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Abstract. Following the success of the experimental Fury dynamo [1], we are studying (i) the possibility of
a new experiment with the same geometry and the same anisotropic electrical conductivity, but with a
wider galinstan gap between the rotor and the stator than in Fury, in order to allow richer dynamics via
Lorentz forces. Of course, to do this, we must first be able to start the dynamo with a large gap, which is
the first objective of this study. The second objective (ii) is to design a miniature dynamo experiment, smaller
than Fury, and with a narrow gap comparable to that of Fury. The use this time of anisotropic magnetic
permeability instead of anisotropic electrical conductivity is the most appropriate solution. Theory shows
that without a gap, using one rather than the other does not change the threshold of the dynamo, and only
the direction of rotation of the rotor has to be reversed [2]. With a gap filled with galinstan, even a very
narrow one, and unlike Fury whose rotor and stator were mainly made of copper, here the use of iron leads
to a significant jump in magnetic permeability with galinstan, which could be detrimental to the dynamo. In
order to study these two issues relating to (i) the thickness of the gap, and (ii) the electromagnetic properties
of the material filling the gap compared with those of the rotor and stator, we need to solve the problem of
the three-body anisotropic dynamo: the rotor, the gap and the stator.

Résumé. Suite au succès de la dynamo expérimentale Fury [1], nous étudions (i) la possibilité d’une nouvelle
expérience avec la même géométrie et la même conductivité électrique anisotrope, mais avec un entrefer de
galinstan entre le rotor et le stator plus large que dans Fury, afin de permettre une dynamique plus riche via
les forces de Lorentz. Bien sûr, pour ce faire, nous devons d’abord être en mesure de démarrer la dynamo avec
un large entrefer, ce qui constitue le premier objectif de cette étude. Le deuxième objectif (ii) est de concevoir
une expérience de dynamo miniature, plus petite que Fury, et avec un entrefer étroit, comparable à celui de
Fury. L’utilisation cette fois d’une perméabilité magnétique anisotrope au lieu d’une conductivité électrique
anisotrope est la solution la plus appropriée. La théorie montre que sans entrefer, l’utilisation de l’une plutôt
que l’autre ne change pas le seuil de la dynamo, et seul le sens de rotation du rotor doit être inversé [2].
Avec un entrefer rempli de galinstan, même très étroit et contrairement à Fury dont le rotor et le stator
étaient principalement constitués de cuivre, ici l’utilisation de fer entraîne un saut significatif de perméabilité
magnétique avec le galinstan, ce qui pourrait être préjudiciable à la dynamo. Pour étudier ces deux questions
liées (i) à l’épaisseur de l’entrefer, et (ii) aux propriétés électromagnétiques du matériau remplissant l’entrefer

∗Corresponding author

ISSN (électronique) : 1878-1535 https://comptes-rendus.academie-sciences.fr/physique/

https://doi.org/10.5802/crphys.245
https://orcid.org/0000-0002-4043-057X
https://orcid.org/0000-0002-1725-3739
https://orcid.org/0000-0002-3692-899X
mailto:Franck.Plunian@univ-grenoble-alpes.fr
mailto:paul.gomez@ens-lyon.fr
mailto:thierry.alboussiere@ens-lyon.fr
https://comptes-rendus.academie-sciences.fr/physique/


296 Franck Plunian et al.

par rapport à celles du rotor et du stator, nous devons résoudre le problème de la dynamo anisotrope à trois
corps : le rotor, l’entrefer et le stator.
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1. Introduction

The Fury experiment demonstrated that it was possible to produce a dynamo effect using a
material with anisotropic electrical conductivity [1]. Such material was obtained by alternating
layers of copper and kapton in order to favour electrical currents along the copper layers and slow
them down in the direction perpendicular to the layers. Fury’s geometry consists of a cylindrical
rotor rotating inside a cylindrical stator, both made with this copper/kapton material, and a thin
gap between the rotor and stator, filled with galinstan to ensure good electrical contact between
the two solid parts (see Figure 2).

In Fury, the gap is so thin that even if the galinstan flow is turbulent, with a Reynolds number of
about 5000, it plays no other role than to ensure good electric contact between the rotor and the
stator, which is why it is neglected in the theoretical models [2]. Above the dynamo threshold, the
additional mechanical power injected is then entirely dissipated in the form of Joule dissipation,
and the magnetic field has no dynamic behaviour other than saturation. This contrasts with fluid
dynamo experiments in which the additional mechanical power is mainly dissipated in the form
of turbulent hydrodynamic dissipation [3–5], and for which the magnetic field generated can be
dynamically unstable, with chaotic or cyclic behaviour [6], similar to the magnetic field observed
at the surface of the Earth or the Sun.

The advantage of Fury is that it is relatively small, inexpensive, and avoids the use of liquid
sodium, which requires an appropriate safety environment. Therefore, it could be interesting to
study a new experimental configuration, similar to Fury but with a larger galinstan gap so that
the system benefits from the advantages of Fury as well as from a larger number of degrees of
freedom that could potentially lead to dynamical instabilities. Although the role of small-scale
turbulence in the fluid may be crucial in the dynamo process, presumably leading to additional
magnetic dissipation in the fluid, it is reasonable to start with a simple solid-body rotation for the
fluid motion in the gap. Such simple configuration has also the advantage to be mathematically
tractable. It can even be approximated to be at rest, at least for some time after the rotor has
started to rotate, with Stewartson boundary layers at the lateral wall of the rotor, sufficiently thin
to be ignored. Theoretically, we expect the dynamo threshold to increase with the thickness of
the gap. It is therefore necessary to solve a three-body problem, consisting of two anisotropic
bodies separated by a gap filled with an isotropic material. This is the first objective of this paper.
We note that the limiting case of an infinite gap (without stator) has already being studied [7]. It
corresponds to a two-body system, consisting of an anisotropic rotor immersed in an isotropic
medium (e.g. a liquid metal). In this case the dynamo threshold is higher than in Fury, requiring
a larger rotor size and also a large quantity of liquid metal around it. This configuration has been
suggested as a good candidate for starting a dynamo in large installations such as those built in
Maryland, Wisconsin or Dresden [8,9].

The three-body anisotropic dynamo is also crucial to study in the case where the presence of
a galinstan gap has an effect on the dynamo’s threshold not because of its thickness but because
of the difference in electromagnetic properties between the liquid metal filling the gap and the
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materials making up the rotor and stator. In Fury, although the electrical conductivity ratio
between galinstan and copper is small, around 6 × 10−2, the presence of a thin galinstan gap
does not significantly alter the dynamo threshold. On the other hand, if we use a rotor and
stator with an anisotropic magnetic permeability instead of an anisotropic electric conductivity,
the difference in magnetic permeability with galinstan can be significantly lower and potentially
be much more detrimental to the dynamo. By way of comparison, the magnetic permeability
ratio between galinstan and soft iron is around 2×10−4, the one between galinstan and µ-metal
is around 6.7 × 10−6 (see Table 1). This is all the more interesting because, if we neglect the
presence of the gap, the dynamo threshold for a rotor and stator made of soft iron (resp. µ-
metal) and tin is around a hundred (resp. thousand) times smaller than Fury’s, made of copper
and kapton, suggesting the possibility of building a miniature dynamo. In fact, the degree
of miniaturisation will depend on the effect of the jump in magnetic permeability between
galinstan filling the gap and soft iron (resp. µ-metal). In terms of miniaturisation, Fury’s net mass
(without infrastructure) is around 43 kg, while the Maryland and Dresden experiments exceed
14 tonnes and 6 tonnes respectively. We are aiming here for an experiment net mass of around
1 kg.

Last but not least, in order to construct a stator and rotor with an anisotropic electric conduc-
tivity (resp. magnetic permeability), an alternation of two materials is necessary, in order to con-
strain the electric currents (resp. the magnetic field). Then, this study seems in line with previous
dynamo studies underlining the benefic action of inhomogeneous materials [10–14]. However,
from a theoretical point of view, the anisotropic dynamo only relies on anisotropy, and not on
inhomogeneity. To illustrate this point, the corresponding dynamo mechanism is illustrated in
Figure 1 in cartesian geometry. In an appropriate reference frame, the shear between two mov-
ing parts of a single homogeneous material is represented by the two opposite velocities U . We
assume that the electrical conductivity is maximum along vertical planes parallel to the fine lines
drawn at the top horizontal surfaces. These lines are here only to fix the eye, the material then
staying homogeneous, but with an anisotropic electrical conductivity. We note that these lines
are not perpendicular to U , implying that the horizontal component of the electric current den-
sity J is not perpendicular to U either. Considering a current density loop as represented in red
in Figure 1, the magnetic field B which is induced by J has a component perpendicular to U ,
such that U ×B ̸= 0 (Ohm’s law) reinforces the vertical component of J . This illustrates the dy-
namo mechanism, provided U is sufficiently large. On the other hand, if U is changed in −U ,
or equivalently if the direction of the anisotropy α is changed in −α, then U ×B will be opposite
and then will weaken the vertical component of J , making the dynamo impossible. If the electri-
cal conductivity is isotropic, then the current loop will follow the shortest way which is in planes
perpendicular to U . In that case, the induced magnetic field B becomes parallel to U and then
unable to drive a current density, as U ×B = 0.

In Section 2, the configuration of the three-body problem is introduced as well as the set
of equations to be solved. In Section 3 the boundary conditions are presented, followed by a
renormalisation of the problem leading to dimensionless variables. In Section 4, a dispersion
relation is derived, and an explicit expression for the magnetic Reynolds number is given,
followed in section 5 by significant results, dimensionless and dimensional.

2. General formulation

As shown in Figure 2, we consider three cylindrical bodies, the rotor (r < R), the gap (R < r < R+e)
and the stator (r > R + e), where r is the radial coordinate in cylindrical geometry. The rotor
rotates with a solid body rotation given by the angular velocity Ω, while the stator is at rest. The
gap in between can also rotate, with an angular velocity ω which, for mathematical convenience,
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Figure 1. Illustration of the anisotropic dynamo mechanism. The two moving parts are
made of the same homogeneous material. The maximum electrical conductivity is along
vertical planes parallel to the lines drawn at the top surfaces. The current density loop J (in
red) induces a magnetic field B (in green). The component of B which is perpendicular to
U reinforces the vertical component of J in each moving part, through the cross product
U ×B (Ohm’s law), making the dynamo possible (provided a velocity threshold is exceeded
to compensate for Joule dissipation).

is considered to be also constant in r (solid body rotation), with ω ∈ [0,Ω]. The velocity field is
then given by

U = r Ω̃eθ , with Ω̃=


Ω, 0 < r < R

ω, for R < r < R +e

0, r > R +e,

(1)

where (er ,eθ,ez ) and (r,θ, z) are unit basis vectors and coordinates in cylindrical geometry.
The electrical conductivity and magnetic permeability of the rotor and stator have the same

anisotropy. We define the electrical conductivity and the magnetic permeability byσ∥ and µ∥ in a
given direction q, and by σ⊥ and µ⊥ in the directions perpendicular to q, where q is a unit vector.
In the direction parallel to q, Ohm’s law and the relation between H and B are written in the form
J ·q =σ∥(E ·q) and B ·q =µ∥(H ·q), while in the directions perpendicular to q, they are written as
J−(J ·q)q =σ⊥(E−(E ·q)q) and B−(B·q)q =µ⊥(H−(H ·q)q). This leads to two symmetric tensors,
[σi j ] for the electrical conductivity and [µi j ] for the magnetic permeability, defined by [15]

[σi j ] =σ⊥δi j + (σ∥−σ⊥)qi q j , [µi j ] =µ⊥δi j + (µ∥−µ⊥)qi q j . (2a,b)

The expressions (2a,b) also encompass the isotropic electromagnetic properties of the fluid in
the gap, σg and µg , replacing σ⊥ and σ∥ by σg , µ⊥ and µ∥ by µg . Anticipating a renormalisation
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Figure 2. Left: Exploded view of the rotor surrounded by the gap, itself surrounded by the
stator. Right: The logarithmic spirals in the rotor and stator correspond to the direction
of the electric current (resp. magnetic field) for σ⊥ ≫ σ∥ (resp. µ⊥ ≫ µ∥), in the horizontal
plane seen from above. They are perpendicular to q.

of the electrical conductivity and magnetic permeability by σ⊥ and µ⊥, it is then useful to rewrite
(2a,b) as following,

[σi j ] =σ⊥ ϕ̃σ
(
δi j − σ̃

1+ σ̃qi q j

)
, [µi j ] =µ⊥ ϕ̃µ

(
δi j − µ̃

1+ µ̃qi q j

)
, (3a,b)

with

ϕ̃σ =


1

ϕσ

1,

σ̃=


σ

0

σ,

ϕ̃µ =


1

ϕµ

1,

µ̃=


µ r < R

0 for R < r < R +e

µ r > R +e,

(4a–d)

and

ϕσ = σg

σ⊥ , σ= σ⊥

σ∥ −1, ϕµ =
µg

µ⊥ , µ= µ⊥

µ∥ −1. (5a–d)

As in [2,7,16,17], we choose q as a unit vector in the horizontal plane defined by

q = c er + s eθ, (6)

where c = cosα, s = sinα, with α a prescribed pitch angle. The vector q follows the direction
of logarithmic spirals which are perpendicular to the ones shown in Figure 2 (see [18] for an
alternative expression in cartesian geometry).

In the magnetohydrodynamic approximation, Maxwell’s equations and Ohm’s law take the
following forms

H = [µi j ]−1B, (7a)

∇·B = 0, (7b)

J = ∇×H , (7c)

∂t B = −∇×E (7d)

J = [σi j ](E +U ×B), (7e)
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leading to the equation for the magnetic induction B,

∂t B =∇× (U ×B)−∇× ([σi j ]−1∇× ([µi j ]−1B)), (8)

where
[σi j ]−1 = (ϕ̃σσ

⊥)−1(δi j + σ̃qi q j ), [µi j ]−1 = (ϕ̃µµ
⊥)−1(δi j + µ̃qi q j ). (9a,b)

Equations (9a,b) are derived from (3a,b) knowing that, for any unit vector q and any scalar
quantity X ̸= −1, we have [

δi j − X

1+X
qi q j

]−1

= δi j +X qi q j . (10)

Since the velocity is stationary and independent of z, and as we are considering only axisym-
metric solutions, because they are the least dissipative ones and then likely to be dominant at the
dynamo onset, we look for a magnetic induction in the form

B = B(r )exp(γt + ikz), (11)

where B(r ) is the axisymmetric magnetic mode at vertical wave number k. In (11) a positive value
of the real part of the magnetic growth rate γ is the signature of dynamo action. The dynamo
threshold that we will be sought, corresponds to ℜ{γ} = 0.

Replacing (1) and (11) in (8), and after some algebra (see e.g. [7]), one obtains the following
equations for Br (r ) and Bθ(r ),

γ̃Br = −(σ⊥µ⊥)−1[µ̃c2k2Br + (1+ σ̃s2)Dk (Br )− cs(σ̃− µ̃)k2Bθ], (12a)

γ̃Bθ = −(σ⊥µ⊥)−1[σ̃c2k2Bθ+ (1+ µ̃s2)Dk (Bθ)− cs(σ̃− µ̃)Dk (Br )], (12b)

where

γ̃= ϕ̃σϕ̃µγ=


γ, r < R

ϕσϕµγ, for R < r < R +e

γ, r > R +e

(13)

and

Dk (X ) = k2X − ∂

∂r

(
1

r

∂

∂r
(r X )

)
. (14)

3. Boundary conditions and renormalization

The system of Equations (12a,b) is completed by the appropriate boundary conditions for r = 0
and r →∞,

Br (r = 0) = Bθ(r = 0) = lim
r→∞Br = lim

r→∞Bθ = 0, (15a–d)

and by the continuity across r = R and r = R + e of the normal component of B and of the
tangential components of H and E,

[Br ]R+
R− = [Hθ]R+

R− = [Hz ]R+
R− = [Eθ]R+

R− = [Ez ]R+
R− = 0, (16a–e)

[Br ](R+e)+
(R+e)− = [Hθ](R+e)+

(R+e)− = [Hz ](R+e)+
(R+e)− = [Eθ](R+e)+

(R+e)− = [Ez ](R+e)+
(R+e)− = 0, (17a–e)

where [X ]r2
r1
= X (r = r2)−X (r = r1).

From (7a) and (9b), the magnetic field H takes the form

H = (ϕ̃µµ
⊥)−1

(1+ µ̃c2)Br + µ̃csBθ

µ̃csBr + (1+ µ̃s2)Bθ

Bz

 , (18)

with, from (7b),

Bz = ik−1
(

Br

r
+ ∂Br

∂r

)
. (19)
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Then (16a–c) and (17a–c) can be rewritten as

Br (R+) = Br (R−) (20)

ϕ−1
µ Bθ(R+) = µcsBr (R−)+ (1+µs2)Bθ(R−) (21)

ϕ−1
µ

(
Br (R+)

R
+ ∂Br

∂r
(R+)

)
= Br (R−)

R
+ ∂Br

∂r
(R−) (22)

Br ((R +e)−) = Br ((R +e)+) (23)

ϕ−1
µ Bθ((R +e)−) = µcsBr ((R +e)+)+ (1+µs2)Bθ((R +e)+) (24)

ϕ−1
µ

(
Br ((R +e)−)

(R +e)
+ ∂Br

∂r
((R +e)−)

)
= Br ((R +e)+)

(R +e)
+ ∂Br

∂r
((R +e)+). (25)

From (7d) we have Eθ = −ik−1γBr , implying that the two conditions (16a) and (16d) are redun-
dant, as well as (17a) and (17d). As for the last boundary conditions (16e) and (17e), using (7e) we
have

ϕ̃−1
σ Jz +σ⊥r Ω̃Br =σ⊥Ez (26)

with Ω̃ defined in (1), leading to

ϕ−1
σ Jz (R+)+σ⊥ωRBr (R+) = Jz (R−)+σ⊥ΩRBr (R−), (27)

Jz ((R +e)+) =ϕ−1
σ Jz ((R +e)−)+σ⊥ω(R +e)Br ((R +e)−). (28)

Renormalizing the distance and time by R and µ⊥σ⊥R2, and the current density J by (µ⊥R)−1,
corresponds to replacing R, σ⊥ and µ⊥ by unity in the system (12a,b) and in the boundary
conditions (16a–e), (17a–e), (20)–(25) and (27)–(28). Then the absolute value of the dimensionless
angular velocity |Ω| corresponds to the magnetic Reynolds number. For the sake of simplicity, we
will retain the notation e for the now-normalised thickness of the gap.

4. Resolution

As we are interested in the dynamo threshold, the system (12a,b) is solved for γ= 0, in the same
line as in [7,17]. Introducing

kσ̃ = k

(
1+ σ̃

1+ σ̃s2

)1/2

, kµ̃ = k

(
1+ µ̃

1+ µ̃s2

)1/2

, (29a,b)

and with the help of the identity

Dk1 (X ) = Dk2 (X )+ (k2
1 −k2

2)X , (30)

the system (12a,b) takes the following form

(1+ σ̃s2)Dkσ̃ (Br ) = (σ̃− µ̃)ck2(cBr + sBθ) (31a)

(1+ µ̃s2)Dkµ̃ (Bθ) = (σ̃− µ̃)c(sDk (Br )− ck2Bθ). (31b)

Then we can show that

Dkµ̃ (cBr + sBθ) = Dkσ̃ (sDk (Br )− ck2Bθ) = 0. (32a,b)

Then, using (32a,b) and (31a,b) leads to

(Dkµ̃ ◦Dkσ̃ )(Br ) = (Dkσ̃ ◦Dkµ̃ )(Bθ) = 0. (33a,b)

The two operators Dkσ̃ and Dkµ̃ being commutative, Br and Bθ satisfy the same linear differential
equation of fourth order. As the solution of Dν(X ) = 0 is a linear combination of I1(νr ) and K1(νr ),
where I1 and K1 are first and second kind modified Bessel functions of order 1, the solutions of
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(33a,b) are a linear combination of I1(kσ̃r ), K1(kσ̃r ), I1(kµ̃r ) and K1(kµ̃r ). Applying the boundary
conditions (15a–d), Br and Bθ can be written in the following form,

Br =



r < 1, −s

(
λR
σ

I1(kσr )

I1(kσ)
+λR

µ

I1(kµr )

I1(kµ)

)
1 < r < 1+e −s

(
λI

r
I1(kr )

I1(k)
+λK

r
K1(kr )

K1(k)

)
r > 1+e, −s

(
λS
σ

K1(kσr )

K1(kσ(1+e))
+λS

µ

K1(kµr )

K1(kµ(1+e))

)
,

(34)

Bθ =



r < 1, c

(
λR
σ

I1(kσr )

I1(kσ)
+ µs2

1+µs2λ
R
µ

I1(kµr )

I1(kµ)

)
1 < r < 1+e, c

(
λI
θ

I1(kr )

I1(k)
+λK

θ

K1(kr )

K1(k)

)
r > 1+e, c

(
λS
σ

K1(kσr )

K1(kσ(1+e))
+ µs2

1+µs2λ
S
µ

K1(kµr )

K1(kµ(1+e))

)
,

(35)

where Bθ has been obtained from Br by replacing (34) in (31a). For 1 < r < 1+e, the system (12a,b)
leads to Dk (Br ) = Dk (Bθ) = 0, and to the solutions (34b) and (35b).

In (34) and (35) there are eight unknowns: λR
σ and λR

µ related to the rotor, λI
r ,λK

r ,λI
θ

and λK
θ

related to the gap, λS
σ and λS

µ related to the stator. Therefore, to solve the problem we need eight
equations. The six first ones are given by the boundary conditions (20)–(25), leading to

λI
r +λK

r = λR
σ+λR

µ , (36)

ϕ−1
µ

(
λI
θ+λK

θ

) = λR
σ, (37)

−kϕ−1
µ

(
−λI

r
I0(k)

I1(k)
+λK

r
K0(k)

K1(k)

)
= kσλ

R
σ

I0(kσ)

I1(kσ)
+kµλ

R
µ

I0(kµ)

I1(kµ)
. (38)

λI
r

I1(k(1+e))

I1(k)
+λK

r
K1(k(1+e))

K1(k)
= λS

σ+λS
µ, (39)

ϕ−1
µ

(
λI
θ

I1(k(1+e))

I1(k)
+λK

θ

K1(k(1+e))

K1(k)

)
= λS

σ, (40)

kϕ−1
µ

(
−λI

r
I0(k(1+e))

I1(k)
+λK

r
K0(k(1+e))

K1(k)

)
= kσλ

S
σ

K0(kσ(1+e))

K1(kσ(1+e))
+kµλ

S
µ

K0(kµ(1+e))

K1(kµ(1+e))
. (41)

Finally, to apply the two last boundary conditions (27) and (28), we need to calculate the z-
component of the current density, that is given by

Jz = ϕ̃−1
µ

1

r

∂

∂r
(r φ̃), with φ̃= µ̃csBr + (1+ µ̃s2)Bθ. (42)

Replacing Br and Bθ given by (34) and (35), in (42b) leads to

φ̃=



r < 1, cλR
σ

I1(kσr )

I1(kσ)

1 < r < 1+e, c

(
λI
θ

I1(kr )

I1(k)
+λK

θ

K1(kr )

K1(k)

)
r > 1+e, cλS

σ

K1(kσr )

K1(kσ(1+e))
,

(43)
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which is nothing else than Bθ for µ = 0, implying that J z is not affected by the anisotropy of
the magnetic permeability. Applying the relations ∂r (r I1(νr )) = νr I0(νr ) and ∂r (r K1(νr )) =
−νr K0(νr ) to (42a), leads to

Jz =



r < 1, ckσλR
σ

I0(kσr )

I1(kσ)

1 < r < 1+e, ckϕ−1
µ

(
λI
θ

I0(kr )

I1(k)
−λK

θ

K0(kr )

K1(k)

)
r > 1+e, −ckσλS

σ

K0(kσr )

K1(kσ(1+e))
.

(44)

Replacing (34) and (44) in (27) and (28), leads to

ϕ−1
σ ϕ−1

µ ck

(
λI
θ

I0(k)

I1(k)
−λK

θ

K0(k)

K1(k)

)
−ωs(λI

r +λK
r ) = ckσλ

R
σ

I0(kσ)

I1(kσ)
−Ωs(λR

σ+λR
µ ) (45)

ϕ−1
σ ϕ−1

µ ck

(
λI
θ

I0(k(1+e))

I1(k)
−λK

θ

K0(k(1+e))

K1(k)

)
−ωs(1+e)

(
λI

r
I1(k(1+e))

I1(k)
+λK

r
K1(k(1+e))

K1(k)

)
=−ckσλ

S
σ

K0(kσ(1+e))

K1(kσ(1+e))
. (46)

A dispersion relation can be derived, writing that the system composed of the eight equations
(36)–(41), (45) and (46), with the eight unknownsλR

σ,λR
µ ,λI

r ,λK
r ,λI

θ
,λK

θ
,λS

σ andλS
µ, is singular (zero

determinant). It leads to the dynamo thresholdΩc such that

Ωc = FµFσ−ω[−MµσEµEσ+Lµσ(DB A′−BC B ′)]

Mµσ(DB A′−BC B ′)−Lµσ(B ′+KµD)(B ′+KσD)−MµσLµσD2ω
, (47)

with

Ωc = ϕµϕσ(Ωc −ω)
s

c
, ω=ϕµϕσω s

c
(1+e), A = I0(k)

I1(k)
, B = k

(
I0(k)

I1(k)
+ K0(k)

K1(k)

)
, (48)

C = I1(k ′)
I1(k)

, D = I1(k ′)
I1(k)

− K1(k ′)
K1(k)

, A′ = k
I0(k ′)
I1(k)

, B ′ = k

(
I0(k ′)
I1(k)

+ K0(k ′)
K1(k)

)
, (49)

Iµ = kµϕµ
I0(kµ)

I1(kµ)
, Iσ = kσϕσ

I0(kσ)

I1(kσ)
, Kµ = kµϕµ

K0(k ′
µ)

K1(k ′
µ)

, Kσ = kσϕσ
K0(k ′

σ)

K1(k ′
σ)

, (50)

Lµσ = ϕ−1
σ Iσ−ϕ−1

µ Iµ, Mµσ =ϕ−1
σ Kσ−ϕ−1

µ Kµ, Eµ = AD −BC −D Iµ, Eσ = AD −BC −D Iσ,

(51)

Fµ = B(A′+KµC )− (B ′+KµD)(A− Iµ), Fσ = B(A′+KσC )− (B ′+KσD)(A− Iσ), (52)

k ′ = (1+e)k, k ′
µ = (1+e)kµ, ,k ′

σ = (1+e)kσ. (53)

The derivation of (47) is given in Appendix A. At this stage we can make two checks, one for e = 0,
the other for e →∞.

For e = 0, we have k ′ = k, k ′
µ = kµ, k ′

σ = kσ, A′ = A, B ′ = B , C = 1, D = 0, Eµ = Eσ =
−B , Fµ = B(Kµ + Iµ), Fσ = B(Kσ + Iσ). After some algebra and using the Wronskian relation
x((I0(x))/(I1(x))+ (K0(x))/(K1(x))) = [I1(x)K1(x)]−1, the following dynamo threshold is found

Ωc = c

s
(I1(kσ)K1(kσ)− I1(kµ)K1(kµ))−1, (54)

which is nothing else than the expression given in [2].
In the limit e →∞, we have k ′ ≫ 1, k ′

µ ≫ 1, k ′
σ ≫ 1. Knowing that for x →∞, I0(x) ≡ I1(x) ≈

ex /
p

2πx → ∞ and K0(x) ≡ K1(x) ≈ e−x
p
π/2x → 0, we then have B ′ ≡ A′, D ≡ C , Kµ ≡ kµϕµ,
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Kσ ≡ kσϕσ, Mµσ ≡ kσ−kµ. In (47), the factors multiplied byω are of the same order of magnitude
as the terms that are not proportional to ω. As ω≡ e ≫ 1, Equation (47) then simplifies into

Ωc = −MµσEµEσ+Lµσ(DB A′−BC B ′)
MµσLµσD2 ≡ −EµEσ

LµσD2 . (55)

Then we can show that

Ωc −ω=−c

s

(Φ(kσ)+ϕ−1
σ Ψ(k))(Φ(kµ)+ϕ−1

µ Ψ(k))

Φ(kσ)−Φ(kµ)
, (56)

where

Φ(x) = xI0(x)/I1(x), Ψ(x) = xK0(x)/K1(x), (57a,b)

which is identical to the dynamo threshold expression given in [7] for a rotor immersed in an
isotropic medium, both rotating at angular velocitiesΩ and ω respectively.

Finally, we note that in (47), exchanging σ and µ corresponds to changing the angular veloc-
ities Ωc and ω into their opposite −Ωc and −ω, as already shown by [14,19] for the induction
equation with isotropic electromagnetic conductivity and permeability.

In our model, ω is assumed to be constant with r . Therefore, takingω=βΩwith β ∈ [0,1], and
replacing in (47) leads to

Ωc = c

s
ϕ−1
σ ϕ−1

µ

Q(1−β)+P (1+e)β±p
∆

2(1+e)β(1−β)MµσLµσD2 , (58)

with

P = [−MµσEµEσ+Lµσ(DB A′−BC B ′)], (59)

Q = Mµσ(DB A′−BC B ′)−Lµσ(B ′+KµD)(B ′+KσD), (60)

∆ = [Q(1−β)+P (1+e)β]2 −4FµFσMµσLµσD2(1+e)β(1−β). (61)

In the limit β(1−β) ≈ 0, we have |Ωc | ≈ |(c/s)ϕ−1
σ ϕ−1

µ FµFσ[Q(1−β)+P (1+e)β]−1|, leading to

|Ωc | =


∣∣∣c

s
ϕ−1
σ ϕ−1

µ FµFσQ−1
∣∣∣∣∣∣c

s
ϕ−1
σ ϕ−1

µ FµFσP−1(1+e)−1
∣∣∣ ,

for β=
{

0

1.
(62)

5. Results

As in [7], and with experimental applications in mind, we consider three cases character-
ized by the materials that compose both the rotor and the stator. The first case denoted
copper(⊥)/kapton(∥), corresponds to the choice made for the Fury dynamo experiment, in which
the rotor and stator are composed of copper as the main conducting material and kapton as an
electrical insulator. In Fury, vertical grooves have been cut following logarithmic spirals as in Fig-
ure 2. These grooves have been filled with kapton sheets to force the electrical currents to follow
curved trajectories, in a way reproducing anisotropic electrical conductivity [1]. In the other two
cases studied here, copper is replaced by iron or µ-metal, both of which have a relative magnetic
permeability well in excess of unity. Kapton is replaced by tin, whose relative magnetic perme-
ability is equal to unity. The resulting arrangements iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥) mimic
materials with an anisotropic magnetic permeability. In all three cases the gap is filled with galin-
stan, an alloy of gallium, indium and tin, which is liquid at room temperature and essential for
ensuring good electrical contact between the rotor and the stator. The values of the electrical
conductivities and magnetic permeabilities corresponding to these three cases are collected in
Table 1, together with the corresponding values of σ, µ, ϕσ and ϕµ.
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Table 1. Electromagnetic properties of the materials composing the rotor, the gap and the
stator

Rotor/Stator Gap (Galinstan)
Materials σ⊥ µ⊥ σ∥ µ∥ σ µ σg µg ϕσ ϕµ

Cu(⊥) Ka(∥) 63 1 5×10−22 1 13×1022 0 3.86 1 0.06 1
Fe(⊥) Sn(∥) 10.2 5×103 9.9 1 0.03 5×103 3.86 1 0.38 2×10−4

µm(⊥) Sn(∥) 2.1 1.5×105 9.9 1 −0.79 1.5×105 3.86 1 1.85 6.7×10−6

The electrical conductivities σ⊥, σ∥ and σg are given in unit of 106 Ω−1·m−1. The magnetic
permeabilities µ⊥, µ∥ and µg are given in unit of 4π× 10−7 H·m−1. The parameters σ,
µ, ϕσ and ϕµ are dimensionless. The numerical values of the electrical conductivity and
magnetic permeability of the materials are taken from appropriate references [20–23].

Table 2. Geometrical characteristics of the Fury dynamo experiment [1] and another ex-
perimental project with larger galinstan gaps

Dimensional Dimensionless
Parameters R e h α/π e (%) k = 2πR/h

Units cm mm cm rad – –
Fury 5 0.5 20.9 0.15 1 1.5

Larger gap 7

2

30 0.15

2.9

1.5
18 25.7
34 48.6
50 71.4

The rotor’s radius R, the gap thickness e, the height h of the experiment, are dimensional
quantities. The pitch angle α of anisotropy is given in radian. The same notation e is used
for the dimensional and dimensionless gap thickness, the relation between both being
e (%) = 102(e/R) . The value of k corresponds to a complete period of the magnetic field
along the height of the experiment.

5.1. Dimensionless results

In Figure 3, the dynamo threshold Ωc is plotted either (left) versus the magnetic wave number
k for a pitch angle α/π = 0.15π or (right) versus α for k = 1.5. The three rows of subfigures
correspond, from top to bottom, to the copper(⊥)/kapton(∥), iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥)

cases. In each subfigure six gap thicknesses e including the case without gap (e = 0), and three
values of the angular velocities ratio β are considered. The value e = 1% corresponds to that of
Fury. The other non-zero values of e correspond to larger gaps, up to 71.4% of the rotor radius.
Table 2 summarises the geometric characteristics of Fury and those of a slightly larger model with
several values of galinstan gap.

From the top subfigures of Figure 3 we see that, for e = 2.9%, takingα= 0.15 and k = 0.15 is not
far from the minimum dynamo threshold. This is less true when e is increased. We could think
that increasing the galinstan gap thickness is necessarily detrimental to the dynamo because the
shear between the rotor and the stator will be weaker. This is mainly the case, except for example
in the top left sub-figure, which shows curve crossings forβ= 0.5, e = 48.6% and e = 71.4%. Taking
β= 0 leads to the largest dynamo threshold unless k is sufficiently large as can be seen e.g. at the
top left subfigure, with curve crossings for e = 71.4%, β= 0.5 and β= 0. We note that increasing e
shifts the minimum threshold to smaller values of k and α.
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Figure 3. The dynamo threshold |Ωc | is plotted, either (left) versus the wave number k for
a pitch angle α = 0.15π, or (right) versus α for k = 1.5. The top row corresponds to the
copper(⊥)/kapton(∥) case, the middle row to the iron(⊥)/tin(∥) case, the bottom row to the
µ-metal(⊥)/tin(∥) case. Each curve corresponds to a couple (e,β), with e ∈ {0;10−2;2.9 ×
10−2;2.57×10−1;4.86×10−1;7.14×10−1; } and β ∈ {0;0.5;1}.

Finally there is a stricking difference between the copper(⊥)/kapton(∥) case and the two others
iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥). Indeed, whereas at e = 0 the minimum dynamo thresholds of
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the three cases are comparable, mink (Ωc (k)) ≈ {14.6,14.8,8.3}, increasing e leads to much higher
dynamo thresholds for the two last cases, mink (Ωc (k)) ≈ {15.1,84,710} for e = 1%, mink (Ωc (k)) ≈
{16,165,1600} for e = 2.9%. This is presumably because in these cases the galinstan gap corre-
sponds to an abrupt radial jump of the magnetic permeability, of at least four order of magnitude
as given in Table 1 by the small values of ϕµ. In comparison, in the copper(⊥)/kapton(∥) case, the
radial jump of electrical conductivity of around two orders of magnitude as given by ϕσ in Ta-
ble 1, is much less detrimental to the dynamo. This significant increase in the dynamo threshold
for the cases of iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥) must however be revised when dimensional
quantities are considered, as explained in Section 5.2.

In Figure 4 the electric current density and magnetic field lines are plotted at the threshold,
in the three cases copper(⊥)/kapton(∥), iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥), for k = 1.5, α/π =
0.15, β= 0 and several values of e. The magnetic field lines are plotted from the expressions of Br

and Bθ given in (34) and (35). The electric current density can be calculated from (7c), leading to
the dimensionless following expression

Jr = −ikϕ̃−1
µ φ̃, with φ̃= µ̃csBr + (1+ µ̃s2)Bθ , (63)

Jθ = ik−1ϕ̃−1
µ [Dk (Br )+ µ̃c2k2Br + µ̃csk2Bθ]. (64)

At the dynamo threshold, γ= 0, Equation (12a) implies that

Dk (Br ) = (1+ σ̃s2)−1[cs(σ̃− µ̃)k2Bθ− µ̃c2k2Br ], (65)

leading to

Jθ = ik
csσ̃

1+ s2σ̃
ϕ̃−1
µ φ̃. (66)

Then (63) and (66) lead to the following relation

(1+ s2σ̃)Jθ+ csσ̃Jr = 0, (67)

corresponding to logarithmic spiral lines for σ̃ ̸= 0 and radial lines for σ̃= 0 as plotted in Figure 4.
In Figure 5, Bz (r ) and Jz (r ) are plotted, again in the three cases copper(⊥)/kapton(∥),

iron(⊥)/tin(∥) and µ-metal(⊥)/tin(∥), and for the same parameters as in Figure 4. The expression
of Jz (r ) is given in (44). The expression of Bz (r ) can be derived from (19). Applying the relations
∂r (r I1(νr )) = νr I0(νr ) and ∂r (r K1(νr )) =−νr K0(νr ) to (34), leads to

Bz = ik−1


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I1(kµ)

)
1 < r < 1+e −sk

(
λI

r
I0(kr )

I1(k)
−λK

r
K0(kr )

K1(k)

)
r > 1+e, s

(
λS
σkσ

K0(kσr )

K1(kσ(1+e))
+λS

µkµ
K0(kµr )

K1(kµ(1+e))

)
.

(68)

For e = 0, we can show from (38) and (41) that Bz given by (68) is continuous at r = 1, as plotted
in Figure 5.

5.2. Dimensional results

In Figure 6, the critical frequency f c is plotted versus the rotor’s radius R for several values of the
pitch angle α and of the gap thickness e (which after being multiplied by R is now dimensional).
The magnetic wave number is fixed at k = 1.5, corresponding to an experiment with an aspect
ratio h/R = 2π/k of about 4.2, after assuming that the wavelength of the magnetic field is equal
to the vertical size of the experiment. This aspect ratio of 4.2, which is the one used in Fury, is a
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Figure 4. Plots of the magnetic field lines (full-blue) and the electric current lines (dashed-
red) in the horizontal plane (x, y), for the three cases Cu(⊥)Ka(∥) (left column), Fe(⊥) Sn(∥)

(middle column), µm(⊥) Sn(∥) (right column), for α/π= 0.15, β= 0, k = 1.5 and, from top to
bottom, e = 1%,25.7%,71.4%.

good compromise between theoretical predictions and the robustness of the device. The angular
velocities ratio is fixed at β= 0, corresponding to a gap at rest. The frequency is obtained from

f c = |Ωc |
2πR2σ⊥µ⊥ . (69)

Taking R = 7 cm and α = 0.15π (solid lines), and for a rather large gap of galinstan e = 50
mm leads to a dynamo threshold f c = 35,28 and 14 Hz, for respectively the copper(⊥)/kapton(∥),
iron⊥/tin∥ and µ-metal⊥/tin∥ cases. These values are entirely achievable experimentally, and we
note that the use of a galinstan gap with a rotor and stator of anisotropic magnetic permeability
is not as detrimental as the dimensionless results suggested. It is even a much better system if
a small rotor’s radius is considered together with a small gap of galinstan. Indeed, for R = 3 cm
and e = 0.5 mm, the dynamo threshold is f c = 1.3 and 3 Hz for respectively the iron⊥/tin∥ and
µ-metal⊥/tin∥ cases, whereas it is about 38 Hz for the copper(⊥)/kapton(∥) case.
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Figure 5. Plots of Bz (r )/Bmax (top) and Jz (r )/Jmax (bottom), for the three cases Cu(⊥)Ka(∥)

(left column), Fe(⊥) Sn(∥) (middle column), µm(⊥) Sn(∥) (right column), forα/π= 0.15, β= 0,
k = 1.5, and e = 0%,1%,2.9%,25.7%,48.6%,71.4%.

Figure 6. The critical frequency f c (in Hz) is plotted versus the rotor’s radius R ∈ [0,7 cm]
for (left) the copper⊥/kapton∥, (middle) the iron⊥/tin∥ and (right) the µ-metal⊥/tin∥ cases,
with six or seven gap thicknesses e ∈ [0,50 mm], and three values ofα. The solid, dahed and
dotted curves correspond to α/π= 0.15,0.1,0.05. The wave number and angular velocities
ratio are fixed at k = 1.5 and β= 0.

In the left subfigure of Figure 7, f c is plotted versus e, for values of e and R smaller than the one
used in Fury (e ≤ 0.5 mm and R ≤ 3 cm), β= 0 and α= 0.15π. The results suggest the possibility
of building a miniature dynamo with a rotor’s radius R of 1–2 cm and a gap of galinstan e of 0.3 to
0.5 mm, using iron⊥/tin∥.

In the middle and right subfigures of Figure 7, f c is plotted versus h in the iron⊥/tin∥ case, for
R = 1.5 cm and β = 0. In the middle subfigure, e is varied and α is fixed to 0.15π, while in the
right subfigure e is fixed to 0.3 mm and α is varied. In addition, two values of µg are considered,
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Figure 7. The critical frequency f c (in Hz) is plotted: (left) versus the galinstan gap thick-
ness e for the iron⊥/tin∥ and the µ-metal⊥/tin∥ cases, for three values of rotor’s radius
R ∈ {1,2,3} cm, for k = 1.5 and α/π = 0.15; (middle) versus the magnetic vertical wave-
length h for the iron⊥/tin∥ case, for four values of gap’s thickness e ∈ {0,0.3,0.4,0.5} mm,
for R = 1.5 cm and α/π = 0.15; (right) versus the magnetic vertical wavelength h for the
iron⊥/tin∥ case, for four values ofα/π ∈ {0.01,0.05,0.1,0.15}, for R = 1.5 cm and e = 0.3 mm.
In all cases, β = 0. In the middle and right subfigures two values of µg are considered
µg ∈ {4π×10−7,20π×10−7}.

Table 3. Dynamo threshold frequency for the iron⊥/tin∥ combination, R = 1.5 cm, e =
0.3 mm, two values of the pitch angle α, two values of the magnetic wave length h and
two types of liquid metal filling the gap, galinstan or magnetic liquid metal

h = 10 cm h = 5 cm
f c

Ga (Hz) f c
MLM (Hz) f c

Ga (Hz) f c
MLM (Hz)

α/π= 0.15 3.4 0.8 8.5 1.9
α/π= 0.05 2.2 0.7 6 1.5

either µg = 4π× 10−7 H·m−1 for a gap filled with galinstan or µg = 20π× 10−7 H·m−1 for a gap
filled with a magnetic liquid metal (MLM) made of iron particules in liquid eGaIn. The electric
conductivity of such MLM is equal to 3.9×106 Ω−1·m−1, so identical to the one of galinstan, but
with a magnetic permeability five times larger [24].

From the middle subfigure of Figure 7 we see that for e = 0.3 mm and h = 10 cm the dynamo
threshold is f c = 3.4 Hz for a gap filled with galinstan, and f c = 0.8 Hz for gap filled with MLM.
Assuming that the stator’s radius is twice larger than the rotor’s radius R = 1.5 cm, the ensemble
constituted of the rotor gap and stator will have a mass of about 2.2 kg (for an iron density equal
to 7.86 g·cm3). These results correspond to α/π= 0.15.

From the right subfigure of Figure 7, wee see that taking smaller value of α down to α/π= 0.05
leads to a smaller dynamo threshold. Therefore, for R = 1.5 cm, e = 0.3 mm andα/π= 0.05, taking
h = 10 cm leads to a dynamo threshold f c = 2.2 Hz for a gap filled with galinstan, and f c = 0.7 Hz
for gap filled with MLM. This corresponds again to a device mass of about 2.2 kg. For a gap filled
with MLM and device height h = 5 cm the dynamo threshold is about 1.5 Hz and the mass about
1.1 kg. The results are summarized in Table 3.

6. Conclusion

In this paper, we studied the presence of a gap between the rotor and stator of an anisotropic
dynamo in cylindrical geometry. The rotor and the stator have a logarithmic anisotropy given
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by the same pitch angle α. The gap between the rotor and the stator is filled with an isotropic
material, such as liquid metal. The dynamo threshold corresponding to the minimum angu-
lar velocity of the rotor, above which a magnetic field is generated, was calculated for different
values of the gap thickness. We considered three cases depending on the materials compos-
ing both the rotor and stator, copper⊥/kapton∥, iron⊥/tin∥ and µ-metal⊥/tin∥, the first case cor-
responding to an electrical conductivity anisotropy, the two others to a magnetic permeability
anisotropy. For the material filling the gap we mainly considered galinstan which is liquid at room
temperature.

When the magnetic wavelength is not too large compared with the rotor radius, three general
trends were found: (i) the presence of a gap is always detrimental to the dynamo, and (ii) the
most detrimental case corresponds to a gap at rest, which is therefore the case selected for
dimensioning a new experimental application, (iii) increasing the gap thickness increases the
dynamo threshold.

The study focused more specifically on two objectives. The first one concerns the dimension-
ing of a new experiment with a gap larger than that of Fury so that, once the dynamo is estab-
lished, it can react dynamically with the flow within the gap by means of Lorentz forces. But
of course, to do this, we first need to be able to start a dynamo with a large gap. Although the
copper⊥/kapton∥ combination appears as slightly less interesting than the other two, it still of-
fers reasonable values of the dynamo threshold, with rotor’s frequencies f c between 10Hz and
35 Hz for a rotor’s radius R = 7 cm and a gap thickness e between 0.2 cm and 5 cm. By way of
comparison, in the case of Fury, the dynamo threshold frequency was f c =24 Hz (for R = 5 cm,
h = 20.9 cm and e = 0.5 mm). Assuming a rotor radius R = 7 cm and a height h =30 cm (cor-
responding to k = 1.5 as in Fury), a gap thickness e = 5 cm and a stator thickness of 4 cm, with
copper and galinstan densities of 9 g·cm−3 and 6.44 g·cm−3 respectively, we obtain a mass of
about 200 kg, almost five times heavier than Fury but nevertheless achievable on a laboratory
scale. The advantage of such copper⊥/kapton∥ combination is that it precisely does not contain
any magnetic material garanteeing a dynamo starting without any help of a remanent magnetic
field contrary to previous experiments [25]. In addition, Fury has demonstrated experimentally
that such a combination works like a dynamo, at least for a thin galinstan gap. At the moment no
anisotropic dynamo experiment based on iron⊥/tin∥ or µ-metal⊥/tin∥ has yet been built. This
brings us to our second objective, which is to build a miniature dynamo experiment with a mass
of the order of one kilogram.

To design a miniature dynamo experiment, we need to reduce the rotor radius, its height and
the gap thickness. Of the three combinations studied, the iron⊥/tin∥ combination appears to be
the most appropriate with the lowest dynamo threshold. Assuming a rotor radius R = 1.5 cm,
a height h = 10 cm (corresponding to k = 0.94), and a galinstan gap thickness e = 0.3 mm, the
dynamo threshold corresponds to a rotor frequency f c = 2.2 Hz (resp. 3.4 Hz) for an anisotropic
pitch angle α/π = 0.05 (resp. 0.15). For a stator thickness of 1.5 cm and an iron density of 7.86
g·cm−1, we obtain a mass of about 2.2 kg. If, instead of galinstan, the gap is filled with a magnetic
liquid metal made up of iron particles in liquid eGaIn, the height and mass of the experiment can
even be divided by a factor of 2, corresponding to a mass around 1.1 kg, and a dynamo threshold
rotor frequency f c = 1.5 Hz for α/π= 0.05.
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Appendix A.

The matrix obtained from Equations (36)–(41), (45) and (46) is written below, with the following
order of the variables λR

σ, λR
µ , λI

r , λK
r , λI

θ
, λK

θ
, λS

σ and λS
µ, using the following notations

A = k
I0(k)

I1(k)
, B = k

(
I0(k)

I1(k)
+ K0(k)

K1(k)

)
,

A′ = k
I0(k ′)
I1(k)

, B ′ = k

(
I0(k ′)
I1(k)

+ K0(k ′)
K1(k)

)
,

C = I1(k ′)
I1(k)

, D = I1(k ′)
I1(k)

− K1(k ′)
K1(k)

,

Iµ = kµϕµ
I0(kµ)

I1(kµ)
, Iσ = kσϕσ

I0(kσ)

I1(kσ)
,

Kµ = kµϕµ
K0(k ′

µ)

K1(k ′
µ)

, Kσ = kσϕσ
K0(k ′

σ)

K1(k ′
σ)

.

The system that must be singular (zero determinant) is thus represented by the matrix

−1 −1 1 1 0 0 0 0
−1 0 0 0 ϕ−1

µ ϕ−1
µ 0 0

−ϕ−1
σ Iσ −ϕ−1

µ Iµ ϕ−1
µ A −ϕ−1

µ (B − A) 0 0 0 0
0 0 C C −D 0 0 −1 −1
0 0 0 0 ϕ−1

µ C ϕ−1
µ (C −D) −1 0

0 0 −ϕ−1
µ A′ ϕ−1

µ (B ′− A′) 0 0 −ϕ−1
σ Kσ −ϕ−1

µ Kµ
−cϕ−1

σ Iσ+Ωs Ωs −ωs −ωs ϕ−1
σ ϕ−1

µ c A −ϕ−1
σ ϕ−1

µ c(B − A) 0 0

0 0 −ωs(1+e)C −ωs(1+e)(C −D) ϕ−1
σ ϕ−1

µ c A′ −ϕ−1
σ ϕ−1

µ c(B ′− A′) cϕ−1
σ Kσ 0.

Let’s modify the matrix in the following ways: exchange column 1 and 2 (the determinant is
opposite), replace column 2 by 1-2 (the determinant is opposite), replace column 4 by 4-3 (no
change in the determinant), multiply columns 3, 4, 5 and 6 by ϕµ (the determinant is multiplied
by ϕ4

µ), replace column 6 by 6-5 (no change in the determinant), replace column 7 by 8-7 (the
determinant is opposite), add ϕµ times column 1 to column 3 (no change in the determinant),
divide lines 7 and 8 by c (the determinant is divided by c2), replace column 5 by 5-2 (no change
in the determinant) and multiply lines 7 and 8 by ϕσ (the determinant is multiplied by ϕ2

σ). We
now have the matrix

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

−ϕ−1
µ Iµ ϕ−1

σ Iσ−ϕ−1
µ Iµ A− Iµ −B −ϕ−1

σ Iσ+ϕ−1
µ Iµ 0 0 0

0 0 ϕµC −ϕµD 0 0 0 −1
0 0 0 0 C −D 1 0
0 0 −A′ B ′ 0 0 ϕ−1

σ Kσ−ϕ−1
µ Kµ −ϕ−1

µ Kµ

ϕσΩ
s

c
Iσ ϕµϕσ(Ω−ω)

s

c
0 A− Iσ −B 0 0

0 0 −ϕµϕσω s

c
(1+e)C ϕµϕσω

s

c
(1+e)D A′ −B ′ −Kσ 0.
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Its determinant is −c−2ϕ4
µϕ

2
σ times the original determinant. With an opposite sign, it is also

the determinant of the 6×6 bottom-right sub-matrix

A− Iµ −B −ϕ−1
σ Iσ+ϕ−1

µ Iµ 0 0 0
ϕµC −ϕµD 0 0 0 −1

0 0 C −D 1 0
−A′ B ′ 0 0 ϕ−1

σ Kσ−ϕ−1
µ Kµ −ϕ−1

µ Kµ

ϕµϕσ(Ω−ω)
s

c
0 A− Iσ −B 0 0

−ϕµϕσω s

c
(1+e)C ϕµϕσω

s

c
(1+e)D A′ −B ′ −Kσ 0.

We introduce some more notations

Lµσ = kσ
I0(kσ)

I1(kσ)
−kµ

I0(kµ)

I1(kµ)
=ϕ−1

σ Iσ−ϕ−1
µ Iµ,

Mµσ = kσ
K0(k ′

σ)

K1(k ′
σ)

−kµ
K0(k ′

µ)

K1(k ′
µ)

=ϕ−1
σ Kσ−ϕ−1

µ Kµ,

Ω = ϕµϕσ(Ω−ω)
s

c
,

ω = ϕµϕσω
s

c
(1+e),

and the matrix can be written

A− Iµ −B −Lµσ 0 0 0
ϕµC −ϕµD 0 0 0 −1

0 0 C −D 1 0
−A′ B ′ 0 0 Mµσ −ϕ−1

µ Kµ

Ω 0 A− Iσ −B 0 0
−ωC ωD A′ −B ′ −Kσ 0.

Removing ϕ−1
µ Kµ times line 2 to line 4, leads to the matrix

A− Iµ −B −Lµσ 0 0 0
ϕµC −ϕµD 0 0 0 −1

0 0 C −D 1 0
−A′−KµC B ′+KµD 0 0 Mµσ 0

Ω 0 A− Iσ −B 0 0
−ωC ωD A′ −B ′ −Kσ 0.

Its determinant is just opposite to the determinant of the 5 × 5 sub-matrix obtained when
developing the last column

A− Iµ −B −Lµσ 0 0
0 0 C −D 1

−A′−KµC B ′+KµD 0 0 Mµσ

Ω 0 A− Iσ −B 0
−ωC ωD A′ −B ′ −Kσ.

Removing Mµσ times the second line to the third and −Kσ times the second line to the fifth, the
determinant is equal to that of the 4×4 submatrix

A− Iµ −B −Lµσ 0
−A′−KµC B ′+KµD −MµσC MµσD

Ω 0 A− Iσ −B
−ωC ωD A′+KσC −B ′−KσD.
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Adding MµσDB−1 times the third line to the second line, then adding B−1(−B ′−KσD) times the
third line to the fourth line, leads to the determinant of a 3×3 submatrix

A− Iµ −B −Lµσ
−A′−KµC +MµσDB−1Ω B ′+KµD −Mµσ(C − (A− Iσ)DB−1)
−ωC − (B ′+KσD)B−1Ω ωD A′+KσC − (B ′+KσD)B−1(A− Iσ).

Adding (A − Iµ)B−1 times the second column to the first column and subtracting LµσB−1 times
the second column to the third column, leads to the 2×2 submatrix

−A′−KµC +MµσDB−1Ω+ (A− Iµ)B−1(B ′+KµD) −Mµσ(C − (A− Iσ)DB−1)−LµσB−1(B ′+KµD)
−ωC − (B ′+KσD)B−1Ω+ (A− Iµ)B−1ωD A′+KσC − (B ′+KσD)B−1(A− Iσ)−LµσB−1ωD.

Multiplying all coefficients by B and rearranging leads to

−A′B −KµBC +MµσDΩ+ (A− Iµ)(B ′+KµD) Mµσ(−BC + AD − IσD)−Lµσ(B ′+KµD)
−(B ′+KσD)Ω+ (AD − IµD −BC )ω B(A′+KσC )− (B ′+KσD)(A− Iσ)−LµσDω.

We introduce the following last notations

Eµ = AD −BC −D Iµ, Eσ = AD −BC −D Iσ,

Fµ = B(A′+KµC )− (B ′+KµD)(A− Iµ), Fσ = B(A′+KσC )− (B ′+KσD)(A− Iσ),

so that the 2×2 matrix can be written

−Fµ+MµσDΩ EσMµσ−Lµσ(B ′+KµD)
−(B ′+KσD)Ω+Eµω Fσ−LµσDω.

Its determinant can be readily calculated

det = −FµFσ+Ω[Mµσ(DFσ+B ′Eσ+KσDEσ)−Lµσ(B ′+KµD)(B ′+KσD)]

+ω[−MµσEµEσ+Lµσ(DFµ+B ′Eµ+KµDEµ)]−MµσLµσD2Ωω.

Now, we remark that the coefficients we have introduced are not independent and we have

DFσ+B ′Eσ+KσDEσ = DB A′−BC B ′,
DFµ+B ′Eµ+KµDEµ = DB A′−BC B ′,

making these two combinations equal and independent of σ or µ. So the determinant is now

det = −FµFσ+Ω[Mµσ(DB A′−BC B ′)−Lµσ(B ′+KµD)(B ′+KσD)]

+ω[−MµσEµEσ+Lµσ(DB A′−BC B ′)]−MµσLµσD2Ωω.

Because Mµσ and Lµσ are both antisymmetrical (they change sign when σ and µ are switched),
we can see that the determinant obeys the symmetry

det(µ,σ,Ω,ω) = det(σ,µ,−Ω,−ω).
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