On the Maximum Agreement Subtree of random trees

Thomas Budzinski (CNRS and ENS de Lyon)

2023, March 13th
Journées ALEA 2023
joint work with Delphin Sénizergues (Nanterre)

Labelled binary trees

- A binary tree is a finite tree where all vertices have degree either 1 (leaves) or 3 (nodes).
- We consider labelled binary trees, i.e. binary trees with n leaves labelled from 1 to n.

- Simple combinatorial structure: we pass from $n-1$ to n by grafting the leaf n on one of the $2 n-5$ edges, so

$$
\# \mathcal{T}_{n}=(2 n-5)!!=1 \times 3 \times 5 \times \cdots \times(2 n-5)
$$

- Let t be a labelled binary tree with n leaves, and A a subset of $\{1, \ldots, n\}$. The subtree of t induced by A is the labelled binary tree formed by the leaves of t whose label belong to A, and the branches between them.

$$
A=\{2,3,6,7,8\}
$$

$$
\left.t\right|_{A}
$$

t

- Maximum Agreement Subtree: if t, t^{\prime} are labelled binary trees of size n, we write

$$
\operatorname{MAST}\left(t, t^{\prime}\right)=\max \left\{|A| \text { such that }\left.t\right|_{A}=\left.t^{\prime}\right|_{A}\right\}
$$

Maximum Agreement Subtree: an example

Maximum Agreement Subtree

- Motivations:
- When two different phylogeny methods give different results, measure by how much they disagree and how much information can be saved.
- Generalization of the longest monotone subsequence of a permutation, when both trees are caterpillars:

- First results:
- Computation: simple quadratic algorithm [Steel-Warnow 93], improved to $O(n \log n)$ [Cole-Farach-Hariharan-Przytycka-Thorup 00].
- Worst case [Markin 18, Kubicka-Kubicki-Morris 92]:

$$
c \log n \leq \min _{|t|=\left|t^{\prime}\right|=n} \operatorname{MAST}\left(t, t^{\prime}\right) \leq C \log n .
$$

MAST of random trees

- Let T_{n}, T_{n}^{\prime} be two independent labelled binary trees of size n, picked uniformly at random. Order of magnitude of $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right)$?
- Motivation: it should not be the case on "real" data, but gives a benchmark.
- First moment upper bound [Bryant-McKenzie-Steel 03]:

$$
\begin{aligned}
\mathbb{P}\left(\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right) \geq k\right) & \leq \sum_{\substack{A \subset\{1, \ldots, n\},|A|=k \\
t \text { labelled by } A}} \mathbb{P}\left(\left.T_{n}\right|_{A}=\left.T_{n}^{\prime}\right|_{A}=t\right) \\
& =\binom{n}{k} \times(2 k-5)!!\times \frac{1}{(2 k-5)!!^{2}},
\end{aligned}
$$

since the restriction of T_{n} to any subset A is uniform. By Stirling, we find $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right)=O(\sqrt{n})$ with high probability.

MAST of random trees: lower bounds and particular cases

- Polynomial lower bound: $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right) \geq n^{1 / 8}$ by finding a common caterpillar [Bernstein-Ho-Long-Steel-St. John-Sullivant 15].
- Lower bound increased to $n^{\frac{\sqrt{3}-1}{2}} \approx n^{0,366}$ [Aldous 20] and then to $n^{0,4464}$ [Khezeli 22].
- If both trees T_{n} and T_{n}^{\prime} are caterpillars, $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right)$ is the length of the longest monotone subsequence of a uniform permutation, so it is $\approx \sqrt{n}$.
- If T_{n} and T_{n}^{\prime} are conditionned to have the same shape (i.e. independent labellings of the same tree t), then $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right) \approx \sqrt{n}[$ Misra-Sullivant 19]:
- Divide t into \sqrt{n} regions $\left(R_{i}\right)$ of size $\approx \sqrt{n}$, and take one well chosen label for each region.

MAST of random trees: improved upper bound

Theorem (B.-Sénizergues 23+)

There is $\varepsilon>0$ such that, with probability $1-o(1)$, we have

$$
\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right) \leq n^{1 / 2-\varepsilon}
$$

- Explicit ε : very bad $\left(\varepsilon=10^{-338}\right)$.
- Conjectured by Aldous.
- Reason: two independent trees have "different shapes on every scale", so a common subtree would have to "match" large regions of T_{n} with small regions of T_{n}^{\prime}.
- Brownian tree \mathcal{T} : scaling limit of the trees T_{n}, with distances renormalized by $\frac{1}{\sqrt{n}}$, and mass $\frac{1}{n}$ on each leaf [Aldous 90s].
- It is a random measured metric space which is compact and has fractal dimension 2.
- Deterministic topology: continuous tree where branching points are dense and have degree 3 [Croydon-Hambly 07].

(picture by I. Kortchemski)

Homeomorphisms of Brownian trees

Theorem (B.-Sénizergues 23+)

Let $\mathcal{T}, \mathcal{T}^{\prime}$ be two independent Brownian trees. There is $\varepsilon>0$ such that almost surely, there is no $(1-\varepsilon)$-Hölder homeomorphism from \mathcal{T} to \mathcal{T}^{\prime}.

- Both theorems share most of the proof: partition $\left(R_{i}\right)$ of \mathcal{T} such that for any homeomorphism $\Psi: \mathcal{T} \rightarrow \mathcal{T}^{\prime}$, most of the R_{i} satisfy $\left|\Psi\left(R_{i}\right)\right| \ll\left|R_{i}\right|$.
- To pass from continuous to discrete: classic coupling between \mathcal{T} and T_{n} (pick n uniform points on \mathcal{T}).
- Aldous'proof that $\operatorname{MAST}\left(T_{n}, T_{n}^{\prime}\right) \geq n^{\frac{\sqrt{3}-1}{2}}$ implicitly builds a Hölder homeomorphism.

$\mathfrak{T H} \mathcal{A N} \mathcal{K}$ YOTl!

