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Abstract—In previous works, we proposed a stochastic model
able to reproduce buzz dynamics in a Video on Demand (VoD)
workload. We also derived an estimation procedure to calibrate
all the model’s parameter and evaluated the performance of
our estimator on synthetic time series. We showed how can
this procedure be applied to fit real workload traces. In this
work we demonstrate the model on Grid’5000 with an aim of
conducting real-life experiments. Grid’5000 is a highly reconfig-
urable, controllable and monitorable experimental platform for
conducting experiments on large scale parallel and distributed
systems. Our results show that the implemented model matches
the theoretical model in terms of the mean value and the steady
state distribution. We believe this demonstration, by emulating
a real world VoD system, can provide data that can serve as an
input to frame efficient resource management policies.

Index Terms—Workload Generator, Video on Demand, Dis-
tributed Network, Grid’5000

I. Introduction andMotivation

In recent trend of data-intensive applications the providers
must handle the challenge of resource management to adapt to
volatile workloads. Thus there is a need for realistic workload
generators to evaluate the choice of policies prior to full
production deployment. In our work we consider a Video on
Demand (VoD) systems as a relevant use case of a data-
intensive application where bandwidth usage varies rapidly
over time. In [1] we propose in a constructive manner, a
stochastic model based workload generator for a Video on
Demand (VoD) system, that reproduces workload and traffic
volatility. We also developed methods to empirically identify
and calibrate parameters to assess the goodness of fit of the
model against a real VoD workload test [2]. In this work we
implement our model in a large scale distributed network with
a controlled environment to emulate real world system. This
work constitutes an indispensable step towards our ultimate
objective of leveraging the statistical properties of the model
and data collected from the experiments to frame resource
management policies.
A VoD service delivers video contents to consumers on
request. According to Internet usage trends, users are in-
creasingly getting more involved in the VoD and this en-
thusiasm is likely to grow. According to 2010 statistics a
popular VoD provider like Netflix accounts for around 30
percent of the peak downstream traffic in the North America
and is the “largest source of Internet traffic overall” [3].
Since VoD has stringent streaming rate requirements, each

VoD provider needs to reserve a sufficient amount of server
outgoing bandwidth to sustain continuous media delivery.
We would like to point out that we are not considering IP
multicast here. However, resource allocation often fails to
accommodate adequate resources during “buzz” periods when
a video becomes popular very quickly leading to a flood of
user requests on the VoD servers. Figure 1 shows a typical
pattern of real VoD server workload trace from [4] picturing
the buzz dynamics.
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Fig. 1. Real workload time series corresponding to a VoD server
demand from [4].

Following epidemic models, we categorize VoD users in
three different classes (states). Class S refers to the people
who has not watched a video (susceptible viewers), I refers
to the people who are currently watching the video and can
spread the information about it. I is the workload on the
system, but it can also refer to total bandwidth requested at
that moment. The class R refers to the past viewers. Posing
(I(t) = i, R(t) = r) as the current state, Figure 2 depicts the
model and the transitions between the states. Here β > 0 is the
rate of information dissemination per unit of time, l > 0 fixes
the rate of spontaneous viewers, γ−1 is the mean watch time
of a video. µ−1 denotes the mean active period after which an
user stops propagating information. We resort to the hidden
Markov models to illustrate a buzz like event by considering
that β can assume two values depending on its state; β = β1 in
the normal state and β = β2 � β1 in buzz regime. Transition



between these two states occur with rates a1 and a2.
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Fig. 2. Markov Chain diagram representing the possible transitions
of the number of current (i) and past active (r) viewers.

II. Model implementation

We ran our experimentation on Grid5000, which is a
5000-CPU nationwide grid infrastructure for research in grid
computing, providing a scientific tool for computer scientists
similar to the large-scale instruments used by physicists,
astronomers, and biologists. It is a research tool featuring deep
reconfiguration, control, and monitoring capabilities designed
for studying large-scale distributed systems and for comple-
menting theoretical models and simulators. As much as 17
French laboratories are involved, and nine sites host one or
more clusters of about 500 cores each. A dedicated private
optical networking infrastructure interconnects the Grid’5000
sites. In the Grid’5000 platform, the network backbone is
composed of private 10-Gb/s Ethernet links. Figure 3 shows
the Grid’5000 topology.

Fig. 3. Topology of Grid’5000

Grid’5000 enables researchers to run successive experi-
ments reproducing the exact experimental conditions several
times, a task that is almost impossible with shared and
uncontrolled networks. This also ensures large-duration ob-
servation windows under stationary conditions, which can not
be achieved over the Internet.

A. Global Architecture of the Workload Generating System

In order to generate a certain workload on a VoD server, we
consider each node in the Grid’5000 as an user entity. Figure
4 shows how the nodes interact among themselves to emulate
user behavior. During implementation, we consider all nodes
(users) to be independent. Following a centralized architecture
we fix a monitor node, which controls the state of all nodes
as-well-as allows and controls communications among them.
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Fig. 4. Architecture and interactions between the nodes to replicate
user behavior.

Each node is connected to the monitor node (red links) and
to the VoD server (green link) as schematized in Figure 4.
Let us remind that an user can be in any three S , I or R states
and only solicits the VoD server when it is in infected state.
Each time an user changes its state, it sends a message to the
monitor to update its status. Moreover, when an user wants
to infect another user, it first requests the monitor to choose
randomly among susceptible users. Then the monitor node
sends back a message to the chosen node to turn it infected. In
our implementation we consider that an user goes back to the
S state after leaving the R state with the possibility of getting
contacted by the server again. We also implement an apache
web server on the monitor node to visualize evolution of the
workload in real-time (Figure 4).

B. Implementation Issues

The first issue we encounter, is to generate independent
random variables, as required by the Markov Model. We know
that the classical approach to generate random variables is to
define an unique seed to ensure the independence of variables.
However, since all nodes are launched at the same time, we
cannot use the current time to define the seed. We overcome
this by summing up the IP address to the current time for
generating the seeds. The last operation is done to facilitate
independent realizations in case we want to repeat the same
experiments on the same nodes.
The second issue is to implement an efficient server to manage
the significant amount of communication among hundreds of
nodes. We use a multi-threaded server to handle this. Each
time a node wants to communicate with the server, a new
thread is created to process the request while the original
thread holds ready to listen to any new communication. Use
of these threads raise another problem regarding protection of
shared variables from multiple accesses. To prevent this, we
use mutual exclusion defining specific variables to manage
access to these shared variables between threads.



III. Results

Figure 5 shows the workload (Ni) generated by a chosen
set of parameters. Here, a buzz period materializes with the
abrupt increase of Ni at time = 200 s. Owing to the memory
effect (µ) this transitory overload has a more persistent effect
on Nr (the number of past viewers) that undergoes a mean
shift which lasts beyond the duration of the buzz epoch.
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Fig. 5. Workload generated from the following parameters: β1 = 0.01,
β2 = 1, γ = 0.05, µ = 0.033, l = 0.02, a1 = 0.002, a2 = 0.2, total
number of nodes = 240. Ni and Nr are number of current viewers
and past viewers, respectively.
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Fig. 6. Steady-state probability of the workload

In Figure 6 we compare the empirical steady-state probabilities
computed from the generated trace to the corresponding theo-
retical values as given in [2]. In particular the empirical value
of the mean workload is 44.08 compared to its theoretical
value 49.35 (10.2% error). Given the limited duration of the
experiment and possible uncertainties on networks, the theo-
retical and experimental results match satisfactorily, validating
our implementation.

IV. Objective of the demonstration

In the demonstration we aim to show the effectiveness of
our workload generator to emulate several realistic VoD traffic
traces (having different workload profile) with different sets
of parameters. The main asset of our approach lies in the
combination of a versatile, plausible theoretical model with a
fully controllable large-scale test-bed involving heterogeneous

equipment and an advanced networking infrastructure. Figure
7 shows a snapshot from the monitoring computer displaying
a typical real-time server workload.

Fig. 7. Snap shot of the real-time server workload from the
monitoring computer.

V. Conclusion
Objective of this demonstration is to emulate and validate

a previously defined theoretical model to harness probabilistic
methods for resource provisioning in the Clouds. We illustrate
our purpose with a Video on Demand scenario, a character-
istic service whose demand relies on information spreading.
We implemented, on a real test-bed, a constructive model
to capture the users’ behavior, that satisfy some statistical
properties, needed to devise resource management policies. We
also demonstrated that the model, upon implementation in a
real test-bed, satisfies the theoretical properties described in the
model. Our future objective is to exploit the traces generated
out of this model for framing resource management policies
in a cloud network.
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