Recurrence of the UIHPM via duality of resistances

Thomas Budzinski (based on joint work with Thomas Lehéricy)

UBC

2020, October 29th
Random Geometry and Statistical Physics Seminar
A planar map is a gluing of polygons homeomorphic to the sphere (finite case) or to the plane (infinite case).

We consider rooted maps (distinguished oriented edge).
Local limits of uniform random maps

- Natural idea for probabilists: pick a random map uniformly at random among all maps of fixed finite size (in a certain class).
- Motivation: theoretical physics (two-dimensional quantum gravity).
- To take the limit when the size goes to $+\infty$, local convergence: two maps are close if they have large isomorphic balls around the root.
- Limiting objects are infinite planar maps such as:
 - the UIPT for triangulations [Angel–Schramm 2003],
 - the UIPQ for quadrangulations [Krikun 2005],
 - the UIPM for general planar maps [Ménard–Nolin 2013].
- Metric properties are well understood:
 - Volume growth $\approx r^4$ [Angel 2004]
 - Scaling limit: Brownian plane [Curien–Le Gall 2014]
 - Links with Liouville Quantum Gravity [Miller–Sheffield 2015, 2016...]

Thomas Budzinski

Recurrence of the UIHPM
Historically, the simple random walk on these models has been much harder to understand.

Recurrence of the SRW on a wide class of models [Gurel-Gurevich–Nachmias 2012, Lee 2017].

Speed: the distance of the SRW at time n to the root is $n^{1/4+o(1)}$ [Gwynne–Hutchcroft 2018].

Bounds on the resistance between the root and the boundary of the ball of radius r:

- At most polynomial in $\log r$ [Gwynne–Miller 2017],
- Circle packing arguments for recurrence are expected to give lower bounds of order $\log \log r$,
- Conjectured order of magnitude: $\log r$.
Recurrence of half-plane models

- Half-plane models: models of infinite maps with an infinite (simple) boundary.
- Recurrence of the Uniform Infinite *Half-Plane* Triangulation [Angel–Ray 2016].
- UIHPM: similar model for general maps.

Theorem (B.–Lehéricy 2019)

The UIHPM M_∞ s a.s. recurrent. More precisely, there is a constant c such that a.s.:

$$R_{M_\infty} (\rho \leftrightarrow \partial B_r(M_\infty)) \geq c \log r$$

for r large enough.
First definition: local limit of critical Boltzmann maps with simple boundary. Let M_p be such that

$$P(M_p = m) = \frac{1}{Z_p} \left(\frac{1}{12} \right)^{\#\text{Edges}(m)}$$

for all map m with a simple boundary of length p, rooted on the boundary. Then M_∞ is the local limit of M_p as $p \to +\infty$.

Second construction: from the Uniform Infinite Half-Plane Quadrangulation, using the Tutte bijection.
Correspondence between quadrangulations and general maps:

- Start from the UIHPQ Q_∞ and apply the Tutte correspondence. There is a unique infinite 2-connected component, which has the distribution of M_∞.
- The finite 2-connected components have negligible contribution to distances and to resistances, so we can work on $\text{Tutte}(Q_\infty)$.
Correspondence between quadrangulations and general maps:

- Start from the UIHPQ Q_∞ and apply the Tutte correspondence. There is a unique infinite 2-connected component, which has the distribution of M_∞.
- The finite 2-connected components have negligible contribution to distances and to resistances, so we can work on $\text{Tutte}(Q_\infty)$.
Central idea: use the self-duality of the model. We find a self-dual block in which the resistance is bounded from below with positive probability.

Using peeling estimates in the UIHPQ, we build a logarithmic number of these self-dual blocks between the root and infinity.

Similarities with RSW theory in percolation. Also used in the context of SRW on \mathbb{Z}^2 with weights given by the exponential of a Gaussian Free Field [Biskup–Ding–Goswami 2016].
Spatial Markov property: the quadrilateral incident to the root edge has one of the following shapes:

- Finite regions are filled with *critical Boltzmann quadrangulations*.
- The infinite region has the law of Q_∞.
Consequence: we can explore Q_∞ almost face by face. Explored region after n steps:

\[\partial_t E_n(Q_\infty) \]

\[\partial_b E_n(Q_\infty) \]

The boundary length variation $X_n = |\partial_t E_n(Q_\infty)| - |\partial_b E_n(Q_\infty)|$ is a random walk with explicitly known transitions.

Scaling limit of (X_n): stable Lévy process with index 3/2 and only negative jumps.

Flexibility: at each step, we can choose the next boundary edge to explore (peeling algorithm).
Let M be a planar map with two vertices a_1, a_3 on the unbounded face. Let (M^*, a_2^*, a_4^*) be the dual map.

Then $R_{M^*} (a_2^* \leftrightarrow a_4^*) = (R_M (a_1 \leftrightarrow a_3))^{-1}$.
Consider Q_p critical Boltzmann quadrangulation of the $2p$-gon, i.e. $\mathbb{P}(Q_p = q) = \frac{1}{Z_p} \left(\frac{1}{12} \right)^{\#\text{Faces}(q)}$.

Split the boundary into 4 parts A_1, A_2^*, A_3, A_4^*.

Let M_p (resp. M_p^*) be the map obtained by the Tutte bijection on white (resp. black) vertices.
Then \(R_{M_p}(A_1 \leftrightarrow A_3) = \left(R_{M^*_p}(A_2^* \leftrightarrow A_4^*) \right)^{-1} \).

Symmetry black/white: if \(|A_1|, |A_3| \leq |A_2^*|, |A_4^*| \), then \(R_{M_p}(A_1 \leftrightarrow A_3) \) stochastically dominates \(R_{M^*_p}(A_2^* \leftrightarrow A_4^*) \).

Consequence: for all \(p \),

\[
P\left(R_{M_p}(A_1 \leftrightarrow A_3) \geq 1 \right) \geq \frac{1}{2}.
\]
Fix a red segment of length \(L \geq 1 \) on \(\partial Q_\infty \). We want to build a self-dual Boltzmann block \(B \) which:
- separates the red segment from infinity,
- has top and bottom boundaries smaller than the left and right boundaries.

Explore \(Q_\infty \) with the following peeling algorithm: always peel the edge at distance \(2L \) on the left of the red segment.

Stop the exploration at the time \(\tau \) where the boundary length process makes a jump \(\leq -L \).
Stop the exploration at the time τ where the boundary length process makes a jump $\leq L$.

In particular, if a point at distance $< L$ to the red segment is hit, the exploration stops.
Construction of a self-dual block at a given scale

- Stop the exploration at the time τ where the boundary length process makes a jump $\leq L$.
- In particular, if a point at distance $< L$ to the red segment is hit, the exploration stops.

Assume the jump at time τ is $< -4L$ and is caused by swallowing a region B on the right of the peeled edge.
Then the hole in green is filled by a Boltzmann quadrangulation with top and bottom boundaries $\leq L$ and left, right boundaries $\geq L$.
Construction of a self-dual block at a given scale

- $P(\text{the first jump } < -L \text{ is } < -4L) \to \delta > 0 \text{ as } L \to +\infty$.
- So with probability $\geq \frac{\delta}{2}$, the green block has the right dimensions.
- Scaling limit results on the boundary length process: $\mathbb{E}\left[\frac{L'}{L}\right]$ is bounded.
- Iterate this construction in the unexplored region, with L' playing the role of the new L.
Construction of a logarithmic number of blocks

- Repeat this construction, starting from $L_0 = 1$:

At each scale, conditionally on the previous ones, probability to have a "nice" green block $\geq \frac{\delta}{2}$, so the probability to have a resistance at least 1 is $\geq \frac{\delta}{4}$.

Hence $R(\rho \leftrightarrow n$-th blue region) $\geq \frac{\delta}{4}n$

On the other hand $\mathbb{E}[L_n] \leq e^{cn}$, so the segment of length L_n is at exponential distance from ρ.
Repeat this construction, starting from $L_0 = 1$:

At each scale, conditionally on the previous ones, probability to have a "nice" green block $\geq \frac{\delta}{2}$, so the probability to have a resistance at least 1 is $\geq \frac{\delta}{4}$.

Hence $R(\rho \leftrightarrow n$-th blue region) $\geq \frac{\delta}{4} n$

On the other hand $\mathbb{E}[L_n] \leq e^{cn}$, so the segment of length L_n is at exponential distance from ρ.
Construction of a logarithmic number of blocks

- Repeat this construction, starting from $L_0 = 1$:

At each scale, conditionally on the previous ones, probability to have a "nice" green block $\geq \frac{\delta}{2}$, so the probability to have a resistance at least 1 is $\geq \frac{\delta}{4}$.

Hence $R(\rho \leftrightarrow \text{n-th blue region}) \geq \frac{\delta}{4} n$

On the other hand $\mathbb{E}[L_n] \leq e^{cn}$, so the segment of length L_n is at exponential distance from ρ.
Repeat this construction, starting from $L_0 = 1$:

At each scale, conditionally on the previous ones, probability to have a "nice" green block $\geq \frac{\delta}{2}$, so the probability to have a resistance at least 1 is $\geq \frac{\delta}{4}$.

Hence $R(\rho \leftrightarrow n$-th blue region) $\geq \frac{\delta}{4} n$

On the other hand $\mathbb{E}[L_n] \leq e^{cn}$, so the segment of length L_n is at exponential distance from ρ.

Thomas Budzinski
Recurrence of the UIHPM
Self-duality is crucial, so no hope to generalize the approach to other classes of maps (e.g. triangulations).

Full plane topology?

Matching lower bound? Natural first step: prove that the resistance in a large self-dual block is typically of order 1.

Self-dual random maps equipped with statistical physics models?
THANK YOU!