions are given by constant values of temperature or entropy on
bottom and top boundaries. In terms of velocity, we impose that the normal component
vanishes on both horizontal boundaries and that no work is done by the boundaries. Both
non-slip (zero tangential velocity components) or no-stress in the horizontal direction are
acceptable.

z = 0 : vz = 0 and (vx = vy = 0 or ∂zvx = ∂zvy = 0), (2.10)

z = 0 : T = 1
2

or s = 1
2 + D , since Ta = 1 + D

2
, (2.11)

z = 1 : vz = 0 and (vx = vy = 0 or ∂zvx = ∂zvy = 0), (2.12)

z = 1 : T = −1
2

or s = − 1
2 − D , since Ta = 1 − D

2
. (2.13)

In astrophysics, the Fourier law for thermal conduction is replaced by a subgrid model
of turbulent diffusion for entropy. This has the consequence that the term ∇2T in (2.3) is
changed for ∇ · (c∇s), where the coefficient c accounts for turbulence at small scale. In
this paper, we stick to the usual conduction term ∇2T , but the treatment of the ‘turbulent
diffusivity’ is discussed in Appendix C.

The parameter D is the one associated with compressibility, as better seen in the
relationship D = αgd/cp = (1 − γ −1)ρgd/KT , proportional to the ratio of hydrostatic
pressure to incompressibility KT . Its range, 0 < D < 2, covers all cases from the
Boussinesq limit (D → 0) to the most-extreme case of compressibility (D → 2) where
a temperature of 0 K and a vanishing density are reached at the top of the layer, see (2.7)
and (2.8).

We define the Nusselt number as Nu = −dzT̄(z = 0) the average superadiabatic heat
flux injected at the bottom and extracted at the top (an overline X̄ on any quantity X
denotes its horizontal and time average). The additional heat flux conducted along the
adiabat does not affect convection and is here uniform and equal to DT0/�Tsa in the

999 A94-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.914


Anelastic model for Rayleigh–Bénard convection

same dimensionless scale as the superadiabatic heat flux. The proof that the average
heat flux conducted at the top is equal to the average heat flux conducted at the bottom
can be found in several papers, including Curbelo et al. (2019) where this was also
tested in numerical simulations. This reflects the consistency of the set of the governing
equations. The left-hand side of (2.3) can be expanded as ρaTa Ds/Dt = ρa D(Tas)/Dt −
ρa(dTa/dz)vzs and the last term of adiabatic heating (with the expression for the adiabatic
gradient dTa/dz = −D) can be seen to balance the average viscous dissipation because
it corresponds to the same balance as in the dot product of velocity with the momentum
equation (2.2), between the power of buoyancy forces and viscous dissipation.

3. A minimum principle

In the anelastic liquid approximation (2.9), (2.3) can be rewritten using entropy s alone:

ρaTa
Ds
Dt

= D
Ra

ε̇ : τ + Ta∇2s + 2∇Ta · ∇s, (3.1)

because ∇2Ta = 0, see (2.7), for our choice of an ideal gas equation of state and uniform
gravity. The entropy equation has a suitable form for a maximum principle (Picone 1929;
Nirenberg 1953). The second-order operator is elliptic and even uniformly elliptic as the
coefficient Ta is above a positive constant in the whole domain, for any choice of the
dissipation parameter 0 < D < 2. Furthermore, the term of viscous dissipation (D/Ra) ε̇ :
τ is positive (or zero) everywhere and at all times. It follows from the maximum principle
that s cannot take a value smaller than a value it takes at a boundary or at an initial time.
As we are interested in statistically stationary solutions, we argue either that the memory
of the initial time is lost (the argument developed by Foias, Manley & Temam (1987) can
be applied here to prove that initial values smaller than that imposed at the boundaries will
eventually be erased by diffusion), or that the initial condition is chosen such that it does
not contain values of the entropy s lower than those at the boundaries. We are left with
the conclusion that entropy must be larger, everywhere and at all times, than the value
assigned at the top boundary,

s � − 1
2 − D . (3.2)

4. A log-entropy equation

Let us define a constant s0 = 1/(2 − D) + 8/(4 − D2), such that s + s0 is always positive
from the maximum principle and satisfies

s + s0 � 8
4 − D2 . (4.1)

This choice of s0 will simplify subsequent calculations but we show in Appendix A that
an optimisation of this choice only leads to a mild improvement. Let us divide (3.1) by Ta
and by s + s0, two positive terms. After rearranging some terms, we obtain

ρa
DL
Dt

= D
Ra

ε̇ : τ

Ta(s + s0)
+ |∇L|2 + 2dz(ln Ta)∂zL + ∇2L, (4.2)

where L = ln(s + s0). With our choice of s0, the value of L on the bottom
and top boundaries are L(z = 0) = ln(12/(4 − D2)) and L(z = 1) = ln(8/(4 − D2)).

999 A94-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

91
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.914


T. Alboussière, Y. Ricard and S. Labrosse

Averaging over horizontal directions and in time, and taking into account (2.1), we obtain
an equation for the vertical flux of L,

dzΦL = D
Ra Ta

ε̇ : τ

s + s0
+ |∇L|2 + 2dz(ln Ta)dzL̄, (4.3)

where ΦL is defined as the average vertical flux of L, at any height z, as follows:

ΦL(z) = −dzL̄ + ρavzL. (4.4)

We now average equation (4.2) over the whole layer and in time. This is equivalent
to integrating (4.3) between z = 0 and z = 1. Our objective here is to obtain an integral
bound on |∇L|2. Let us first consider the integral of the last term in (4.3)

∫ 1

0
2dz(ln Ta)dzL̄ dz = −2D

∫ 1

0

dzL̄
Ta

dz,

= −2D
⎛
⎝[

L̄
Ta

]1

0

−
∫ 1

0
D L̄

T2
a

dz

⎞
⎠ . (4.5)

The first term is known from the boundary conditions (2.11) and (2.13). We use the
minimum principle (4.1), implying L̄ � ln(8/(4 − D2)), to bound the last term in (4.5)
so that we have ∫ 1

0
2dz(ln Ta)dzL̄ dz � 4D

2 + D ln
(

3
2

)
. (4.6)

The term dz(ρavzL) has no integral contribution because vz vanishes at the bottom and
top, we simply have to evaluate the contribution of the diffusion term −dzL̄ in the integral
of (4.3), given that ∂zL = ∂z(T/Ta)/(s + s0),

− [
dzL̄

]1
0 = Nu

12
(2 + 5D) + D

4
2 + D
2 − D + D

6
2 − D
2 + D . (4.7)

Since the term involving viscous dissipation is positive in (4.3), combining (4.6) and
(4.7) leads to the following bound:

〈
|∇L|2

〉
� Nu

12
(2 + 5D) + D

4
2 + D
2 − D + D

6
2 − D
2 + D − 4D

2 + D ln
(

3
2

)
, (4.8)

where the bracket denotes time and space average (horizontal and vertical), so that 〈X〉 =∫ 1
0 X̄ dz for any variable X. The sum of the last two terms is less than zero for all values of
D, hence the sum of the last three terms is less than D/(2 − D) so that we have

〈
|∇L|2

〉
� Nu

12
(2 + 5D) + D

2 − D . (4.9)

This bound is linear in the Nusselt number with a coefficient ranging from 1/6 at small D
to 1 when D reaches its maximum value 2. In addition, the other term depends on D only
and diverges towards infinity when D approaches 2.
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Anelastic model for Rayleigh–Bénard convection

At z = 0, the diffusive part of the log-entropy flux, −dzL̄, carries the whole flux:

ΦL(0) = −dzL̄(0) = 2 − D
6

(
Nu − D

2 + D
)

. (4.10)

Let us first consider the large Nusselt number case, precisely such that

Nu >
D

2 + D + 24
ln

(
3
2

)
2 − D . (4.11)

The flux ΦL(0) is therefore strictly positive and this ensures that L̄ (see (4.10)) is locally
decreasing at z = 0. If it kept decreasing at the same rate as in (4.10), then the flux ΦL
would still be carried by diffusion at higher values of z. However, L̄ cannot decrease below
the minimum value ln(8/(4 − D2)), limiting the extension of the diffusive region, and
indicating that the convective part of the flux (4.4) must take over. We define the height δ

as the smallest value of z > 0 where the diffusive component, −dzL̄, becomes less than
half of ΦL(0),

− dzL̄(δ) � ΦL(0)

2
and − dzL̄(z) >

ΦL(0)

2
for 0 � z < δ. (4.12)

It is shown in Appendix B that this choice of half-value is better than any other fraction of
the bottom flux. The value of L̄ at z = δ is

L̄(δ) = L̄(0) +
∫ δ

0
dzL̄ dz,

< ln
(

12
4 − D2

)
− δ

2
ΦL(0). (4.13)

Let us define δ0 as

δ0 =
12 ln

(
3
2

)

(2 − D)

(
Nu − D

2 + D
) , (4.14)

which is ensured to be less than 1/2 from (4.11). We prove by contradiction that δ exists
and is less than δ0. Suppose that this is not the case, then from (4.13) and using (4.10), we
would have L̄(δ0) < ln(8/(4 − D2)) which would be less than the minimum value for L̄.
This is impossible, hence there exists a value of δ satisfying (4.12).

The definition of δ implies that L̄ is decreasing everywhere in the range 0 � z � δ. This
ensures the positivity of the last term of (4.3) in that interval, so that ΦL(δ) � ΦL(0).
Because the diffusive part has been divided by a factor two, this means that the convective
part of the flux of the log-entropy, at z = δ, must be at least half the boundary flux (4.10)

ρavzL(δ) � 2 − D
12

(
Nu − D

2 + D
)

. (4.15)

Using continuity (2.1) which implies that the horizontal average of vz is zero at all
heights, the property ρa � ρa0 and a Cauchy–Schwarz inequality, the convective flux can
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be bounded as follows:

ρavzL(δ) � ρa0vz(L − L0) � ρa0

√
v2

z

√
(L − L0)

2, (4.16)

where ρa0 and L0 are the density of the adiabatic profile and the value of L at z = 0,
whereas vz and L are evaluated at z = δ. Now, we use the gradients of L to bound L(δ):

L(δ) = L0 +
∫ δ

0
∂zL dz. (4.17)

Using a Cauchy–Schwarz inequality, we have

(L(δ) − L0)
2 � δ

∫ δ

0
(∂zL)2 dz. (4.18)

Taking time and horizontal average, extending the last integral over the whole volume and
including all gradient components, we obtain

(L(δ) − L0)
2 � δ

〈
|∇L|2

〉
� δ0

〈
|∇L|2

〉
, (4.19)

where 〈|∇L|2〉 is itself bounded from (4.9). Following the same steps, we can bound vz, at
any height z, as

v2
z (z) � z

∫ z

0
(∂zvz)2 dζ. (4.20)

Now, we need to relate (∂zvz)2 to the mean viscous dissipation. From the general
expression of viscous dissipation with zero bulk viscosity (Landau & Lifshitz 1966),

ε̇ : τ = 1
2

3∑
i=1

3∑
j=1

[
∂ivj + ∂jvi − 2

3
(∂kvk)δij

]2

, (4.21)

retaining only the three ‘diagonal’ terms i = j among the nine terms, finally dropping
2(∂xvx)

2 and 2(∂yvy)
2, we derive

ε̇ : τ � 2(∂zvz)
2 − 2

3 (∂kvk)
2. (4.22)

Using the anelastic equation of continuity (2.1), this leads to an upper bound of (∂zvz)
2,

(∂zvz)
2 � 1

2
ε̇ : τ + 1

3
D2v2

z

(γ − 1)2T2
a
, (4.23)

which is substituted in (4.20) to obtain

v2
z (z) � z

2
〈ε̇ : τ 〉 + D2

3(γ − 1)2 z
∫ z

0

v2
z

T2
a

dζ. (4.24)

We now use this equation for z � δ � δ0, given that δ0 � 1/2 from (4.11) so that 1/T2
a in

the integral above is smaller than 1, and bounding the same integral by extending its range
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Anelastic model for Rayleigh–Bénard convection

from ζ = 0 to ζ = δ for all z. Integrating (4.24) from 0 to δ leads to the bound∫ δ

0
v2

z (z) dz � δ2

4
〈ε̇ : τ 〉 + D2

3(γ − 1)2
δ2

2

∫ δ

0
v2

z (z) dz, (4.25)

which is used to express
∫ δ

0 v2
z (z) dz in terms of 〈ε̇ : τ 〉 so that (4.24) can finally be written

at z = δ,

v2
z (δ) � δ0

2
〈ε̇ : τ 〉 1

1 − D2δ2
0

6(γ − 1)2

, (4.26)

where the denominator of the last fraction can be checked to be positive when δ0 � 1/2
which has been shown to follow from (4.11) and the definition of δ0 (4.14).

With (4.9), (4.14), (4.16), (4.19) and (4.26), we can essentially write (4.15) as a lower
bound for the viscous dissipation:

〈ε̇ : τ 〉 � 2 Nu3(2 − D)4

123
(

ln
3
2

)2

ρ2
a0(2 + 5D)

×

[
1 − D

Nu(2 + D)

]4

⎡
⎢⎢⎢⎣1 −

24
(

ln
3
2

)2

D2

(2 − D)2
(

Nu − D
2 + D

)2

(γ − 1)2

⎤
⎥⎥⎥⎦

1 + 12D
Nu(2 − D)(2 + 5D)

. (4.27)

This bound is valid as long as the large-Nusselt-number condition (4.11) is valid. For very
large Nusselt numbers (more precisely, (2 − D)Nu � 1), this lower bound becomes

〈ε̇ : τ 〉 � 2 Nu3(2 − D)4

123
(

ln
3
2

)2

ρ2
a0(2 + 5D)

. (4.28)

Finally, we come back to the condition imposed on the Nusselt number (4.11) and
consider the alternative case of small Nusselt numbers,

Nu � D
2 + D + 24

ln
(

3
2

)
2 − D . (4.29)

This expression is itself an upper bound for the Nusselt number. Whenever another upper
bound obtained under assumption (4.11) gets lower than (4.29), it must be replaced by
(4.29).

5. Upper bound on viscous dissipation for a given heat flux

We have thus obtained (4.27) a lower bound of the viscous dissipation 〈ε̇ : τ 〉 for a given
heat flux Nu. Now, considering the classical entropy budget, we are going to obtain an
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upper bound for 〈ε̇ : τ 〉. Let us divide the governing equation (2.3) by Ta, rearrange the
diffusion term, and obtain the usual anelastic entropy equation

ρa
Ds
Dt

= D
Ra

ε̇ : τ

Ta
+ ∇T · ∇Ta

T2
a

+ ∇ ·
(∇T

Ta

)
, (5.1)

The time and space average of the second term on the right-hand side can be evaluated as
follows: 〈∇T · ∇Ta

T2
a

〉
= −

∫ 1

0

D
T2

a
dzT̄ dz =

[
− D

T2
a

T̄
]1

0
+

∫ 1

0
dz

( D
T2

a

)
T̄ dz

= 4D(4 + D2)

(4 − D2)2 + 2D2
∫ 1

0

1
T2

a

T̄
Ta

dz. (5.2)

Once again, the maximum principle applying to the entropy variable s = T/Ta is used to
bound the second term.〈∇T · ∇Ta

T2
a

〉
� 4D(4 + D2)

(4 − D2)2 − 2D2

2 − D
∫ 1

0

1
T2

a
dz

�
4D (

4 − 4D − D2)
(4 − D2)2 . (5.3)

With that bound (5.3), integrating (5.1) in space and time leads to an upper bound

D
Ra

〈
ε̇ : τ

Ta

〉
� 4D

4 − D2 Nu − 4D (
4 − 4D − D2)
(4 − D2)2 . (5.4)

As Ta � 1 + D/2, this becomes an upper bound on viscous dissipation

〈ε̇ : τ 〉 � 2 Ra
2 − DNu

[
1 − 4 − 4D − D2

(4 − D2)Nu

]
. (5.5)

In the limit of large Nusselt numbers (more precisely (2 − D)Nu � 1), this upper bound
becomes

〈ε̇ : τ 〉 � 2 Ra
2 − DNu. (5.6)

6. Obtaining an upper bound on the heat flux

Combining the upper bound (5.5) and the lower bound (4.27) leads to the following
inequality:

Ra � Nu2(2 − D)5

123
(

ln
3
2

)2

ρ2
a0(2 + 5D)

×

[
1 − D

Nu(2 + D)

]4

⎡
⎢⎢⎢⎣1 −

24
(

ln
3
2

)2

D2

(2 − D)2
(

Nu − D
2 + D

)2

(γ − 1)2

⎤
⎥⎥⎥⎦

[
1 + 12D

Nu(2 − D)(2 + 5D)

] [
1 − 4 − 4D − D2

(4 − D2)Nu

] . (6.1)
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Anelastic model for Rayleigh–Bénard convection

This bound is valid when the condition (4.11) is valid. Rigorously, expression (6.1)
provides an implicit Nusselt bound in terms of Ra and D and we have thus proven that
the Nusselt number is bounded by the maximum of this implicit bound and the right-hand
side of (4.11). With the condition (4.11), we can bound the last part in the right-hand side
of (6.1), the square brackets altogether, to be less than 21/2(2 + 5D)−1/2 for all acceptable
values of Nu. Moreover, it can be checked that ρa0 � 1 + 3

4D, so that (6.1) leads to the
following bound of Nusselt:

Nu � 123/2

21/4

(
ln

3
2

) (
1 + 3

4
D

)
(2 + 5D)3/4 Ra1/2

(2 − D)5/2 , (6.2)

also valid when (4.11) applies.
In the limit (2 − D)Nu � 1, coming back to (6.1), we just have

Ra � Nu2(2 − D)5

123
(

ln
3
2

)2

ρ2
a0(2 + 5D)

, (6.3)

which may be rewritten as

Nu � 123/2
(

ln
3
2

)
ρa0(2 + 5D)1/2 Ra1/2

(2 − D)5/2 . (6.4)

When D varies from 0 to 2, the value of ρa0 varies from 1 to 2.5 (perfect monatomic gas)
and 2 + 5D is less than 12, so that we have a simpler bound of the form

Nu < 25.8
Ra1/2(

1 − D
2

)5/2 . (6.5)

We plot the Ra1/2 prefactors of these Nusselt laws in figure 1, using a logarithmic scale
since the singularity at D = 2 leads to large values of Nu. Keep in mind that (6.2) is a
rigorous bound, valid for all Nusselt numbers satisfying (4.11), whereas (6.4) and (6.5) are
valid only in the limit of very large Nusselt numbers.

7. Conclusions

We have obtained an upper bound for the heat transfer in a compressible model of
convection known as the anelastic liquid approximation. The bound has been expressed
in an implicit algebraic form (6.1), valid under the condition (4.11) of a sufficiently
large Nusselt number. An explicit, less stringent, bound (6.2) has also been obtained,
under the same condition. The bound (6.1) takes the simpler expression (6.4) in the
limit of infinite Nusselt numbers. This simpler expression can itself be bounded by
Nu < 25.8 Ra1/2/(1 − D/2)5/2.

We had to treat separately the case of small Nusselt numbers (4.29) and that of large
Nusselt numbers (4.11). However, it turns out that the case of small Nusselt numbers is
most likely irrelevant. Using the explicit bound (6.2), we can derive the condition in the
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Figure 1. Prefactor of Ra1/2 in the Nusselt bound, in the limit of large values of (2 − D)Nu for a perfect gas
with γ = 5/3, computed from (6.4). The simpler expression computed from (6.5) is also shown as a function
of D. The thin line shows the bound (A12) when s0 is optimised (see Appendix A).

(D, Ra) space when it is equal to the small-Nusselt-number upper bound (4.29):

Ra1/2 =
D (2 − D)5/2

2 + D + 24
(

ln
3
2

)
(2 − D)3/2

123/2

21/4

(
ln

3
2

) (
1 + 3

4
D

)
(2 + 5D)3/4

. (7.1)

This limit corresponds to the thick full line in figure 2, with a lower region A where
the small-Nusselt-number bound (4.29) applies and an upper region B where the
large-Nusselt-number bound (6.2) is valid. The maximum value of the Rayleigh number
along the limit between the small- and large-Nusselt-number zones (see figure 2) is equal
to 4/3 � 1.333 when D = 0. This value is well below the linear stability limit at D = 0
and also for any value of D, as shown by Alboussière & Ricard (2017). At D = 0, the
results of nonlinear stability by Joseph (1976) ensure that no subcritical flow can develop
below the linear stability threshold Ra = 27π4/4, however we do not have such a result for
D /= 0. We can only remark that it is highly unlikely that a convective flow can be sustained
below the limit (7.1) in zone A, so that the actual Nusselt number is most probably equal
to 1 in zone A (heat transport by conduction only).

In order to obtain the large-Nusselt-number bound, we have introduced an unusual
quantity, the logarithm of entropy (shifted with a constant so that it is positive everywhere),
and have shown that it obeys an equation similar to that of entropy. Its flux has a conduction
term and a convective term and its sources are positive (or at least bounded from below).
The difference with entropy is that it is possible to derive an L2 upper bound for the
gradients of this quantity while we could not do so for the gradients of entropy.

Importantly, obtaining a bound relies heavily on the existence of a minimum principle
for entropy. Although entropy is bounded from below only, this limit enables us to bound
the diffusive part of the flux close to the hot boundary and also to bound the sources of
entropy (or its logarithm) from below. For this reason, it will be difficult to obtain an upper
bound for the general anelastic model, or for the complete set of compressible equations
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Figure 2. Isovalues of the bound of the Nusselt number (indicated by colour level and a few isolines), for small
Nusselt numbers (4.29) in zone A and large Nusselt numbers (6.2) in zone B, separated by the thick black line
corresponding to (7.1).

as soon as entropy is also a function of pressure, as we do not know the value of pressure
at that boundary. We may impose an average pressure, but pressure fluctuations are not
known a priori. Hence, we do not know what is the minimum value of the entropy on the
boundary.

Chernyshenko (2022) has shown how different existing approaches to obtaining bounds
on global quantities can be derived from each other. Here, we have used the ‘direct
method’ and we can foresee clearly that our result can be cast into his ‘auxiliary functional’
method. Concerning the ‘background profile’ method, this is less straightforward, because
the associated functionals will not be quadratic in the unknown fields (velocity and
entropy), nor even in our modified variables (velocity and log-entropy). Thus, even if
we can write the problem in terms of a background profile (far from obvious, according
to Chernyshenko 2022), this will not provide results simply by solving linear eigenvalue
problems, so it seems difficult to imagine that the background profile method will help
very much in improving our bound. However, at this stage, this is just the expression of
our feelings and should not be taken as a definite statement.

There is a degree of freedom in the choice of the constant s0 added to entropy in order
to make it strictly positive. We have chosen it so that the minimum value of s + s0 is
a/(4 − D2) where a is a constant equal to 8, see (4.1). That choice affects the final upper
bound of Nusselt number and we can choose a(D), for each value of D, to minimise the
upper bound. This is done explicitly in Appendix A and the optimal bound is plotted in
figure 1, from (A12) for the optimal value a(D). Although our choice a = 8 is not exactly
the optimal choice, it is very close to the optimal bound. One cannot improve the final
upper bound of Nusselt number by more than 10 % with another choice for 0.1 < D < 2,
whereas a better choice could lower the upper bound by a factor of 1.4 near D = 0. The
constant a = 8 has the advantage of making the algebra simpler.

There is another degree of freedom concerning the fraction of the conduction term
needed to define the thickness δ0. We have decided to consider when 1/2 of the flux must
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be carried by convection, but we could have taken any fraction between 0 and 1. This is
investigated in Appendix B. Actually, this choice of 1/2 leads to the best final bound in
our case. In the Boussinesq case, Seis (2015) found that a fraction 1/3 was the optimum,
but both the governing equations and the nature of the flux are different (heat flux vs flux
of log-entropy).

The bound (6.1) and its approximations at large Nusselt numbers (6.4) or (6.5) are
not expected to be very tight. In the limit D → 0, where the anelastic model should
converge towards the Boussinesq model, we can readily see that it is less tight than the
original bound by Howard by a factor of nearly 20, whereas the bound (A12) obtained
in Appendix A for the optimal value amin is still a factor of 14 above (see figure 1).
Concerning large values of D, our bound is made very large owing to the divergent factor
(2 − D)−5/2. We think this is due to our inability to track the log-entropy flux near the cold
boundary and, more fundamentally, this originates from the lack of an upper bound for
entropy (we only have a lower bound). However, such a trend is not observed in numerical
calculations; on the contrary, an increase of the dissipation number seems to lead to a
decrease of the heat flux (Curbelo et al. 2019).

In Appendix C, we consider a model of turbulent diffusivity, rather than thermal
conduction, with the gradient of entropy replacing the gradient of temperature. The
analysis is pretty similar, except there is a condition on the vertical profile of the diffusivity
(or conductivity) which must be verified otherwise a bound on the Nusselt number cannot
be obtained rigorously. When the small-scale heat flux is modelled as −c∇s that condition
is dz(c/T2

a ) > 0, and when the Fourier law of conduction is considered −k∇T , the
condition is dz(k/Ta) > 0. For instance, the original model of uniform diffusivity from
Lantz & Fan (1999) does not verify this condition, hence we cannot guarantee an upper
bound for the Nusselt number. In contrast, the model of uniform conductivity of Mizerski
& Tobias (2011) (or that of uniform conductivity for the Fourier law) does verify the
condition and our bound is proven.

Among the possible extensions of this work to other models, it would be interesting to
consider fluids of infinite Prandtl number. In that case and in the Boussinesq model, tight
upper bounds on the heat flow have been obtained (Doering, Otto & Reznikoff 2006). In
addition, in the Boussinesq limit and when Coriolis forces are taken into account, upper
bounds have been derived (Tilgner 2022a,b). Extending these results to a compressible
model of convection would be relevant to planetary convection. For that purpose, we
need to consider different models of equation of state for condensed matter, idealised
(Alboussière et al. 2022) or more realistic (Ricard et al. 2022; Ricard & Alboussière 2023)
concerning compressible convection in planetary interiors.
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Anelastic model for Rayleigh–Bénard convection

Appendix A. On the choice of the entropy offset s0

In § 4, we have chosen to add the constant s0 to entropy

s0 = 1
2 − D + 8

4 − D2 . (A1)

The choice of the first part 1/(2 − D) is obvious as it ensures that s + s0 is positive
everywhere and always, by virtue of the minimum principle. The additional positive term
8/(4 − D2) is arbitrary and we investigate in this appendix whether another choice could
improve the bound on the Nusselt number. To this end, let us consider a constant s0 of the
form

s0 = 1
2 − D + a

4 − D2 , (A2)

where a is a strictly positive real number, which we shall make a function of D when
needed. Equation (4.6) now becomes∫ 1

0
2dz(ln Ta)dzL̄ dz � 4D

2 + D ln
(

4 + a
a

)
. (A3)

Equation (4.7) becomes

− [
dzL̄

]1
0 = 2 Nu

[
2 + D

a
− 2 − D

4 + a

]
+ 2D

[
2 + D

(2 − D)a
+ 2 − D

(2 + D)(4 + a)

]
. (A4)

The corresponding bound for the square of gradients of L obtained in (4.8) now becomes〈
|∇L|2

〉
� 2Nu

[
2 + D

a
− 2 − D

4 + a

]
+ 2D

[
2 + D

(2 − D)a
+ 2 − D

(2 + D)(4 + a)

]

− 4D
2 + D ln

(
4 + a

a

)
, (A5)

and the corresponding equation to (4.9) becomes〈
|∇L|2

〉
� 2Nu

[
2 + D

a
− 2 − D

4 + a

]
+ 8D

(2 − D)a
. (A6)

Let us now consider the flux of L at the bottom

ΦL(0) = −dzL̄(0) = 2(2 − D)

4 + a

(
Nu − D

2 + D
)

. (A7)

This provides a maximal value of L̄ at z = δ

L̄(δ) � ln
(

a + 4
4 − D2

)
− δ

2
ΦL(0). (A8)

In order to avoid values below the minimum entropy, δ must be less than δ0, with
expression (4.14) changed for

δ0 = 4 + a

(2 − D)

(
Nu − D

2 + D
) ln

(
a + 4

a

)
. (A9)
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Figure 3. (a) Value amin such that the prefactor of the Nusselt bound (A12) is minimal. (b) Reduction of the
prefactor of Nusselt’s bound by taking the value amin compared with a = 8.

At z = δ, the convective flux must be at least half the flux of L at z = 0, so (4.15) becomes

ρavzL(δ) � 2 − D
4 + a

(
Nu − D

2 + D
)

. (A10)

Using (4.16), (4.19) and (4.26) which are valid for all values of a, and using (A6) and (A9),
(A10) can be written in the limit of large Nusselt numbers as

〈ε̇ : τ 〉 � a Nu3(2 − D)4

(a + 4)3
(

ln
a + 4

a

)2

ρ2
a0(8 + 4D + 2Da)

, (A11)

which is the equivalent of (4.28) for a general value of a instead of a = 8.
The upper bound (5.6) from the classical entropy equation is still valid. Combined with

(A11), this leads to the following bound for the Nusselt number:

Nu � (a + 4)3/2Ra1/2 ρa0

(2 − D)5/2 ln
(

a + 4
a

)(
16
a

+ 8D
a

+ 4D
)1/2

, (A12)

which is identical to (6.4) when a = 8. Now we can optimise a to lower the bound (A12).
This is done by finding the value of a providing the minimum of the following prefactor
function f (a,D) for each D:

f (a,D) = (a + 4)3/2 ln
(

a + 4
a

)(
4
a

+ 2D
a

+ D
)1/2

. (A13)

The numerical solution to this problem is shown in figure 3. This value is close to 8 for
large values of D (actually reaching 7.75 near D = 2) and diverges to infinity near the
Boussinesq limit D = 0. The gain in term of the bound of Nusselt is defined as the ratio
of the prefactor with optimal a compared with the prefactor with a = 8. It is shown in
figure 3(b). It is close to 1 except for small values of D, falling just below 0.7 near D = 0.
The bound (A12) with the optimal value amin is shown in figure 1 in the main text.

Appendix B. On the definition of the boundary layer thickness δ0

Another arbitrary choice we have made has been to consider where the convective flux of
L̄ must be at least one-half of the flux ΦL(0) at the bottom (z = 0). Instead, let us consider
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the point where the conduction flux of L̄ falls below a factor b of the bottom flux (with
0 < b < 1) and the convective flux must be more than (1 − b) times the flux at the bottom.
This changes (4.13) into

L̄(δ) � ln
(

12
4 − D2

)
− bδΦL(0), (B1)

and the expression for (4.14) becomes

δ0 =
6 ln

(
3
2

)

b (2 − D)

(
Nu − D

2 + D
) . (B2)

Then (4.15) is changed for

ρavzL(δ) � (1 − b)
2 − D

6

(
Nu − D

2 + D
)

. (B3)

Following the same steps as in the main text, in the limit of large Nusselt numbers, the
lower bound for dissipation (4.28) becomes

〈ε̇ : τ 〉 � 4(1 − b)2b2 Nu3(2 − D)4

63
(

ln
3
2

)2

ρ2
a0(2 + 5D)

. (B4)

The lower bound is now proportional to b2(1 − b)2. The largest lower bound is then
obtained for b = 1/2. The choice we made is indeed optimal. Because the upper bound
(5.6) is independent of any choice of δ0, the final bound on the Nusselt number (6.4) is
also optimal with respect to the parameter b.

Appendix C. Application to models of turbulent diffusivity

The idea stems from the model of Lantz & Fan (1999), where small scale turbulence
transports entropy with a turbulent diffusivity and superadiabatic conduction heat
transport −∇T is changed for −ρaTa∇s. In this original paper, turbulent diffusivity was
taken uniform and used implicitly to determine a Rayleigh number much smaller than it
would be evaluated with a molecular diffusivity. However, we can make it more general
and consider a superadiabatic heat transfer of the form −c(z)∇s. When c(z) = ρaTa
this corresponds to the most widely used model of Lantz & Fan (1999) mimicking a
uniform diffusivity and when c(z) = Ta this corresponds to a uniform turbulent thermal
conductivity (rather than diffusivity; see Mizerski & Tobias 2011). Turbulent diffusivity or
conductivity (at small scale) are certainly functions of height, in stars and gas giants, and
can be tailored to match detailed calculations or a scaling law. Any choice is possible for
c(z), as long as it is strictly positive, but we show that we can obtain a Nusselt upper bound
for some profiles of c (e.g. uniform conductivity), whereas we cannot for other profiles
(including the case of uniform diffusivity). The condition when a bound is obtained is
uncovered in the following.
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Of course we need to change the definition of the Nusselt number Nu = −c(z =
0)dzs̄(z = 0). Equation (2.3) is changed for

ρaTa
Ds
Dt

= D
Ra

ε̇ : τ + ∇ · (c∇s) . (C1)

None of the results concerning the minimum principle are affected, the same variable L is
considered, with the same constant s0 as in § 4. The change in the diffusion term leads to
the following equation for L instead of (4.2):

ρa
DL
Dt

= D
Ra

ε̇ : τ

Ta(s + s0)
+ c

Ta
|∇L|2 + c

Ta
dz(ln Ta)∂zL + ∇ ·

(
c

Ta
∇L

)
. (C2)

We also need to change the definition of the flux of L,

ΦL(z) = − c
Ta

dzL̄ + ρavzL, (C3)

instead of (4.4) and the equation for the averaged vertical flux (4.3) becomes

dzΦL = D
Ra Ta

ε̇ : τ

s + s0
+ c

Ta
|∇L|2 + c

Ta
dz(ln Ta)dzL̄. (C4)

Integrating from z = 0 to z = 1 will provide a bound on 〈|∇L|2〉. The integral of the last
term in (C4) is∫ 1

0

c
Ta

dz(ln Ta)dzL̄ dz = −
∫ 1

0

cD
T2

a
dzL̄ dz,

= −
[

cDL̄
T2

a

]1

0

+ D
∫ 1

0
dz

(
c

T2
a

)
L̄ dz. (C5)

Now comes the condition on c(z). If dz(c/T2
a ) < 0 for some value of z, then we cannot have

a lower bound of this term since L̄ has no upper bound. In the other case, if dz(c/T2
a ) > 0,

we have ∫ 1

0

c
Ta

dz(ln Ta) dzL̄dz � D(
1 + D

2

)2 c(0) ln
(

3
2

)
. (C6)

The integral of the left-hand side of (C4) is evaluated exactly,

[ΦL]1
0 = Nu

12
(2 + 5D) , (C7)

instead of (4.7). Integrating (C4) leads finally to〈
|∇L|2

〉
� Nu

12
(2 + 5D) − D(

1 + D
2

)2 c(0) ln
(

3
2

)
. (C8)

The reasoning is then similar to the anelastic liquid case, with (4.10) becoming

ΦL(0) = − c(0)

Ta(0)
dzL(0) = 2 − D

6
Nu. (C9)
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Anelastic model for Rayleigh–Bénard convection

Expression (4.13) is still valid and (4.14) becomes

δ0 =
12c

(
1
2

)
ln

(
3
2

) (
1 + D

2

)
(2 − D)Nu

, (C10)

where the condition dz(c/T2
a ) > 0 has been used, along with the restriction δ0 < 1/2. The

condition on the convective flux (4.15) now becomes

ρavzL(δ) � 2 − D
12

Nu. (C11)

All equations from (4.16) to (4.26) are equally valid for the model with turbulent
diffusivity. Equation (C11) leads to the following mirror equation to (4.27), when using
(C8), (C10), (4.16), (4.19) and (4.26):

〈ε̇ : τ 〉 � 2 Nu3(2 − D)4

123
(

ln
3
2

)2

ρ2
a0c2

(
1
2

)(
1 + D

2

)2

(2 + 5D)

⎡
⎢⎢⎢⎣1 −

24c2
(

1
2

) (
ln

3
2

)2

D2

(2 −D)2Nu2(γ − 1)2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣1 −

12Dc(0) ln
(

3
2

)
(1 + D/2)2Nu(2 + 5D)

⎤
⎥⎥⎦

.

(C12)

We now derive a lower bound for dissipation, similarly as in § 5. Dividing (C1) by Ta
and integrating by parts leads to

ρa
Ds
Dt

= D
Ra

ε̇ : τ

Ta
+ c

∇Ta · ∇s
T2

a
+ ∇ ·

(
c

Ta
∇s

)
. (C13)

We aim to bound the integral of the middle term on the right-hand side:〈∇Ta · ∇s
T2

a

〉
=

∫ 1

0
−cD

T2
a

dzs̄ dz, (C14)

= −D
∫ 1

0
dz

(
c

T2
a

s̄
)

dz + D
∫ 1

0
dz

(
c

T2
a

)
s̄ dz. (C15)

The first term on the right-hand side is evaluated exactly from the boundary conditions,
and the last term can only be bounded if the same condition as before dz(c/T2

a ) > 0 is met,
since we have no upper bound for s̄ but only a lower bound −1/(2 − D). Assuming this
condition holds, we have〈∇Ta · ∇s

T2
a

〉
� −D

[
c

T2
a

s̄
]1

0
− D

2 − D
[

c
T2

a

]1

0
, (C16)

� 4Dc(0)(
4 − D2

) (
1 + D

2

)2 . (C17)
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The integral of (C13) provides then an upper bound for dissipation

〈ε̇ : τ 〉 � 2Ra
2 − DNu

⎡
⎢⎢⎢⎣1 − c(0)(

1 + D
2

)2

Nu

⎤
⎥⎥⎥⎦ . (C18)

Combining (C13) and (C18) lead to an upper bound on the Nusselt number,

Nu �
24

√
3Ra1/2ρa0 ln

(
3
2

)
c
(

1
2

) (
1 + D

2

) √
2 + 5D

(2 − D)5/2

×

⎡
⎢⎢⎢⎣1 − c(0)

Nu
(

1 + D
2

)2

⎤
⎥⎥⎥⎦

1/2 ⎡
⎢⎢⎣1 −

12Dc(0) ln
(

3
2

)
(1 + D/2)2Nu(2 + 5D)

⎤
⎥⎥⎦

1/2

⎡
⎢⎢⎢⎣1 −

24c2
(

1
2

) (
ln

3
2

)2

D2

(2 − D)2Nu2(γ − 1)2

⎤
⎥⎥⎥⎦

1/2 , (C19)

which for very large values of the Nusselt number becomes

Nu �
24

√
3Ra1/2ρa0 ln

(
3
2

)
c
(

1
2

) (
1 + D

2

) √
2 + 5D

(2 − D)5/2 . (C20)

This expression is rather similar to that obtained with classical uniform thermal conduction
(6.3). Let us recall that the important message is that we have to make this assumption
dz(c/T2

a ) > 0 in order to ascertain the validity of this bound. This is not the case of the
original model of Lantz & Fan (1999), with c = ρaTa: in that case, c/T2

a = ρa/Ta, which
from (2.7) and (2.8) is proportional to T(2−γ )/(γ−1)

a , hence decreasing with z increasing,
like Ta, since 1 < γ < 2. In contrast, a model mimicking a uniform thermal conductivity
is c = Ta, see Mizerski & Tobias (2011). In that case, c/T2

a = 1/Ta is a function increasing
with z increasing, and the bound (C20) is valid.

Coming back to the main text, we have considered the usual Fourier law of conduction
heat transfer −k∇T with a uniform conductivity k = 1. If we make that conductivity a
function of height z, we can see that a similar condition holds on k(z). In (4.5), when
integrating by parts, the function dz(k/Ta) will appear and its sign is crucial when using
the minimum principle for entropy, in order to obtain the lower bound (4.6). The same
condition must hold to derive (5.3) from (5.2).
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