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ABSTRACT
With the aim of increasing wireless data rates, IEEE 802.11n in-
troduced the possibility for WLAN nodes to bond two channels
into a single channel. However, channel bonding also limits spacial
reutilization and complexifies channel assignment. In this paper,
we present a fast and efficient solution for channel width selection
and channel assignment in 802.11 WLANs using channel bonding.
The proposed algorithm uses a novel, graph-centric metric to pro-
pose a single channel width for all the APs of the WLAN aiming at
avoiding starvation in any of the network’s APs. Decoupling the
choice of channel width and channel assignment results in a scal-
able approach that bypasses the usual complexity issues of classic
channel assignment schemes. We test the solution’s precision in
choosing a suited channel width and assignment by comparing its
results with those delivered by the ns–3 network simulator. We
obtain that, in the large majority of the cases, the choice made by
our solution matches the simulation results.
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1 INTRODUCTION
With the aim of increasing the data rates of wireless links, IEEE
802.11n introduced the possibility for WLAN (Wireless Local Area
Network) nodes to use two channels at the same time to exchange
their frames. Bonding two 20 MHz channels into one 40 MHz chan-
nel provides a simple way of (slightly more than) doubling the data
rate of a wireless link. The practice of channel bonding has been
further extended in the following 802.11ac and 802.11ax amend-
ments, with 20 MHz channels being potentially aggregated into 40,
80, or 160 MHz channels.

In addition to increasing the data rate of a wireless link, channel
bonding enables (slightly) more efficient use of the (scarce) radio
bandwidth by limiting the number of used pilot channels in OFDM.
However, bonding two or more channels into one restrains the
spatial reutilization of the bandwidth.

To the best of our knowledge, there is currently no simple recipe
on how to decide an appropriate width and assignment (a.k.a allo-
cation) for the channels. It is often noted that, in most cases, wider
channels favor the aggregate throughput of nodes while narrower
channels may represent a better option when fairness among the
nodes is a priority (provided the channel assignment was correctly
made) (e.g., [1]). However, the issue of selecting the channels and
their width remains a complex problem. Clearly, the right choice
depends on many factors, and in particular, on the specifics of the
WLAN topology.

In this paper, we present the first steps towards a fast and effi-
cient strategy to decide an appropriate channel width and assign-
ment for the APs (Access Points) of a recent 802.11-based WLAN.
Unlike an exhaustive approach, our search process is made com-
putationally tractable by two of its features. First, we decouple the
original problem into two sub-problems: channel width selection
and channel assignment. By doing so, we limit the search to ho-
mogeneous assignments, which configure the same channel width
for all APs. Second, our proposed solution leverages a novel perfor-
mance evaluation technique beside classical channel assignment
schemes. Overall, our solution helps restrain the number of APs
being in severe starvation hence leading to the finding of a good
trade-off between aggregate throughput and fairness.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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The remainder of the paper is organized as follows. Section 2
provides an overview of the related work. In Section 3, we precisely
describe the problem under study. Our proposed solution is pre-
sented in Section 4. We evaluate the good behavior of our solution
in Section 5 through a number of simulation experiments. Section 6
concludes this paper.

2 RELATEDWORK
Initially, in the first versions of IEEE 802.11, namely the historical
standard and the amendments b/a/g, channels had a fixed width
of 20 MHz. In this context, channel assignment (CA) algorithms
consisted of assigning non-overlapping channels to APs with the
aim of minimizing interference between APs [8, 11, 14, 17].

Since the IEEE 802.11n amendment, APs can aggregate channels
(channel bonding). More precisely, the bonding can pertain to two
20 MHz channels in 802.11n, and two, four or eight 20 MHz chan-
nels for the most recent amendments (ac/ax) leading to channel
widths of 40, 80 and 160 MHz, respectively. While wider channels
provide greater physical data rates for transmitting frames, their
use increases the number of overlapping channels, interference,
and conflicts between APs. Overall, the introduction of channel
bonding hardens the CA problem that typically aims at finding
an appropriate trade-off between interference and throughput. In
particular, the number of possible configurations is significantly
increased.

The CA problemwith channel bonding is referred to as CB (Chan-
nel Bonding) problem in the literature. We categorize solutions to
the CB problem through three approaches: i) methods that consider
a model to evaluate a given assignment and that try to find the one
that optimizes an objective function, ii) solutions that are based on
measurements and adapt their configuration accordingly, and iii)
algorithms that use machine learning techniques.

One of the pioneering works presenting a solution for the CB
problem belongs to the first approach (model based). The solution
named SA (Spectrum Assignment for WLAN) is formulated as an
optimization problem for which the authors proposed a distributed
resolution [5]. For a given topology, the algorithm aims at mini-
mizing interference between APs while taking into account the
preferences of APs for certain channel widths. The authors of [10]
present an analytical model that considers both collisions and in-
terference. The CB problem applies to IEEE 802.11ac WLAN and is
formulated to optimize the throughput given traffic demand. The
optimization problem is then solved through a genetic algorithm.
In [6] and [1], the model is based on a continuous time Markov
chain (CTMC). The authors of [6] use this model to evaluate the
throughput and the system utility for any WLAN topology. It is
then combined into an optimization problem for which the authors
proposed a heuristic. The authors of [1] use the CTMC on simple
topologies to evaluate the performance of the WLAN as a function
of the channel widths. Simulations are used for more complex sce-
narios. They show that an adaptation of the channel bandwidth on
a per-packet transmission outperforms single-channel on average
but may generate unfair situations where WLANs may starve. A
Markov network that models the interaction between the nodes
is proposed in [2]. The model and simulations considering IEEE

802.11ac and ax amendments are applied to dense WLANs. Re-
sults show that spatial correlations between the nodes significantly
impact the performance even between nodes that are not in the
sensing range of each other. A renewal process is proposed in [9]
to model IEEE 802.11ac and ax WLANs. Results on simple topology
allow the authors to derive the performance of channel bonding
for these two amendments. Based on these results, a heuristic is
proposed to select the channels.

The second category of algorithms uses a data-based approach
where channels are set in real-time according to local measurements.
In [12], a centralized solution is proposed to solve the CB problem. A
controller collects the channel utilization from the APs and updates
a matrix whose each element represents the estimated utilization of
a given channel when it is assigned to a particular AP. The channel
assignment problem is solved by finding a solution that maximizes
the sum of the usage of the channel. Another online solution is
proposed in [3]. As in [12] the algorithm is based on the activity
of the channels. When an AP tests a new channel, it associates a
satisfaction score based on what it has been able to send on this
channel during a certain period. If the score is satisfactory, the
AP remains on this channel, otherwise, it resumes its exploration.
Two scenarios are studied in [21] corresponding to an enterprise
and a residential WLAN. The CA method considers the constraints
imposed by bonding, and attempts to use wider bandwidths as they
often result in higher throughput.

Machine learning (ML) techniques offer a promising approach
to the CB problem. In [20], a neural network is employed and
combined to a Markov chain. This allows the APs to predict the
usage of different channels. The assignment is then performed
to maintain fairness between channels and APs. Two algorithms
based on reinforcement learning are proposed in [15] and [13]. It
consists of exploring in real-time new configurations and exploiting
the ones that offer good performance. The scenario in [15] is a
denseWLAN. The proposed method relies on a graph convolutional
network to extract the carrier sensing relationships between APs.
A game theory method is then used to collect the training set, on
which a neural network is applied to perform the CA. [13] focuses
on a multi-armed bandits approach with the Thompson sampling
algorithm to select the new configurations to evaluate. In this work,
the solution performs both the CA and the associations between
APs and stations.

In summary, solutions based either on models or machine learn-
ing techniques must explore a tremendous number of assignments
and channel widths. They typically improve the current assignment
in terms of fairness or throughput, but they typically involve a very
limited exploration of the solution space. As for on-line and ML
techniques, their exploration phase incurs a cost as new configura-
tions that can be poor in terms of performance have to be tested
continuously. In this paper, we split the solution space into its two
dimensions (channel and width). By doing so, we significantly re-
duce the complexity of the CA problem at the cost of having a less
fine-grained exploration. Note also that the exploration of solutions
is performed using an analytical model so that only the most ap-
propriate found solution is applied to the WLAN. This can prove
to be a useful property to avoid disrupting an operational network.
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Figure 1: Available channels in the 5GHz band in Europe [4].
We only label the channels of U-NII-1 and U-NII-2A that we
reuse in Section 5.

3 TERMINOLOGY
Before presenting our proposed strategy to select channel width
and assignment, we introduce some terminology used to describe
WLANs and performance metrics of interest for our study.

3.1 Physical and logical neighbors
We consider an IEEE 802.11 WLAN composed of N APs that use
Static Channel Bonding (SCB) [7]. The APs n andm (∈ {1, . . . ,N }2)
of the WLAN are said to be physical neighbors if they can detect
each other’s transmissions. Note that the physical neighbors of an
AP are mainly determined by the transmission power and sensi-
tivity threshold of its NIC (Network Interface Card) and by the
radio wave propagation. We assume that all detection ranges are
symmetrical, i.e., if n is a physical neighbor ofm, thenm is also
a physical neighbor of n. A sample four-AP WLAN is shown in
Figure 2a, where AP 3 detects all the other APs, while AP 4 detects
only the transmissions of AP 3. Thus AP 3 is the only physical
neighbor of AP 4 as depicted in Figure 2b.

Each AP operates either on a basic channel of 20 MHz, or on
a bonded channel of 40 MHz, 80 MHz, or 160 MHz. The number
of non-overlapping channels for a given width will depend on the
chosen width, but also on regional regulations. For example Figure 1
shows the available channels in Europe. In our case, we use the
same channel width for all APs, and we usew to denote its value
and Cw to denote the set of available channels for the width w
MHz. For instance, forw = 160MHz in Europe and in the U-NII-1
and U-NII-2A bands, we have Cw = {a} and |Cw | = 1, as shown in
Figure 1. It is important to mention that in real-life WLANs, it may
happen that two APs that detect each other’s transmissions on a
20 MHz channel no longer do so on a wider channel, as the same
energy is spread over a wider spectrum.

For the sake of our study, we introduce the notion of logical
neighbors. Logical AP neighbors are APs that are both physical
neighbors and operating on overlapping channels. Clearly, unless
there is only one channel in use for the whole WLAN, there are typ-
ically much less logical neighbors than physical neighbors thanks
to the use of non-overlapping channels.

3.2 Physical and logical conflict graphs
We associate two graphs to any WLAN: its physical conflict graph,
and its logical conflict graph. The former derives only from the
pairs of physical neighbors of each AP. Its vertices represent the
WLAN’s APs and an edge exists between two vertices when the

Notation Description
N Number of APs in the WLAN
Gw (v ) Logical conflict graph for channel widthw and chan-

nel assignment described by vector v
Cw Set of available channels of widthw
L Payload length, in bytes
R Physical data rate in Mbps for a given MCS index,

number of spatial streams and guard interval length
a Frame aggregation rate, a ∈ {1, ..., 64}
γn Achievable throughput of AP n in Mbps
γ ′n Achieved throughput of AP n in Mbps
Γ Aggregate throughput for the WLAN in Mbps
ST Starvation index (number of APs in starvation)
PF Proportional fairness

Table 1: Principal notations.

corresponding APs are physical neighbors. Figure 2b depicts the
physical conflict graph associated to the WLAN shown in Figure 2a.

The logical conflict graph depends on the chosen channel as-
signment and hence on the logical neighbors. We use Gw (v ) to
denote the logical conflict graph associated to a channel of width
w and an assignment v where v is a vector describing the channels
assigned to each AP. For instance, v = (b,b, c,b) represents a pos-
sible channel assignment for our sample four-AP WLAN when the
channel assignment is as follows: APs 1, 2, and 4 are all using the
same channel of 80 MHz, while AP 3 is using a different channel
of 80 MHz too (depicted by the dashed line). Note that, with this
channel assignment, AP 3 is no longer in conflict with any of its
neighbors and the logical conflict graph involves only one edge
between APs 1 and 2. The corresponding conflict graph depicted in
Figure 2c is denoted by G80 (b,b, c,b).

3.3 Performance metrics
Each AP of the WLAN exchanges traffic with its associated stations.
The traffic is characterized by the payload size L of the frames, the
used physical parameters (MCS index, number of spatial streams,
guard interval length), and the frame aggregation rate a (i.e., the
average number of MPDUs aggregated in every frame transmission).
From these parameters, we can derive the achievable throughput of
AP n denoted by γn as:

γn =
L × a

TDCF + a ×
L+HMAC

R +TACK
, (1)

where TDCF is the sum of the overhead times needed for the DCF
procedure [4] including the physical layer header, HMAC is the
MAC header in bytes, R is the physical data rate resulting from
the combination of MCS index, number of spatial streams and
guard interval length, andTACK is the total time needed to send the
acknowledgment frame. The achievable throughput γn is simply
the throughput AP n would achieve in downlink if it were the
only AP to access its channel. However, this is often not the case
and the AP has to share the channel with other logical neighbors
APs resulting in a so-called achieved throughput. We denote AP
n’s achieved throughput as γ ′n , and it follows that γ ′n ≤ γn . The
aggregate throughput of the WLAN, denoted Γ, is simply computed
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(c) Logical conflict graph for a given channel
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Figure 2: An example of a WLAN with 4 APs.

as the sum of the achieved throughputs of all the APs:

Γ =
N∑
n=1

γ ′n . (2)

Defining starvation is a bit more problematic as it depends on both
the interpretation and the performance goals. In this paper, we
consider that an AP is experiencing starvation whenever its ratio
γ ′n
γn ∈ [0, 1] is lower than some fixed threshold denoted by pstarve.
For example, if pstarve = 0.1, then an AP is considered in starva-
tion if its achieved throughput is less than 10% of its achievable
throughput. We use ST to denote the number of APs in starvation:

ST =
N∑
n=1

1 γ ′n
γn

<pstarve (3)

Furthermore, for the sake of completeness, we also consider the
proportional fairness metric that we compute here as follows:

PF =
N∑
n=1

log
γ ′n
γn
. (4)

Note that PF has an upper bound PF = 0 for which the solution is
deemed most fair (i.e., all the APs have their achieved throughput
equal to their achievable throughput) and no lower bound.

Having defined our WLAN representation and the performance
metrics of interest for our study, we now detail our proposed solu-
tion for radio channel assignment.

4 PROPOSED SOLUTION
Wenowdescribe our solution for channel selection that circumvents
the original problem’s complexity by decoupling the channel width
and the channel assignment issues.

4.1 Maximum Independent set Ratio
Our proposed solution is based on the WLAN’s physical conflict
graph. It relies on the identification of the APs that are in advan-
tageous positions regarding medium access for transmissions, or
equivalently, those most likely to be in starvation because of their
location in the conflict graph.

We first recall some graph-theoretic definitions useful for our
study. The maximal independent set refers to a subset of vertices

that contains no neighbor nodes and cannot be extended by adding
more vertices. For example, in our sample four-AP conflict graph in
Figure 2b, there are three maximal independent sets: {1, 4}, {2, 4},
and {3}. A maximum independent set denotes the maximal indepen-
dent set(s) with the highest cardinality. In our example, {1, 4} and
{2, 4} are both maximum independent sets. We useMMS (Gw (v ))
to denote the set containing all the maximum independent sets of
Gw (v ).

We can now introduce a new quantity that we specifically devise
for our study: the Maximum Independent set Ratio (MIR). MIR is
calculated for each of the graph’s vertices as the proportion of
maximum independent sets to which the vertex belongs. Therefore,
for vertex n, we have:

MIR (n,Gw (v )) =
|K |

|MMS (Gw (v )) |
. (5)

where K is the subset ofMMS (Gw (v )) that verifies n ∈ K .
The maximum independent sets and theMIR values of any graph

and any vertex can be obtained using the Bron-Kerbosch algo-
rithm [19]. We discuss the complexity of the latter algorithm in
Section 4.3.

As an example, theMIR values for the vertices representing our
four-AP sample network when using a single channel of 160 MHz
for all APs (i.e., v = (a,a,a,a)) are shown in Figure 3. AP 4 belongs
to all maximum independent sets and so it has anMIR (4,G160 (a,a,a,a)) =
1. Conversely, APs 1 and 2 belong to half of the maximum indepen-
dent sets, sowe haveMIR (1,G160 (a,a,a,a)) =MIR (2,G160 (a,a,a,a))
= 0.5. Finally, we haveMIR (3,G160 (a,a,a,a)) = 0 since AP 3 does
not belong to any maximum independent set.

1 3

2

4
0.5

0.5

0 1

Figure 3: CalculatedMIRs for a given logical conflict graph.

Interestingly, the MIR of vertex n is a major factor in deter-
mining its achieved throughput γ ′n . Let us consider a set of 60



Towards a fast and efficient strategy to assign channels in WLANs with channel bonding PE-WASUN ’20, November 16–20, 2020, Alicante, Spain

randomly generated physical conflict graphs of WLANs containing
between 8 and 30 APs and with average AP degrees ranging from
2.5 to 8.3. Assuming APs in saturation with only downlink traffic
to their single associated station using MCS index 5, a same chan-
nel of width w = 20 MHz, a frame aggregation rate a = 4, and a
payload L = 1500 bytes, we use the ns–3 discrete-event network
simulator [16] to evaluate the achieved throughput γ ′n of each AP.
Figure 4 depicts the AP’s achieved throughput as a function of the
MIR of every AP of these graphs. We observe that there is a strong
correlation between an AP’sMIR and its achieved throughput γ ′n .

Figure 4: The achieved throughput as a function of MIR ob-
tained by simulating the behavior of hundreds of APs for 60
different WLANs.

This observation is the cornerstone of our proposed solution.
Indeed, for a given logical conflict graph, we can easily calculate the
MIR value of each AP that, in turn, helps us estimate its attained
throughput and hence predict whether that AP is in starvation or
not. To do that, we naturally resort to a linear regression as follows:

γ ′ = β0 + β1 ×MIR. (6)

where β0 and β1 are found to be equal to 0.89 and 34.00, respectively.

4.2 Channel width and assignment algorithm
In our solution, we perform the search for the channel assignment
in the worst-case scenario, namely when all APs are saturated
(permanently needing to access the channel). We also rely on the
assumption, as it was shown by in [1], that wider channels favor
the aggregate throughput of the WLAN, while smaller and sepa-
rate channels avoid starvation. Hence, our solution iterates on the
possible channel widths, starting with the widest one, i.e., 160 MHz.
For each channel width, we use the Tabu Search algorithm [18] to
compute a k-coloring of the physical conflict graph, where k is the
number of available channels for the considered channel width. In
a nutshell, the Tabu search attempts to provide a channel assign-
ment that minimizes the number of edges in the resulting logical
conflict graph. We then calculate theMIR of each AP and estimate

its attained throughput using the linear regression model.At this
stage, we are able to compute ST that evaluates the number of APs
in starvation. If this latter is larger than one, we divide the chan-
nel width in half and multiply the number of available channels
by two. With this new setting, we run again the same procedure:
coloring the graph, calculating the APs’MIRs and ST metrics, etc.
The procedure ends when a channel width for which there are no
starving APs is found, or when the minimum channel width of 20
MHz is reached. The pseudo-algorithm of the complete solution is
given in Algorithm 1.

Algorithm 1 Solution to select channel width and assignment
1: Input: physical conflict graph, number of verticesN , starvation

threshold pstarve
2: Output: selected channel widthw , channel assignment v

3: w ← 160
4: k ← |C160 | //# of channels for the current width
5: whilew ≥ 20 do
6: v ← compute a k-coloring channel assignment (Tabu)
7: computeMIR (n,Gw (v )),∀n ∈ {1, ...,N } using Eq. 5
8: compute γ ′(n),∀n ∈ {1, ...,N } using Eq. 6
9: compute ST using Eq. 3
10: if ST > 0 then
11: w ←w / 2
12: k ← |Cw |
13: else
14: return (w,v )
15: end if
16: end while
17: return (w,v )

Note that Algorithm 1 has a single tuning parameter: the star-
vation threshold, pstarve. If its value is too large, this could cause
the algorithm to erroneously suppose APs in starvation and to
wrongfully reject an otherwise appropriate channel assignment.
Conversely, a too small value for pstarve can lead the algorithm to
overlook APs in starvation and lead to channel assignment causing
starvation.

In the interest of clarity, Figure 5 shows the results returned
by Algorithm 1 on the sample four-AP WLAN using a starvation
threshold pstarve = 0.125. For the sake of this example, we assume
that there is only a single 160 MHz channel so that |C160 | = 1.
The main round of the algorithm was executed twice, namely for a
channel width of 160 MHz and then 80 MHz. In the first round, we
have MIR (3,G160 (a,a,a,a)) = 0 so that the attained throughput
of AP 3 γ ′3 is estimated to be 0. Thus, we have ST > 0 and the
algorithm rejects the channel width of 160 MHz. The algorithm now
considers a channel width of 80 MHz. For this second round, we
obtainMIR (3,G80 (b,b, c,b)) = 1 leading to an attained throughput
of 20 Mbps, meaning that, at least according to our Algorithm, there
should be no APs in starvation as the APs 1, 2, and 4 have MIRs
of 0.5, 0.5 and 1, respectively, which are all above the starvation
threshold. Therefore, the algorithm ends and returnsw = 80 MHz
and v for the channel assignment as its solutions.



PE-WASUN ’20, November 16–20, 2020, Alicante, Spain Chadda and Stojanova, et al.

1 3

2

4
0.5

0.5

0 1

(a) Round 1: channel
width of 160 MHz.
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(b) Round 2: channel
width of 80 MHz.

Figure 5: Logical conflict graph andMIR values computed by
Algorithm 1 on the example of the four-AP WLAN of Fig-
ure 2b.

4.3 Complexity analysis
The complexity of the proposed solution is highly dependent on
the complexity of the underlying algorithms. The Tabu Search
algorithm that we use to find a k-coloring has an O (DmaxN

4)
complexity (when the objective function is to minimize the number
of edges in the logical conflict graph), where Dmax is the maximum
degree in the graph [18]. Bron-Kerbosch’s algorithm that is used to
find theMIR ratios has an O (3

N
3 ) complexity [19]. All other parts

of our algorithm have a lower complexity, meaning that the overall
complexity of the proposed solution is O (3N ).

It should be noted that the use of the Tabu Search and the Bron-
Kerbosch algorithms is fully independent of the rest of the solution.
Moreover, other objective functions than the minimization of the
number of edges in the logical conflict graph can be used as well.
These possible modifications, as well as the choice of starvation
threshold, create an easily adaptable framework suited for different
WLAN performance goals.

5 NUMERICAL RESULTS
In this section, we apply our proposed solution to a large set of ran-
domly generated physical conflict graphs and study its behavior for
different values of pstarve. We then evaluate the solution’s accuracy
by comparing its results with those provided by the ns–3 simulator.
Note that for the sake of simplicity and without loss of generality,
we assume in this section that the pairs of physical neighbors in a
conflict graph do not depend on the width of their channel. The set
of available channels contains all the channels from the U-NII-1 and
U-NII-2A bands available in Europe (see Figure 1), i.e., one channel
of 160 MHz, two of 80 MHz, four of 40 MHz, and eight channels of
20 MHz.

5.1 Graph generation and simulation setup
We consider a set of 105 physical conflict graphs as our validation
dataset. The graphs are randomly generated with average degrees
from 2.5 to 8.3 and consist of 8 to 30 APs. We run our proposed
solution on every graph of this set and obtain in return a channel
assignment vector v associated to a given channel width w . We
repeat the same experiment for three different values of pstarve :
0.125, 0.25, and 0.5.

On the other hand, for every possible channel width, we input
the channel assignment found by our algorithm into the ns–3 sim-
ulator and obtain the APs’ achieved throughputs. Each simulation

is run for 60 seconds of simulated time in which only the APs are
generating downlink traffic to their single associated station. The
APs aggregate four MPDUs in every frame transmission using MCS
index 5 and a payload of 1500 bytes.

5.2 Influence of pstarve on the chosen channel
width

We begin by examining the frequency at which a channel width
of 160, 80, 40, and 20 MHz was returned by our proposed solution
across the 105 examples of our dataset. Figure 6 shows the corre-
sponding histograms for pstarve values of 0.125, 0.25, and 0.5. We
first observe that, among the 105 examples, our algorithm never
selects a channel width of 160 MHz. This means that our algorithm
supposes that on a 160 MHz channel there will always be at least
one AP in starvation. Second, we observe that the mode (most fre-
quent value) of the histograms is the channel width of 40 MHz,
represented in more than 70% of the cases. Widths of 80 MHz and
20 MHz are returned at much lower frequencies. Finally, Figure 6
shows how the channel width selected by our algorithm varies
with the starvation threshold, pstarve. As expected, lower values
of pstarve will tend to result in selecting wider channels, and vice
versa.

5.3 Accuracy evaluation
Having verified that our algorithm responds differently to different
physical conflict graphs, we now evaluate the precision of its deci-
sions. To check if the network simulator agrees with our solution,
we simulate the best logical conflict graph found by Tabu search
for each channel width and compute the associated number of APs
in starvation, namely ST , estimated by the simulator.

To ease the reading of the corresponding results, we represent
the results as a number of hits and misses. A hit is obtained when-
ever our solution and the simulator agree on the selected channel
width. Otherwise, disagreement leads to a miss. Tables 2a, 2b, and 2c
summarize the number of hits and misses for pstarve values of 0.125,
0.25, and 0.5, respectively. Table 2a shows that for pstarve = 0.125
there is only one conflict graph for which our solution recommen-
dation and that of the simulator differ (80 MHz vs 40 MHz). For
pstarve = 0.25, the responses of our solution and of the simulator
are in full agreement as shown by Table 2b. On the other hand,
when considering a threshold for starvation pstarve equal to 0.5,
Table 2c indicates that our proposed solution leads to many misses.
Indeed, with this setting, our solution recommends 90 (18 + 72)
times a channel width of 40 MHz but out of these 90, only 18 are
also recommended by the simulator. The high number of misses
can be explained by the uncertainty in predicting AP n’s through-
put when MIR (n,Gw (v )) = 0.5, as shown in Figure 3. However,
it is questionable whether considering such a high value for the
starvation threshold is a reasonable choice, as it requires that all
APs occupy the medium 50% of the time. Overall, our results can
be summarized as follows. First, we recommend using a starvation
threshold pstarve in the range of 0.125 and 0.25. Second, given a
relevant value of pstarve, our algorithm provides virtually the same
channel selection as the simulator while being only based on the
physical conflict graph.
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(a) pstarve=0.125 (b) pstarve=0.25 (c) pstarve=0.5

Figure 6: Histograms of the channel width chosen by our proposed solution for the 105 considered physical conflict graphs.

our solution \ simulation 80 MHz 40 MHz 20 MHz
80 MHz 22 1 0
40 MHz 0 73 0
20 MHz 0 0 9

(a) pstarve = 0.125

our solution \ simulation 80 MHz 40 MHz 20 MHz
80 MHz 17 0 0
40 MHz 0 79 0
20 MHz 0 0 9

(b) pstarve = 0.25

our solution \ simulation 80 MHz 40 MHz 20 MHz
80 MHz 0 2 0
40 MHz 0 18 72
20 MHz 0 0 13

(c) pstarve = 0.5

Table 2: Distribution of hits and misses of our solution: the
numbers on themain diagonal represent the cases when our
solution’s channel width agrees with the simulation results.
In the other cases, the simulator provided a different most
favorable channel width.

An interesting question is how well the channel selection pro-
vided by our algorithm ranks in terms of proportional fairness, as
defined in Eq. 4. To address this point, we rely on the simulator
to discover the channel selection that maximizes the proportional
fairness among the channel allocation provided by our algorithm
for all channel widths. The obtained results show that for 103 out of
the 105 graphs, choosing a 40 MHz channel offers the best propor-
tional fairness. On the other hand, as shown by Figure 6, in most
cases, our approach also returned a channel width of 40 MHz (the
actual value depends on the pstarve setting but is never lower than
70%). This may represent an interesting avenue of research for our
approach that would be the focus of further investigation.

6 CONCLUSIONS
In this paper, we presented a fast and efficient solution for channel
width selection and channel assignment in 802.11 WLANs using
channel bonding. The proposed algorithm chooses a single channel
width for all the APs of the WLAN that aims to avoid starvation in
any of the network’s APs.

By introducing a novel, graph-centric metric, and by decoupling
the channel width selection and the channel assignment, we offer
a scalable approach that bypasses the usual complexity issues of
classic channel assignment schemes. The approach is also fully
adaptable to different performance goals, as it is a collection of sev-
eral algorithms that can be modified separately and independently.

We test the solution’s ability in choosing a suited channel width
and assignment by comparing its results with those delivered by
the ns–3 network simulator. We obtain that in the large majority of
the cases, the choice made by our solution matches the simulation
results. Moreover, the selected channel width seems to not only
minimize starvation but also maximize proportional fairness.

As future works, we intend to improve the numerical validation
of our solution robustness by considering more realistic traffic. We
also plan to further evaluate the ability of our solution to maximize
other performance metrics such as proportional fairness.
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