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Introduction

For d ≥ 1, let (ei)1≤i≤d denote the canonical basis of Rd. The simple random walk on Zd is the
random process (Sn)n≥0 defined by

Sn = X1 + · · ·+Xn,

where the variables Xi are independent and identically distributed with uniform law on

{e1,−e1, . . . , ed,−ed}

. This process can also be described as a Markov chain on Zd with a very simple transition
matrix. In particular, it is irreducible and is recurrent for d ∈ {1, 2} and transient for d ≥ 3.

The are (at least!) two natural ways to widely generalize this process:

• we can replace the uniform measure on {e1,−e1, . . . , ed,−ed} by more general distributions
on Zd or even Rd,

• or, if we view Zd as a graph and (Sn) as a process choosing Sn+1 uniformly at random
among the neighbours of Sn.

In probability, "random walks" is a generic expression that encompasses both of these gener-
alizations. In both cases, we can ask many natural questions such as recurrence or transience,
typical displacement ("how far is Sn from S0?"), or fine study of the set of points visited by the
walk.

The first part of the course will be dedicated to the first generalization, i.e. random walks
on Rd. In the second part, we will study random walks on general graphs, which is the second
generalization.

Finally, here are some bibliographical references:

• The lecture notes of Curien
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Chapter 1

Random walks on Rd

1.1 Recurrence and transience

1.1.1 Definitions and first properties

Let us start by giving the main definition for the first part of the course.

Definition 1. Let d ≥ 1, and let µ be a probability measure on Rd. A random walk on Rd with
step distribution µ is a process (Sn)n≥0 of the form

Sn = X1 + · · ·+Xn,

where the Xi are independent and identically distributed with law µ.

Our goal will be tu understand the behaviour of these processes, and in particular how it
depends on the dimension d and the step distribution µ.

Remark 2. It is possible (for example if µ has a density with respect to the Lebesgue measure)
that the state space of S is uncountable. Therefore, the general theory of Markov chain does
not apply to our setting. Therefore, the main goal of this Section 1.1 will be to reprove some of
its results (strong Markov property, recurrence/transience dichotomy) with adapted definitions.

We denote by Fn the σ-algebra generated by (X1, . . . , Xn), so that (Fn)n≥0 is the natural
filtration associated to the process (Sn).

Definition 3. • A stopping time is a random variable τ : Ω→ N∪ {+∞} such that for all
n ≥ 0, we have {τ ≤ n} ∈ Fn.

• For any stopping time τ , we denote by Fτ the σ-algebra consisting of all the events A such
that for all n ≥ 0, we have A ∩ {τ ≤ n} ∈ Fn.

We can now formulate the strong Markov property.

Proposition 4 (Strong Markov property). Let τ be a stopping time such that τ < +∞ almost
surely, and let S(τ)

n = Sτ+n−Sτ . Then S(τ) has the same law as S and is independent from Fτ .

This Markov property is not an immediate conseqquence of the general one of Markov chains
because the state space may be uncountable. However, the proof is exactly the same.
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Proof. Let A ∈ Fτ and k ≥ 1. Let also f : Rk → R be measurable and bounded. We can write

E
[
1Af

(
S
(τ)
1 , . . . , S

(τ)
k

)]
=
∑
n≥0

E
[
1A∩{τ=n}f (Xn+1, . . . , Xn+1 + · · ·+Xn+k)

]
=
∑
n≥0

P (A ∩ {τ = n})E [f (Xn+1, . . . , Xn+1 + · · ·+Xn+k)]

= P(A)E [f (S1, . . . , Sk)] .

It follows that
(
S
(τ)
1 , . . . , S

(τ)
k

)
is independent from A for all k, so S(τ) is independent from Fτ .

Finally, by taking A = Ω, we find that S(τ) has the same law as S.

The Hewitt–Savage 0-1 law. The usual Kolmogorv 0-1 law says that any event invariant
under changing the values of finitely many increments has probability 0 or 1. Unfortunately, the
assumption is too strong to apply to many natural events, such as "hitting an interval infinitely
many times". Therefore, the following stronger statement will be very useful to us.

Theorem 1. Let (Xi)i≥1 be a sequence of i.i.d. random variables with values in a set E. Let
A ∈ σ (Xi|i ≥ 1) be an event which is invariant under any permutation of the Xi with finite
support (that is, any bijection σ : N∗ → N∗ such that σ(i) = i except for finitely many i). Then
P(A) ∈ {0, 1}.

Proof. The result is easy to prove if we further assume that A only depends on finitely many
coordinates. Therefore, we will approximate A by events satisfying this property.

More precisely, let Fn = σ(X1, . . . , Xn). We first claim that there are events An ∈ Fn
such that P(A∆An)→ 0 as n→ +∞, where the symetric difference A∆An stands for (A\An)∪
(An\A). Indeed, the result is obvious if A itself belongs to

⋃
nFn. Moreover, it is straightforward

to check that the set of events satisfying this approximation property form a σ-algebra1, so it
must be F∞.

Now, let us fix n ≥ 1. We know that any event B ∈ F∞ is of the form{
(Xi)i≥1 ∈ B̃

}
for some B̃ ⊂ EN∗ measurable. We then define the event

φn(B) =
{

(Xn+1, . . . , X2n, X1, . . . , Xn, X2n+1, X2n+2, . . . ) ∈ B̃
}
.

Now, if An is the approximation of A described above, we can write

P (A∆Φn(An)) = P (φn(A)∆φn(An)) = P (φ(A∆An)) = P (A∆An) −−−−−→
n→+∞

0,

where the first equality uses the assumption on A and the third uses that the permuted process

(Xn+1, . . . , X2n, X1, . . . , Xn, X2n+1, X2n+2, . . . )

has the same law as (Xi)i≥1. The last equation means that both An and φn(An) are good
approximations of A, so their intersection An ∩ φn(An) also is. More precisely, we have

P (A∆(An ∩ φn(An))) ≤ P (A∆An) + P (A∆φn(An)) −−−−−→
n→+∞

0,

1Contrary to what I said in class, the monotone class theorem is not needed here.
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so
P(A) = lim

n→+∞
P (An ∩ φn(An)) = lim

n→+∞
P (An)P (φn(An)) = P(A)2,

so P(A) ∈ {0, 1}.

Example 5. If E ⊂ Rd, the event

A = {there are infinitely many times n such that Sn ∈ E}

satisfies the assumption of the Hewitt–Savage 0-1 law, but not the assumption of the Kolmogorov
version. Most of the upcoming applications will be events of this form.

1.1.2 Recurrence and transience

If for example our step distribution µ is included in the lattice Zd, then we can see (Sn) as a
Markov chain on Zd, which is either recurrent or transient. On the other hand, if for example µ
has a density with respect to the Lebesgue measure, then almost surely, we have Sn 6= 0 for all
n, which would mean that S would be transient regardless of its "large scale" properties if we
blindly copy the "discrete" definition. Therefore, it seems to make more sense to replace "visit
a point infinitely often" by "approach a point infinitely often" in the definition of recurrence.

More precisely, for x = (xi)1≤i≤d ∈ Rd, we write |x| = max1≤i≤d |xi|.

Definition 6. Let x ∈ Rd.

• We say that x is a possible value of S if

∀ε > 0, ∃n ≥ 0, P (|Sn − x| < ε) > 0.

• We say that x is a recurrent value of S if

∀ε > 0, P (|Sn − x| < ε for infinitely many n) > 0.

We write Pµ for the set of possible values, and Rµ for the set of recurrent values.

Remark 7. By the Hewitt–Savage law, the probability appearing in the definition of a recurrent
value is either 0 or 1, so x is recurrent if and only if this probability is 1 for any ε > 0.

Example 8. For the simple random walk on Zd, we would have Pµ = Zd and Rµ is Zd for
d ∈ {1, 2} and is empty for d ≥ 3.

The goal of the next result is to guarantee the equivalence between natural definitions of a
recurrent/transient random walk on Rd.

Theorem 2. Let µ be a probability measure on Rd. Either Rµ is empty, or Rµ = Pµ is a closed
subgroup of Rd. We say that S is transient in the first case, and recurrent in the second.

Proof. • We first notice that if x /∈ Rµ, there is ε > 0 such that almost surely, the ball of
radius ε around x is visited finitely many times. It follows that if |x − y| < ε

2 , then the
ball of radius ε

2 around y is visited finitely many times, so the complement of Rµ is open,
so Rµ is closed.
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• We now assume Rµ 6= ∅. We will show

∀x ∈ Pµ, ∀y ∈ Rµ, y − x ∈ Rµ. (1.1)

The rough idea behind this equation is that S must approach y even if we condition it to
hit a small ball around x, and to notice that by the Markov property, this means that a
shifted version of S approaches y − x. More precisely, for any z ∈ Rd and any m ≥ 1 and
δ > 0, we write

pδ,m(z) = P (∀n ≥ m, |Sm − z| ≥ δ) .

We now fix m ≥ 1 and ε > 0. Since x ∈ Pµ, let k ≥ 0 be such that P (|Sk − x| < ε) > 0.
Then we have

pε,m+k(y) ≥ P (|Sk − x| < ε and ∀n ≥ k +m, |Sn − Sk − (y − x)| ≥ 2ε)

= P (|Sk − x| < ε)× p2ε,m(y − x)

by the fact that (Sk+i − Sk) is a random walk and is independent of Fk. Since y ∈ Rµ,
the left-hand side is 0, so the right-hand side as well. But we know that the first factor is
positive, so p2ε,m(y − x) = 0 for any m ≥ 1 and ε > 0, so y − x ∈ Rµ, which proves (1.1).

• We now show that Rµ is a group: let x, x′ ∈ Rµ. We first apply (1.1) with y = x to get
0 ∈ Rµ. We then apply (1.1) a second time with y = 0 to obtain −x,−x′ ∈ Rµ. Finally,
a last application of (1.1) with y = −x′ gives −x− x′ ∈ Rµ, so x+ x′ ∈ Rµ.

• Finally, let x ∈ Pµ. By (1.1) with y = 0, we get −x ∈ Rµ, so x ∈ Rµ, so Rµ = Pµ as soon
as Rµ 6= ∅.

Remark 9. In dimensions 1, a closed subgroup of R is either R or cZ for some c ≥ 0. In higher
dimensions, a closed subgroup is of the form Zi×Rj ×{0}k with i+ j+ k = d, up to the action
of GLd(R).

A first characterization of recurrence/transience. For discrete Markov chain, we know
that a point x is recurrent if and only if∑

n≥0
Px (Sn = x) = +∞.

Indeed, the left-hand side represents the expectation of the number of visits to 0, which is a
geometric random variable by the strong Markov propety. Therefore, it is a.s. finite if and only
if it has finite expectation. We now prove an analog of this result for random walks on Rd.

Theorem 3. Fix ε > 0. A random walk S on Rd is transient if and only if∑
n≥0

P (|Sn| < ε) < +∞.

Proof. We will first prove that the finiteness of the sum in the statement does not depend on
the choice of ε > 0 (this is an immediate consequence of our Theorem, but we will need to prove
this first). For this, we will prove the following inequality for any ε > 0 and integer m ≥ 1:∑

n≥0
P (|Sn| < mε) ≤ (2m)d

∑
n≥0

P (|Sn| < ε) . (1.2)
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To show this inequality, we will partition the "big cube" [−mε,mε)d into (2m)d little cubes with
side length ε (this is where the choice of the norm | · | is important). The little cubes will be
indexed by k ∈ {−m, . . . ,m− 1}d. We get∑

n≥0
P (|Sn| < mε) ≤

∑
n≥0

∑
k∈{−m,...,m−1}d

P
(
Sn ∈ εk + [0, ε)d

)
,

where the inequality comes from replacing the open ball (−mε,mε)d by [−mε,mε). In order to
study the contribution of a fixed k ∈ {−m, . . . ,m− 1}d, we write

Tk = inf{` ≥ 0|S` ∈ εk + [0, ε)d}.

We can now write∑
n≥0

P
(
Sn ∈ εk + [0, ε)d

)
=
∑
n≥0

n∑
`=0

P
(
Sn ∈ εk + [0, ε)d and Tk = `

)
≤
∑
`≥0

∑
n≥`

P (Tk = ` and |Sn − S`| < ε)

=
∑
`≥0

∑
j≥0

P (Tk = `)P (|Sj | < ε) ≤
∑
j≥0

P (|Sj | < ε) ,

where the second line uses that two points in the same little cube must be close, and the third
line uses independence. By summing over k, we obtain (1.2). In particular, if the sum is finite
for some ε > 0, then it is finite for all ε > 0.

We now finish the proof of the theorem. First, if
∑

n≥0 P (|Sn| < ε) < +∞, then the expected
number of vists of S in a certain ball is finite, so the number of visits is a.s. finite, which means
that S is transient. On the other hand, if S is transient, we can find ε > 0 small such that

pε := P (∀n ≥ 1, |Sn| > ε) > 0.

As in the usual discrete setting, we will try to compare the number of visits of a certain small
ball with a geometric variable with parameter 1− pε. For this, we define the stopping times τi
by τ0 = 0 and, for i ≥ 0,

τi+1 = inf{n > τi
∣∣ |Sn| < ε

2
}.

For any i, we have

P (τi+1 = +∞|τi < +∞) ≥ P
(
∀n ≥ 1,

∣∣∣S(τi)
n

∣∣∣ > ε
)

= pε,

where the inequality comes from the triangle inequality and the last equality from the strong
Markov property. By induction on i, this becomes

P (τi < +∞) ≤ (1− pε)i

for all i ≥ 0, so ∑
n≥0

P (|Sn| < ε) = E

∑
i≥0

1τi<+∞

 < +∞.

This proves the finiteness of the sum for some ε > 0, and the first part of the proof extends this
to all ε > 0.
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1.1.3 The one-dimensional case

We conclude this section with a more precised study of the one-dimensional case. Note that the
projection of a random walk on Rd on any of its coordinates is a one-dimensional random walk,
so the results below also say something about higher-dimensional walks. We now assume d = 1

and µ 6= δ0.

Proposition 10. One of the following holds almost surely:

1. Sn −−−−−→
n→+∞

+∞,

2. Sn −−−−−→
n→+∞

−∞,

3. lim infn→+∞ Sn = −∞ and lim supn→+∞ Sn = +∞.

We say that S drifts to +∞ in case 1, that S drifts to +∞ in case 2 and that S oscillates in
case 3.

Proof. By the Kolmogorov 0-1 law, each of the three cases above has probability 0 or 1, so it is
enough to show that at least one occurs. If this is not the case, note that it means that either
lim inf S or lim supS is finite. Note that lim inf S and lim supS are both deterministic by the
Hewitt–Savage 0-1 law. Without loss of generality, assume that lim inf S = c ∈ R almost surely.
Then Rµ contains c, so it is nonempty, so Rµ = Pµ is a subgroup of R. But on the other hand
Rµ is bounded from below by c, so Rµ = {0}, so Pµ = 0. This implies µ = δ0, which was
excluded.

Remark 11. A recurrent walk must oscillate, but a transient walk can either drift to +∞ or
−∞, or oscillate (see examples below).

One-dimensional random walks with finite expectation. In the case of walks witgh finite
expectation, the law of large numbers will allow us to get a very simple criterion for recurrence.

Theorem 4. Assume that E[|X1|] < +∞.

• If E[X1] > 0, then S is transient and drifts to +∞.

• If E[X1] < 0, then S is transient and drifts to −∞.

• If E[X1] = 0, then S is recurrent and oscillates.

Proof. The transient case follows directly from the law of large numbers: we have Sn
n → E[X1] >

0 almost surely, so Sn > 1 for n large enough, and similarly for the negative case.
For the recurrent case, a bit more work is needed. Roughly speaking, the argument will be

that a walk with mean 0 at time n must be in [−εn, εn] by the law of large numbers. On the
other hand, if it is transient, it cannot spend too much time in a given interval of length 1. We
will get a contradiction by cutting [−εn, εn] into small intervals of length 1.

More precisely, let ε > 0. By the law of large number, we know that for n large enough (say,
n ≥ N0 where N0 is random), we have |Sn| ≤ εn. It follows that, for n large enough to have

n ≥ max (N0, |S1|/ε, . . . , |SN0 |/ε) ,
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we have
∀0 ≤ i ≤ n, |Si| ≤ εn.

Therefore, with probability going to 1 as n→ +∞, we have

+∞∑
i=0

1|Si|≤εn ≥ n,

so for n large enough, we can write

E

[
+∞∑
i=0

1|Si|≤εn

]
≥ n

2
. (1.3)

On the other hand, assume that S is transient. Then we can write
∑

i≥0 P (|Si| < 1) ≤ C

for some constant C (which, crucially, does not depend on ε). Therefore, for all m ∈ Z, let
τm = inf{i ≥ 0|Si ∈ [m,m+ 1]}. By applying the strong Markov property to τm, we can write

∑
i≥0

P (Si ∈ [m,m+ 1]) = E

∑
i≥0

1Si∈[m,m+1]

 ≤ P (τm < +∞)E

∑
i≥0

1|Si|<1

 ≤ C.
Finally, by summing over −εn− 1 ≤ m ≤ εn, we find∑

i≥0
P (|Si| ≤ εn) ≤ (2εn+ 2)C.

This contradicts (1.3) if ε > 0 was chosen small enough.

Heavy-tailed walks. We now want to say a few things about the case where E[|X1|] = +∞,
which is actually quite rich. We will first focus on the case where X is symetric and has a
polynomial tail.

Proposition 12. Let µ be a probability measure on Z such that for any k ≥ 0, we have
µ(k) = µ(−k) ∼ k−α as k → +∞, where α ∈ (1, 2). Then the random walk S on R with step
distribution µ is transient and oscillates.

Remark 13. We must have α > 1 for the measure to be finite, and α < 2 implies E[|X1|] = +∞
(the case α = 2 is a "limit" case).

Proof. First, note that S has the same law as −S so S cannot drift to +∞ or −∞, so it oscillates.
To prove transience, we will bound the probability P(Sn = 0) by using the fact that S makes at
least one "large" jump before time n. More precisely, we fix ε > 0 and define

τ = inf{i ≥ 1
∣∣|Xi| > n1+ε}.

By conditioning on τ , we can write

P (Sn = 0) ≤ P (τ > n) + E [P (Sn = 0|τ)1τ≤n] . (1.4)

The first term is easy to bound: there is a constant c > 0 such that we have

P (τ > n) =
(
1− P

(
|X1| ≤ n1+ε

))n ≤ exp
(
−n× (c+ o(1))(n1+ε)1−α

)
≤ exp(−nε)
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if ε was chosen small enough. This is summable. On the other hand, let us study the conditional
distribution of (Xi)i≤1 conditionally on τ . We find that the steps (Xi) are still independent and
Xi has conditional law µ for i > τ and µ conditionned on being smaller than n1+ε for i < τ .
Finally, the conditional law of Xτ given τ is given by

µ̃(i) = 1|i|>n1+ε

µ(i)∑
|j|>n1+ε µ(j)

≤ C(n1+ε)−α

c (n1+ε)1−α
= O

(
n−1−ε

)
for some constants c, C > 0. Therefore, if τ ≤ n, we can write

P (Sn = 0|τ) = P (Xτ = −(X1 + · · ·+Xτ−1 +Xτ+1 + · · ·+Xn)|τ ≤ n) ≤ sup
i
µ̃(i) = O

(
n−1−ε

)
.

By taking the expectation, we find that the second term of (1.4) is summable, so S is transient.

Remark 14. It is quite natural to ask what is the "slowest possible" rate of decrease for which
the walk is still recurrent. It turns out that this question is quite difficult, and that some very
irregular choices of µ can give rise to surprising counter-examples. For example, it was proved
by Shepp [1] that for any function ε(x) → 0 as x → +∞, we can find a symetric measure µ
on Z such that µ (R\[−x, x]) ≥ ε(x) for x large enough, but the associated random walk is still
recurrent.

The Cauchy random walk. Finally, for symetric, heavy-tailed random walk with a "regular
behaviour" like µk ∼ k−α, we have seen that the walk is recurrent for α > 2 and transient for
α < 2. We conclude with a specific example which belongs to the "limiting" case α = 2: the
Cauchy random walk.

We denote by (B1
t , B

2
t ) a two-dimensional Brownian motion started from 0. We define

τ1 = inf{t ≥ 0|B1
t = 1} and X = B2

τ1 . In other words, the variable X describes the point at
which B first hits the vertical line {x = 1}. Then we can compute that X has density 1

π(1+x2)
on

R with respect to the Lebesgue measure (this is the Cauchy distribution), which in particular
implies E[|X|] = +∞.

Moreover, let (Xi)i≥1 be i.i.d. copies of X. By applying the strong Markov property of
Brownian motion to the hitting times τn of the vertical lines {x = n}, we find that Sn =

X1 + · · · + Xn follows the same law as B2
τn . By invariance of Brownian motion under scaling,

this has the same law as nX1, which shows

P (|Sn| < 1) =
∑
n≥1

P
(
|X1| <

1

n

)
∼

n→+∞

1

πn
.

This is summable, so the random walk S is recurrent. Moreover, for any fixed constant c, the
same argument applies if we replace X by X − c. Therefore, we have built a one-dimensional
random walk S such that for any c ∈ R, the walk (Sn− cn)n≥0 is recurrent. This means that for
any c, there are infinitely many n such that Sn is "close" to cn, which is quite counterintuitive
when compared to the finite expectation case!

Stable random variables. Cauchy variables are a particular case of the following class of
random variables.
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Definition 15. Let α ∈ (0, 2]. An α-stable law µ on R is a law such that if X1, . . . , Xn are i.i.d.
with law µ, then X1 + · · ·+Xn has the same law as n1/αX1.

Example 16. The most famous example is the Gaussian distribution (α = 2). The Cauchy
distribution is also stable with α = 1, and so is the law of the hitting time of 1 for a Brownian
motion (with α = 1/2). These are the only examples of stable distributions with explicit
densities with respect to Lebesgue. Stable distributions replace the Gaussian one in the central
limit theorem when the variables have a heavy polynomial tail.

1.2 Characteristic function and applications

1.2.1 Motivation

Let µ be a probability measure on Rd. Let (Xi)i≥1 be i.i.d. variables with distribution µ and
let (Sn)n≥0 = (X1 + · · ·+Xn)n≥0 be the corresponding random walk. For ξ ∈ Rd, we define

µ̂(ξ) =

∫
Rd
eiξ·xµ(dx) = E

[
eiξ·X

]
, (1.5)

where X has law µ. The function µ̂ is called the characteristic function of µ. In particular, we
have µ̂(0) = 1 and |µ̂(ξ)| ≤ 1 for all ξ ∈ Rd. Moreover, if E [|X|] < +∞, then differentiating (1.5)
gives

µ̂(ξ) = 1 + iξ · E[X] + o(|ξ|) as ξ → 0.

Similarly, if E[|X|2] < +∞, by differentiating (1.5) twice, we find

µ̂(ξ) = 1 + iξ · E[X]− ξtQξ

2
+ o

(
|ξ|2
)

as ξ → 0,

where Q is the covariance matrix of X, i.e. Qi,j = E
[
X

(i)
1 X

(j)
1

]
.

The reason why this characteristic function will play an important role for us is that we can
easily access the characteristic function of Sn: for all n ≥ 0 and ξ ∈ Rd, we have

E
[
eiξ·Sn

]
= E

[
eiξ·X1 . . . eiξ·xn

]
= µ̂(ξ)n.

Since the characteristic function characterizes the distribution, this is in theory sufficient to
recover any information about the law of Sn. As an example, let us give an exact formula for
random walks on Zd.

Lemma 17. If µ(Zd) = 1, then for all n ≥ 0 and x ∈ Zd, we have

P (Sn = x) =
1

(2π)d

∫
(−π,π)d

e−iξ·xµ̂(ξ)ndξ.

Proof. The result is an example of application of the Fourier inversion formula. More precisely,
let us compute the right-hand side using the Fubini theorem:

1

(2π)d

∫
(−π,π)d

e−iξ·xE
[
eiξ·Sn

]
dξ =

1

(2π)d

∫
(−π,π)d

∑
y∈Zd

e−iξ·xeiξ·yP(Sn = y)dξ

=
1

(2π)d

∑
y∈Zd

P(Sn = y)

∫
(−π,π)d

eiξ·(y−x)dξ.

The integral is 0 if x 6= y and (2π)d if x = y, so we finally find P(Sn = x).
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Our goals in the enxt pages will be to turn this formula into a criterion for recurrence or
transience, and more generally into quantitative estimates on the quantity P(Sn = x).

1.2.2 The Chung–Fuchs criterion

We will prove the following general result for random walks on Rd, which gives a characterization
of recurrent random walks in terms of the characteristic function of µ.

Theorem 5. Let S be a random walk on Rd with step distribution µ, and fix α > 0. Then S
is recurrent if and only if

lim
r→1

∫
(−α,α)d

Re

(
1

1− rµ̂(ξ)

)
= +∞. (1.6)

Proof for µ(Zd) and α = π. As suggested by Lemma 17, the proof is simpler for random waks
with integer values. Indeed, using Lemma 17, for |r| < 1, we have∑

n≥0
rnP (Sn = 0) =

1

(2π)d

∑
n≥0

∫
(−π,π)d

rnµ̂(ξ)ndξ =
1

(2π)d

∫
(−π,π)d

dξ

1− rµ̂(ξ)
,

where we could use the Fubini formula because |r| < 1. The left-hand side is real, so we can take
the real part on the right-hand side. When r → 1, the left-hand side goes to

∑
n≥0 P(Sn = 0).

We know that S is recurrent if and only if this limit is infinite and the result follows.

Remark 18. Our proof does actually better: in the transient case (1.6) gives the expected
number of vists of S at 0. Since this is a geometric random variable by the strong Markov
property, by taking the inverse, we recover the parameter of this geometric variable, which also
the probability for the walk to never come back to 0. For example, for the simple random walk
on Z3, we find

P (∀n ≥ 1, Sn 6= 0) =
(2π)3

3

(∫
(−π,π)3

dξ1 dξ2 dξ3
3− cos ξ1 − cos ξ2 − cos ξ3

)−1
=

256π6√
6 Γ(1/24) Γ(5/24) Γ(7/24) Γ(11/24)

≈ 0.3405...

The first inequality follows directly from the proof, and I have no idea how to obtain the second.

We now move on to the proof for the general case. We will only treat the case d = 1 in
details, but the general case is very similar. We want to estimate the sum

∑
n≥0 P (|Sn| < x) for

some fixed x > 0. The reason why the argument for Zd cannot be directly adapted is that the
Fourier transform of the indicator 1|x|<1 is not integrable. Therefore, it is not directly possible
to compute P (|Sn| < x) using Fourier inversion as in Lemma 17. In order to solve this problem,
we will approximate this indicator by a smoother function. Therefore, we fiw a constant β > 0

and for x ∈ R we write

f(x) =

(
1− |x|

β

)+

.

11



Lemma 19. • For any t ∈ R, we have

f̂(t) =

∫
R
f(x)eitx dx = β

(
sinβt/2)

βt/2

)2

.

• For any x ∈ R, we have
ˆ̂
f(x) =

∫
R
f̂(t)eitx dt = 2πf(x).

Proof. The first item is a direct computation using an integration by parts, and the second item
follows from the Fourier inversion formula, which applies because f̂ is integrable.

Since we are only interested in the finiteness of an integral, we can afford to lose constant
factors, so we will crudely bound 1|x|<β by either f̂ (for the upper bound) or f (for the lower
bound).

More precisely, let us fix β > 0. There is a constant c > 0 such that fro all x, we have
1|x|<1/β ≤ cf̂(x), so we can write

P
(
|Sn| <

1

β

)
≤ cE

[
f̂(Sn)

]
= c

∫
R
E
[
eitSn

]
f(t) dt = c

∫
R
f(t)µ̂(t)n dt,

where we could use the Fubini formula because f is integrable. We can now take the real part
of the right-hand side, multiply by rn for some |r| < 1 and sum over n to get∑

n≥0
rnP

(
|Sn| <

1

β

)
≤ c

∫
R

Re

(
f(t)

1− rµ̂(t)

)
dt ≤ c

∫ β

−β
Re

(
1

1− rµ̂(t)

)
dt,

where in the end we used that f has compact support in [−β, β] (this is where it is important
that we bounded the indicator using f̂ and not f). In particular, if the walk S is recurrent, the
left-hand side goes to +∞ as r → 1, so the right-hand side also does, which proves one direction
of the criterion by taking β = α.

For the other direction, we need to bound the indicator from below, so we write 1|x|<β ≥ f(x)

(the lower bound must have compact support, so it is important to use f and not f̂).We can
then write

P (|Sn| < β) ≥ E [f(Sn)] =
1

2π
E
[

ˆ̂
f(Sn)

]
=

1

2π

∫
R
f̂(t)µ̂(t) dt.

Again, we can take the real part, sum over n and apply Fubini to get, for |r| < 1:∑
n≥0

rnP (|Sn| < β) ≥ 1

2π

∫
R

Re

(
f̂(t)

1− rµ̂(t)

)
dt.

The function that we integrate is nonnegative and is bounded from below by a constant c > 0

on the interval
[
− 1
β ,

1
β

]
, so we can write

∑
n≥0

rnP (|Sn| < β) ≥ c

2π

∫ 1/β

−1/β
Re

(
1

1− rµ̂(t)

)
dt.

If the walk is transient, the left-hand side is bounded as r → 1, so the right-hand side as well,
which proves the second direction by taking β = 1

α .
Finally, the proof in any dimension d ≥ 1 is exactly the same. We just need to replace the

function t→ f(t) on R by the function (t1, . . . , td)→
∏d
i=1 f(ti) on Rd, and all the proof adapts

well.
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Strong Chung–Fuchs criterion. We could wonder if the additional parameter r is really
necessary in the Chung–Fuchs criterion. It turns out that we can get rid of it, but then the
proof becomes much more complicated, and out of the scope of this course.

Theorem 6. Let α > 0. The random walk S is recurrent if and only if∫
(−α,α)d

Re

(
1

1− µ̂(ξ)

)
dξ = +∞.

Note that if S is transient, since Re
(

1
1−rµ̂(ξ)

)
≥ 0, the Fatou lemma shows∫

(−α,α)d
Re

(
1

1− µ̂(ξ)

)
dξ ≤ lim inf

r→1

∫
(−α,α)d

Re

(
1

1− rµ̂(ξ)

)
dξ < +∞,

so the reverse implication is easy. The difficult implication is the direct one, and the proof can
be found in [2, Chapter 8]. It is not purely Fourier-analytic, and relies on additional random
walk estimates.

1.2.3 Applications

We can now apply the Chung–Fuchs criterion to obtain general results about the behaviour of
random walks depending on the dimension.

Theorem 7. • For d = 1, if E[|X|] < +∞ and E[X] = 0, then S is recurrent.

• For d = 2, if E
[
|X|2

]
< +∞ and E[X] = 0, then S is recurrent.

• For d ≥ 3, if the step distribution µ is not supported by a linear hyperplane of Rd, then S
is transient.

Note that for the one-dimensionl part, we recover a result proved in Section 1.1.3.

Proof. • Let us start with the one-dimensional statement. We write µ̂(t) = a(t) + ib(t) with
a(t), b(t) ∈ [−1, 1]. Then we have

Re

(
1

1− rµ̂(t)

)
=

1− r · a(t)

(1− r · a(t))2 + r2b(t)2
≥ 1− r

(1− r · a(t))2 + r2b(t)2
.

But since E[X] = 0, we know that µ̂(t) = 1 + o(t) as t → 0, so let us fix ε > 0. Then we
can find δ > 0 such that for 0 ≤ t ≤ δ, we have |1−a(t)| ≤ εt and |b(t)| ≤ εt. This implies

(1− r · a(t))2 = ((1− r) + r(1− a(t)))2 ≥ 2(1− r)2 + 2ε2r2t2,

so
Re

(
1

1− rµ̂(t)

)
≥ 1− r

2(1− r)2 + 3ε2r2t2
.

Since Re
(

1
1−rµ̂(t)

)
≥ 0 for all t ∈ R, this becomes∫ −1

1
Re

(
1

1− rµ̂(t)

)
dt ≥

∫ δ

0

1− r
2(1− r)2 + 3ε2r2t2

dt

=
1

1− r

∫ δ

0

dt

2 + 3
(
tεr
1−r

)2
=

1

1− r

∫ δεr
1−r

0

1

2 + 3u2
1− r
εr

du.
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As r → 1, this converges to 1
ε

∫ +∞
0

du
2+3u2

. Since this holds for any ε > 0, we have proved
that the left-hand side goes to +∞ as r → 1.

• We move on to the two-dimensional part. We assume E
[
|X|2

]
< +∞, and denote by Q

the covariance matrix of X. By the Fatou lemma, we have

lim inf
r→1

∫
(−π,π)2

Re

(
1

1− rµ̂(t)

)
dξ ≥

∫
(−π,π)2

Re

(
1

1− µ̂(ξ)

)
dξ.

When ξ → 0, we know that 1
1−µ̂(ξ) ∼

2
ξtQξ , so Re

(
1

1−µ̂(ξ)

)
∼ 2

ξtQξ . In particular, there is

c > 0 such that Re
(

1
1−µ̂(ξ)

)
≥ c
|ξ|2 for all ξ ∈ (−π, π). Therefore, we can write∫

(−π,π)2
Re

(
1

1− µ̂(ξ)

)
dξ ≥

∫
B(0,1)

dξ

|ξ|2
=

∫ 1

0

2πsds

s2
= +∞,

where the second integral is over the ball of radius 1 around 0 and the third is obtained
by taking polar coordinates. This concludes the proof.

• We now prove transience for d ≥ 3. For this, we will need a general estimate showing that
the characteristic function does not stay too close to 1.

Lemma 20. Assume that the support of µ is not included in an affine hyperplane. Then
there is a constant c > 0 such that, for ξ in a neighbourhood of 0, we have

|µ̂(ξ)| ≤ 1− c|ξ|2.

Proof. We first prove the lemma in the case where µ has bounded support. We can then
denote by m its mean and by Q its covariance matrix. As ξ → 0, we have

µ̂(ξ) = 1 + im · ξ − ξtQξ

2
+ o

(
|ξ|2
)
.

It follows that

|µ̂(ξ)|2 = 1− ξtQξ + |m · ξ|2 + o
(
|ξ|2
)

= 1−
d∑

i,j=1

ξiξjE
[
X(i)X(j)

]
+ E[X · ξ]2 + o

(
|ξ|2
)

= 1−Var(X · ξ) + o
(
|ξ|2
)

= 1− |ξ|2Var

(
X · ξ
|ξ|

)
+ o

(
|ξ|2
)
.

However, the support of µ is not included in any hyperplane. this means that for any u
with |u| = 1, the variable X · u is not deterministic so Var(X · u) > 0. Therefore, we have

|µ̂(ξ)| ≤ 1− |ξ|
2

2
min
|u|=1

var(X · u) + o
(
|ξ|2
)
,

where min|u|=1 var(X · u) > 0 by compactness, which proves the lemma if µ is compactly
supported.
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For a general µ, let A ⊂ Rd be a bounded subset such that the restriction of µ to A is
not supported by a hyperplane. This implies µ(A) > 0, so we can define the probability
measure µA = µ(A∩·)

µ(A) on A. Then can write

|µ̂(ξ)| = |µ(A)µ̂A(ξ) + µ(Ac)µ̂Ac(ξ)|
≤ µ(A) |µ̂A(ξ)|+ (1− µ(A)) |µ̂Ac(ξ)|
≤ µ(A)

(
1− c|ξ|2

)
+ 1− µ(A)

= 1− cµ(A)|ξ|2,

where we applied our lemma to the compactly supported measure µA.

We can now conclude the proof of transience for d ≥ 3. We know that there is c > 0 such
that for any ξ in some neighbourhood of 0 and for any 0 < r < 1, we have

Re

(
1

1− rµ̂(ξ)

)
=

Re (1− rµ̂(ξ))

Re (1− rµ̂(ξ))2 + Im (1− rµ̂(ξ))2
≤ 1

Re (1− rµ̂(ξ))
.

We know that there is a neighbourhood of 0 where Re (µ̂(ξ)) > 0. In this neghbourhood,
we can therefore write

Re

(
1

1− rµ̂(ξ)

)
≤ 1

Re (1− µ̂(ξ))
=

1

1−Re (µ̂(ξ))
≤ 1

1− |µ̂(ξ)|
≤ 1

|ξ|2
.

This is integrable in a neighbourhood of 0 for d ≥ 3, which proves transience in the case
where µ is not supported in any affine hyperplane.

Finally, if µ is supported in an affine hyperplane which is not linear, there is a vector
v ∈ Rd and a constant a 6= 0 such that v ·X1 = a almost surely. It follows that v ·Sn = an

almost surely for all n, so |Sn| → +∞ and the walk is transient.
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