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ABSTRACT 
Current computer systems and communication networks tend to be highly complex, and they typically hide their 
internal structure from their users. Thus, for selected aspects of capacity planning, overload control and related 
applications, it is useful to have a method allowing one to find good and relatively simple approximations for 
the observed system behavior with little knowledge of the system internal structure or operation. This paper 
investigates one such approach where we attempt to represent the observed behavior by adequately selecting the 
parameters of a set of queueing models. We identify a limited number of queueing models that we use as 
Building Blocks in our procedure. The selected Building Blocks allow us to accurately approximate the 
measured behavior of a range of different systems. The models used include a small selection of elementary 
queueing models, as well as original models of system congestion and saturation. We propose an approach for 
selecting suitable Building Blocks, as well as for their calibration. In particular, we automate the calibration step 
and make it systematic through the use of a Derivative Free Optimization technique.  We are able to 
successfully validate our methodology for a number of case studies. Finally, we discuss the potential and the 
limitations of the proposed approach. 
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1 Introduction 

1.1 Motivation 
Analytic performance modeling of computer and communication systems has numerous applications throughout 
the life-cycle of such systems, from their design phase to the actual configuration, tuning and capacity planning. 
It has been successfully applied over a large spectrum of computer systems and communication networks, 
including centralized and distributed systems [17]. A commonly used method, which we refer to as the 
constructive approach, is to attempt to reproduce in the mathematical model essential aspects of the system 
structure and operation. The mathematical model may be based on queueing, fluid, graph or some other theory. 
This constructive approach has its limits. First, important aspects of large and heterogeneous computer or 
communication systems, such as modern I/O controllers, public mobile networks, or Internet Service Provider 
networks, may be largely unknown. These unknown aspects contribute to the difficulty of building successful 



constructive models of such systems. Second, in order to identify critical performance factors in systems with 
many complex internal interactions, the performance analyst would need extensive knowledge and expertise that 
may simply not be available. In particular, when dealing with such complex systems it is critical to correctly 
identify key system components and features lest the resulting models become unrealistic or intractable in their 
complexity. These difficulties motivate in part our approach.  

In our high-level modeling, we don’t necessarily seek to “mimic” the structure of the system under study. 
Rather, we focus on the observable interaction of the system with the outside world as represented by 
measurements or performance indices, and attempt to infer a possible high-level model structure from it. More 
specifically, we assume that we have at our disposal some number of measurement points for the system under 
study, and we seek a relatively simple model capable of adequately reproducing the observed system behavior. 
In doing so, we forego the detailed representation of the system in favor of the possibility that a relatively 
simple model, not necessarily related to the apparent structure of the system, might be able to capture the 
behavior of the system under consideration. An obvious justification for our approach is that, even in a complex 
system, it is possible that a small number of components, or a single component, may be the critical bottleneck, 
effectively driving the system behavior. This idea is by no means novel, and has been frequently employed in 
the past, e.g. in the case of an Internet path [32, 2], disk arrays [34] or a Web server [10]. 

Our approach has several objectives. First, it may help discover properties of the system not immediately 
apparent from its structure. This may include both the fact that a simple model can represent the system 
performance or, on the contrary, that no simple model (among the ones examined) will be able to adequately 
represent the system. As such, our approach can be viewed as helpful for and complementary to constructive 
system modeling. Second, when a sufficient number of measurement points are available to find an adequate 
model, our approach may provide the performance analyst with a ready-to-use model to generate reliable 
forecasts for system performance at other workload levels, without the expense and the effort of obtaining 
additional measurements. Finally, for a subsystem embedded in a larger system (with the obvious proviso that 
measurements be available for the subsystem), our approach may be able to provide a model of the subsystem 
that can then be incorporated in the overall system model. This latter application has a clear connection with 
decomposition methods [7]. 

The advantage of the proposed approach is that it requires a priori little information about the system. Our 
contribution is twofold. We automate the process of model selection and make it systematic by embedding it 
into a software tool with an optimization method. As a result, the approach requires no special modeling or 
queueing theory expertise from the end user. Our second contribution is to define, in addition to selected 
standard queueing models, original “Building Blocks” that allow us to represent a wide range of behaviors.  By 
design, our modular approach lends itself to extensions and makes it easy to add new Building Blocks if 
required. 

Our approach has obvious limitations. The system considered (or its detailed constructive simulation model) 
must exist, and we must have a sufficient number of measurement points. In general, the model produced by our 
approach has little predictive power if the underlying system or the basic nature of the workload (other than its 
intensity) changes.  Additionally, there is no guarantee that the approach will find an adequate model, and, since 
we only consider a limited selection of models, a failure of the approach does not necessarily imply that there is 
no adequate simple model for the given system. However, as noted before, the modularity of our approach 
enables the addition of an appropriate “Building Block” that may improve the chances of success of the method.  

1.2 State of the art survey 
A significant number of existing computer or communication systems have been extensively measured. The 
measurements obtained permit, among other things, to investigate the system by observing its behavior. This 
investigation can be done either directly from the measurements or indirectly using the measurement results in a 
model of the system. A good example of the “all-measurement schemes” in computer networks is given by 
Dovrolis et al. [15], which presents a method to estimate a path capacity (bottleneck bandwidth) using probing 
packets. The specificity of the underlying logic may not allow one to generalize this approach to other cases. On 
the other hand, the less direct use of measurements is typically associated with the constructive modeling 
approach. Here, measurements are mainly used to determine the value for parameters of a pre-designed 
constructive model (see [17]). For instance, Liu et al. [26] present an efficient but model specific way to adjust 
the parameters of their constructive model using measurements data. Crovella and Krishnamurthy [14], as well 
as Paxson [28] give additional useful information regarding network measurements. 

Our approach lies somewhat in between these two schemes. It is high level and driven by measurements 
(cf. [4]]). The fundamental assumption underlying our methodology is that relatively simple models may be able 
to approximate sufficiently accurately certain, possibly complex, system behaviors. Some of the simple models 



(Building Blocks) considered are clearly motivated by a constructive modeling approach. In Section 2.4 we 
show a few examples of more or less complex systems whose behavior can be reproduced using a simple 
Building Block. Examples abound in the literature. A case in point is the early model developed by Scherr [33] 
who used a simple machine repairman model to represent the performance of a time-sharing system. In fact, 
Scherr’s model can be viewed as a precursor of our high-level approach. In the case of disks arrays, Varki et al. 
[34] recognize the key system components and present an accurate model sufficiently simple to be tractable. In 
the case of servers, Cao et al. [10] show that the performance of a Web server may be well approximated using a 
simple queueing model. 

As mentioned in the introduction, while in the constructive approach models tend to mimic the structure of the 
actual system [32, 2, 34, 10], in our high-level approach the choice of the model is determined by the available 
measurement data and the set of Building Blocks considered. It is important to stress that our approach is not a 
replacement for but a complement and possible aid to constructive modeling. 

1.3 Structure 
The paper is structured as follows. Section 2 describes the general framework in which we cast our approach. 
We present the selected models (Building Blocks), as well as our general approach to determining the best set of 
model parameters and assessing the goodness of fit for a given Building Block. Section 3 presents several 
examples of application of our tool. All case studies in our paper use measurement data from real-life systems. 
Finally, Section 4 summarizes the main contributions of our approach, as well as its limitations, and outlines 
possible future extensions of our work. 

2 General framework 

2.1 Terminology 
Systems considered in our study may represent a whole computer or communication system, or specific 
components such as processors, a disk array, an Ethernet network or a WLAN, etc. We use the term “requests” 
to refer to the individual entities that are treated by the system, such as packets or frames in the case of 
networks, I/O requests in the case of storage systems, HTTP requests in the case of web servers, etc. The offered 
“load” (workload) includes all the requests that are submitted to the system for treatment. In our view, the 
system performance changes in response to the workload, and these changes are reflected in the corresponding 
measurements. Finally, the “environment” represents all the sources that generate the system workload. 
Environment can consist of human users, system or application processes, threads, etc. In an open system, the 
environment is viewed as independent of the system, while in a closed system, the environment and the system 
are in a feedback loop, i.e., the behavior of the system influences the environment. 

Formally, we view the environment as submitting requests to the system through a well-defined interface. Then, 
the workload relative to some observation period is the sequence of requests submitted to the system during the 
observation period (cf. [36] and [12]). 

2.2 Measurements of the observed system’s behavior 
In its present form, our approach relies on the availability of measurements of specific system performance 
parameters. These parameters may include quantities that we view as system inputs (e.g. average number of 
requests submitted per time unit) and quantities that we view as outputs (e.g. response time). This is illustrated 
in Figure 1. Typically, input measurements pertain to the workload. Thus, they may include data pertaining to 
the request arrival process, such as the average rate of request arrivals denoted by λ, higher moments of the 
inter-arrival time, etc., or other attributes related to the incoming requests such as the distribution of their size. 
In some cases, input measurements may simply not be available. Output measurements may include quantities 
such as the attained throughput of requests processed by the system per time unit, as well as measures of internal 
system congestion such as the number of requests inside the system. Typical measured performance parameters 
include throughput, loss probability, average response time and queue length, denoted by

€ 

X mes ,

€ 

L mes,

€ 

R mes , 
and

€ 

Q mes, respectively. The throughput 

€ 

X mes  represents the average number of requests that leave the system per 
unit time (this quantity may differ from the offered workload if the system is subject to losses). 

€ 

L mes gives the 
probability that an arriving request is rejected, i.e., denied entry to the system. 

€ 

R mes  defines the average sojourn 
time (waiting for and receiving service) experienced by a request inside the system. Finally, 

€ 

Q mes represents the 
average number of requests in the system. Note that, by Little’s law [23], 

€ 

Q mes = X mesR mes so that it suffices to 
measure any two of these three quantities. 



 
Figure 1: Performance parameters. 

In computer networks, typical performance parameters are the throughput at an interface, the time spent by 
packets inside the network and the packet loss ratio. In disk arrays, performance parameters may represent the 
I/O response time, I/O request throughput, device utilization, etc.  

Each measurement point corresponds to a set of performance parameters that have been measured at a particular 
state of the load, and may in general also include input parameters such as the corresponding offered load. 
Clearly, a measurement point can represent a single measurement instance or be obtained by averaging several 
measurement instances corresponding to the same load level. A total of n measurement points for the same 
system constitutes a set of measurements. Generally, the measurement data set reflects how the system reacts to 
a varying environment.  

Note that in our high-level modeling approach, the measurement set must include measurement points for 
different load levels. Hence, methods that seek to fit a model of a discrete or continuous distribution to a sample 
of measurements for a single level of system load are clearly unsuitable for our approach [6].  

2.3 A quick overview of the approach 
Although our approach is more general, in this paper, we restrict the presentation to the case where the average 
sojourn time in the system 

€ 

R  is expressed as a function of the average throughput out the system

€ 

X . We thus 
have at our disposal measurement points 

€ 

(X mes,R mes) , each of them corresponding to a different load (as 
explained in Section 2.2), and we aim to find a model that closely reproduces the observed system behavior. 

The starting point of the proposed high-level modeling approach consists in defining a pool of “Building 
Blocks”. The Building Blocks are generic models, i.e. models in which certain parameters are unspecified, 
which may come from various domains such as queueing or fluid theory. It is clearly important to select and 
define Building Blocks whose spectrum covers a wide range of system behavior. In this paper, we use a set of 
Building Blocks including a limited selection of elementary queueing models (e.g. M/M/C, M/M/C/K, M/G/1, 
M/G/1/K [9], M/G/C approximation [22, 5]), as well as original models of system congestion and saturation. 
Thus, we define a new Building Block, referred to as the “Embedded Queue block”, in which the service time at 
the “main” server includes the expected waiting time at a “secondary” queue. We also propose another “non-
standard” Building Block, referred to as the M/M/Cv block, defined as a multi-server queue in which the number 
of servers Cv is allowed to change as the resource utilization changes. This type of behavior is abstracted from 
systems that make additional resources available to meet increased demand. These two less standard models are 
discussed in more detail in Sections 2.4 and 3.7, respectively. 

To represent the fact that, in some systems, the response time comprises a fixed overhead as an additive load-
independent component, we expand our Building Blocks to include a fixed “Offset” value. Note that this Offset 
does not affect the congestion at the server.  The response time in our Building Blocks is simply the sum of the 
Offset value and the response time at the server. This Offset quantity can be viewed as constant overhead in the 
response time. For disk controllers, it may represent the time required to examine an I/O command before 
queueing or serving it. For an application server, it might include the predetermined time for a request to travel 
from the client issuing the request to the server, provided that this time does not increase when the intensity of 
the workload does. For data transmissions, the Offset value could reflect the signal propagation delay between 
communicating nodes. This constant Offset value is denoted by Ofst  in all figures and formulas. 

In the proposed approach, we consider the Building Blocks one by one, and calibrate each of them 
independently. By calibrating a given block we mean selecting a set of values for its parameters so that the 
performance of the model matches as closely as possible system measurements. To this end, we define (cf. 
Section 2.5) an error criterion that quantifies how far a given model is from the measurements, as well as a 
technique to perform the calibration search (cf. Section 2.6).  We use the same error criterion to rank the 
Building Blocks candidates and to determine the “laureate model”, i.e. the Building Block with the best 
calibration. 



A tempting idea might be, instead of dealing with our Building Blocks based on queueing models, to simply try 
and use some sort of interpolation method between the measurement points.  In our experience, such an 
approach is less likely to succeed.  Indeed, our queueing-theory-based Building Blocks involve service times, as 
well as congestion and queue build up, much like what is happening in the actual system.  Thus, there is a high 
likelihood that at least one of the Blocks will exhibit behavior fundamentally similar in nature to the one 
observed in the measurement data.  On the other hand, as illustrated in Figure 2, a simple interpolation based on 
mathematical functions such as polynomial, Lagrange or Bessel functions, while certainly capable of connecting 
the measurement points, might exhibit inadequate behavior outside of the latter (e.g. negative or otherwise 
infeasible values, oscillations, etc., might occur). Thus, we believe that simple curve fitting is likely to be of 
lesser value in understanding and predicting the system behavior than our approach based on models of 
congestion.   

 
Figure 2: Inadequate results from polynomial interpolations. 

2.4 Simple and not so simple models 
As discussed in Section 1, one of the premises of our approach is that a complex system may exhibit behavior 
that can be reproduced by a relatively simple queueing model. The first example we consider is an M/G/1 queue 
with preemptive-resume priority discipline and three priority levels where level 1 has the highest and level 3 the 
lowest priority. We denote by 

€ 

λ i the rate of arrivals to priority level i, by 

€ 

1 µ i  the mean and by 

€ 

γ i  the 
coefficient of variation of the service time for level i. We first look at the mean response time of the lowest 
priority level for a number of values of 

€ 

λ3  with the workload of higher priority levels kept constant. The well-
known solution of the M/G/1 priority queue (e.g. [1]) gives the performance data represented in Figure 3. While 
the analytical formula used to generate this curve is manageable, it may not be obvious that the mean response 
time for the selected priority level is in fact that of a simple M/G/1 queue with a different (higher) coefficient of 
variation and an Offset as shown in Figure 3. It is interesting to note that, for the parameter values used in this 
example, a simple M/M/1 queue (as proposed in some approximations), even with an Offset, cannot adequately 
represent the behavior at lower priority levels (cf. [20]). Note that the search for the appropriate parameter 
values for this example was performed using the automatic calibration method described in Section 2.6.  



 
Figure 3: Behavior of the lowest priority class in an M/G/1 priority system with { }2,1.0 11 == γµ , 

{ }2,5.0 22 == γµ  and { }2,1 33 == γµ with higher class workload kept constant. 

In our second example, we consider an open tandem network of queues with limited buffer capacities and 
communication type of blocking, i.e., service at a node cannot start unless there is room in the downstream 
buffer. This network is represented in Figure 4. We assume that arrivals to the system come from a Poisson 
source with rate 

€ 

λ , the service times at each node are exponentially distributed, and we let 

€ 

µ i  be the 
corresponding service rate for node i. We denote by 

€ 

Bi the total capacity at node i. We select small buffer 
capacities, as well as service and arrival rates such that there is a significant amount of blocking in the network. 
Under these conditions, the performance of this tandem network can be expected to be far from that of a 
Jacksonian queueing system [18]. We use the approximation method of Brandwajn and Jow [8] to solve this 
tandem network of queues with a total of five nodes. Figure 5 shows the total sojourn time in such a network for 
a number of values of attained system throughput. Clearly, a queueing system with infinite buffer space does not 
allow us to model the rate of loss that requests can experience at the first node.  It is interesting, however, to 
note that, as illustrated in Figure 5, an M/G/1 queue (with an Offset) can adequately reproduce the mean total 
sojourn time in such a system. 

 
Figure 4: Open tandem network with finite buffer capacities. 



 
Figure 5: Behavior of an open tandem network with { }5,5 11 == µB , { }3,3 22 == µB , { }3,3 33 == µB , 

{ }1,2 44 == µB  and { }2,3 55 == µB . 

We now turn back to the first example, i.e. the M/G/1 queue with 3 priority levels studied previously. We look 
again at the performance of the lowest priority level, but this time we increase proportionately the arrival rate to 
all priority levels. Figure 6 shows the expected time in system for level 3 requests. Here, no simple M/G/1 queue 
can match the observed response times since the delays impacting the lowest priority level increase as its own 
rate of arrivals 

€ 

λ3  increases. Analogous apparent elongation of the service time can in fact be observed in a 
number of other systems. This leads us to define a new Building Block in which the service time at the “main” 
server includes the expected waiting time at a “secondary” queue. As mentioned before, we refer to this 
queueing model as the “Embedded Queue block”. The main server in our embedded block is an M/G/1 server 
whose service time is a sum of two random variables: the base service time 

€ 

Tb  and the service time elongation 

€ 

Te . The latter is obtained as the queueing time in the secondary server, which is an M/G/C queue. The arrival 
rate to the secondary queue is some multiple of the arrival rate at the main server. Denoting by 

€ 

λm  the rate of 
request arrivals to the main server, and by 

€ 

λ s the arrival rate at the secondary server, we have 

€ 

λ s = ηλm  where 

€ 

η is a parameter of our embedded block. Note that we use the M/G/1 queue (with mean service time 

€ 

1 µe  and 
coefficient of variation of the service time 

€ 

γ e ) as the secondary server in the simple form of the Embedded 
Queue block.   Notice that such a simple Embedded Queue block produces a good match for the performance at 
lowest priority level in our example.  



 
Figure 6: Behavior of the lowest priority class in an M/G/1 system with { }2,1.0 11 == γµ , { }2,5.0 22 == γµ  

and { }2,1 33 == γµ  with variations of higher class workloads. 

In Figure 7, we look at the expected sojourn time at the middle node in our tandem network of five nodes 
(second example). Perhaps not unexpectedly, we find that no simple M/M/C/K or M/G/1/K queue correctly 
reproduces the behavior of the node considered. We note, however, that an Embedded Queue block allows us to 
match the behavior of the middle node in our five-node tandem network. 

 
Figure 7: Behavior of the middle node in a tandem network { }5,5 11 == µB , { }3,3 22 == µB , { }3,3 33 == µB , 

{ }1,2 44 == µB  and { }2,3 55 == µB . 

As a final point, note that even though the M/G/1 block is a good representation for the lowest priority level in 
an M/G/1 priority queue (as depicted in Figure 3), in our approach, we are unable to readily derive the values of 
its parameters directly from the underlying model, as would be the case in constructive modeling. This limits the 
predictive power of our approach when parameters other than the attained throughput change. However, the 
mere fact that an M/G/1 queue (in this example) is a good fit, and the M/M/1 is not, may be valuable in the 
search for a simple constructive model.  Incidentally, several authors [25, 24] have contemplated the use of the 
M/G/1 queue as the basic block in modeling general queueing networks. 



2.5 Error criterion 
As mentioned before, we need a way to measure the goodness of fit of a given model versus the measurement 
set. This is the role of the error criterion, referred to as 

€ 

φ . The goal of the function 

€ 

φ  is to provide a convenient 
way to compare fairly any models. There are many ways to define such a function. Perhaps the most intuitive 
definition for 

€ 

φ  is to sum the deviations between the system measured sojourn times and those obtained from 
the model at the same throughput values. This “stick based” error criterion is illustrated in Figure 8. We use the 
subscript th to denote values obtained from a model. Thus, let 

€ 

R mes,i ,  i = 1,...,n  be the measured mean response 
time values, and

€ 

R th,i ,  i = 1,...,n , the corresponding mean response times obtained from a model. Then, 

€ 

φ  can be 
formally expressed as: 

€ 

φ = R th,i − R mes,i
i=1

n

∑  (1) 

 
 Figure 8: Stick based error criterion. 

Some adjustments to the definition of 

€ 

φ  are possible. It may be desirable to take into account absolute and 
relative components for deviations, for example as a linear combination of both (absolute with a factor 

€ 

α  and 
relative with a factor 

€ 

1−α). Depending on the measurements and the intended domain of application of the 
resulting model, it may be useful to incorporate in 

€ 

φ  weight factors 

€ 

wi  associated with each measurement point. 
These factors make it possible to emphasize selected measurement according to how much the analyst trusts 
them or which ranges of values are of interest in a particular study. Incorporating these changes, the definition 
of the error criterion  

€ 

φ  becomes: 

€ 

φ = α
1

ˆ R mes
wi R th,i − R mes,i

i=1

n

∑ + (1−α) wi 1−
R th,i

R mes,ii=1

n

∑  (2) 

where 

€ 

ˆ R mes =
1
n

R mes,i
i=1

n

∑  is the arithmetic average of the measured response times. 

In all numerical examples in the paper, we let 

€ 

α = 0.5and we use equal weights 

€ 

wi .  We make this choice 
because we trust all measurement points equally, and we have no reason to emphasize a particular operating 
region of the systems considered. 

Note that, if 

€ 

α  is set to 1 (i.e. only the absolute component is taken into account) and all 

€ 

wi  are equal, the 
definition of 

€ 

φ  given in (2) is similar to the so-called “efficiency coefficient” defined by Nash and Sutcliffe [27] 
for adjusting hydrological models. Note also that, if confidence intervals are known for each measurement point, 
one can modify the definition of the error function in order to take them into account. 

Despite their simplicity and ease of use, the definitions of 

€ 

φ  given in (1) and (2), as well as the “efficiency 
coefficient” can lead to problems in some cases. As an example, in the vicinity of server saturation for open 
queueing models, these criteria can be exceedingly sensitive.  This is particularly true when the saturation is 
steep, resulting in a misleading assessment of the accuracy of the model compared with measurement data. As 
an illustration, the model depicted in Figure 8, which is visually close to all the measurement points, will be 
ranked low because of the last point that generates a very large error. A promising approach seems to be to 
define the error criterion based on the estimation of the area between the curve formed by the measurement 



points and the one derived from the model. This area-based criterion has the advantage to be well defined when 
the last measurement points are beyond the maximum achievable throughput of the model (as illustrated in 
Figure 9). To calculate this area, we associate with each measurement point the closest point on the model 
curve. The segments connecting consecutive measurement points with their associated (coupled) points on the 
model curve define quadrilaterals.  We then compute the error as the sum of the areas of these resulting 
quadrilaterals. This scheme is illustrated in Figure 9 and will be investigated in more detail in future work. Note 
that, in most examples shown in this paper, using the area-based criterion instead of that given by (2), has 
limited impact on the results (i.e. we obtain almost exactly the same laureate model), but it may enhance the 
search procedure (cf. Section 2.6).   

For readers with interest in optimization techniques, the next section is devoted to details of the procedure we 
use to search for the best building block. 

 
Figure 9: Area-based error criterion. 

2.6 A DFO technique to search the laureate model 
Recall that the laureate model produced by our high-level approach is obtained from the combination of a 
particular Building Block and a corresponding set of parameters values. Thus, the search for the laureate is 
twofold. First, for each Building Block, it aims at finding a set of values for the model parameters that 
minimizes the selected error criterion 

€ 

φ  (error criteria have been discussed in Section 2.5). We refer to this step 
as the “calibration process”, also known as the “adjustment” of the blocks. Second, it consists in stating some 
rules to decide which model, among the Building Blocks with the best set of parameters, is elected, if any, as the 
laureate model for the observed system behavior. 

We formalize the calibration process for a Building Block as a numerical optimization problem in which the 
objective function to minimize is simply the error criterion 

€ 

φ . The Building Block parameters are the variables 
of the objective function 

€ 

φ . For a given Building Block with n parameters, each possible combination of these 
parameters induces a value for 

€ 

φ  and, taken all together, the Building Block parameters define a hypersurface of 
dimension n in a space of dimension n+1. Figure 10 shows an example of such a hypersurface in case of a 
Building Block with two parameters. Clearly, by minimizing 

€ 

φ , we get the coordinates of the optimum 
(minimum) of the hypersurface, which corresponds precisely to the best calibration of the parameters for the 
given Building Block. 



 
Figure 10: An example of 

€ 

φ  for a Building Block with two parameters. 

At this point, it is worthwhile stating some general remarks regarding the calibration search and its objective 
function 

€ 

φ . First, we have to find an efficient way to perform this optimization process since it must be repeated 
for each Building Block. Second, this optimization problem has to be managed taking into account two intrinsic 
difficulties. The first one pertains to the evaluation of the objective function 

€ 

φ , which may be computationally 
difficult (see Section 2.5). Indeed, to evaluate the objective function we need not only to evaluate the 
performance parameters of the model for each measurement point, but also, for each of them, to infer the input 
workload level that corresponds to the measured attained throughput. A second difficulty comes from the 
derivatives of 

€ 

φ  that may not be computable. In fact, for some Building Blocks, there are no closed-form 
expressions that relate directly the measured performance parameters (viz. 

€ 

R  as a function of 

€ 

X  considering the 
formalism used in this paper). As an example, for M/M/C/K and M/G/1/K [9] queues, 

€ 

X  and 

€ 

R are both 
function of the input workload, and are thus only implicitly linked through this hidden variable. 

We have initially considered several different approaches to handle this optimization problem. First, we looked 
at the exhaustive search in the parameter space. The inherent exponential complexity of this systematic 
approach makes it unscalable and thus intractable as soon as a Building Block has more than three parameters. 
In the case of a block with four parameters, such a search typically requires more than 106 evaluations of 

€ 

φ . In 
fact, such an exhaustive search is inappropriate for calibrating virtually any of the Building Blocks, including 
blocks with only two or three parameters, since it requires the discretization of continuous parameters, which 
can have a severe impact on the robustness of the search. 

Next, as mentioned before, computing the derivatives of 

€ 

φ , if at all possible, requires specific analytic 
development for each Building Block. Since we want our methodology to be as generic and as “extensible” as 
possible, the inclusion of a new Building Block must remain an easy task.  This argues against derivative- based 
techniques. 

Then, we looked at iterative “descent techniques”. Since 

€ 

φ  is in general not differentiable, we did not consider 
algorithms based on numerical approximations of gradients, and decided to focus on “Derivate Free 
Optimization” (DFO) methods [30, 13]. DFO methods are purpose-built for optimization problems in which the 
objective function is not easy to compute and has no particular simplifying properties. In such cases, DFO 
methods have been shown to frequently outperform techniques based on derivatives or on approximations of 
gradients [29]. The DFO methods make no assumptions on the objective function and thus simplify the 
inclusion of new Building Blocks. For these reasons, we decided to use a DFO method to perform the 
calibration process of our automatic approach.  

As many numerical methods, DFO techniques require that all the parameters of the objective function be 
continuous, whereas some of the parameters of our Building Blocks are discrete (e.g. the number C of servers in 
an M/M/C or the size K of the buffer of an M/M/1/K).  To treat all Building Block parameters as continuous, we 
define “intermediate models” in which discrete parameters are replaced by their corresponding continuous 
extensions. These intermediate models coincide with “standard” models when their “artificial” extension 
parameters have integer values. This step consists actually in relaxing the discrete constraints on the parameters. 



As an example, we define an M/M/C block where C is real, e.g. C = 2.87, just by redefining the departure rates 
of the associated birth and death process as follows: from state 1 to state 0, the rate of service is 

€ 

µ , from state 2 
to state 1, the rate is 

€ 

2µ , and from any state n > 2 to state n–1, the rate is 

€ 

2.87µ . Obviously, this intermediate 
M/M/C block coincides with the traditional queue when C has an integer value. Sometimes the intermediate 
models require a more involved derivation. As an illustration, for defining an M/M/1/K block with a real value 
of K, e.g. K = 7.35, one must rearrange the associated Markov chain by adding a new state K+1 and adjusting 
the arrival rate between state K and state K+1 proportional to 

€ 

K − K⎣ ⎦ , e.g. 

€ 

0.35λ . Note that these intermediate 
models significantly enhance the spectrum of behaviors covered by the Building Blocks, and can be used “as is” 
with their continuous parameters as laureate models.  On the other hand, if only “classical” models (with 
discrete values for the appropriate parameters) are required as laureate models, we can evaluate all the models 
obtained from the intermediate laureate model, rounding the artificial continuous parameters to integers, and 
keep the best one (i.e. the one that results in the smallest error). In certain cases, it may be preferable to perform 
a further optimization search starting from each rounded (ceiled or floored integer) set of parameters that are 
kept constant, and run the DFO technique on the remaining continuous parameters. It is worthwhile noting that 
these further searches imply only a small additional complexity as the number of parameters of the search is 
smaller and the starting point has a good chance to be close to the optimum. 

DFO methods proceed by neighborhood search. At any given iteration i, the DFO technique starts from a current 
solution 

€ 

xi , which corresponds to a set of parameters for the considered Building Block, and tries to compute a 
new solution 

€ 

xi+1  with a lower level of 

€ 

φ .  There are many possible approaches for developing DFO methods. 
These approaches differ mainly by their strategy to find a better solution at each step. Overall, the successive 

€ 

xi  
points in the iterative search give a path towards a minimum of the hypersurface.  Figure 11 shows an 
illustration of such a path for a given Building Block with two parameters.  Clearly, like in many other 
optimization methods, the attained minimum might not be global. 

 
Figure 11: An example of the iterative descent through a DFO method. 

To speed up the iterative search process, we enhance the approach by using a local “substitution model”. At a 
given step i of the search process, we approximate the neighborhood of the current solution 

€ 

xi  with a 
substitution model that is a local mathematical approximation of the real hypersurface defined by 

€ 

φ . More 
specifically, our DFO method is based on a local quadratic approximation (that is asymptotically true for any 
“regular surface”). The use of a simple mathematical approximation enables us to drastically speed up the 
convergence towards the minimum, as it not only gives information about the direction of the minimum, but 
also about the distance to reach it. Of course this information is only an approximation, but as the process gets 
closer to the solution, the substitution model approximates better the surface and drives us faster to the 
minimum. 

Since 

€ 

φ  is in general not convex, a diversification phase is driven to avoid being trapped in a local optimum. 
This phase is based on multi-starting point runs. The search has also been strengthened by the inclusion of 
bounds and constraints on parameters that are derived from elementary properties on the Building Blocks. For 



instance, in case of an M/M/C/K block, the average sojourn time is necessarily between Ofst+µ1  and 
OfstCK +µ . In order to enforce the compatibility between the measurements data set and the behavior of the 

model, we thus have to restrict the search space of the parameters to match these constraints. 

Additional details of our DFO algorithm, as well as an analysis of its performance will be the object of a 
forthcoming paper. Preliminary experiments indicate that the proposed search method tends to be robust and 
very fast for Building Blocks with a limited number of parameters (say, up to 5 or 6), which is actually the case 
for all the Building Blocks we have tested so far (the calibration of any Building Block usually requires no more 
than 104 evaluations of 

€ 

φ  and most often even considerably less). The intrinsic computational complexity of our 
method tends to grow slightly faster than the square of the number of parameters. Note that in our comparisons 
of the proposed approach to general DFO solvers (Solvopt [19], Appspack [16]) our method seems to be 
significantly more robust at the expense of a limited overhead in its search time. 

Once the calibration phase has been performed for each Building Block, we must choose which parameterized 
Building Block is elected, if any, as the laureate model. In the current form of our method, the same estimator of 
goodness of fit, namely 

€ 

φ , drives this decision. For each Building Block, the DFO search ends up with a given 
calibration and a corresponding value of the error 

€ 

φ . We use these final error values to determine a ranked list 
of Building Blocks, and the first in line is the laureate model. In practice, when several Building Blocks in our 
ranked list exhibit comparable levels of error, as suggested by the principle of parsimony [6], one should give 
preference to the simplest model (in terms of the number of parameters and computational complexity) instead 
of the laureate model. 

Finally, it is interesting to consider the impact of different error criteria during the calibration of the Building 
Blocks. First, the calibration found by our DFO method may differ according to the error criterion used since the 
“best” set of parameters values for a given error criterion is not necessarily the best set for another error 
criterion. In most cases, the final results of the method, however, as mentioned before, seem to be remarkably 
stable. Second, perhaps more interestingly, we have noticed during our experiments that the more relevant the 
error criterion is, the easier the calibration process is. Conversely, the choice of a less appropriate error criterion 
tends to increase, among other undesirable things, the number of local optima in the hypersurface considered, 
making the optimization search harder. For that reason, in certain cases, choosing a more relevant but 
computationally costlier error criterion (e.g. the area based error criterion mentioned in Section 2.5), enhances 
significantly the robustness, as well as the overall computational efficiency of the calibration search.   

2.7 Requirements for the methodology 
Measurements represent a key component for our approach. To be of use, the sets of measurements must satisfy 
certain common sense conditions.  

First, the different measurement points from a particular set must come from the same system, and correspond to 
varying load levels. As a result, it makes sense to require that key parameters of the system stay identical for 
every measurement point or vary in a “non-random” way as a function of the workload. 

Second, in our view, the system resources can be shared by two types of request streams: the one directly 
captured in the available measurements (captured traffic) and the “uncaptured” or “background traffic”. In a 
large computer network, a significant part of the traffic may be processed without being directly captured by 
measurements. Since the background traffic competes for shared system resources, the common sense condition 
discussed above requires that the background traffic be either negligible, constant, or in a clear relationship to 
the captured (measured) traffic for all measurement points.  

Third, the available measurement data must adequately capture the salient features of system behavior in the 
range of interest. Clearly, for instance, if the system response exhibits an inflection point and this inflection 
point is not present in the measurement data, there is little chance that the model proposed by our approach will 
correctly reproduce such a behavior.  

The actual number of data points needed to obtain reasonable results depends on the nature of the system 
behavior and how well the available measurement points “cover” the domain of interest.  In practice, for many 
systems 4 to 7 points tend to be sufficient.  In some cases, more points may be needed to capture the system 
behavior.    

3 Case Studies 

3.1 Preliminaries 



The proposed approach aims at finding a model whose performance parameters match as closely as possible 
those known from system measurements. Recall that we refer to this best match (in terms of the error function 
described in Section 2.5) as the laureate model. As discussed before, this laureate model is chosen from a set of 
pre-defined more or less simple Building Blocks. We explore the Building Blocks one by one, and we attempt to 
calibrate each block considered. Recall that by calibrating a Building Block we mean selecting a set of values 
for the parameters of the given block to minimize the error function.  

In addition to simply matching the data points in the measurement set, we want the laureate model to be able to 
correctly predict the performance of the system within some reasonable domain. Therefore, in the case studies 
that follow we deliberately remove one or more data points from the measurement sets. Having found the 
laureate model for a given data set, we then test the ability of this model to predict the system performance at 
the removed data points. In actual application of our method one would of course tend to use all available 
measurement points.  Our data sets come from actual real-life systems and include wireless networks, I/O 
controllers, an Ethernet network, as well as a multiprocessor system. 

As discussed earlier (see Section 2.6), we calibrate the Building Blocks using a numerical method. Thereby, the 
models produced by the proposed approach may have continuous values for traditionally integral parameters.  

3.2 Broadband Wireless Network 
We start by considering the high-speed wireless network for which Quintero et al. give a set of performance 
measurements in [31]. The measurement points, shown in Figure 12, relate packet throughput to queueing 
delays experienced by packets in high load scenarios. As mentioned before, we remove some number of 
measurement points from the measurement set during the search for the laureate model. It is apparent from the 
shape of the delay time curve in Figure 12 that, in this case, the point for the highest load level is likely to be 
most difficult to reproduce accurately. We elect to remove precisely this point from the measurement set in 
order to test the predictive capabilities of the laureate model.  

 
Figure 12: Broadband Wireless Network. 

Figure 12 shows that a simple M/G/1 queue with adequate parameters determined by our approach, 
viz. ,  and , closely approximates the observed performance for this system. We 
have also represented in Figure 12 the results of the “best” (in terms of smallest error) M/M/C and M/M/C/K 
queues (these two curves are so close that they are difficult to tell apart). We notice that neither of these two 
queueing models is able to correctly reproduce the measured system behavior. 

The laureate M/G/1 model provides also a reasonable prediction for the removed point. When comparing the 
expected sojourn times for the throughput level of the removed point, we observe a relative error of 15%, while 
a comparison of expected throughputs at the same mean sojourn time for the removed point yields a relative 
difference of less than 1%. Given the steep slope of the performance curve in the vicinity of the removed point, 
we view the attained accuracy as more than reasonable. Not surprisingly, we note that the performance 
predictions of the M/M/C and M/M/C/K Building Blocks are poor. If we remove other, randomly selected 



points, and repeat the calibration procedure, we find that the laureate M/G/1 model yields predictions whose 
relative errors are all below 5%. 

3.3 Disk controllers 

In this Section, we investigate several sets of measurements obtained for disk controllers in mainframe 
environments. The measurement points give the expected I/O response time as a function of the attained I/O 
throughput (in requests per time unit).  

 
 Figure 13: Disk controllers - Set 1. 

 
Figure 14: Disk controllers - Set 2. 

Figures 13 and 14 illustrate the results obtained for measurement Set 1 and 2, respectively. We observe in 
Figure 13 that the “best” model - among the Building Blocks considered - in this case is the M/M/C/K queue, 
while for the measurement set of Figure 14 it is the M/G/1 queue. In both cases, the laureate models not only 
closely reproduce the data points used in the calibration process, but are also able to adequately predict the 
performance for the removed data points. The relative prediction errors for the removed data points are below 
1% both for the expected throughput and the mean I/O time in Figure 13, and below 5% in Figure 14. We note 



that removing different points during the calibration process leads to similarly successful predictions by the 
laureate models. 

It may be of interest in building a constructive model of I/O performance for the controller considered that for 
Set 2 neither the M/M/1 (M/M/C) nor the M/M/1/K (M/M/C/K) models appear adequate. Our results show that 
even with the best possible combination of parameters these two Building Blocks fall short from matching the 
observed performance.  

In addition, as mentioned before, the resulting laureate model may be of help in capacity planning. For example, 
the analyst can use the laureate model to forecast the system behavior in face of projected growth in the I/O 
workload. Consider for instance, measurement set 1 (depicted in Figure 13), with the help of the laureate model, 
we forecast that in the vicinity of the last removed measurement point (I/O rate of around 55.5), an increase in 
the I/O rate of, say, 5% will only cause a 5% degradation in the system average response time. By contrast, in 
case of measurement set 2 (depicted in Figure 14) an increase of 5% in the I/O rate in the vicinity of the last 
removed point (I/O rate 11.5) will result in a 37% surge of the mean response time.  

3.4 Wireless network (IEEE 802.11) 
We now consider the wireless network (conforming to IEEE 802.11) described and measured by Chandran-
Wadia et al. [11]. The available WLAN capacity in this network is 2 Mbps, and its behavior has been 
characterized for two different packet lengths: 500 and 1500 bytes. Measurement points give the expected 
sojourn time of a packet inside the WLAN and the corresponding mean throughput at the WLAN. We have two 
sets of measurements, one for each packet length.  

As one could expect, the behavior of the WLAN considered depends on the packet size. Since the service time 
of a packet in this network (like in many other communication and computer systems) includes a fixed 
incompressible overhead, using shorter packets reduces the transfer time of a packet but also the achievable 
network throughput. This tradeoff between minimizing delay versus maximizing network throughput has been 
extensively studied.  

To represent the effect of the size of packets on the WLAN behavior, we assume that the intrinsic service time 
in our Building Blocks 

€ 

1 µ  can be expressed as  

cap
US += 0

1
µ

  (3) 

where  is the length of a packet in bits (units of work considered),  is the fixed overhead expressed as a 
time, and  denotes the processing capacity of the server in terms of units of work per time unit. A similar 
representation of the service time may be of interest in other applications such as I/O subsystems, virtual 
memory, file systems, etc. In our case, two parameters,  and , are required to define the service-time for 
a given packet size. Clearly, the use of a formula like (3) implies some knowledge of the system and a bit of 
constructive modeling.  

Figure 15 illustrates the results obtained for this wireless network with 500 and 1500 byte blocks. Note that the 
throughput in Figure 15 is expressed in requests per time unit and not in bits or bytes per time unit. 



 
Figure 15: Wireless network 

We observe that an M/G/1 queue (with , , and ) adequately 
reproduces the WLAN behavior for both packet sizes. As before, we tested the predictive capability of the 
laureate model by removing some number of measurement points from the search and calibration process. As 
shown in Figure 15, the laureate M/G/1 yields accurate predictions for the removed data points. It is worthwhile 
noting that removed points in this case represent over 50% of the available data points, and they include data 
points at higher workload levels for which accurate predictions can be expected to be more difficult.  

3.5 Ethernet Network 
In this example, we consider the Ethernet network with a nominal rated capacity of 10 Mbps described and 
measured by Wang and Keshav [35]. The performance of this network has been measured for three packet sizes: 
64, 512 and 1500 bytes. Thus we have three measurement sets, one per packet length. The data points in each 
set give the expected sojourn time and the corresponding average packet throughput in the network. As we did 
in Section 3.4, to account for the dependency between the Ethernet behavior and the packet size, we assume that 
the service time requirement can be expressed using formula (3). 

Objectives of this case study are twofold. First, we show that a simple model can adequately represent the 
performance of this Ethernet system. Second, we show that, if we use only two of the three measurement sets, 
our laureate model is able to correctly predict the performance of this network for the third packet size, not used 
to calibrate the laureate model. 

Figure 16 illustrate the first objective for the Ethernet network considered. We observe that a simple M/G/1 
(with ,  and ) is well suited to reproduce the measured system 
behavior for different throughputs and packet sizes.  



 
Figure 16: Ethernet network. 

To illustrate our second objective, we remove one of the data sets (corresponding to one of the packet sizes) 
from the model search and calibration procedure. As an example, we remove the measurement set for 64 byte 
packets, and we search for the “best” model. We find that the resulting laureate model is very close to the one 
obtained previously (viz. an M/G/1 queue with ,  and ). Therefore, 
it is not surprising that the laureate model correctly predicts the performance of the network for the “missing” 
packet size of 64 bytes.  Similar experiments where we remove the measurement set for 512 and 1500 bytes, 
respectively, yield the same result. This is illustrated in Figures 17 (a) - (c). 

 
Figure 17 (a): Ethernet network – only sets for 512 and 1500 bytes packets are used for calibration. 



 
Figure 17 (b): Ethernet network - only sets for 64 and 1500 bytes packets are used for calibration. 

 
Figure 17 (c): Ethernet network - only sets for 64 and 512 bytes packets are used for calibration. 

It is important to note that, in general, the execution times for our approach are quite short (typically they 
fluctuate between a few seconds and one minute on a medium-speed processor). Thus, to the extent that the 
network can be adequately represented as one of the Building Blocks, and we have measurement sets for two 
different packet sizes, the laureate model provides a convenient way to approximately determine the optimal 
packet size in a specific application. 

Clearly, in some systems, the real dependence of the service time on the request size may be more complex than 
the one given in formula (3). The successful prediction of performance for two different packet sizes in Section 
3.4, as well as the results presented here, suggest that, at least for these two types of system, formula (3) is 
adequate. 

3.6 More I/O performance data 
In this section, we look at four additional measurement sets obtained from mainframe I/O controllers for 
distinctly different workloads. As in Section 3.3, the measurement points give the expected I/O sojourn time as a 
function of the attained I/O throughput. Figure 18 illustrates the results obtained for these four measurement 



sets. Consider first the measurement points represented in Figure 18 (a). Although at first sight the measured I/O 
response time curve looks deceptively simple, a closer inspection reveals a behavior pattern that cannot be 
reproduced by any of the simple Building Blocks such as the M/M/C/K, M/G/C or the M/G/1/K models. Indeed, 
the expected response time starts out at a value that is much too low to lead to saturation at the throughput value 
indicated by the measurements. A possible explanation is that the mean service time itself increases as the 
attained I/O throughput increases. We observe that our Embedded Queue block, defined in Section 2.3, nicely 
reproduces the observed performance for this measurement set. Figures 18 (b) and (c) show similar results for 
other two sets of data. 

 
Figure 18 (a): Performance for an I/0 controller. 

 
Figure 18 (b): Performance for an I/0 controller. 



 
Figure 18 (c): Performance for an I/0 controller. 

 
Figure 18 (d): Performance for an I/0 controller. 

The measurement set represented in Figure 18(d) exhibits what appears to be an extremely steep saturation 
pattern. Clearly, no simple Building Block among the ones considered comes even close to matching the 
measured response times. The Embedded Queue yields a reasonable albeit far from perfect representation. It is 
possible that the points for the highest throughput are not accurate in this case or that the system cannot be 
viewed as having attained a steady state. It is also possible that a different type of modeling block is needed to 
deal more accurately with this type of behavior. 

Overall, we conclude that the Embedded Queue block is a good representation for what appears to be a load-
dependent service time elongation. 

3.7 Multiprocessor system 
We now turn our attention to an operating system in which the number of physical processors available to 
processes varies dynamically according to the system load level. The data points in the measurement sets in this 
case include the expected process response time for a given attained process throughput. Figure 19 illustrates the 
measurement data for just such a system. We observe that the response time exhibits a “discontinuity” in that it 



starts by increasing, and then decreases before increasing again as the attained throughput increases. Clearly, a 
“classical” queueing model such as the simple M/M/C, M/M/C/K or M/G/C queues cannot exhibit this sort of 
behavior. Our M/M/Cv Building Block (which corresponds to an M/M/C queue in which the number of servers 
changes if the load exceeds a certain threshold) was designed with this type of system in mind.  As shown in 
Figure 19, it fares well in reproducing the observed system performance. 

 
Figure 19: Performance for a multiprocessor system. 

4 Conclusions 
We have presented a high-level modeling approach based on measurement data. Unlike in constructive 
modeling, we don’t seek to represent “explicitly” the structure of the system being studied. We focus on the 
measurement results, and attempt to discover a more or less elementary model that might correctly reproduce 
the observed behavior. We identify a few obvious classical queueing models as possible Building Blocks for our 
approach. We also define a couple of new, not-so-classical Building Blocks: a model in which the service time 
increases in response to congestion at a hidden (embedded) resource, as well as a model of a system in which 
the number of servers varies accordingly to the level of load in the system. Using several sets of measurements 
from real computer and communication systems, we have shown that our Building Blocks are not only able to 
reproduce the observed system behavior, but have also some predictive power. 

We embed the search for a best fitting model in an efficient Derivative Free Optimization (DFO) procedure.  We 
discuss in some detail the reasons for this choice, focussing on the steps involved in a successful search for a 
suitably calibrated model. We highlight the main pitfalls that may be specific to our domain such as the choice 
of a well-suited error criterion. In particular, we point out that the error function given by (2) has a tendency to 
assign an undue importance to differences between models in the vicinity of server saturation. The speed and the 
efficiency of this approach allow us to automate the search for the best fitting Building Block. Note that, owing 
to the use of DFO methods, our approach is not limited to the particular performance measures used in this 
paper. Other performance measures could be used as long as the Building Blocks considered can be solved for 
the selected performance indices. 

Our main contribution lies in the definition of new Building Blocks and the automation of the search for the 
laureate model (more generally, a ranked list of the best possible models). Taken together, these two allow us to 
represent a wide range of behaviors. Since the search for a laureate model has been automated, performance 
analysts with a minimal queueing network background can use the resulting tool. It is worthwhile noting that, in 
addition to the laureate model, our tool can produce the next best candidate (from another Building Block), 
which may be of interest in some situations. 

Our approach has limitations. Since it is based on measurement data, the system considered (or a detailed 
constructive simulation model of the system) must exist, and there must be a sufficient number of measurement 
points to adequately capture the behavior of the system. In general, there is no guarantee that our approach will 



find an adequate model, and a failure of the approach does not necessarily imply that there is no adequate simple 
model for the given system. 

While the laureate model determined by our approach may be a good starting point for constructive modeling or 
for a search for a good approximation, a potential drawback of our approach is that there is in general no clear 
readily seen relationship between the parameters of the laureate model and the “natural” parameters of the 
corresponding constructive model. This limits also the predictive application of the laureate model in that it is 
not clear how the parameters of the laureate should be modified to reflect a change in the characteristics of the 
system being modeled. 

Despite the above limitations, our method has several advantages.  First, the laureate models obtained from our 
approach are useful to predict performance at workload levels for which measurements may not have been 
obtained. Hence, our approach may be of help in predicting whether the system considered fulfills or fails to 
fulfill a quality of service requirement. For instance, based on a projection of the growth in workload, the 
laureate model provides a quick answer whether a given allowed threshold-value for the average response time 
will be satisfied or not by the system. Unlike the “classical” constructive approach (such as a proposed 
framework for e-business applications [3] or disk arrays [34]), our approach reaches this goal without 
investigating the internal behavior of the system. Second, the nature of the best-fitting Building Block may be of 
help for constructive modeling of the system. Furthermore, it may provide guidance in the search for simple 
approximations, by indicating which Building Block might and which ones might not work. Third, the laureate 
model may reveal hidden information on a system such as a dramatic elongation in its service time as the load 
increases or an unexpected bottleneck which reduces the intended degree of parallelism in the system. Overall, 
our approach, when successful, proposes a compact but complete model of congestion and queueing, which we 
believe to be superior in most cases to the use of an arbitrary mathematical interpolation (e.g. polynomial, 
Bessel) between the known measurement points.  

The particular DFO search method we use tends to be robust and fast as long as the number of Building Block 
parameters does not exceed 5 or 6. With a larger number of parameters, the search tends to slow down visibly. It 
is possible that another DFO method might outperform the one we use but at this time, none of those 
experimented does. 

There are several open issues currently under investigation. First among them is the system behavior at or near 
server saturation, such as shown in Figure 14 (d). It is possible that a generalization of the embedded queue 
model to include losses would be a good Building Block for this type of behavior. Second, although we have 
considered measurement sets exhibiting inflexion point(s), we would like to test the robustness of our method 
on additional real-life system measurements representing other types of “unusual” behavior. Third, in order to 
demonstrate the extensive applicability of our approach, we are also looking for sets of measurements 
comprising the loss probability for requests in addition to the average throughput and the average sojourn time. 

Overall, we believe that, packaged as a ready-to-use tool, our approach can be of significant value both to the 
performance analyst in a capacity planning situation, and to the performance modeler in general. 
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