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Abstract

The efficient deployment of Roadside Units (RSUs) in an infrastructure based on IEEE 802.11p is essential for delivering
Internet-based services to vehicles. In this paper, we introduce novel strategies that, in contrast to prior works, exclusively rely on
the average vehicular density within specific urban areas, and these strategies depend on a performance model of IEEE 802.11p
for guidance and decision-making regarding RSU placement. This minimal upfront information contributes to the practicality and
ease of implementation of our strategies. We apply our strategies to three real-world urban scenarios, utilizing the ns-3 and sumo
simulators for validation. This study contributes to three fundamental aspects. First, we establish that any efficient deployment of
RSUs is closely linked to the unique characteristics of the city under consideration such as the street layout and spatial density of
vehicles. In other words, the characteristics of an efficient RSU deployement are unique to each city. Second, we show that the
optimal strategy is not to place the RSUs at the locations with the highest traffic density. Instead, with the help of an analytical
performance model of IEEE 802.11, we propose a more efficient strategy wherein the location of each RSU is determined to
maximize the number of vehicles receiving the target QoS. This can lead to a significant drop in the number of RSUs required to
equip a city. Finally, we demonstrate that, by preventing the use of the lowest transmission rate of IEEE 802.11p at each RSU, a
collective benefit can be achieved, even though each RSU experiences a shorter radio range.

Keywords: IEEE 802.11p, SUMO, ns-3, vehicular networks.

1. Introduction

Electric, connected and ultimately autonomous vehicles are at the forefront of a shift in the automotive industry,
ushering in an unprecedented era of innovation and revolutionizing the way we perceive and experience the future of
transportation. This transformative wave not only redefines how vehicles propel themselves, but also how they interact
with their environment and their passengers, heralding an exciting era of sustainable, intelligent and autonomous mo-
bility solutions. The integration of vehicle connectivity is a critical element for many compelling reasons, primarily
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focused on enhancing safety and traffic management and improving the passenger experience through advanced nav-
igation and a wide range of infotainment services. Consequently, deploying a robust network infrastructure becomes
mandatory to enrich the overall passenger travel experience. This infrastructure should offer real-time information
regarding traffic conditions and weather forecasts, as well as enable video streaming and conventional Internet appli-
cations.

The IEEE 802.11p standard, designed by the IEEE for vehicle network communication, is a logical and promising
choice when considering communications technology. IEEE 802.11p operates within unlicensed frequency bands,
setting it apart from alternatives such as cellular technologies, including 5G and 6G. This characteristic provides a
significant advantage to stakeholders in multiple ways. From a cost-effectiveness perspective, the absence of licens-
ing fees and the availability of unlicensed spectrum make 802.11p an economically viable choice. The utilization
of unlicensed frequency bands enhances operational convenience, as it allows for flexible deployment without the
constraints associated with licensed spectrum allocation, leading to more accessible and adaptable implementations
in a variety of scenarios. Moreover, the IEEE 802.11p standard has demonstrated effectiveness in transmitting such
critical communications [1, 2, 3] and has proven its effectiveness across a variety of environments [4, 5, 6], owing to
its relative simplicity. This ensures its relevance and practicality in vehicular communication scenarios, positioning it
as a robust and economically viable option for stakeholders

The described scenario envisions the installation of Roadside Units (RSUs) across urban areas to extend internet-
based services like content streaming to moving vehicles, as depicted in Figure 1. For a Video-on-Demand (VoD)
application, the process begins with video frames being transmitted from the hosting servers to the RSUs via high-
speed wired connections. The RSUs then broadcast these frames to vehicles using IEEE 802.11p radio channels.
Here, the network infrastructure primarily comprises strategically placed RSUs within the specified coverage area, all
connected to a Wide Area Network (WAN) through wired links. Acting as gateways, these RSUs provide connectivity
to nearby vehicles subscribed to the multiservice network platform. Although our work initially centers around video
applications, it is not exclusive to them. This VoD application serves as a foundational test case for our scientific
exploration, with the understanding that our methodology can be tailored for various internet-based solutions and
future vehicular applications. This adaptability highlights the broad applicability and flexibility of our research,
allowing for exploration and innovation beyond video applications, encompassing different fields and internet-based
services.

Road Side Unit
Server

Figure 1: IEEE 802.11p-based architecture for providing connectivity to urban passing vehicles

However, and despite technological advances and the availability of recent technologies, fundamental questions
about the optimal deployment of a high-performance multiservice network infrastructure capable of supporting vehic-
ular applications still need to be answered, despite technological advances and the availability of recent technologies.
One such question concerns the location and number of roadside units (RSUs), especially in densely populated urban
areas like a city center. Do RSUs need to be deployed mainly in areas with higher vehicle density? Or rather at cross-
roads where the RSUs’ cover range will be the largest? A follow-up question pertains to the “right” number of RSUs.
An adequate answer to that question should avoid both the pitfall of an undersized and thus ineffective deployment, as
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well as the exceeding cost of an oversized deployment. Figure 1 illustrates a deployment with three RSUs following
a regular pattern across an area of about 0.7 km2.

Unfortunately, deciding the locations and the number of RSUs to be deployed for the sake of throughput-intensive
services in an urban area is a complex matter. Firstly, vehicles are mobile and their trajectories are both uncertain and
highly constrained by the actual plan of streets. Clearly, any adequate deployment for a given city will be of little
value for another. Secondly, the performance of wireless communications are highly variable both in space and time
because of the vehicles’ mobility. Thirdly, many applications like VoD are known for their stringent QoS (Quality of
Service) requirements in terms of throughput and packet losses (delays are typically much less of a concern because
of the buffering mechanisms). For all these reasons, strategies consisting in deploying RSUs following a grid pattern,
thereby not accounting for the actual vehicular traffic density, are likely to be inefficient.

In this paper, we study the opportunity for a stakeholder to deploy an 802.11p-based multi-services infrastructure
intended to vehicles in dense urban areas. More precisely, our contributions are as follows:

• We propose several strategies to determine where and how many RSUs should be deployed based solely on the
knowledge of the plan of streets and the spatial density of vehicles on these streets.

• We investigate the applicability of different definitions of density that take into account the particularities of
cities, such as the number and length of lanes, junctions, etc.

• We apply these strategies on three scenarios (associated to the cities of Berlin, Manhattan, and Beijing) and
compare their relative merits using realistic simulations combining ns-3 for the networking part, sumo for the
vehicles trajectories, and real traces for the videos.

• We provide guidelines for the deployment of RSUs that can be of interest for potential stakeholders contem-
plating the deployment of a multi-service infrastructure at the scale of a city.

The remainder of the paper is organized as follows. Section 2 discusses the related work. In Section 3, we explain
the methodology to simulate realistic vehicular traffic and wireless communication with the use of two simulators.
Section 4 is devoted to the description of the different strategies for the deployment of RSUs. We evaluate the
strategies and discuss the corresponding results in Section 5. Section 6 concludes this paper.

2. Related work

Several papers have been published in the last few years on different aspects associated with vehicular network
planning, specifically on the positioning of RSUs. In [7], the problem of having a maximum number of Dissemination
Points (DPs) aiming at covering the largest number of vehicles served over a given area is considered. The authors
carry out some initial simulations, from which they conclude that the best locations to place the DPs are the inter-
sections between streets. Then, two different problems are considered. First, the main objective of their study is to
maximize the number of vehicles that are contacted at least once by a DP. In the simulations, some traces of vehicles
moving through cities are used. Based on these traces, the authors build an NxV matrix (intersections x vehicles)
whose elements represent the intersections and have a value of 1 if the vehicle has passed through the intersection
and 0 otherwise. The problem is then formulated as a Maximum Coverage Problem (MCP), which is NP-hard. The
authors propose a greedy heuristic (MCP-g) which achieves a good approximation. Then, they resort to a subzone
algorithm to divide the total area into subzones before solving the maximum coverage problem in each of them. In
addition, the authors refine their approach to avoid the need to know the identity of each vehicle passing through an
intersection: they only assume the knowledge of the total number of vehicles passing through the intersection. This
leads to a 0-1 Knapsack Problem (KP) model, which can be solved in this case in polynomial time. Secondly, the
authors consider the case in which vehicle-to-DP contact times have an impact on the dissemination process. In this
case, their problem consists of positioning k DPs in order to serve as many vehicles as possible during a minimum
time period. The performance evaluation of the submitted proposals, such as the coverage ratio in front of the number
of DPs, is carried out on different road topologies, representing portions of real urban areas.

In [8], the authors present a strategy for the deployment of RSUs in Vehicular Ad hoc NETworks (VANETs), which
they call Minimal Mobility Patterns Coverage (MPC). The strategy introduced is spatio-temporal, encompassing
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spatial attributes and temporal characteristics, with the goal of maximizing coverage while minimizing the deployment
cost through a reduction in the number of RSUs used. To reach an optimal placement, MPC is based on vehicle
trajectories. Thus, in a first step, the authors use Formal Concept Analysis (FCA) to depict the mobility patterns of
moving vehicles from trace files. A formal concept can be viewed here as a set of trajectories that share a set of
junctions (aka intersections). In this step, because extracting all formal concepts from a large context requires high
computation time, a QualityCover algorithm is used to extract a minimal set of relevant formal concepts. In a second
step, the Minimal Covering Junctions set is obtained, corresponding to the places where RSUs must be located to
cover the extracted mobility patterns with a minimal number of RSUs. To evaluate the performance of their proposal,
authors carry out different simulations by means of different well-established simulation tools (OMNeT++, MiXiM,
sumo and Veins), over two different scenarios. They evaluate different parameters related to the effectiveness (high
coverage ratio with a minimum of RSUs) and efficiency (minimum latency and overhead) metrics and show the correct
behavior of their proposal.

Another study has been published in [9], in which the authors propose an RSU deployment strategy based on traffic
demand, which optimizes both the average data delivery delay in VANETs and the number of vehicles covered by
RSUs. In the considered scenario, communications are carried out in multi-hop mode, using the vehicles themselves
as potential relay nodes for the traffic of others. The deployment of RSUs is optimized to cover the cases in which
there are not enough vehicles to act as forwarders. It is interesting to note that, under this working hypothesis, more
(resp. less) RSUs should be deployed in areas where the vehicle density is low (resp. high).

In this paper, the assumptions made regarding vehicle traffic set it apart from previous work. The most restrictive
assumption in our study is that we assume the average vehicle density over the area of interest is known. This
contrasts with the work of [7, 8], where complete knowledge of individual vehicle trajectories was assumed. In our
earlier research [10, 11], we examined the performance of an RSU-based infrastructure using knowledge of vehicle
density and applying an analytical model for 802.11p, which was initially introduced in [12]. However, this current
work delves into a more complex scenario, diverging from our prior studies. Unlike our previous work [10, 11],
which focused on the more straightforward case of large highways with predictable vehicle trajectories, the present
study explores the broader and more challenging context of urban environments. The current paper addresses the
more complex case of urban environments where vehicle trajectories are much less predictable, and street patterns are
typically irregular. Nonetheless, we show through simulations that, with the help of a predicting analytical model of
802.11p, efficient deployment strategies of RSUs can be performed. Note that a preliminary version of this paper was
published in [13].

The notion of density is key to our study. In this sense, it is worth mentioning that the density metric can be
considered in different ways with potential impact on the resulting RSUs deployments. For example, the density
metric could be considered simply as the number of vehicles per square kilometer in the different areas of the city
under study, but in this case, we would not be taking into account other relevant parameters, such as the area that
is actually intended for circulation, nor the street topology. Thus, to present the results obtained with our proposal,
we have considered different options, including the concept of density presented in [14]. In this latter work [14], the
authors raise the need for a new metric to measure the density of vehicles in a vehicle network. They highlight the
fact that, if only the number of vehicles per square kilometer is taken into account, the performance of the network
(considering multi-hop vehicles communications) can differ greatly depending on the complexity of the city’s road
map. The following two parameters are defined and evaluated for multiple real cities: the Relationship between the
number of streets and junctions in the city (SJR), and the Total Distance (TD) of a map as the sum of the length of all
the lanes of each street per km2:

S JR =
number of streets

number of junctions
(1)

TD(Map) =
∑

s∈S length(s) · numLanes(s)
area

(2)

where s iterates over each possible street, S denotes the set of all the streets of the map, length(s) returns the length
(in km) of the street s, numLanes(s) returns the number of lanes in street s, and area denotes the area of the map in
km2.
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It is interesting to note that the calculation of the number of streets can be ambiguous. For example, sumo (Simu-
lation of Urban MObility) [15] considers each edge between two junctions as a street, whereas with OpenStreetMap
each street has a different “name” and therefore multiple edges can be part of the same street. In [14], in order to
decide what should be considered as a street, the authors make use of an algorithm called RAV (Real Attenuation
and Visibility) based on their previous research. They carry out simulations to study the dissemination of messages
in 802.11p-based VANET networks, considering multi-hop communication between vehicles. Their simulation re-
sults indicate that cities with similar SJR values but different TD values obtain very different performances. Similar
conclusions are obtained when comparing cities with similar values of TD but different values of SJR. This leads the
authors to introduce a new density metric:

Density =
number of vehicles

SJR · TD
(3)

Then, the authors verify that cities with similar values of this new density metric obtain similar performance.
Their tests, which are carried out in situations of low, medium, and high levels of load, validate the goodness of the
proposed metric. It is worth noting that this new density metric’s unit is [vehicles·km], and departs from that of the
classic definition for density, namely [vehicles/km2].

Table 1 summarizes our proposal’s key contributions and differentiating features from previous studies encompass
the following aspects: Firstly, our proposed strategies necessitate solely the knowledge of vehicle density within the
areas of city planning for network infrastructure deployment. Our approaches, distinct from previous methodologies,
require fewer input parameters (aka upfront information), significantly enhancing their practicality and ease of imple-
mentation. Secondly, to the best of our knowledge, we are the pioneering proponents of incorporating an analytical
performance model of network communications into our strategy, thereby guiding and supporting RSUs deployment.
As a consequence of these preceding innovations, our strategies exhibit scalability, effectively adapting to the scale of
considered areas, such as the entirety of a large city’s downtown and varying vehicular volumes. Lastly, we investigate
the impact of considering different vehicular traffic densities that have been previously proposed on the best possible
RSUs deployments found by our strategies.

3. Vehicular mobility and network simulations

In this work, we evaluate the performance of the proposed RSUs positioning strategies by using simulation en-
vironments, which we adapted to our needs. More specifically, we employed sumo [15] and OpenStreetMap (OSM)
[16] for the creation of urban environments, road networks and vehicle trajectory simulation. We use the ns-3 network
simulator [17] for the assessment of wireless communications, consisting of the application of IEEE 802.11p access
technology.

The characteristics of the different generated scenarios are detailed below.

3.1. SUMO simulator for vehicle trajectories
sumo (Simulation of Urban MObility) is an open-source vehicular mobility simulator based on micro-simulations.

It simulates vehicle behavior such as acceleration, braking, and lane change, among others. The selection of these
models is determined by factors such as road type, the intended speed of each vehicle, and the prevailing traffic density.
Any sumo simulation comprises two main aspects: the road network and the traffic demand. On the one hand, the road
network refers to edges, traffic lights, intersections, and other city elements. On the other hand, traffic demand refers
to the number of vehicles circulating in the road network at a given time.

3.1.1. Road network
Three distinct city map excerpts were examined, namely Beijing, Berlin, and Manhattan (as depicted in Figure

2). These map excerpts were sourced from OSM repositories, a widely recognized and publicly accessible dataset
that provides high-precision real-world cartographic data. It is worth noting that the transformation of the digital
OSM map data into road network files, compatible with the sumo simulation platform, was accomplished through
the utilization of the Netconvert tool [18]. This conversion process was pivotal in ensuring that the maps could be
seamlessly integrated within the simulation environment, thus facilitating a comprehensive evaluation of the RSUs
placement strategies within these urban environments.
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Table 1: Comparative Analysis of Related Work

Reference Objective Methodology Key Differences with Pro-
posed Research

Trullols et al. (2010)
[7]

Maximize the number of ve-
hicles contacted by Dissemina-
tion Points (DPs)

Simulation-based approach us-
ing NxV matrix, greedy heuris-
tic (MCP-g), and subzone algo-
rithm

Focuses on intersections, as-
sumes knowledge of individual
vehicle trajectories, uses NP-
hard problems and heuristics.

Yeferny et al. (2018)
[8]

Maximize coverage while mini-
mizing RSU deployment cost in
VANETs

Spatio-temporal strategy using
Formal Concept Analysis
(FCA) and QualityCover algo-
rithm

Utilizes vehicle trajectories
and formal concepts, requires
high computation time, dif-
ferent from our density-based
approach.

Haiyang et al. (2021)
[9]

Optimize RSU deployment
based on traffic demand to
minimize data delivery delay

Multi-hop communication
mode, using vehicles as relay
nodes, optimizing RSU deploy-
ment in low and high vehicle
density areas

Relies on traffic demand and
multi-hop communication, does
not assume average vehicle
density, different optimization
criteria.

Sanguesa et al. (2016)
[14]

Introduce new density metric to
measure vehicle density in ve-
hicular networks

Simulation of message dis-
semination in 802.11p-based
VANET networks, uses SJR
and TD metrics

Proposes new density metric,
differs in considering street and
junction relationships, different
focus from our average vehicle
density approach.

Begin et al. (2019) [10] Examine performance of RSU-
based infrastructure using vehi-
cle density knowledge

Analytical model for 802.11p,
simulations with realistic vehi-
cle densities

Focuses on large highways with
predictable trajectories, simpler
scenarios compared to urban
environments in current study.

Begin et al. (2020) [11] Deliver VoD services using
IEEE 802.11p to major non-
urban roads

Stochastic performance analy-
sis, simulations with realistic
vehicle densities

Similar to [10], focuses on non-
urban environments with pre-
dictable trajectories.

Amer et al. (2016) [12] Optimize association in Wi-Fi
networks for fairness

Analytical model for 802.11p,
performance evaluation with
different association policies

Provides foundational analyti-
cal model for 802.11p used in
our study, different focus on
Wi-Fi networks rather than ve-
hicular environments.

Astudillo León et al.
(2023) [13]

Propose strategies for RSU de-
ployment in urban environ-
ments

Analytical performance model
of IEEE 802.11p, strategies
based on density matrix

Preliminary version of the cur-
rent study, focusing on strate-
gies and simulation results.

This Work Efficient deployment of RSUs
based on average vehicle den-
sity in urban areas

Analytical performance model
of IEEE 802.11p, strategies
based on density matrix

Assumes average vehicle den-
sity, fewer input parameters, fo-
cuses on urban characteristics
and practical implementation,
uses predictive model for RSU
deployment.
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(a) Berlin (b) Beijing

(c) Manhattan

Figure 2: Three city maps are taken into consideration. The representation of vehicle density on the street segments is achieved through color-
coding: Red is used to signify a high concentration of vehicles per unit of space, while Green is employed to indicate a lower density.
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3.2. Traffic demand

To reflect that vehicle mobility is uncertain, highly constrained, and restricted to the city roadmap, we use different
sumo traffic generation tools to generate vehicle trajectories in realistic urban scenarios. In practice, we consider two
types of traffic. On one side, vehicle trajectories intended to induce congestion on the map are characterized by
background traffic. The background traffic rate is held constant during the entire simulation. On the other side,
deterministic traffic, with predefined routes for specific vehicles, is generated from an origin to a destination. This
deterministic traffic is used as probing traffic, allowing the capture of measurements on the respective vehicles as well
as the validation of the forecasting model used in our deployment strategies in densely urbanized scenarios.

With the traffic generation tools provided by sumo, a given route can be assigned to a single vehicle or to multiple
vehicles (e.g., flows of vehicles). In this work, we use RandomTrips (RT) and other sumo generation tools such
as OD2Trips (OD2) and DUARouter (DUAR) to generate the routes. Background traffic is generated using the RT
tool, where a set of random trips is created within a predefined time interval. Key parameters such as road network,
simulation duration, vehicle attributes and arrival rates are taken into account in the process. In contrast, deterministic
traffic is generated using the OD2 and DUARouter tools, driven by the use of origin-destination (O/D) matrices from
OD2 that establish origin and destination points. These matrices form the basis for trip list generation, aligned with
the predetermined numbers of vehicles stipulated within the O/D matrices. Besides, we use the DUARouter tool to
import different demand definitions. In our case, we use as the input of DUARouter the list of trips generated with
OD2. Finally, DUARouter generates a list of routes that includes the precise path between the origin and destination
points.

3.3. Density metrics

As previously mentioned, the solutions presented in this paper are based on the knowledge of the density of
vehicles in the different sub-zones of a city. The basic way to evaluate this density is simply to compute the ratio
between the total number of vehicles in a given sub-zone and its area leading to the following definition:

Classical density =
number of vehicles

area
(4)

However, as discussed in the related work section, some researchers have concluded that there are other relevant
parameters to consider, such as the number of streets, lanes per street, or junctions (aka intersections). For the
evaluation of our proposals, we investigate different definitions for the density metric to see if they may lead to
different conclusions. Thus, in addition to the classic definition of density, we have used the definition proposed in
[14] (see Eq. 3). In this definition, one of the parameters to be considered is the number of streets, which presents
some ambiguity.

In the case of sumo, each segment between two junctions is called an edge, and an edge can comprise one or
several lanes, as shown in Figure 3. Besides, each lane has its own direction, e.g., east or westbound. By default, sumo
does not have a specific definition for a street.

Lane A1

Edge A
Lane A2

Lane A3

Lane A4

Lane B1

Edge B
Lane B2

Lane B3

Lane B4

Lane C1

Edge C
Lane C2

Lane C3

Lane C4

Eastbound

Westbound

Figure 3: Representation of edges, lanes and directions in sumo.

As we need to define what we consider as a street, we can consider different possibilities of grouping edges, lanes
and directions in one street. We have considered three possibilities, represented in Figure 4: (a) Grouping edges, lanes
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and directions, (b) Grouping lanes and directions, and (c) Grouping only lanes. If applied to the example of Figure 4,
the number of streets would be 1, 3 and 6 streets, respectively. Note that we are able to group edges belonging to a
same street because of the codes that sumo uses to uniquely identify each edge.

Street 1 Street 1Street 1

Eastbound

Westbound

(a) Grouping edges, lanes, and directions

Street 1
Edge 

F

Street 2 Street 3

Eastbound

Westbound

(b) Grouping lanes and directions

Street 1

Street 2

Street 3 Street 5

Edge 

FStreet 4 Street 6

Eastbound

Westbound

(c) Grouping lanes

Figure 4: Three options to count the number of streets. In addition to the classical density definition, each of these options will lead to a different
definition of density.

Table 2 reports the numerical value of the SJR parameter for the three previous cases. Not surprisingly, the SJR
value varies greatly depending of the street definition, ranging for instance from 0.76 in case of the first definition up
to 2.33 in the case of the third definition. Note that the number of junctions in Table 2 simply relates to the number of
junctions between the different edges.

Table 2: Computation of the SJR metric depending on the criteria used. This SJR metric is used by the three alternatives to classical density
definitions.

City Junctions
Grouping edges,

lanes and directions
Grouping lanes
and directions

Grouping
lanes

Streets SJR Streets SJR Streets SJR
Beijing 806 613 0.76 1375 1.71 1877 2.33
Berlin 1002 1389 1.39 2237 2.23 2474 2.47

Manhattan 851 791 0.93 1609 1.89 2039 2.40

To account for the size of the considered area, most previous works resort to its surface. However, in [14], the
authors suggested that the Total Distance (TD) parameter may represent a better way to capture the size of a given
area. TD is simply computed as the sum of the length of all the lanes of each street per km2 (see Eq. (2)). Table 3
shows the corresponding values for our three considered city maps. In Table 4, we show the total number of vehicles
needed in each city to obtain a density value equal to 400, considering the different density metrics presented. Note
that these values were obtained using the SJR and TD metrics previously presented in Tables 2 and 3, respectively.

Table 3: Values for the TD metrics for the studied maps.

City
∑

s∈S length(s) · numLanes(s) (in km) Area (in km2) Total Distance (TD)
(in km−1)

Beijing 315.46 18.36 17.18
Berlin 360.89 19.53 18.44
Manhattan 231.84 10.73 21.61
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Table 4: Number of vehicles required in the simulation to obtain a level of density of 400 for each the four different definitions.

City Classical
density

Grouping edges,
lanes and directions

Grouping lanes
and directions Grouping lanes

Beijing 7344 5227 11725 16005
Berlin 7812 10246 16502 18250

Manhattan 4292 8033 16341 20708

3.4. ns-3 simulator for network communication

We conduct the network communication using the network simulator ns-3 version 3.29. We employ the IEEE
802.11p standard, and Table 5 provides the relevant information on radio ranges and transmission rates. We let
802.11p select the current transmission rate for a vehicle using the ideal Wi-Fi manager of ns-3. Note that the vehicles’
location, mobility, and trajectories were directly derived from the outcome of the sumo simulator. A comprehensive
summary of the main parameters used by ns-3 to simulate the different network layers in our vehicular environment
can be found in the Table 6. Within the upper layer, we have implemented a client/server video application, where the
server transmits video content and the vehicles subsequently receive and reproduce it. We employed real video traces
from the dataset provided in [19] to simulate and analyze the performance of various video applications, allowing
researchers to gain valuable insights into the behavior of these applications under real-world conditions. We chose
a video application for this research, but it could be any Internet-based application. Note that in our simulation
environment, we did not configure a routing protocol since we are working in V2I (Vehicle-to-Infrastructure) mode.
In this mode, vehicles communicate only with the infrastructure (namely, through RSUs) and not with each other. As
for the radio propagation loss model, we followed the guidelines for urban scenarios provided in [20]. Specifically,
we used the Friis model, aligning the parameter values with the recommendations from the same source [20].

Table 5: Description of the 6 communication zones of IEEE 802.11p occuring with the combination of the Ideal WiFi manager of ns-3 and the Friis
propagation model.

Zone num-
ber

Radio range
(meters)

Transmission
rate, T j (Mbps)

Achievable
throughput, A j
(Mbps)

H1 60 27 12.69
H2 80 18 9.9
H3 92 12 7.5
H4 110 9 6.02
H5 126 6 4.34
H6 144 3 2.35

Table 6: Description of the networking layers used by ns-3.29.

ns-3 IP stack Parameter Value

Application

Traffic type Video streaming (Star Wars)
Packet size Variable
Data rate Maximum (regulated by TCP)

Codec H265/HEVC 8.0
Transport TCP congestion control New Reno
Routing Routing protocol None (Vehicle-to-insfrastructure mode)

MAC MAC Helper NqosWaveMacHelper
Wi-Fi Manager ns-3 Ideal Wi-Fi manager

Physical Phy standard 802.11p
Propagation Loss Model Friis

In our work, as soon as a vehicle enters the coverage area of an RSU, traffic downloading is initiated (as fast as
possible), and this process is maintained until the vehicle leaves the RSU coverage area.
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4. Proposed Strategies

Three distinct strategies are proposed and investigated to facilitate and guide the placement of RSUs within an
urban area. They are all model-driven taking advantage of the forecasts of a performance model. The associated
model is described in the following section.

4.1. Forecasting the performance of 802.11p

To be efficient, any RSU deployment strategy must account for the average level of vehicle density across the city,
or better yet, reckon the throughput attained by each connected vehicle in return of a given RSU deployment.

In Appendix A, we discuss some of the existing analytical models to evaluate the performance of 802.11 com-
munications. For our study, we rely on the analytical model, initially presented in [12] to determine the throughput
achieved by each connected vehicle within a specific area and roadside unit (RSU) locations. The model accounts
for the different transmission rate zones or physical rates around an RSU, as detailed in Table 5, where negotiation
between the RSU and vehicles occurs.

The analytical model works as follows. With 802.11p, the radio range of any RSU is divided into Z separate zones,
each of them corresponding to a different value of transmission rate (aka physical rate) negotiated between a vehicle
located in that zone and the RSU. Note that these transmission rates correspond to different MCS (Modulation and
Coding Schemes) whose choice is mostly driven by the quality of the radio channel. Of course, the precise length of
these zones strongly depends on the propagation environment. In 802.11p, there is a total of Z=6 zones as shown by
Figure 5. Due to the overhead of the IEEE 802.11p protocol (backoff, Ack, DIFS, SIFS,. . . ), the RSU will on average
transmit its data at a rate referred to as the attainable throughput and which is by definition lower than the transmission
rate. Note that the attainable throughout is computed assuming that the RSU has a single vehicle to serve. However,
because multiple vehicles may compete to obtain their data from an RSU, the throughput attained by each of them is
(again) lowered (by a factor generally different from an inverse proportion of the number of vehicles [21]) and denoted
in this paper as its attained throughput.

Figure 5: An RSU with its 6 zones corresponding at different transmission rates (MCS).

In this paper, we use the following notation. Given a vehicle in the j-th zone, we let T j, and A j denote its
transmission rate and achievable throughput, respectively. Clearly, we have A j ≤ T j. Table 5 reports the corresponding
values of T j and A j when using the Ideal Wi-Fi manager of ns-3 for packets of size 1500 bytes and the Friis free space
propagation model. Note that in practice the specific values for A j will be updated based on the RSUs’ specifics (e.g.,
antenna, transmission power) and on the propagation model for the considered scenario (e.g., path loss exponent).
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Denoting by n j the number of connected vehicles in the j-th zone of an RSU, and assuming that n j follow a
Poisson distribution, we can then compute the attained throughput of a given connected vehicle i as [11]:

Bi =
1∑Z

j=1
n j

A j

(5)

Note that the previous equation returns identical results for all vehicles associated with the same RSU, which is in
line with the property of DCF known as the performance anomaly [21].

The model’s effectiveness has been demonstrated provided the exchanged traffic is mostly downstream and that the
number of vehicles in each transmission rate zone is not too far from Poisson. Its performance estimates closely align
with those obtained through simulations using ns-3 and sumo, differing by only 24%, despite its apparent simplicity.
It is worth noting that this analytical model serves as the foundational element of the proposed deployment strategies.
For a more in-depth review of this model, readers are encouraged to consult Appendix A or refer to [11], where we
applied the same model in a more straightforward scenario, specifically a major highway.

4.2. Key Parameters
Before presenting the different strategies, we introduce the following key parameters and the corresponding nota-

tions.

Density matrix, D. This matrix depicts the average vehicular density within each part of the area of interest. The
creation of a realistic matrix denoted as D for the city maps under consideration is executed through the utilization of
the sumo simulation framework. In this sense, the urban map undergoes partitioning into uniform squares, each with
a predefined dimension, for instance, 10x10 meters, and within these demarcated squares, the mean vehicular count is
recorded. The corresponding measurements are organized into a matrix called as the density matrix, which is denoted
by D = (di, j).

Penetration rate, p. To account for the fact that the Internet service provided by the RSUs may not be subscribed to
by all vehicles, a parameter called the penetration rate, represented by p (0 < p ≤ 1), is introduced. This parameter
simply means the ratio of vehicles that are expected to be subscribed to the Internet service. Note that the spatial
distribution of vehicles that the RSUs will need to serve is simply given by the matrix p ∗ D.

Target QoS, q. A vehicle’s quality of service (QoS) will be considered satisfied when it is able to achieve a minimum
download rate of q Mbps. Vehicles that achieve download rates greater than q Mbps are referred to as served vehicles
in this section.

Covering rate, α. A successful RSU deployment is determined when the alpha threshold (0 < α ≤ 1) is exceeded,
indicating that the proportion of connected served vehicles (i.e., capable of downloading data at a rate greater than q
Mbps) has been reached.

4.3. Definition of the Strategies
The primary objective of each strategy under consideration is to determine the minimum number of RSUs required

and their spatial allocation, thereby enabling the achievement of download rates exceeding q Mbps for a specified
proportion α (0 < α ≤ 1) of the connected vehicles. We assume that the density matrix for the area of interest, D, as
well as the values of the parameters p, q and α are known from the strategies. The foundation of these strategies lies
in the utilization of a greedy algorithm. At each iteration, a new RSU is positioned at a location selected to maximize
a predefined criterion. Each strategy is distinguished from the others by the unique formulation of its criterion. The
deployment of RSUs is initiated from an initial void state, and the termination condition is met as soon as a proportion
α of the connected vehicles can reliably attain the minimum download rate of q Mbps.

The steps taken by each strategy in each iteration are described by Algorithm 1. The core of the algorithm is the
execution of the following three fundamental functions:

• The set of indices of the D matrix that are within an RSU’s radio range located at (i, j) is returned by the function
range(i, j).
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• The fraction of vehicles within a RSU’s radio range located at coordinates (i, j) with a received throughput of
at least q Mbps is determined by the function served(D, (i, j), q). This computation is based on the performance
model initially introduced in [12]. We detail the served(.) function in Appendix B.

• A proportion c of vehicles within an RSU’s radio range placed at coordinates (i, j) is removed by the function
update(D, (i, j), c).

Algorithm 1: Baseline of strategies
Inputs : Density matrix, D; Penetration rate, p; Target QoS, q; Covering rate, α.
Result: A set of RSUs with their location.

1 X=0 //The current proportion of served vehicles.
2 D = p ∗ D
3 Total Density=

∑
(i, j) Di, j

4 while X < α do
5 (i, j) = argMax(i, j) f (D, (i, j)) //Compute the best location for the new RSU
6 c = served(D, (i, j), q) //Compute the proportion of vehicles in range(i,j) that can be served (with Eq. 5)
7 veh cov = c ·

∑
(k,l)∈range(i, j) dk,l //Compute the number of vehicle served

8 X = X + veh cov
Total Density

9 D = update(D, (i, j), c) //Remove the vehicles that are served by the new RSU from the matrix D
10 end

For an efficient RSU deployment strategy, the general framework is formulated by Algorithm 1, and can be ex-
pressed in several ways by contemplating various interpretations for the f (.) function (as described in line 5 of Algo-
rithm 1).

The three following potential alternatives for the function f (.) are taken into account.

• Strategy Max density: A new RSU is placed where the density reaches its maximum. Consequently, f (D, (i, j)) =
di, j.

• Strategy Max density radio range: A new RSU is placed where the number of vehicles within its range is
maximized, independent of their performance. Consequently, f (D, (i, j)) =

∑
(k,l)∈range(i, j) dk,l.

• Strategy Max vehicles served: A new RSU is placed where the maximum number of vehicles is served,
ensuring they download at a minimum rate of q Mbps. Consequently, f (D, (i, j)) = served(D, (i, j), q) ·∑

(k,l)∈range(i, j) dk,l.

Lastly, it is worth noting that, because of our throughput computation (see Section 4.1), the p and q parameters
influence the proposed deployment strategies only through their product p.q. This means that for a given scenario,
considering (p, q) = (0.3, 3Mbps) is identical to considering (0.1, 9Mbps).

4.4. A Simple Example

We use the simple example of Figure 6 to describe how each strategy will proceed with its first step on it. This
example should be seen as a toy example. The density matrix (of size 5 × 7 here) represents a tiny excerpt of a city,
which comprises a single segment of a street. We assume that the density values of Figure 6 already account for the
penetration rate (which is the same as assuming a value of p equal to 1). Note that squares void of street have a density
of 0.0. To keep this example simple and tractable by hand, the radio range of each RSU covers the square hosting the
RSU along with the 8 adjacent squares.

For the Max density strategy, the first RSU is added at location (4, 3) since this square has the maximum density
(i.e., 3.0).

For the Max density radio range strategy, the first RSU is added at location (3, 4). With this location, the density
of the 9 squares around it is maximized (i.e., 14.5).
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For the Max vehicles served strategy, the RSU is added at the location where the number of vehicles downloading
at least at q Mbps is maximized. Due to the CSMA/CA mechanism of 802.11p, we need to account for the mean
number of vehicles in each of the 6 communication zones of the RSU before estimating the download rate of any
vehicle within this RSU radio range. This is precisely what the performance modeling of 802.11p introduced in
Section 4.1 and detailed in Appendix A (see Eq. 5) does. Assume that the central square of the radio range (where the
RSU is located) is served with an achievable throughput of A1 = 12.69 Mbps and that the 8 other squares are served
with an achievable throughput of A6 = 2.35 Mbps. Equation 5 indicates that the attained throughput for a vehicle
connected to a new RSU at (line, column) = (3,2) is 0.21 Mbps (= 1/( 1.5

12.69 +
11

2.35 )). If the target QoS q is set to
1Mbps, then this RSU alone does not accommodate the needs of all vehicles within its communication range. Hence,
we rely on the served(.) function to compute the proportion c of vehicles for which the QoS requirements are verified.
In our example, we look for c such that 1/( c·1.5

12.69 +
c·11
2.35 ) = 1.0 Mbps and we obtain c = 0.21. In other words, 21% of

vehicles located within the radio range of this RSU are downloading at a sufficient rate (> q Mbps). Given the density
matrix, this proportion translates to 0.21 · (11 + 1.5) = 2.625 vehicles. The Max vehicles served strategy evaluates
this number of vehicles for all squares of the density matrix and retains the one resulting in its maximal value for the
RSU location. In our example, this happens to be at location (2, 2) where a proportion of 0.44 of the vehicles in the
radio range are served for a total of 3.08 vehicles.

After having chosen the location of its next RSU, every strategy proceeds with the update of the density matrix D
as follows. It computes the proportion of vehicles c receiving a sufficient level of QoS (following the same principle as
for the Max vehicles served strategy) and subtracts this proportion from the matrix D for the squares in the radio range
of the new RSU. Lastly, the strategy updates the global percentage proportion of served vehicles. For instance, in the
case of the Max vehicles served strategy and denoting by X the current percentage proportion of served vehicles, it
is simply performed through: X = X + 3.08

Total Density . Each strategy keeps repeating these steps until X reaches α.

Figure 6: A simple example of street along with its density matrix to showcase each considered strategy for the deployment of RSUs. The numerical
value in each square denotes the corresponding vehicle density. The grayed area represents a 2x2-lanes street while the white area indicates the
area not accessible to vehicles.

5. Numerical Results

Before diving into the numerical results, we want to underline that the efficiency of an RSUs deployment strategy
can be directly appraised by the resulting level of connectivity between vehicles and RSUs. Hence, most of the
following figures pertain to the covering rate α as a measure of the attained connectivity.

Recall that for the sake of our RSU deployment strategies, the parameters p (penetration rate) and q (target QoS)
only matter through their product p.q.

Therefore, we limit our analysis to the influence of the penetration rate p on RSU deployments without delving
into the different values of the QoS parameter q. This section keeps this q parameter fixed at 1 Mbps.

14



author et al / Ad Hoc Networks 00 (2024) 1–24 15

(a) Classical density (b) Grouping edges, lanes and directions

(c) Grouping lanes (d) Grouping lanes and directions

Figure 7: Number of RSUs as a function of the coverage parameter α for each of the four density definitions. Strategy: Max vehicles served.
Density=300 (vehicles per km2 for case (a) and vehicles·km for the rest of the cases.) Target QoS, q=1Mbps. Penetration rate, p=30%.
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5.1. Influence of the vehicle density definition on the RSUs deployment

In this Section, we aim to determine if there is a strong correlation between one of the density metrics (as discussed
in Section 3.3) and the number of RSUs to deploy. For instance, it would be the case if a given density value (for
a given density metric) led to the same number of RSUs whatever the city. In Figure 7, we represent the covering
rate α (recall that this refers to the proportion of vehicles served) as a function of the number of deployed RSUs
under the Max vehicles served strategy for the three considered cities. While the four subplots correspond to a
traffic of vehicles that was set to reach a density of 300, each of them relates to a different definition of the density.
From Figure 7, we can conclude that none of the considered definitions of density conduct the number of RSUs
to be deployed for the different cities to similar values. Indeed, the deployment is tightly linked to more complex
phenomena such as the city map, the spatial distribution of the vehicles in the city, etc. Although not presented in this
paper, we had similar outcome with the other strategies, and with other levels of density, target QoS q, and penetration
rate p. Therefore, because the more complex definitions of density do not provide better results for our purposes than
the simpler classical definition, for the remaining results, we consider only the classical definition of density to set the
level of vehicular traffic.

5.2. Comparing the strategies

(a) Beijing (b) Berlin

(c) Manhattan

Figure 8: Number of RSUs as a function of the covering rate α for the three cities and for the different strategies. Density=300 vehicles per km2.
Target QoS, q=1Mbps. Penetration rate p=30%.

In Figure 8, a comparison of the discussed strategies described earlier in Section 4.3 is shown, considering a
vehicle density of 300 vehicles per km2, a desired QoS of q = 1Mbps, and a penetration rate of p = 30%. It appears
evident that the Max vehicles served strategy exhibits superior performance when compared to the other strategies,
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necessitating fewer RSUs than the alternatives, regardless of the coverage rate α. This can be attributed to the fact
that the Max vehicles served strategy focuses directly on the parameter we intend to optimize, which is α (i.e., the
proportion of vehicles served). With the strategy Maximum vehicles served, a 90% α value can be achieved in
the city of Beijing, using 223 RSUs, whereas the Maximum radio range density and Maximum density strategies
require 328 and 266 RSUs, respectively.

In Figure 9, the positions of the RSUs chosen using the Maximum vehicles served strategy are shown for the
cities of Berlin, Beijing, and Manhattan, together with their corresponding radio ranges. The RSUs are mainly located
in the vicinity of streets experiencing heavy traffic. In the figures, streets with low vehicle density are depicted in
green, while streets with high vehicle density are shown in red. The RSUs are represented by blue disks, indicating
their radio coverage areas. It is evident that in areas with a higher concentration of vehicles, there are more RSUs
strategically placed to ensure the target QoS. This distribution helps manage high demand and maintain continuous
connectivity for vehicles. The visual representation highlights the effectiveness of our deployment strategy, ensuring
that vehicles receive consistent and reliable service.

It is also shown in Figure 8 that the marginal gain over the coverage rate α decreases rapidly as the number of
RSUs increases. For the Maximum vehicles served strategy for the city of Berlin, an increase in α from 0% to
43% is achieved with the initial 100 RSUs, whereas to increase α from 70% to 91% requires the same quantity of
additional RSUs. Indeed, if α were to increase above 90%, deploying numerous additional RSUs would be necessary.
Furthermore, the figure shows that, at excessively high levels of α, convergence of all strategies is observed. It should
be noted that similar observations were made for other density levels and target QoS q, although they have not been
presented here for the sake of conciseness. The Maximum vehicles served strategy is the one that has proven to be
the most efficient in all scenarios considered and will be the one we will focus on in the rest of the paper.

5.3. Influence of the penetration rate on the RSUs deployment

The evolution of the coverage rate α for the city of Beijing in terms of the number of RSUs is plotted in Figure 10,
considering different penetration rate levels p, i.e., 10, 20, and 30%. Generally, various penetration rates result in
significantly distinct deployment configurations. Certainly, when dealing with a greater number of vehicles to be
served, it can be anticipated that a larger quantity of RSUs will be necessary. However, it should be noted that with a
value of α = 0.9, the same number of RSUs, specifically 176, is needed for both a penetration rate p of 10% and 20%.
But with a 30% increase in the penetration rate, the number of RSUs experiences a notable increase, reaching 223.
In summary, Figure 10 empirically demonstrates that, in addition to city structure and density, the penetration rate p
should be considered as a significant contributing factor.

5.4. Evaluating the number of RSUs per kilometer

Table 7: Mean number of RSUs per kilometer to reach a covering rate, α of 0.7 and 0.9. Strategy: Max vehicles served. Density=300 vehicles per
km2. Target QoS, q=1Mbps. Penetration rate, p=30%.

Beijing Berlin Manhattan
Covering rate, α = 0.7 0.485 0.457 0.384
Covering rate, α = 0.9 0.707 0.704 0.543

In Table 7, the number of RSUs per kilometer required to attain coverage rates of α = 0.7 and α = 0.9 with a
target QoS q of 1 Mbps is reported for each city within the study. We calculated these results by obtaining the ratio of
the total number of RSUs deployed within the specified city section to the cumulative lane length (as detailed in the
second column of Table 3). It is observed that while Beijing and Berlin produce similar results, Manhattan necessitates
a notably lower quantity of RSUs per kilometer. It can be attributed to the fact that Manhattan, as indicated in Table 4,
has a lower number of vehicles compared to Berlin and Beijing to achieve an equivalent level of density. In summary,
it can be deduced from the Table 7 that the deployment of RSUs, including their quantity and location, is highly
dependent on the interaction between the city’s layout and its traffic distribution. This dynamic nature precludes the
application of a universal one-size-fits-all rule.
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Figure 9: RSUs location. Blue disks represent RSUs and their radio range. Regarding vehicle density, red color represents a high concentration of
vehicles, while green color is employed to indicate a lower density. Strategy: Max vehicles served. Density=300 vehicles per km2. Penetration
rate, p=30%. Target QoS, q=3Mbps. Covering rate, α=0.99.

Figure 10: Number of RSUs as function of the covering rate (α) for the city of Beijing and for different penetration rate, p. Strategy: Max vehicles
served. Density=300 vehicles per km2. Target QoS, q=1Mbps.
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Figure 11: Number of RSUs as function of the covering rate, α, for the city of Berlin with the lowest transmission rate T1 enabled or disabled.
Strategy: Max vehicles served. Density=400 vehicles per km2. Penetration rate, p=30%. Target QoS, q=1Mbps.

5.5. Precluding the use of the lowest MCS
In Figure 11, we show the covering rate α as a function of the number of RSUs in the case of Berlin. We consider

two alternatives for the configurations of the RSUs: (i) a classical configuration wherein all MCS (Modulation and
Coding Scheme) corresponding to the transmission rates of Table 5 made available by the IEEE 802.11p standard are
enabled, and (ii) another configuration where the lowest MCS (denoted by T1 and corresponding to a transmission
rate of 3Mbps) is disabled. Under the latter configuration, a vehicle needs to enter into the second zone, i.e., H2,
of an RSU to begin to communicate with this RSU. Disabling the lowest MCS may help mitigate the so-called Wi-
Fi anomaly where vehicles with high MCS (i.e., transmission rate) actually experience the same throughput as the
vehicles with lower MCS [21]. This potential gain is clearly captured by Figure 11 that shows that, for a same level
of target QoS q and of penetration rate, p, disabling the lowest MCS results into a deployment with less RSUs. For
instance, the second configuration can save the deployment of 25 RSUs if the covering rate is set to α = 0.9. Our
proposed framework can help identify and evaluated such potential optimization resulting into substantial saving in
terms of infrastructure cost.

5.6. Practical issues of deploying RSUs
These different examples show the efficiency of the proposed strategies in determining the number and locations of

RSUs to provide network connectivity to vehicles taking only the urban density matrix as upfront information. Despite
their relative easiness and practicality, these strategies should be accompanied by another study on the economic and
logistical aspects implied by the deployment of such infrastructure if they were to be used by network operators or
urban planners. It is worth noting, though, that IEEE 802.11p is by design compatible with IP networks and that,
unlike cellular networks (e.g., 5G), it was designed to operate on unlicensed frequencies. This latter property can
contribute to lowering the financial cost of 802.11p-based infrastructure solutions.

6. Conclusions

In this work, we propose and discuss several strategies for the efficient deployment of RSUs in an urban environ-
ment, with the main objective of providing Internet services through an 802.11p-based infrastructure. In contrast to
most existing work, we rely on the density matrix, representing the average vehicle density within the examined area,
as the sole pre-information for the strategies. Another peculiarity of our strategies is that they include a performance
model to predict the IEEE 802.11p performance model intended to assist and guide the RSU deployment decisions.
As a result, having only the average density of vehicles in the city streets as upfront information eases the application
of our strategies, and accelerates the the execution of these strategies, without the need to run time-consuming discrete
simulations. Strategies’ upfront information are limited to (i) a density matrix reflecting the average number of vehi-
cles in every part of the city; (ii) a target QoS parameter expressed as a desirable throughput rate for each connected
vehicle; (iii) a penetration rate denoting the proportion of vehicles having subscribed to the Internet service; and (iv)
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a coverage rate expressing the probability that at any time a subscribed vehicles is experiencing a throughput rate
higher than the target QoS parameter. We used two simulators: SUMO to determine realistic vehicular trajectories
and ns-3 to evaluate the communication exchange between the connected vehicles and the RSUs. We considered three
scenarios, each pertaining to the downtown of a real-life major city.

The following findings have been obtained in our study: First, we show that an efficient deployment of RSUs is
closely linked to the unique characteristics of the city under consideration, specifically the street layout and vehicle
spatial density. In fact, even by examining the particular characteristics of the city, it is not possible to predict the
exact number of RSUs needed to achieve a predefined level of coverage. Second, our simulation results show that the
optimal strategy is not to place the RSUs at the locations with the highest traffic density. Alternatively, placing the
RSUs where the target QoS can be provided to the maximum number of vehicles is the most effective approach. In this
context, we applied an analytical model to determine these locations. This observation challenges the conventional
belief that RSUs should be strategically placed at street junctions. Finally, we show that precluding the use of the
lowest transmission rate of 802.11p, i.e., 3 Mbps, at each RSU can actually result in a collective gain. Under such
a configuration, RSUs spend most of their time serving vehicles at a greater pace while the downfall regarding the
shorter radio range remains rather moderate.

In this work, we took the density of vehicles in the city for granted and we built strategies that leverage this
information to deploy their communication resources. In our future work, we expect to investigate if the actual
itineraries of vehicles and so the density of vehicles in the city can be changed to increase the QoS experienced by
vehicles during their journey (without touching the underlying communication infrastructure). In practice, we will
consider multiple itineraries for a vehicle entering the city, each path leading to a different duration but also QoS. We
believe that such a feature could be of interest to commercial navigation systems such as Waze and Google Maps.
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Appendix A. Performance Modeling of 802.11p Communication

State of the Art

Modeling and forecasting the performance of network communications for IEEE 802.11p vehicular networks is
well known to be a hard problem due to the vehicle mobility, the instability of the radio channel, along with the
peculiarities of DCF (Distributed Coordination Function) at sharing the radio channel among the connected vehicles.
The seminal performance model for 802.11 [22] has been extended to address the case of unsaturated networks (e.g.,
[22, 23]), error-prone radio channels (e.g., [24, 25, 26]), the IEEE 802.11p amendment (e.g., [27, 28]) or when
multiple APs operating on the same radio channel overlap (e.g., [29, 30, 31]). In our case, we repurpose an analytical
model, originally published in [12], to forecast the performance attained by vehicles along their journey in an urban
area. Although this model can be viewed as a coarse-grained representation of the ground truth, its accuracy remains
sufficiently good to be embedded within and assist some RSU deployment strategies.

Accuracy of the selected model

To validate the forecasting model synthesized by Eq. 5 in Section 4.1, we conduct experiments using the simulators
sumo (for the car trajectories and car traffic) and ns-3 (for the network communication and the transfer of video
frames [19]). We consider an excerpt of Manhattan streets for which eight RSUs are deployed. Then, we introduce
car traffic out of which 10% are assumed to be connected (i.e., using the VoD system provided by the operator) and
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we monitor the mean value of the attained throughout for 20 randomly selected vehicles. On the other hand, assuming
the knowledge of the density matrix (providing us the mean number of vehicles per zone for each RSU) and the
trajectories of the 20 monitored vehicles (i.e., times spent in each zone of each RSU), we are also able to compute
the mean attained throughout for each of the same 20 vehicles. Figure A.12 summarizes the performance comparison
in the attained throughput as delivered by the simulation against those returned by the analytical model. We observe
that the model is generally accurate in its prediction with a mean relative error of 24%. The difference stems from
the fact that the analytical model, unlike ns-3, does not take into account the effective trajectories of the vehicles, the
effect of mobility on the transmission, the protocol stack, nor the physical layer. For further validation of the model,
the interested reader can refer to [12, 11].

Figure A.12: Accuracy of the model at predicting the amount of downloaded data versus simulation with ns-3 and sumo.

Therefore, using the formula of Eq. 5 and assuming that the density matrix of vehicles in the area of interest is
known, we are able to approximate how much data and when a vehicle will receive from its RSU.

Appendix B. Description of the served(.) function

The served(D, (i, j), q) function takes the following arguments:

• A density matrix D = (di, j) whose element di, j indicates the number of vehicles to be served for the square
located at the coordinates (i, j);

• (i, j), which denotes the coordinates of an RSU (meters);

• q, which denotes the target QoS (Mbps).

In return, the served(.) function computes the proportion of vehicles within the RSU’s communication range that can
obtain their desired level of throughput, expressed by q. To do that, served(.) proceeds as follows. First, using Eq. 5,
it verifies if the RSU located at (i, j) alone can meet the QoS demands of all the vehicles within its communication
range. If so, then served(.) returns 1.

Otherwise, by successive iterations, it finds and returns the largest c value (c ∈ [0, 1]) such that c ·
∑

(k,l)∈range(i, j) dk,l

vehicles obtains a throughput greater or equal to q. Note that 1 − c denotes the proportion of vehicles within the
communication range of the RSU that are left unserved by this RSU.
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