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Labelled binary trees

A binary tree is a finite tree where all vertices have degree
either 1 (leaves) or 3 (nodes).
We consider labelled binary trees, i.e. binary trees with n
leaves labelled from 1 to n.
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Simple combinatorial structure: we pass from n − 1 to n by
grafting the leaf n on one of the 2n − 5 edges, so

#Tn = (2n − 5)!! = 1× 3× 5× · · · × (2n − 5).
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Subtrees

Let t be a labelled binary tree with n leaves, and A a subset of
{1, . . . , n}. The subtree of t induced by A is the labelled
binary tree formed by the leaves of t whose label belong to A,
and the branches between them.
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A = {2, 3, 6, 7, 8}

→

t t|A
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Maximum Agreement Subtree: if t, t ′ are labelled binary trees
of size n, we write

MAST(t, t ′) = max{|A| such that t|A = t ′|A}.
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Maximum Agreement Subtree: an example
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t t ′

MAST(t, t ′) = 5
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Maximum Agreement Subtree

Motivations:
When two different phylogeny methods give different results,
measure by how much they disagree and how much
information can be saved.
Generalization of the longest monotone subsequence of a
permutation, when both trees are caterpillars:

First results:
Computation: simple quadratic algorithm [Steel–Warnow
93], improved to O (n log n)
[Cole–Farach–Hariharan–Przytycka–Thorup 00].
Worst case [Markin 18, Kubicka–Kubicki–Morris 92]:

c log n ≤ min
|t|=|t′|=n

MAST(t, t ′) ≤ C log n.
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MAST of random trees

Let Tn,T
′
n be two independent labelled binary trees of size n,

picked uniformly at random. Order of magnitude of
MAST(Tn,T

′
n)?

Motivation: it should not be the case on "real" data, but gives
a benchmark.
First moment upper bound [Bryant–McKenzie–Steel 03]:

P
(
MAST(Tn,T

′
n) ≥ k

)
≤

∑
A⊂{1,...,n}, |A|=k
t labelled by A

P
(
Tn|A = T ′n|A = t

)

=

(
n

k

)
× (2k − 5)!!× 1

(2k − 5)!!2
,

since the restriction of Tn to any subset A is uniform. By
Stirling, we find MAST(Tn,T

′
n) = O(

√
n) with high

probability.
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MAST of random trees: lower bounds and particular cases

Polynomial lower bound: MAST(Tn,T
′
n) ≥ n1/8 by finding a

common caterpillar [Bernstein–Ho–Long–Steel–St.
John–Sullivant 15].

Lower bound increased to n
√

3−1
2 ≈ n0,366 [Aldous 20] and

then to n0,4464 [Khezeli 22].
If both trees Tn and T ′n are caterpillars, MAST(Tn,T

′
n) is the

length of the longest monotone subsequence of a uniform
permutation, so it is ≈

√
n.

If Tn and T ′n are conditionned to have the same shape (i.e.
independent labellings of the same tree t), then
MAST(Tn,T

′
n) ≈

√
n [Misra–Sullivant 19]:

Divide t into
√
n regions (Ri ) of size ≈

√
n, and take one well

chosen label for each region.
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MAST of random trees: improved upper bound

Theorem (B.–Sénizergues 23+)

There is ε > 0 such that, with probability 1− o(1), we have

MAST(Tn,T
′
n) ≤ n1/2−ε.

Explicit ε: very bad (ε = 10−338).
Conjectured by Aldous.
Reason: two independent trees have "different shapes on every
scale", so a common subtree would have to "match" large
regions of Tn with small regions of T ′n.
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The Brownian tree

Brownian tree T : scaling limit of the trees Tn, with distances
renormalized by 1√

n
, and mass 1

n on each leaf [Aldous 90s].
It is a random measured metric space which is compact and
has fractal dimension 2.
Deterministic topology: continuous tree where branching
points are dense and have degree 3 [Croydon–Hambly 07].

(picture by I. Kortchemski)
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Homeomorphisms of Brownian trees

Theorem (B.–Sénizergues 23+)

Let T , T ′ be two independent Brownian trees. There is ε > 0 such
that almost surely, there is no (1− ε)-Hölder homeomorphism from
T to T ′.

Both theorems share most of the proof: partition (Ri ) of T
such that for any homeomorphism Ψ : T → T ′, most of the Ri

satisfy |Ψ(Ri )| � |Ri |.
To pass from continuous to discrete: classic coupling between
T and Tn (pick n uniform points on T ).

Aldous’proof that MAST(Tn,T
′
n) ≥ n

√
3−1
2 implicitly builds a

Hölder homeomorphism.
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THANK YOU !
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