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Abstract—Light Fidelity (LiFi) is a recent wireless technology
that offers high data rates, low power consumption and do
not interfere with radio frequency technologies. As a result,
LiFi access points emerge as promising complements to Wi-Fi
access points for hybrid LiFi/Wi-Fi networks (HLWNets). This
combination can offer high data rates and energy efficiency.
However, to fully benefit from hybrid networks, it is crucial
to efficiently assign stations, whether with LiFi or Wi-Fi access
points. In this paper, we formulate the AP assignment problem
as an optimization problem. As a solution, we present an AP
assignment strategy, in which we elaborate an algorithm with a
low computational complexity. The algorithm allows to dynami-
cally assign STAs to APs and benefits from the combination of
the two technologies to enhance network performance (energy
consumption and throughput satisfaction).

Index Terms—LiFi, Wi-Fi, Hybrid Networks, Energy Effi-
ciency, User satisfaction, Operational Network.

I. INTRODUCTION

LiFi technology uses visible light, ultraviolet, and infrared
spectrums for data transmission, which reduces power con-
sumption. With its wide free-license spectrum, it is a promising
solution to meet growing network demands. However, LiFi’s
limited range and line-of-sight requirement make it insufficient
for uninterrupted network connectivity, making Wi-Fi the
perfect complement for indoor communications.

In this paper, we study the assignment problem for dy-
namic hybrid LiFi/Wi-Fi networks (HLWNETSs). Combining
these two technologies adds a new layer of complexity to
assign stations (STAs) to access points (APs). To address this
problem, researchers formulate it as an optimization problem
in [1], [2] and [3]. Their models assume static networks,
which are not always representative of real-world scenarios.
In reality, in many cases, the network is dynamic and can
evolve over time due to factors such as STA mobility, changes
in throughput demand of STAs, or arrivals and departures of
STAs. A couple of works address dynamic networks in which
STAs are mobile [4], [5]. In [4], the authors formulate the
assignment and resource allocation problem as an optimization
problem and use a fuzzy logic approach to solve it. In [5],
the authors propose a Multi-Armed Bandit Model to tackle
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the dynamic AP assignment problem in LiFi networks. The
model consists in updating the probability of selecting an AP
by taking into account both the previously learned information
and the environmental criteria (such as the STAs distribution).

Another issue with dynamic HLWNETs is the Handovers
Management. The handover mechanism consists in assigning a
STA from one AP to another. It can cause a temporary degra-
dation in the throughput or interrupt the network connection
for the STA. These handovers can be very frequent due to the
small range of LiFi and the wide overlapping areas between
APs. In [6], the handover problem is formulated as a joint
optimization problem that considers resource allocation and
handover management. The authors consider the throughput
loss caused by handovers to trigger the mechanism. In [7],
authors propose a dynamic resource allocation and assignment
scheme, where their LiFi model considers the handover over-
head time. The authors assume a stability period during which
the network remains stable (e.g., constant throughput demand
and no mobility). This assumption enables them to execute the
resource allocation and assignment scheme at regular intervals
without the risk of stale information.

The mentioned papers mostly focus on throughput as a
metric for network performance. However, these papers ne-
glect the energy consumption and the MAC layer (which
may introduce a bias and negate STAs satisfaction). In this
paper, our contributions are as follows: (i) We propose a
repeated local search algorithm and an objective function that
considers energy consumption and throughput satisfaction by
incorporating TDMA for LiFi and CSMA/CA for Wi-Fi. (ii)
We also propose a dynamic assignment strategy to lower
both the assignment computational complexity, and the rate
of handovers.

The rest of this paper is as follows: Section 2 presents our
solution for dynamic assignment, followed by the numerical
results in Section 3. Finally, Section 4 concludes the paper.

II. DYNAMIC AP ASSIGNMENT IN A LIFI/WI-FI NETWORK

First, we propose an objective function to score the quality
of the STAs assignments. The network dynamicity is caused



by events such as the arrival or departure of a STA within the
coverage area of an AP.

A. Optimization problem

We represent the assignments between STAs and APs by
a matrix Y = [Yap stal1<ap<m;1<sta<n Of dimension m x n,
where m is the number of APs, and n the number of STAs.
Yap,sta €quals 1 if sta is assigned to ap, and O otherwise.
We consider the same problem formulation as [3], where
we formulate the AP assignment issue as an optimization
problem subject to a set of constraints. Unlike [3], we apply
our objective function to dynamic networks and adapt LiFi
model to align with the specifications of the manufacturer [8].

The objective function aims to maximize the throughput of
STA and minimize the overall energy consumption (for both,
APs and STAs). we express it as :

F(,¥) M
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where U is the total network energy consumption (energy
consumed by every STA and every AP). @ is the throughput
metric that accounts for the fairness between the different
STAs. We formulate @ as :

1/n

P = Sap,sta, (2)

apEAPs, stacSTAs :
Yap,sta=1
where S,;, st denotes the throughput satisfaction if sta is
assigned to ap. To align with the Wi-Fi standard, we adopt
the CSMA/CA for the Wi-Fi MAC layer [9], and TDMA
mechanism for the LiFi MAC layer [8]. We define our ob-
jective function F' in Equation 3. We use ®,,,,. (resp. ®.nin)
to denote the maximum (resp. minimum) STAs satisfaction,
which is O (resp. 1). Analogously, we denote by ¥, ., (resp.
U ,,in) the maximum energy consumption (resp. minimum).
F(®, W) = (%) X o+ (%) x (1—a)
3)

We use « (resp. 1 — ) to denote the weights assigned to the
throughput metric ® (resp. the consumption metric ¥). Note
that F' increases with increasing values of the throughput &
or with diminishing values of the energy consumption W.

max

B. Repeated Local Search - RLS

To solve the optimization problem, we employ a local
search-based heuristic to find a feasible solution. We then
adapt this heuristic to account for the network dynamicity.
Starting from a predetermined assignment matrix Y, the
heuristic advances toward its final solution by exploring the
neighborhood of the current matrix. We define this neighbor-
hood as the set of matrices that can be obtained by making
a single change to the assignment between a STA and an
AP. At each iteration, the heuristic browses every STA. For
each of them, it computes F'(®, V) to determine the best AP
for each STA. The current iteration ends with the update of
the assignment matrix so that the best-explored neighborhood
assignment becomes the new current assignment in the updated

Y. The process repeats I times until convergence is found (no
changes improve the score). To mitigate the odds of getting
stuck in a local optimum, we repeat R times the local search
with different random initial assignments. Then, we keep the
assignment matrix with the highest score. This approach is
known as the repeated local search (RLS).

As mentioned previously, we need to adapt the application
of the RLS algorithm to avoid two problems: (i) It may
exhibit low reactivity due to its computational complexity
O(n? - m - I - R), which can prevent real-time assignment
updates, especially when two events occur within a short
timeframe; (ii) Its application may lead to numerous changes
in the STAs assignment (handovers), resulting in significant
overhead traffic and connectivity disruptions. To prevent these
problems, the assignment policy should favor assignments that
reduce the rate of changes. We measure this rate through a
metric that we name change rate. To compute change rate,
we divide the number of STAs that experience a change of
assignment by the total number of assignments.

C. Dynamic assignment management

a) Best effort: a simple way to cope with computational
complexity and change rate problems, is to only assign the
new STA, hence, without changing the others. Whenever a
new STA appears on the network, we assign this STA to
the AP that offers the best score with the objective function.
Note that nothing is done upon a STA departure. If an AP is
unused due to the departures of all its stations, it is turned
off (unless this would compromise the entire coverage that
has to be guaranteed). We denote this approach by Best effort
algorithm. This algorithm has a low complexity O(m), and
reduces drastically the change rate as only the new STAs
change their assignments.

b) Hybrid approach: the Best effort algorithm may
deviate from the best matrix assignment in the long run.
We address this by introducing a Consolidation Step which
depends on a threshold 7 taking its values between 0% and
100%. We define R as the deviation rate of the current score
from the obtained score at the last consolidation step (R =
Prev’““;::;;gi;ig(‘;‘;m X°%), Bvery time R > T, the consolidation
step takes place, and we run the RLS algorithm to update
the current assignment. Otherwise, we apply the Best effort
algorithm.

In the numerical evaluation, we consider different threshold
values 7 for the consolidation step. This occurrence rate is
defined as the number of consolidation steps that occur during
the simulation over the total number of events.

III. NUMERICAL RESULTS
A. Use case

Our use case is an indoor downlink scenario based on an
office floor configuration as proposed in [10]. The environment
is composed of multiple cubes, each representing 4 desks.
Each desk is equipped with a LiFi AP and can support up
to 4 STAs, as mentioned in [10]. The office floor also has a
total of 9 Wi-Fi APs.



We consider a probabilistic model to simulate the events
(arrival or departure of a STA) whose parameters vary with
the time of the day (e.g., to reflect that arrivals are more
likely at certain hours of the day). This model aims to capture
the typical activity in an enterprise. Starting from a certain
number of STA, we run this model at least 10 times. Figure 1
shows the average number of STAs throughout the day. Note
that the dashed lines represent the minimum and maximum
number of STAs. We observe numerous arrivals in the morning
until 9AM and at the end of the Iunch break (1:30PM). We
also observe numerous departures at the beginning of the
lunch break (12PM) and at the end of the day (6PM). The
scenario reaches its maximum number of STAs and remains
stable during the working hours (between 9AM-12PM and
2PM-6PM). The number of STAs also remains stable during
lunchtime (between 12:30PM and 1:30PM). We compare 3
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Fig. 1. Number of STAs over time.

different values with our approach: a) 7 equals 0%: we run
the RLS algorithm whenever a new event occurs. b) 7 equals
infinity: we simply apply the Best effort algorithm to assign
new STAs. ¢) T equals either 2%, 5% or 10%: we apply
the consolidation step whenever the potential gain exceeds
2%, 5% or 10% (Hybrid approach). Additionally, we compare
those approaches with a classical one based on the Received
Signal Strength Indicator (RSSI). This approach assigns every
STA with the AP that provides the best RSSI (regardless of
the current number of STAs already assigned to this AP). We
use a Python simulator to implement the analytical models
presented in [3], along with the described use case and our
solutions. We consider the parameters proposed in [3] and [8]
for our simulations. The additional parameters related to our
approaches and the dynamicity of the network are presented
in Table 1. Note that, for each event, we repeat evaluation at
least 10 times and average the obtained results. For the sake
of clarity, we choose not to display the first and third quartiles
in Figure 2, as they almost coincide with the average.

B. Discussion

Table II presents the average change rate between two
consecutive consolidation steps alongside the occurrence rate,

Parameter Value
Scenario

Number of Cubes 24

Number of Wi-Fi APs 8

Number of LiFi APs 4 per Cube

Number of STAs 80-220

Events
Number of events p 1400

Threshold T 0%, 2%, 5%, 10%, oo
Wi-Fi settings
802.11ax
LiFi settings
Transmission consumption 5 Watt
TABLE I
ADDITIONAL PARAMETERS USED IN THE SIMULATION.
OTHER PARAMETERS, ARE FOUND IN [3], [8].

Standard

which denotes the rate at which consolidation steps occur
upon new events (arrival, or, departure of a STA). We notice
that even with a small value of 7 (i.e., 2%), the occurrence
rate remains low between 0.3% and 1%, but the change rate
(following a consolidation step) can be high (45% to 67%).

Approach  Threshold 7 Occurrence rate  Change rate
RLS 0% 100% 45%
Hybrid 2% 1% 58%
Hybrid 5% 0.7% 58.4%
Hybrid 10% 0.3% 67%
Best effort oo 0% 0%
RSSI / / 0%
TABLE I

THE RATES OF CHANGE AND OCCURRENCE FOR DIFFERENT VALUES OF 7.

In Figure 2(a), we present the overall throughput satisfaction
of the STAs. We observe that the RLS algorithm (i.e. 7 = 0) is
able to fully meet the STAs requirements. The approach with
T set to 5% is able to meet most of the STAs demands, with
an average satisfaction of approximately 97%. The Best effort
(i.e. T = 00) and the RSSI approaches struggle to adapt to the
different events and satisfy STAs demands. Nevertheless, the
Best effort algorithm is able to reach 87% of the throughput
satisfaction during working hours, unlike the RSSI approach
which only reaches 55%.

We show in Figure 2(b) the overall energy consumption of
the network. We notice that the RLS algorithm adapts perfectly
its energy consumption according to events (as highlighted
with the arrows on the figure). Indeed, this approach consumes
more during working hours (9AM-12PM and 2PM-6PM)
and consumes less during lunch hours (12:30PM-1:30PM)
compared to the other approaches. We also notice that when
T is set to 5%, the approach adapts the energy consump-
tion according to traffic demand (e.g., turning off AP when
the occupancy rate equals zero). These energy consumption
adaptations are obtained thanks to the updates made in the
consolidation steps. The Best effort algorithm manages to
adapt its energy consumption (as indicated by the arrows
in this figure). However, it is made at the expense of the
throughput satisfaction (as shown in Figure 2(a)). Indeed, this
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Fig. 2. Performance results using different approaches and their adaptation
according to a daily STAs traffic in a company.

approach assigns new STAs with an AP without changing the
assignment of other STAs. This may lead to the expensive
operation (in terms of energy) of turning on an AP only for the
sake of a single STA. Consequently, the Best effort algorithm
does not favor turning on an AP (which was previously turned
off) to save energy, even when the current number of STAs
increases. Finally, we observe that the RSSI approach leads to
a relatively high energy consumption. This approach consumes
approximately 18% more than the others.

We plot the score for our approaches and RSSI in Fig-

ure 2(c). Approaches that trigger the RLS algorithm (RLS
and 7 = 5%), offer the best score with a difference that
never exceeds the threshold 7 by construction. The two other
approaches (the Best effort and RSSI) deviate significantly
from these scores, particularly the RSSI approach, which has
a score 45% less during working hours. The RSSI approach
does not take into account enough metrics to assign STAs,
such as the number of STAs connected to an AP, and may
assign multiple STAs with the same AP even if it is saturated.

IV. CONCLUSIONS

In summary, our paper proposes an approach to the AP
assignment problem in dynamic LiFi/Wi-Fi networks. Our
numerical results demonstrate that using the Best effort algo-
rithm, complemented by the RLS algorithm when performance
significantly decreases, can provide an effective solution for
real-time STA assignment. This approach maintains a low level
of computational complexity by sparingly utilizing the RLS
algorithm, it achieves favorable scores adjustable through the
threshold 7, and it reduces the number of handovers. With
our objective function, network assignments successfully meet
overall throughput requirements while also reducing the total
energy consumption whenever feasible.
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