
Random Walks
ENS de Lyon, 2025-2026

Random walks: Partial exam

2025, October 20th
13h30-15h30

Course notes are allowed. You can write in English or in French.

Exercise 1 (4 points) We fix two parameters a, b ∈ R. Let µ be the probability measure
on R3 given by

µ(1, a, b) = µ(2, 1, a) = µ(−1, a, a) = µ(−2,−1,−b) = 1

4
.

Let S be the random walk on R3 with step distribution µ. Depending on the values of a
and b, is S recurrent or transient?

Sketch of solution: Corollaries of the Chung-Fuchs criterion show that the walk is recur-
rent if and only if it has mean 0 and its support is included in a linear hyperplane. The
mean is (0, a/2, a/2) so S is transient if a 6= 0. If a = 0, the vector space spanned by
the support contains (1, 0, 0) and (0, 1, 0), so it is R3 if b 6= 0. If a = b = 0, the walk is
recurrent.

Exercise 2 (7+2 points) The goal of this exercise is to build a recurrent random walk
S on Z with the property that there is a constant c > 0 such that

P (|S1| ≥ n) ≥ c× n−2/3 (1)

for infinitely many values of n.

1. Why does the existence of such a walk seem a bit surprising? (0.5 point)

For all n, we write f(n) = 22
n (for example f(3) = 28 = 256). We fix a constant

c > 0 and define the measure µ on Z by

µ(i) =

{
c

f(n)2/3
if i = f(n) or i = −f(n) for some n ≥ 1,

0 if not.

2. Show that there is a choice of c such that this is a probability measure. We work
with this choice of c from now on. (0.5 point)
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3. Prove that the characteristic function of µ is real and is given by

φ(u) = 2c
∑
n≥1

1

f(n)2/3
cos (f(n)u) .

(1 point)

4. For any m ≥ 1, let um = f(m)−2/3. Prove that there is a constant K such that for
any m ≥ 1 and any um ≤ u ≤ 2um, we have

φ(u) ≥ 1− K

f(m)2/3
.

(2.5 points) Indication: treat separately the terms n ≤ m−1 and the terms n ≥ m.
Sketch of solution: Use the inequalities cos(x) ≥ 1− x2

2
for n ≤ m− 1 and cos(x) ≥

−1 for n ≥ m.

5. Deduce that the random walk S with step distribution µ is recurrent.(2.5 points)
Sketch of solution: Use the strong Chung–Fuchs criterion, and write∫ 1

0

1

1− φ(u)
du ≥

∑
m

∫ 2um

um

1

1− φ(u)
du.

6. (Only if you have done all the rest) How could we adapt the construction to replace
the exponent 2

3
in (1) by any exponent α > 0? (2 points) Sketch of solution: Take

f(m) = 2b
m with b larger than 2, and replace the exponent 2/3 by α > 0. We find

that he argument still works for α = 2
b+1

, which can be made arbitrarily small by
taking b large.

Exercise 3 (9 points) A leaf in a plane tree is a vertex with no child. The goal of the
exercise is to show that most plane trees with n vertices have approximately n

2
leaves.

In all the exercise, we denote by ν the geometric distribution with parameter 1
2
, i.e.

ν(i) = 1
2i+1 for i ≥ 0. We can admit that ν has mean 1.

We define the probability measure µ on {−1, 0, 1, 2, . . .} by µ(i) = ν(i + 1) for all
i ≥ −1. Let (Xn)n≥1 be i.i.d. random variables with law µ. For all n ≥ 0, we write

Sn =
n∑

i=1

Xi and Yn =
n∑

i=1

1Xi=−1.

1. We write τ = inf{n ≥ 0|Sn = −1}. Show carefully that for any 0 ≤ x ≤ n− 1, we
have

P (τ = n and Yn = x) =
1

n
P (Sn = −1 and Yn = x) .

(2.5 points)

Sketch of solution: Use the cyclic lemma. Adapt the proof of the Kemperman for-
mula using the cyclic lemma, and use the fact that Yn is not affected by cyclic shifts.
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2. Let ε > 0. Using a variance argument, prove that

P
(∣∣∣Yn − n

2

∣∣∣ ≥ εn
)
= O

(
1

n

)
.

(2 points)

Sketch of solution: Compute E[Yn] = n/2 and Var(Yn) =
∑

i Var(1Xi=−1) = n/4,
and use Bienaymé-Chebychev.

3. Deduce that
P
(∣∣∣Yn − n

2

∣∣∣ ≥ εn | τ = n
)
−−−−→
n→+∞

0.

(2 points)

Sketch of solution: Using question 1 and the Kemperman formula, the left-hand
side rewrites as

P
(∣∣Yn − n

2

∣∣ ≥ εn and τ = n
)

P (τ = n)
=

1
n
P
(∣∣Yn − n

2

∣∣ ≥ εn and Sn = −1
)

1
n
P (Sn = −1)

= P
(∣∣∣Yn − n

2

∣∣∣ ≥ εn |Sn = −1
)

≤
P
(∣∣Yn − n

2

∣∣ ≥ εn
)

P (Sn = −1)
.

We showed that the numerator is O(1/n). On the other hand S is aperiodic hand
has mean 0, so the local CLT shows that the denominator is of order n−1/2.

4. Let Tn be a uniform random plane tree with n vertices. Prove that Tn has the same
distribution as a Galton–Watson tree with offspring distribution ν, conditioned on
having exactly n vertices. (1 point)

Sketch of solution: For any tree t with n vertices, the probability for a Galton-
Watson tree with offspring distribution ν to be equal to t is∏

v∈t

2−1−kv(t) = 2−2n+1

using
∑

v kv(t) = n − 1. This does not depend on t, so the Galton–Watson tree
conditioned on having size n is uniform.

5. Let Ln be the number of leaves of Tn. Using the Lukasiewicz path, conclude that
we have the convergence in probability

Ln

n

(P )−−−−→
n→+∞

1

2
.

(0.5 point)
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6. To prove this last result, why was it more convenient to rely on the Lukasiewicz
path than on the contour function? (1 point)

Sketch of solution: The number of leaves is not as convenient to read on the contour
function. It is the number of +1 step followed by a −1 steps. In particular, this
introduces dependances that make the variance computation of squestion 2 more
complicated, and it is not immediately invariant by cyclic shifts, which would make
question 1 more difficult as well.
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