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ABSTRACT 
Many real-life systems can be modeled using the classical M/G/c/N queue.  A frequently-used approach is 

to replace the general service time distribution by a phase-type distribution since the M/Ph/c/N queue can 

be described by familiar balance equations.  The downside of this approach is that the size of the resulting 

state space suffers from the “dimensionality curse”, i.e., exhibits combinatorial growth as the number of 

servers and/or phases increases.   

To circumvent this complexity issue, we propose to use a reduced state description in which the state of 

only one server is represented explicitly, while the other servers are accounted for through their rate of 

completions.  The accuracy of the resulting approximation is generally good and, moreover, tends to 

improve as the number of servers in the system increases. Its computational complexity in terms of the 

number of states grows only linearly in the number of servers and phases.  

Keywords: Multiple servers, general service, finite buffer, M/Ph/c/N queue, reduced-state approximation, 

linear complexity. 

1. INTRODUCTION 
A large number of real-life systems (such as call centers, multi-core processors, etc.) can be modeled as 

instances of the classical M/G/c/N queue (i.e., an M/G/c queue with a maximum of N  requests in the 

system) if the pattern of request arrivals is relatively well behaved and can be represented by a quasi-

Poisson process.  The exact analytical solution of this queueing model is not known except in some 

special cases, and a limited number of approximations have appeared in the literature. 

Only a small handful of papers are devoted to the approximate computation of the steady-state queue 

length distribution for an M/G/c/N queue. Hokstad (1978) and Miyazawa (1986) use approximate 

generating functions to obtain the steady-state queue length distribution. However, their numerical results 

are limited to queues with less than ten servers, and, as pointed out in a critical review by Kimura (1996), 

these approximations tend to be difficult to implement and evaluate computationally. Tijms et al. (1981) 

approximate the steady-state queue length distribution by considering the system as operating in two 



regimes: a delay without queueing under light load, and an M/G/1 queue under heavy load. Consequently, 

this approach yields less accurate results under moderate loads. In another work, inspired by the existing 

relationship between the steady-state queue length distribution in the M/G/1/N and the M/G/1 queue 

(described by Glasserman and Wei-Bo (1991)), Tijms (1992) and later Kimura (1996) propose new 

approximations for the queue length distribution in the M/G/c/N and the M/G/c queue. Because of the 

computational complexity of the latter approaches and/or limited accuracy in some cases, other authors 

have focused only on certain quantities of interest. For instance, Nozaki and Ross (1978), and Ma and 

Mark (1995) assume independent residual times to derive approximate values for the expected waiting 

time or the expected number in the system. Finally, some authors propose heuristics to approximate the 

loss probability. Schweitzer and Konheim (1978) estimate the overflow probability in an M/G/c/N queue 

based on the property mentioned above for M/G/1 and M/G/1/N queues.  Gouweleeuw and Tijms (1996), 

and more recently, Smith (2003), have proposed an approximation for the loss probability based on only 

the first two moments of the service time.  By their very nature, these latter solutions fail to capture the 

potentially important dependence of the performance of such a queueing system on higher-order 

properties of the service time distribution (see Gupta et al. (2007), Whitt (1980), Wolff (1977)). 

Therefore, when dealing with the M/G/c/N queue, outside simulation, a frequently-used approach is to 

replace the general service time distribution by a phase-type distribution, as it is known that any 

distribution can be approximated arbitrarily closely by a distribution of the latter type (see Johnson and 

Taaffe (1988)). The obvious advantage of this approach is that, in steady-state, the resulting M/Ph/c/N 

queue can be described by familiar balance equations. Generally speaking, these balance equations can be 

obtained using one of two possible state descriptions involving the current number of requests in the 

system and a vector to represent the state of the servers.  The first one uses the vector of the current 

number of servers in each phase of the service process.  In the second possible description, the vector is 

that of the current phases for each server (note that the servers are assumed to be homogenous but they 

are not synchronized). This latter state description is generally less thrifty than the first one and rarely, if 

ever, used.  Both descriptions exhibit combinatorial growth as the number of phases and the number of 

servers grow.   

Several methods (e.g., direct iteration Seelen (1986), matrix geometric Ramaswami and Lucantoni 

(1985), Latouche and Ramaswami (1993), Bini, Latouche and Meini (2005)) can be used to solve these 

equations numerically.  As long as the number of servers and service phases remains small these methods 

work fine.  However, it is also known that the size of the system of equations to be solved suffers from 

what has been termed the “dimensionality curse”, in that the number of states grows combinatorially as 

the number of servers and phases increase.  Thus, for larger numbers of servers, these methods become 



impractical, and there is a clear need for an approach that would handle larger numbers of servers (say, 

hundreds) with a reasonable number of service time phases. 

In a related work, van Vuuren and Adan (2005) consider an unrestricted capacity queue with a 

superposition of non-Markovian arrival streams and general service times.  They propose to approximate 

the solution of their model by aggregating the arrival streams and also the service process of multiple 

servers.  The resulting model is then solved using matrix-geometric methods.  Their numerical examples 

are limited to smaller numbers of servers and a range of coefficients of variation of the service time 

distributions not exceeding 1. It should be noted that, for this range of service time distributions, existing 

standard approximations, based on only the first two moments of the service time distribution, (cf. Bolch 

et al. (2005) and Kimura (1994)) produce generally excellent results for the mean number of requests in 

the system while being much simpler to use.  However, these simple approximations fail for service time 

distributions with larger variability (Begin and Brandwajn (2013)). 

Our goal in this paper is to propose a different approach to the approximate evaluation of the M/Ph/c/N 

queue that scales easily with the number of servers and is relatively accurate for a large range of service 

time distributions. Our approach is based on a reduced state description to circumvent the explosion of the 

number of states discussed above while taking into account the full service time distribution.  Analogous 

ideas have been successfully applied by various authors to several other problems, e.g., networks with 

blocking (Altiok and Perros (1986)) or cache replacement schemes (Dan and Towsley (1990)).  A similar 

idea of tracking a selected server has been used in the context of modeling Web servers (Gupta et al. 

(2007)). 

2. MODEL, STATE DESCRIPTION AND SOLUTION 
Consider the M/Ph/c/N queue represented in Figure 1.  The times between arrivals are assumed to be 

memoryless (quasi-Poisson) and the service times are represented as a phase-type distribution with a total 

of b  phases. There are c  homogenous servers in our system and the buffer space is restricted to a 

maximum of N  requests in the systems (queued and in service). We assume that N > c , since otherwise 

there would be no queue build up possible.  We also assume that the rate of arrivals and the parameters of 

the service process may depend on the current number of requests in the system, denoted by n .  This type 

of state dependence is useful, in particular, to represent arrivals from a finite number of exponential 

sources and a service process which varies with the workload.  The detailed notation used in our paper is 

given in Table 1.     

 



 

 

Figure 1 – M/Ph/c/N queue with state dependencies. 

We consider the stationary behavior of such a queue.  As mentioned in the introduction, the state of our 

system could be fully described by the total current number of requests in the system and the numbers of 

requests in each phase of the service process, or, alternatively, by the current total number of requests and 

the current phase of each server.  Instead of such a full state description, we propose to use a reduced state 

description in which we select one server among the c  servers and describe the system by the total 

number of requests and the current phase of the selected server, (n,i) .  For n < c , with probability  

(c− n) / c  the selected server may be idle, in which case we use the value i = 0  to denote its idle state. 

Let p(n, i)  be the steady-state probability corresponding to this reduced state description.  Denote by 

ω(n)  the rate of completions for the selected server given that the current total number of requests in the 

system is n .  Using our reduced state description, for n ≥ c  we have  

ω(n) = p(n, i)µi (n)q̂i
i=1

b

∑ (n) / p(n)                   (1) 

The steady-state probability that there are n  requests in the system, denoted by p(n) , can be expressed as  

p(n) = p(n, i)
i=0

b

∑                     (2) 
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Let u(n)  be the overall departure rate from the set of c  servers given the current number of requests in 

the system.  Since the servers are homogenous, i.e., statistically identical, we must have  

u(n) =min(c,n)ω(n)                   (3) 

In other words, equation (3) reflects the fact that, on average, the conditional completion rate of each 

server is the same. 

Using the proposed reduced-state description, the balance equation for c < n < N  (non-boundary values of 

n ) and for bi ,...,1=  is given by    

p(n, i) λ(n)+µi (n)+ v(n, i)[ ] =

p(n−1, i)λ(n−1)+ p(n, j)µ j (n)qji (n)+ p(n+1, j)µ j (n)q̂ j (n)σ i (n)+ p(n+1, i)ν (n+1, i)
j=1

b

∑
j=1

b

∑                         
(4) 

 

The corresponding balance equations for other values of n  are given in the Appendix. 

In the above equation, ν (n, i)  denotes the conditional rate of departures (request completions) by servers 

other than the selected server given the current state (n, i) . Clearly, we need a way to determine ν (n, i)  

for our reduced state equations to be of use.  We propose to use the following intuitive approximation 

ν (n, i) ≈ u(n)−ω(n)  for bi ,...,1= .                            (5) 

For n ≥ c,  the above approximation amounts to assuming ν (n, i) ≈ (c−1)ω(n).  Essentially, we assume 

that the rate of completions for servers other than the selected server exhibits little dependence on the 

current service phase of the selected server.  Another way of stating our approximation is that we replace 

ν (n, i)  by its conditional expected value given n .  As a result, the conditional rates of departure ν (n, i)  
are also expressed as a function of the reduced state description p(n, i)  . 

The details of the computation of ν (n, i)  for other values of n  are given in the Appendix. 

Thus, using equation (4) (and the corresponding equations in Appendix for other values of n ), together 

with equations (1), (2), (3) and (5) we get a system of equations for p(n, i)  which can be solved in several 

different ways.  In our numerical examples, as a proof of concept, we use a simple fixed-point iteration to 

solve for the set of p(n, i)  and hence u(n) . Note that our reduced state description results in a two-

dimensional Markov chain and therefore does not have a closed-form solution.  



Having obtained the u(n) , the steady-state probability that there are n  requests in the system can also be 

computed as  

p(n) = 1
G

λ(k −1)
u(k)

, n = 0,1,...,N
k=1

n

∏ .                (6) 

Here, G  is a normalizing constant such that p(n) =1
n=0

N

∑ . 

The proposed reduced-state solution is an approximation (except in the case of exponentially distributed 

service times) since it replaces the values of the conditional completion rates for servers other than the 

selected server by their marginal conditional expected values (eq. 5).  At this point, we don’t have 

theoretical bounds for the accuracy of our approximation.  Numerical results presented in the next section 

indicate that, in practice, the accuracy is good and, moreover, tends to improve as the number of servers 

increases. 

For our approximation to work, the essential assumption is that of homogeneous (but not synchronized) 

servers.  The assumption of a finite queueing room (buffer size) is motivated by our desire to make the 

model of practical interest, and is not essential for the reduced state approximation to work.  In this paper, 

we assume a quasi-Poisson arrival process.  We believe that it should be possible to extend the idea of 

reduced state description to more general arrival processes such as MAP (Markovian Arrival Process).  

This will be the subject of future work.       

Our fixed-point iteration, described in the Appendix, was intended primarily as a proof of concept.  We 

don’t have a theoretical proof of the existence or uniqueness of its solution, nor do we have a proof of 

convergence of the iterative scheme.  In the literally thousands of cases we studied, it never failed to 

converge within a reasonable number of iterations (typically a few hundred to a few thousand).  The 

computation at each iteration is quite simple so that the resulting execution speed is very fast, i.e., several 

orders of magnitude faster than a full state numerical solution or discrete-event simulation. 

Clearly, the size of the state-space (n, i)  and hence the number of equations to solve is in general far 

smaller than with either of the two full state descriptions mentioned earlier.  Additionally and importantly, 

it grows only linearly with the number of servers and the number of phases, while the complexity of the 

full state description grows combinatorially (see Appendix). 



b  Number of phases for the service time distribution  

c  Number of servers 

N  Buffer space, i.e., maximum of requests in the systems (queued and in service) 

n  Total current number of requests in the system, n = 0,...,N  

λ(n)  Rate of requests arrivals given the current number of requests in the system is n  

σ i (n)  Probability that service of a request starts in phase i,  i =1,...,b  given n  

µi (n)  Completion rate for phase i  of service process given that the current number of 

requests is n  

qji (n)  Probability that service process continues in phase j  upon completion of phase i , 

j,i =1,...,b  given that the current number of requests is n  

q̂i (n)  Probability that service process ends (request departs the system) upon completion of 

phase i,i =1,...,b  given that the current number of requests is n  

ms  Mean service time of a request 

cs  Coefficient of variation of request service time 

ss  Skewness of request service time 

p(n, i)  Probability that there are n  requests in the system and the current phase of the service 

process is i  

p(n)  Marginal probability that there are n  requests in the system 

u(n)  Overall departure rate from the set of c  servers given that the current number of 

requests in the system is n  

ω(n)  Departure rate from the selected server given that the current number of requests in the 

system is n  (when the server is not idle) 

ν (n, i)
 

Departure rate from servers other than the selected server given that the current number 

of requests in the system is n  and the current phase of the service process at the 

selected server is i  

Table 1 – Notation used in this paper. 

  



3. ACCURACY 
In our exploration of the accuracy of the proposed approximation, we consider several sets of values for 

the number of servers c  and the maximum number of requests in the system N , as well as offered load λ

.  Since performance measures such as the mean number of requests in the system in an M/Ph/c queue are 

known to depend on the shape of the service time distribution (and not only its first two moments) (see 

Gupta et al. (2007), Whitt (1980), Wolff (1977)), we also consider several sets of values for the 

coefficient of variation of the service time cs  and we build several distributions with different higher-

order properties, viz. skewness, denoted by ss . 

To build such distributions we keep the mean service time ms  at 1, and we use the algorithm by Bobbio 

et al. (2005).  We explore values of skewness ss  ranging from cs  to 100.  Recall that the skewness of a 

random variable S  is considered to be a measure of the asymmetry of the underlying distribution and is 

defined as ss = E[(S −ms )
3] Var[S]3/2  where Var[S]  denotes the variance of S .  Generally, larger values 

of ss  correspond to longer-tailed distributions.  The algorithm used aims to produce a phase-type 

distribution with the minimum number of phases to match the specified first three moments of the 

distribution. In our numerical examples, the number of phases varies between 2 and 13 (most frequently 

around 4).  

The performance metrics considered include the mean number of requests in the system (relative error), 

the loss probability (relative error), the delay probability (relative error), the server utilization (relative 

error) and the steady-state probability distribution )(np  (mean relative error). We define the relative error 

(expressed as a percentage) of our reduced state description versus the actual values as the ratio 

100× (approximate− actual) / actual .  The mean relative error (used for )(np ) is defined as the weighted 

average of the absolute values of the corresponding relative errors.  Since we use the state probabilities as 

weights, this amounts to 100× p(n)approximate − p(n)actual
n=0

N

∑ .  The actual values are obtained from a numerical 

solution of the full-description balance equations for the number of servers c ≤ 64 , and by discrete-event 

simulation for larger values of c .  In the simulation runs we use 7 independent replications with 

50,000,000 completions per replication.  We only consider relative errors for probabilities exceeding 

0.001 when the actual values are obtained from a numerical solution, and 0.01 when the values come 

from simulation.  There are two main reasons for this limitation.  First, in most real-life problems system 

and workload parameters are rarely known to a very high degree of accuracy. Second, for small 



quantities, it is easy to have large relative errors which do not seem particularly meaningful as a measure 

of the practical accuracy of an approximation. 

We start by a number of examples with state-independent service and simple Poisson arrival process with 

rate λ . In describing our results, we use the notion of offered load per server defined as the ratio c/λ .  

In an attempt to give a comprehensive view of the accuracy of the proposed approximation, each figure 

corresponds to hundreds of data points explored, and the surfaces shown are obtained using an 

interpolation from sets of scattered data points.  Additionally, we present overall error distribution tables 

over close to 10,000 experiments in which the number of servers c  spans the range of 4 to 256, the buffer 

size N  varies between 8 and 1024, the coefficient of variation of the service time distribution cs  spans 

the range of 0.4 to 7, and the offered load per server c/λ  is between 0.2 and 2.   

We start by noting that the reduced-state approximation produces virtually flawless results when the 

coefficient of variation of the service time distribution our approximation does not exceed 1.  Errors tend 

to appear for larger values of the coefficient of variation of the service time and their extent may depend 

on the skewness of the service time distribution.  We illustrate this dependence in Figure 2 for the relative 

error in the mean number in the system with 32=c  servers, the buffer size 64=N  and the offered load 

per server kept at 0.8 ( λ = 0.8× c ).  We observe that the relative error tends to increase as the coefficient 

of variation of the service time cs  increases, especially for smaller values of the skewness ss  of the 

service time distribution. Overall, the relative error for the mean number in the system for the example 

considered remains below 5% even when the coefficient of variation of the service time distribution 

reaches 7.   Note that in a non-negative distribution with a given coefficient of variation cs  the skewness

ss  must be greater than a certain value (see Appendix).  This is the reason behind the white “impossible 

area” band in Figure 2.  Table 2 gives the average relative error in this example for a selected set of values 

for the coefficient of variation of the service time cs .  

Because the accuracy of the approximation tends to be uniformly excellent for smaller coefficients of 

variation of the service time distribution, we devote most of our attention to coefficients of variation of 

the service time above 1.   



 

Fig. 2 – Percentage relative errors of the approximate solution for the mean number of requests in 

M/Ph/c/N queue with c = 32, N = 64  and λ = 0.8× c .Exp-C1 

Coefficient of variation cS
 0.5 1 2 3 4 5 6 7 

Average error (in percent) 0.10% 0% 0.04% 0.20% 0.46% 0.75% 1.08% 1.40% 

Table 2 – Accuracy of the approximate solution for the mean number of requests in M/Ph/c/N queue with

c = 32, N = 64  and λ = 0.8× c  as a function of the coefficient of variation cs . Exp-C1 

In Figure 3, we show an example of the relative error for the mean number in the system for an  M/Ph/c/N 

queue with a buffer space N = 4× c  and a large coefficient of variation 4=sc  as a function of the number 

of servers and of the offered load per server.  We note that the relative error in this example appears to be 

the highest when the offered load per server is around 0.9 and it decreases relatively rapidly as the 

number of servers increases.  Table 3 shows the overall relative errors for the mean number in the system 

for a large set of experiments. We observe that in almost 95% of the cases considered the relative error is 

below 5% and exceeds 10% in less than 2% of cases. The mean relative error is 0.9%. 
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Fig. 3 – Percentage relative errors of the approximate solution for the mean number of requests in 

M/Ph/c/N queue with cS = 4, ss =15  and N = 4× c Exp-E4 

Average Median <5% 5-10% 10-15% >15% 

0.87% 0.03% 94.98% 3.05% 0.97% 1.00% 

Table 3 – Overall accuracy of the approximate solution for the mean number of requests in M/Ph/c/N 

queue.  

Figure 4 and Table 4 are devoted to the relative error in the loss probability (i.e., the probability that an 

arriving request finds the buffer full).  Figure 4 shows the relative error in the loss probability as a 

function of the number of servers and of the offered load per server for a set of parameters with a 

relatively small buffer space 10+= cN  and a large coefficient of variation 4=sc .  In this example, the 

relative error in the loss probability rarely exceeds 2%.  Table 4 shows the overall distribution of relative 

errors in the loss probability for a large set of experiments.  We observe in Table 4 that overall the mean 

error is below 9%, in some 87% of cases the error remains below 5% and it exceeds 10% in about 11% of 

the cases considered. Typically, the infrequent larger relative errors tend to happen when the loss 

probability is close to or below 0.01.  The influence of these larger relative errors on the mean is clear 

from the value of the median error which is below 0.25%.  
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Fig. 4 – Percentage relative errors of the approximate solution for the loss probability in M/Ph/c/N queue 

with cS = 4, ss = 60  and 10+= cN .Exp-A2 

Average Median <5% 5-10% 10-15% >15% 

8.6% 0.24% 87.19% 2.32% 1.66% 8.83% 

Table 4 – Overall accuracy of the approximate solution for the loss probability in M/Ph/c/N queue.  

 In Figure 5 and Table 5, we examine the relative error in the delay probability (i.e., the probability that 

arriving requests find all servers busy).  Figure 5 illustrates the relative error in the delay probability as a 

function of the number of servers c  and of the size of the buffer space N  for a coefficient of variation of 

the service time 3=sc  and offered load per server of 1 (i.e., c=λ ). As mentioned above, this value of the 

offered load corresponds to largest errors.  Nonetheless, we note that the relative error for the delay 

probability, in this example, remains well under 5%.  It is interesting to note that there seems to be no 

clear trend in the relative error as a function of the buffer space N .  Table 5 shows the overall distribution 

of relative errors in the delay probability for a large number of experiments.  We observe that in 93% of 

the cases considered the relative error remains below 5% and it exceeds 10% in less than 4% of cases. 

The mean of the relative error for the delay probability is less than 2%. 
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Fig. 5 – Percentage relative errors of the approximate solution for the delay probability in M/Ph/c/N 

queue with cS = 3, ss = 60  and λ =1× c .Exp-B3 

Average Median <5% 5-10% 10-15% >15% 

1.89% 0.20 92.95% 3.60% 1.22% 2.23% 

Table 5 – Overall accuracy of the approximate solution for the delay probability in M/Ph/c/N queue.  

Figure 6 and Table 6 show the relative error in the per server utilization. Figure 6 illustrates the behavior 

of the reduced-state approximation for the set of parameters with a large coefficient of variation 4=sc  

and a buffer space 10+= cN  used in Figure 4.  Table 6 gives the overall distribution of relative errors in 

the per server utilization.  We observe that the relative errors in the per server utilization tend to be low, 

below 5% in over 98% of cases considered.  They exceed 10% in less than 0.5% of cases, and the mean 

relative error is below 0.5%. 
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Fig. 6 – Percentage relative errors of the approximate solution for per server utilization in M/Ph/c/N 

queue with cS = 4, ss = 60  and N = c+10 .Exp-A2 

Average Median <5% 5-10% 10-15% >15% 

0.30% 0.01% 98.67% 1.19% 0.14% 0% 

Table 6 – Overall accuracy of the approximate solution for per server utilization in M/Ph/c/N queue.  

Figure 7 and Table 7 illustrate the ability of the reduced-state approximation to reproduce the shape of 

steady-state probability distribution )(np .  For each set of parameters (i.e., for each steady-state 

distribution )(np ), we consider the absolute values of the relative errors in the )(np  for all n = 0,...,N , 

and we use the weighted average of these values, where the state probabilities )(np  are the weights, as 

the relevant metric. We refer to this metric of deviation between the exact and approximate values of 

)(np  as the mean relative error for )(np  since it is the expected value of (the absolute values of) the 

relative errors for each n = 0,...,N .   As mentioned at the beginning of this section, this amounts to using 

100× p(n)approximate − p(n)actual
n=0

N

∑  as the mean relative error.  Since it is difficult to estimate very small 

values in discrete-event simulation, we limit the number of servers to 64, value for which we are still able 

to obtain exact numerical results for the actual state probabilities.  

Figure 7 shows an example of the mean relative errors as a function of the number of servers and of the 

offered load per server for a set of model parameters with the coefficient of variation of the service time 

3=sc .  We observe that the mean relative error for the steady-state distribution )(np  varies from close to 

0 to less than 10% depending on the offered load.  We also observe that the largest relative errors tend to 
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occur when the offered load per server is close to 1 and they tend to decrease as the number of servers 

increases.  Table 7 shows the overall mean relative errors over a large number of experiments.  It is 

worthwhile noting that, in general, our approximation correctly reproduces the shape of the steady-state 

distribution )(np . The average error is below 4%, and the errors remain below 5% in some 80% of the 

cases considered.   

 

Fig. 7 – Percentage mean relative errors of the approximate solution for )(np  in M/Ph/c/N queue with

cS = 3, ss = 60  and λ =1× c .Exp-7 

Average Median <5% 5-10% 10-15% >15% 

3.76% 0.43% 80.42% 7.64% 3.17% 8.77% 

Table 7 – Overall accuracy of the approximate solution for )(np  in M/Ph/c/N queue.  

Our results illustrate the overall good accuracy of the proposed reduced-state approximation.  As noted at 

the beginning of this section, we have shown few results for coefficients of variation of the service time 

below 1 because our approximation produces excellent results in those cases.  Errors tend to be larger for 

large values of the coefficient of variation, say, over 7, in particular when the skewness of the service 

time distribution is small.  Even there, errors decrease as the number of servers increases.  The size of the 

queueing room does not appear to have a uniform easy-to-characterize effect on the accuracy of the 

results. 

The proposed approximation method works well also when the rate of arrivals and the service phases 

depend on the current number of requests in the system n .  This is illustrated in Figure 8 where we 
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compare the results obtained for the mean number of requests in the system using our approximation with 

those of an exact numerical solution as a function of the offered load.  These results correspond to a 

system with 32 servers ( c = 32 ) and a queueing room of 128 ( N =128 ).  The service process has a 

coefficient of variation of 3 ( cs = 3 ) with a skewness of 30.  The completion rate of each service phase 

depends on the current number of requests in the system through a dependency of the form s(n) = an+ b  

where the coefficients a  and b  are chosen so that s(1) =1  and s(N ) = 0.7 , i.e., the service rate degrades 

linearly from full speed for a single user down to 70% of its nominal speed as the current number of 

requests in the system increases.  The rate of arrivals of the quasi-Poisson arrival process is given by 

λ(n) = φ × 1− n / (2N )( ) . This workload dependency can be viewed as representing a set of 2N  identical 

exponential request sources. Thus the model is an instance of the machine repairman model with state-

dependent repair rates.  We observe in Figure 8, which shows the mean number in the system as a 

function of the maximum offered load φ , the very good accuracy of our approximate results for this 

example. 

 

Fig. 8 – Mean number of requests in M/Ph/c/N queue with c = 32 , N = 4× c , cS = 3,  ss = 30  and state 

dependencies for the service process and the arrival process for various levels of workload. 

Examining the reasons for deviations between the exact values and those produced by our approach, we 

note that the only approximation in our reduced state solution is in the computation of the conditional 

completion rates of “other” servers given the number of requests in the system and the current phase of 

the selected server ν (n, i) ≈ u(n)−ω(n)  (our formula (5)) and ν (n, 0) ≈ u(n)  (see Appendix).  It is not 

surprising then that the deviations tend to decrease as the number of servers increases.  Indeed, the 
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knowledge of the current phase of just one out of many servers does not convey much information about 

the state of the other servers.  

As mentioned before, it is clear that the number of states in our reduced state description increases 

linearly with the number of servers and phases (see Appendix).   

4. CONCLUSION 
This paper presents an approach, believed to be novel in the context of its application, to the solution of a 

queueing system with multiple homogenous servers, quasi-general service times (phase-type 

distributions), quasi-Poisson arrivals and a limited buffer space (queueing room).  The proposed approach 

uses a reduced state description in which the state of only one server is represented explicitly while the 

other servers are accounted for through their rate of completions.   

We solve the resulting system of balance equations using a fixed-point iteration.  We do not have a 

theoretical proof of existence and uniqueness of the solution or convergence of the fixed-point scheme.  

Our reduced state approach involves an approximation, and, unfortunately, we have not been able to 

obtain theoretical bounds on its accuracy.  

In practice, in literally tens of thousands of varied examples, the fixed-point iteration never failed to 

converge with a reasonable speed.  The accuracy of our approximation is generally good and, importantly, 

tends to improve as the number servers in the system increases.  This conclusion is supported by a large 

number of data points.  Additionally, the proposed reduced state approximation is intuitive and quite 

simple to implement in a standard programming language. It is also thrifty in terms of memory 

requirements and its execution speed is fast.  

In the classical state description used for this type of queueing system, the number of states grows 

combinatorially, making the problem intractable for larger numbers of servers and/or phases.  By contrast, 

the computational complexity in terms of the number of states in our reduced state description grows only 

linearly in the number of servers and phases. This puts problems with hundreds of servers and several 

phases within easy reach of a fast numerical solution. 

The proposed approach appears applicable to other problems with multiple servers and quasi-general 

service times such as systems with quasi-general arrival times, systems with priorities, etc. 

REFERENCES 
Altiok, T., and Perros, H.G. 1986. Open Networks of Queues with Blocking: Split and Merge 

Configurations, AIIE Trans,. Vol 18, pp. 251-261. 



Begin, T., and Brandwajn, A. 2013. A note on the accuracy of several existing approximations for 

M/Ph/m queues, HSNCE, Kyoto, Japan. 

Bobbio, A., Horvath, A., and Telek, M. 2005. Matching three moments with minimal acyclic phase type 

distributions, Stochastic Models, Vol. 21, pp. 303-326. 

Bolch, G., Greiner, S., Meer, H., and Trivedi, K. 2005. Queueing Networks and Markov Chains. Second 

Edition, Wiley-Interscience. 

Dan, A., and Towsley, D. 1990. An approximate analysis of the LRU and FIFO buffer replacement 

schemes, ACM SIGMETRICS Performance Evaluation Review, Vol. 18(1), pp.143-152.   

Glasserman, P., and Wei-Bo G. 1991. Time-changing and truncating K-capacity queues from one K to 
another, Journal of Applied Probability, Vol. 28 (3), pp. 647-655. 

 

Gouweleeuw, F.N., and Tijms, H. 1996.A simple heuristic for buffer design in finite-capacity queues, 

European Journal of Operational Research,Vol. 88 (3), pp. 592-598. 

Gupta, V., Harchol-Balter, M., Dai, J., and Zwart, B. 2010.On the inapproximability of M/G/K: why two 

moments of job size distribution are not enough. Queueing Systems, Vol. 64 (1), pp. 5-48. 

Gupta, V., Harchol-Balter,M., Sigman,K., and Whitt,W. 2007. Analysis of Join-the-Shortest-Queue 

Routing for Web server Farms, Performance Evaluation, Vol. 64 (9-12), pp. 1062-1081. 

Hokstad, P. 1978. Approximations for the M/G/m Queue, Operations Research, Vol. 26 (3), pp. 510-523. 

Johnson, M.A., and Taaffe, M.R. 1988. The denseness of phase distributions. School of Industrial 

Engineering, Purdue University.  

Kimura, T. 1994. Approximations for multi-server queues: system interpolations, Queueing Systems, Vol. 

17, 1994, pp. 347-382. 

Kimura, T. 1996. A transform-free approximation for the finite capacity M/G/s queue, Operations 

Research,Vol. 44 (6), pp. 984-988. 

Latouche, G., and Ramaswami, V. 1993. A logarithmic reduction algorithm for quasi-birth-and-death 

processes, Journal of Applied Probability.Vol. 30, pp. 650-674. 

Bini, D., Latouche, G., and Meini, B. 2005. Numerical methods for structured Markov chains. Oxford: 

Oxford University Press. 

Ma, B.N.W., and Mark, J.W. 1995. Approximation of the Mean Queue Length of an M/G/c Queueing 

System, Operations Research, Vol. 43 (1), Special Issue on Telecommunications Systems: Modeling, 



Analysis and Design, pp. 158-165. 

Miyazawa, M. 1986. Approximation of the Queue-Length Distribution of anM/GI/s Queue by the Basic 

Equations, Journal of Applied Probability, Vol. 23 (2), pp. 443-458. 

Nozaki, S.A., and Ross, S.M. 1978. Approximations in Finite-Capacity Multi-Server Queues with 

Poisson Arrivals, Journal of Applied Probability, Vol. 15 (4), pp. 826-834. 

Osogami, T., and Harchol-Balter, M. 2006. Closed form solutions for mapping general distributions to 

quasi-minimal PH distributions, Performance Evaluation, Vol. 63 (6), pp. 524-552. 

Ramaswami, V., and Lucantoni, D.M. 1985. Algorithms for the multi-server queue with phase type 

service, Stochastic Models, Vol. 1, pp. 393-417.  

Schweitzer, P., and Konheim, A. 1978. Buffer overflow calculations using an infinite-capacity model, 

Stochastic Processes and Their Applications, Vol. 6, pp. 267–276. 

Seelen, L.P. 1986. An Algorithm for Ph/Ph/c Queues, European Journal of the Operations Research 

Society, Vol. 23, pp. 118-127. 

Smith, J.M. 2003. M/ G/c/K blocking probability models and system performance, Performance 

Evaluation, Vol. 52 (4), pp. 237–267. 

Tijms, H., Van Hoorn, M.H., and Federgruen, A. 1981. Approximations for the Steady-State Probabilities 

in the M/G/c Queue, Advances in Applied Probability, Vol. 13 (1), pp. 186-206. 

Tijms, H. 1992. Heuristics for finite-buffer queues, Probability in the Engineering and Informational 

Sciences, Vol. 6 (3), pp. 277-285. 

van Vuuren, M., and Adan, I. 2005. Approximating the Σ GI/G/s queue by using aggregation and matrix 

analytic methods, Stochastic Models, Vol. 21 (2-3), pp. 767-784. 

Whitt, W. 1980. The effect of variability in the GI/G/s queue, Journal of Applied Probability, Vol. 17 (4), 

pp. 1062-1071. 

Wolff, R.W. 1977. The Effect of Service Time Regularity on System Performance, Computer 

Performance, North Holland, pp. 297-304. 

 

ACKNOWLEDGEMENTS 
The authors wish to thank the anonymous referees for their thorough and constructive review of an earlier 

version of this paper. 



APPENDIX 

A.1 Balance equations for the reduced-state description 
For completeness, we give here the reduced state description balance equations for the cases not explicitly 

treated in the body of the paper, starting with the case 0 < n < c.  

p(n, i) λ(n)+µi (n)+ v(n, i)[ ] = p(n−1,0)λ(n−1)σ i (n) / (c− n+1)+ p(n−1, i)λ(n−1)+

p(n, j)µ j (n)qji (n)+ p(n+1, i)ν (n+1, i), i =1,...,b
j=1

b

∑
 

p(n, 0) λ(n)+ v(n, 0)[ ] = p(n+1, i)µi (n)q̂i (n)+ p(n+1,0)ν (n+1,0)+ p(n−1,0)λ(n−1)(c− n) / (c− n+1)
i=1

b

∑ .  

Note that we use the notation p(n, 0)  to denote the case when the selected server is idle, which, in our 

model, can only happen if n < c.  Note also that we have p(n = 0, i ≠ 0) = 0  and ν (n =1, i ≠ 0) = 0.  

In the case n = 0 , we can only have  

p(0, 0)[λ(0)]= p(1, i)µi (0)
i=1

b

∑ q̂ i (0)+ p(1, 0)ν (1, 0).  

For n = c  we have 

p(c, i) λ(c)+µi (c)+ v(c, i)[ ] = p(c−1,0)λ(c−1)σ i (c)+ p(c−1, i)λ(c−1)+ p(c, j)µ j (c)qji (c)+ p(c+1, i)v(c+1, i)
j=1

b

∑

+ p(c+1,
j=1

b

∑ j)µ j (c)q̂ j (c)σ i (c), i =1,...,b.

 

Finally, for n = N  we obtain 

[ ] .,...,1),()(),()1(),1(),()(),(
1

biNqNjNpNiNpiNNiNp
b

j
jiji =+−−=+ ∑

=

µλνµ  

The conditional rate of completions for the selected server when it is not idle and there are n  requests in 

the system is given by ω(n) = p(n, i)µi (n)q̂i (n) / p(n, j)
j=1

b

∑
i=1

b

∑  and the conditional rate of request completion 

given n  can be expressed as u(n) =min(n,c)ω(n).   

As before, we approximate the conditional rates of departure ν (n, i)  for i =1,,,,b  by ν (n, i) ≈ u(n)−ω(n).  

For 0 < n < c,  when the selected server is idle, we use ν (n, 0) ≈ u(n) .  



A.2 Constraints on skewness 

Let Z  be a non-negative random variable, and denote by mi its i-th moment E[Zi ]  and by ni  its i-th 

normalized moment.  We have n2 =m2 /mi
2  and n3 =m3 / (m1m2 ) , and it is has been shown that (see 

Osogami  and Harchol-Balter (2006)) n3 ≥ n2 .  It follows that the skewness of Z , denoted by sZ , must 

satisfy the relationship 

sz ≥ cZ −1/ cZ  , 

where cZ = (m2 /m1
2 −1)1/2  and sZ = (m3 −3m1m2 + 2m1

3) / (m2 −m1
2 )3/2. cZ  is the coefficient of variation 

of  the random variable Z .   

A.3 Fixed-point iteration 
The system of equations for p(n, i)  can be solved in a number of ways.  Using a superscript to denote the 

iteration  number (k) , one possible straightforward approach is to use a single array to store the values of 

the state probabilities pk (n, i)  in which any newly computed value immediately replaces the value from 

the previous iteration, and a single array for the request completion rates uk (n) . The steps of our 

approach are:  

Step 1. Select an initial distribution p0 (n, i)  and compute the corresponding values for the conditional 

request completion rates u0 (n) .   

Step 2. At iteration k, k =1,2,... , enumerate states in the order of increasing values of n  and, for each n , 

in the order i = 0,1,...,b  to compute non-normalized values !pk (n, i)  directly from the corresponding 

balance equations as 

!pk (0, 0) = 1
λ(0)

pk−1(1, i)µi (0)
i=1

b

∑ q̂ i (0)+ p
k−1(1, 0)ν (1, 0)#

$%
&
'(

 

For n =1,...,c−1  

!pk (n, 0) = 1
λ(n)+uk−1(n)

pk−1(n+1, i)µi (n)q̂i (n)+ p
k−1(n+1,0)uk−1(n+1)+ !pk (n−1,0)λ(n−1)(c− n) / (c− n+1)

i=1

b

∑
#
$%

&
'(

 



!pk (n, i) = 1
λ(n)+µi (n)+ (n−1)ω

k−1(n)

!pk (n−1,0)λ(n−1)σ i (n) / (c− n+1)+ !p
k (n−1, i)λ(n−1)

+ !pk (n, j)µ j (n)qji (n)
j=1

i−1

∑ + pk−1(n, j)µ j (n)qji (n)+ p
k−1(n+1, i)nω k−1(n+1)

j=i

b

∑

#

$

%
%

&

'

(
(,

 

i =1,...,b.  

For n = c  

!pk (c, i) = 1
λ(c)+µi (c)+ (c−1)ω

k−1(c)

!pk (c−1,0)λ(c−1)σ i (c)+ !p
k (c−1, i)λ(c−1)+ !pk (c, j)µ j (c)qji (c)

j=1

i−1

∑

+ pk−1(c, j)µ j (c)qji (c)+ p
k−1(c+1, i)(c−1)ω k−1(c+1)

j=i

b

∑

+ pk−1(c+1,
j=1

b

∑ j)µ j (c)q̂ j (c)σ i (c)

#

$
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%
%
%
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i =1,...,b.  

For n = c+1,...,N −1  

!pk (n, i) = 1
λ(n)+µi (n)+ (c−1)ω

k−1(n)

pk (n−1, i)λ(n−1)+ !pk (n, j)µ j (n)qji (n)
j=1

i−1

∑ + pk−1(n, j)µ j (n)qji (n)
j=i

b

∑

+ pk−1(n+1, j)µ j (n)q̂ j (n)σ i (n)+ p
k−1(n+1, i)(c−1)ω k−1(n+1)

j=1

b

∑

#

$

%
%
%

&

'

(
(
(

 

i =1,...,b.  

For n = N  

!pk (N, i) = 1
µi (N )+ (c−1)ω

k−1(N )
!pk (N −1, i)λ(N −1)+ !pk (N, j)µ j (N )qji (N )+ pk−1(N, j)µ j (N )qji

j=i

b

∑
j=1

i−1

∑ (N )#
$%

&
'(
,

i =1,...,b.
 

Step 3. Compute normalized values pk (n, i)  

pk (n, i) = !pk (n, i) / !pk (n, i)
i=0

b

∑
n=0

N

∑  

Step 4. Compute the corresponding values of the conditional request completions rates given n  

ω k (n) = pk (n, i)µi (n)q̂i (n) / pk (n, i)
i=1

b

∑
i=1

b

∑  and uk (n) =min(n,c)ω k (n) . 



If max
n
1−uk−1(n) / uk (n) < ε  where ε  is the desired convergence stringency, continue with Step 5 else go 

back to Step 2. 

In our numerical studies, we used ε =10−8 .   

Step 5. Use the values for u(n)  obtained from the iteration to compute the steady-state distribution p(n)  

from formula (6), as well as any derived performance metrics. 

This simple-minded iteration was only intended as a proof of concept.  Because it uses directly the 

balance equations for the reduced state together with the standard normalization condition p(n, i) =1
i=0

b

∑
n=0

N

∑ , 

it seems clear that, if it converges, it must converge to the unique solution of the balance equations for 

p(n, i) .  We do not have a theoretical proof of its convergence. 

The number of iterations needed to attain convergence varies from a few hundred to several thousand 

depending on the service time distribution and the number of servers.  It does not seem particularly 

sensitive to the offered load λ  or the buffer size N . As illustrated in Figure 9 for a variant of the fixed-

point scheme described above, the number of iterations clearly increases as the number of servers c  or 

the coefficient of variation of the service time sc  increases.  Since the computational effort at each 

iteration is quite limited, the overall execution speed remains very fast even for hundreds of servers.     

 

Fig. 9 – Number of iterations for the approximate solution in M/Ph/c/N queue with ss =1.5× cS,  
λ = 0.8× c  and N = 2× c .Exp-D4 
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A.4 Complexity 
It is clear that the number of states in the proposed reduced state approximation grows linearly with the 

number of servers and phases in the service distribution, as opposed to combinatorially in the standard 

full state description.  Figures 10a and 10b illustrate this point. 

  
Fig.10a – Comparison between the number of 

states in the full and the reduced state description 

for M/Ph/c/N queue with b = 4  and N = 5× c+ 20.  

Fig.10b – Comparison between the number of 

states in the full and the reduced-state description 

for M/Ph/c/N queue with c = 64  and 

N = 5× c+ 20.  
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