## Random triangulations in high genus

Thomas Budzinski<br>(joint works with Guillaume Chapuy and Baptiste Louf)<br>ENS Lyon and CNRS

21 Novembre 2023
Séminaire de Probabilités de Jussieu

## Outline

- Random triangulations: discrete models of random two-dimensional geometry.
- Planar case: very active in the last 20 years, motivated by 2-dimensional quantum gravity, exact enumeration helps a lot.
- Higher genus: more recent, enumeration is much more difficult!
- "Random planar maps are fractals, random high genus maps are expanders".

- A triangulation with $2 n$ faces is a set of $2 n$ triangles whose sides have been glued two by two, in such a way that we obtain a connected, orientable surface.
- The genus $g$ of the triangulation is the number of holes of this surface ( $g=0$ on the figure).
- Our triangulations are of type I (we may glue two sides of the same triangle), and rooted (oriented root edge).

- A triangulation with $2 n$ faces is a set of $2 n$ triangles whose sides have been glued two by two, in such a way that we obtain a connected, orientable surface.
- The genus $g$ of the triangulation is the number of holes of this surface ( $g=0$ on the figure).
- Our triangulations are of type I (we may glue two sides of the same triangle), and rooted (oriented root edge).

- A triangulation with $2 n$ faces is a set of $2 n$ triangles whose sides have been glued two by two, in such a way that we obtain a connected, orientable surface.
- The genus $g$ of the triangulation is the number of holes of this surface ( $g=0$ on the figure).
- Our triangulations are of type I (we may glue two sides of the same triangle), and rooted (oriented root edge).
- Let $\mathcal{T}_{n, g}$ be the set of triangulations of genus $g$ with $2 n$ faces, and $\tau(n, g)$ its cardinal.
- Let also $\tau_{p}(n, g)$ be the number of triangulations of size $n$ and genus $g$, where the face on the right of the root has perimeter p. Can we compute those numbers?
- In the planar case, exact formulas [Tutte, 60s]:

$$
\tau(n, 0)=2 \frac{4^{n}(3 n)!!}{(n+1)!(n+2)!!} \underset{n \rightarrow+\infty}{\sim} \sqrt{\frac{6}{\pi}}(12 \sqrt{3})^{n} n^{-5 / 2}
$$

where $n!!=n(n-2)(n-4) \ldots$ We also know $\tau_{p}(n, 0)$ explicitely.

- In general, double recurrence relations [Goulden-Jackson, 2008], but no close formula.
- Known asymptotics when $n \rightarrow+\infty$ with $g$ fixed, but not when both $n, g \rightarrow+\infty$.
- Let $T_{n, g}$ be a uniform triangulation in $\mathcal{T}_{n, g}$. Equip $T_{n, g}$ with its graph metric.
- Distances in $T_{n, 0}$ are typically of order $n^{1 / 4}$ Chassaing-Schaeffer 2004].
- If the distances are renormalized by $n^{1 / 4}$, Gromov-Hausdorff convergence to the Brownian sphere Miermont 2011]: random compact metric space, homeomorphic to the sphere and with Hausdorff dimension 4.
- Similar results hold for $T_{n, g}$ with $g$ fixed and $n \rightarrow+\infty$ (at least for quadrangulations). [Bettinelli 2010, Bettinelli-Miermont 2022].
- Main tool: bijections with labelled trees or labelled tree-like structures.



## The planar case: local properties

- Local convergence: two triangulations $t$ and $t^{\prime}$ are close if there is a large $r$ such that $B_{r}(t)=B_{r}\left(t^{\prime}\right)$, where $B_{r}$ denotes the ball for the graph distance.


## Theorem (Angel-Schramm 2003)

We have the convergence in distribution

$$
T_{n, 0} \xrightarrow[n \rightarrow+\infty]{(d)} \mathbb{T}
$$

for the local topology, where $\mathbb{T}$ is an infinite triangulation of the plane called the UIPT (Uniform Infinite Planar Triangulation).

- Moreover, the UIPT has volume growth or order $r^{4}$ [Angel 2004].



## Convergence to the UIPT T: sketch of the proof

- Let $t$ be a small triangulation with perimeter $p$ and $2 m$ internal faces.


$$
\left(p=6,{ }^{t} m=5\right)
$$



- Then $P\left(t \subset T_{n, 0}\right)=\frac{\tau_{\rho}(n-m, 0)}{\tau(n, 0)}$, and the limit is given by the results of Tutte.

| Exact <br> enumeration |
| :---: |$\Rightarrow \quad$ Probability

- In particular $\mathbb{P}(t \subset \mathbb{T})$ is explicit, which allows to explore $\mathbb{T}$ "face by face" in a Markovian way ("peeling").


## The non-planar case: what is going on?

- Euler formula: $T_{n, g}$ has $\# E=3 n$ edges and $\# V=n+2-2 g$ vertices. In particular $g \leq \frac{n}{2}$.
- Hence, the average degree in $T_{n, g}$ is

$$
\frac{2 \# E}{\# V}=\frac{6 n}{n+2-2 g} \approx \frac{6}{1-2 g / n} .
$$

- Interesting regime: $\frac{g}{n} \rightarrow \theta \in\left(0, \frac{1}{2}\right)$. The average degree in the limit is strictly between 6 and $+\infty$.
- The $d$-regular infinite triangulation for $d>6$ is hyperbolic, so we expect a hyperbolic behaviour.


## The high genus case: local limits

## Theorem (B.-Louf 2019)

Let $\frac{g_{n}}{n} \rightarrow \theta \in\left[0, \frac{1}{2}\right)$. Then we have the convergence

$$
T_{n, g_{n}} \xrightarrow[n \rightarrow+\infty]{(d)} \mathbb{T}_{\theta}
$$

in distribution for the local topology, where $\mathbb{T}_{\theta}$ is a random infinite triangulation of the plane called $P S H T$.

- In particular $\mathbb{T}_{0}$ is the UIPT, so if $g_{n}=o(n)$, the limit is the same as for $g_{n}=0$.
- For $\theta>0$, the triangulation $\mathbb{T}_{\theta}$ is "hyperbolic": exponential volume growth, transience of the simple random walk... [Curien 2016]
- The case $\theta=\frac{1}{2}$ is degenerate (vertices with "infinite degrees").
- The limit is planar, although $T_{n, g_{n}}$ has a high genus! Also true in other well-known contexts (e.g. random regular graphs).


## A sample of a PSHT



Thomas Budzinski
High genus triangulations

- Natural idea to prove the theorem: as in the planar case, use asymptotic results on the number $\tau_{p}\left(n, g_{n}\right)$ of triangulations of size $n$ with genus $g_{n}$ and a boundary of length $p$.
- Unfortunately, it seems very hard to obtain accurate asymptotics.
- On the other hand, let $t_{0}=\rightarrow$. Then

$$
\mathbb{P}\left(t_{0} \subset T_{n, g}\right)=\frac{\tau_{1}(n-1, g)}{\tau(n, g)}=\frac{\tau(n-1, g)}{\tau(n, g)}
$$

by a simple root transformation (erase the boundary edge and glue two edges together).

- But we also know that if $\frac{g}{n} \rightarrow \theta$, then

$$
\mathbb{P}\left(t_{0} \subset T_{n, g}\right) \xrightarrow[n \rightarrow+\infty]{ } \mathbb{P}\left(t_{0} \subset \mathbb{T}_{\theta}\right)=\lambda(\theta)
$$

where $\lambda(\theta)$ satisfies an explicit equation.

## Local limits: back to combinatorics

- We know that $\frac{\tau(n-1, g)}{\tau(n, g)} \approx \lambda\left(\frac{g}{n}\right)$ and $\tau(2 g-1, g)$ is explicit, so with a telescopic product we can estimate $\tau(n, g)$.


## Theorem (B.-Louf, 2019)

When $\frac{g_{n}}{n} \rightarrow \theta \in\left[0, \frac{1}{2}\right]$, we have

$$
\tau\left(n, g_{n}\right)=n^{2 g_{n}} \exp (f(\theta) n+o(n))
$$

where $f(\theta)=2 \theta \log \frac{12 \theta}{e}+\theta \int_{2 \theta}^{1} \log \frac{1}{\lambda(\theta / t)} \mathrm{d} t$, and $\lambda(\theta)$ is as above.

## Local limits: back to combinatorics

- We know that $\frac{\tau(n-1, g)}{\tau(n, g)} \approx \lambda\left(\frac{g}{n}\right)$ and $\tau(2 g-1, g)$ is explicit, so with a telescopic product we can estimate $\tau(n, g)$.


## Theorem (B.-Louf, 2019)

When $\frac{g_{n}}{n} \rightarrow \theta \in\left[0, \frac{1}{2}\right]$, we have

$$
\tau\left(n, g_{n}\right)=n^{2 g_{n}} \exp (f(\theta) n+o(n))
$$

where $f(\theta)=2 \theta \log \frac{12 \theta}{e}+\theta \int_{2 \theta}^{1} \log \frac{1}{\lambda(\theta / t)} \mathrm{d} t$, and $\lambda(\theta)$ is as above.

- Summary of the proof:

| Very crude so crude <br> enumeration <br> enumeration |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## Steps of the proof

- Tightness from crude combinatorial estimates (the ratio $\frac{\tau(n, g)}{\tau(n-1, g)}$ is bounded).
- Planarity and one-endedness of the limits come from the Goulden-Jackson recurrence:

$$
\tau(n, g)=n^{2} \tau(n-2, g-1)+\ldots
$$

- Any subsequential limit $T$ is weakly Markovian: for any finite triangulation $t$, the probability $\mathbb{P}(t \subset T)$ is a function of the perimeter and the volume of $t$.
- Any weakly Markovian random triangulation of the plane is a mixture of PSHT (i.e. $\mathbb{T}_{\Theta}$ for some random $\Theta$ ).
- Ergodicity: $\Theta$ is deterministic, characterized by the fact that the average degree must be $\frac{6}{1-2 \theta}$.


## High genus triangulations: global properties

- The local behaviour of $T_{n, g}$ for $\frac{g}{n} \rightarrow \theta$ is now well understood, but what about the global one?
- At large scale, we expect $T_{n, g}$ to behave roughly like a random graph (e.g supercritical Erdös-Rényi, or uniform 3-regular):
- hyperbolic local limits,
- comparison with unicellular maps [Ray 2014] or with models of random hyperbolic surfaces [Mirzakhani 2013],
- the dual of a triangulation picked in $\bigcup_{g} \mathcal{T}_{n, g}$ is a uniform (connected) 3-regular graph (in this model $g \approx \frac{n}{2}$ w.h.p.).
- Many nice questions about the global structure of random graphs: distances? Isoperimetric inequalities? Spectral gap? Cut-off for the random walk? Percolation?


## Global distances

- Distances are logarithmic and "almost all the same":


## Theorem (B.-Chapuy-Louf 2023)

For $\theta \in\left(0, \frac{1}{2}\right)$, there are constants $c_{\theta}, C_{\theta}>0$ such that if $\frac{g_{n}}{n} \rightarrow \theta$, then

$$
\mathbb{P}\left(c_{\theta} \log n \leq \operatorname{diam}\left(T_{n, g_{n}}\right) \leq C_{\theta} \log n\right) \xrightarrow[n \rightarrow+\infty]{ } 1
$$

## Theorem (B.-Chapuy-Louf 2023)

Let $\frac{g_{n}}{n} \rightarrow \theta \in\left(0, \frac{1}{2}\right)$ and let $x_{n}, y_{n}, u_{n}, v_{n}$ be four independent uniform vertices of $T_{n, g_{n}}$. Then

$$
d_{T_{n, g_{n}}}\left(x_{n}, y_{n}\right)-d_{T_{n, g_{n}}}\left(u_{n}, v_{n}\right)
$$

is tight.

- Idea: first moment computation on paths of length $\ell$.
- The size of the ball is bounded by the number of simple paths of length $\ell$ from the root.
- Cut along a path: the expected number of such paths is $\frac{\tau_{2 \ell}(n, g)}{\tau(n, g)}$.
- Fill the hole: $\frac{\tau_{2 \ell}(n, g)}{\tau(n, g)} \leq \frac{\tau(n+\ell, g)}{\tau(n, g)} \leq C_{\theta}^{\ell}=o(n)$ if $\ell \leq c_{\theta} \log n$.





## Isoperimetric inequality

- Two natural ways to tackle the upper bound: bijections with labelled trees, or isoperimetric inequalities.
- Ideally: if $A \subset T_{n, g}$, then $|\partial A| \geq c \min \left(|A|,\left|T_{n, g} \backslash A\right|\right)$.
- But random local limit, so there are "small defects".


## Theorem (B.-Chapuy-Louf 2023)

For $\theta \in\left(0, \frac{1}{2}\right)$, there are $\delta_{\theta}, K_{\theta}>0$ such that if $\frac{g_{n}}{n} \rightarrow \theta$, the following holds with high probability:
For any multicurve $\eta$ which splits $T_{n, g_{n}}$ into two connected components with $n_{1}$ and $n_{2}$ faces, if $n_{2} \geq n_{1} \geq K_{\theta} \log n$, then the length of $\eta$ is at least $\delta_{\theta} n_{1}$.


- Let $x \in T_{n, g}$. For $r \geq K_{\theta} \log n$, we have

$$
\left|B_{r+1}(x) \backslash B_{r}(x)\right| \approx\left|\partial B_{r}(x)\right| \geq \delta_{\theta}\left|B_{r}(x)\right|
$$

so $\left|B_{r+1}(x)\right| \geq(1+\delta) \mid B_{r}(x)$ and $\left|B_{r}(x)\right| \geq(1+\delta)^{r}$, so $B_{r}(x)=T_{n, g}$ for $r=C \log n$, up to the small defects.

- Defects are actually not a problem: their volume is $O(\log n)$, and so is their diameter.
- Why are distances almost all the same?
- let $r$ be the first radius such that $\left|B_{r}(x)\right| \geq \varepsilon n$,
- then $\left|B_{r+M}(x)\right| \geq(1+\delta)^{M} \varepsilon n \geq(1-\varepsilon) n$ for some finite $M$,
- so most vertices $y$ satisfy

$$
r \leq d_{T_{n, g_{n}}}(x, y) \leq r+M
$$

## Proof of the isoperimetric inequality

- Again, first moment computation on separating multicurves:

- We want to bound

$$
\frac{\tau_{p_{1}, \ldots, p_{k}}\left(n_{1}, g_{1}\right) \tau_{p_{1}, \ldots, p_{k}}\left(n_{2}, g_{2}\right)}{\tau(n, g)}
$$

$$
\text { for }\left\{\begin{array}{l}
n_{1}+n_{2}=n \\
n_{2} \geq n_{1} \geq K \log n \\
g_{1}+g_{2}=g-k+1 \\
p=p_{1}+\cdots+p_{k} \leq \delta n_{1}
\end{array}\right.
$$

## Proof of the isoperimetric inequality

- First, get rid of boundaries:

$$
\tau_{p_{1}, \ldots, p_{k}}\left(n_{1}, g_{1}\right) \leq n^{k} \tau\left(n_{1}+p, g_{1}\right) \leq n^{k} C^{p} \tau\left(n_{1}, g_{1}\right)
$$

- Reminder: $\tau(n, g)=n^{2 g} \exp \left(n f\left(\frac{g}{n}\right)\right) e^{o(n)}$, so

$$
\begin{aligned}
& \frac{\tau_{p_{1}, \ldots, p_{k}}\left(n_{1}, g_{1}\right) \tau_{p_{1}, \ldots, p_{k}}\left(n_{2}, g_{2}\right)}{\tau(n, g)} \\
& \leq C^{p} \frac{n^{2 k} n_{1}^{2 g_{1}} n_{2}^{2 g_{2}}}{n^{2 g}} e^{o(n)} \\
& \times \exp \left(n_{1} f\left(\frac{g_{1}}{n_{1}}\right)+n_{2} f\left(\frac{g_{2}}{n_{2}}\right)-n f\left(\frac{g}{n}\right)\right) .
\end{aligned}
$$

- The function $f$ is concave! (explicit computation)
- $\frac{n^{2 k} n_{1}^{2 g_{1}} n_{2}^{2 g_{2}}}{n^{2 g}}=n^{2}\left(\frac{n_{1}}{n}\right)^{2 g_{1}}\left(\frac{n_{2}}{n}\right)^{2 g_{2}}$.
- If both pieces are macroscopic, this is $e^{-c n}$, so this beats $C^{p}$ for $p \leq \delta n$.
- If $n_{1} \ll n$, the error factor $e^{o(n)}$ may be too large!
- But we understand the ratios $\frac{\tau(n+1, g)}{\tau(n, g)}$, so we can estimate the quotient $\frac{\tau\left(n_{2}, g_{2}\right)}{\tau(n, g)}$ with an error $e^{o\left(n_{1}\right)}$ instead of $e^{o(n)}$.
- Everything is $\leq e^{-c n_{1}}$, so if $n_{1} \geq K \log n$, we can union bound over $\left(p_{1}, \ldots, p_{k}\right), n_{1}, n_{2}, g_{1}, g_{2} \ldots$


## Proof of the isoperimetric inequality

- If $n_{1} \ll n$, the error factor $e^{o(n)}$ may be too large!
- But we understand the ratios $\frac{\tau(n+1, g)}{\tau(n, g)}$, so we can estimate the quotient $\frac{\tau\left(n_{2}, g_{2}\right)}{\tau(n, g)}$ with an error $e^{o\left(n_{1}\right)}$ instead of $e^{o(n)}$.
- Everything is $\leq e^{-c n_{1}}$, so if $n_{1} \geq K \log n$, we can union bound $\operatorname{over}\left(p_{1}, \ldots, p_{k}\right), n_{1}, n_{2}, g_{1}, g_{2} \ldots$

| Very crude <br> enumeration |
| :---: |$\Rightarrow$ Probability $\Rightarrow$| Not so crude |
| :---: |
| enumeration |$\Rightarrow$| More |
| :---: |
| Probability! |

## Tentacles

- In the isoperimetric inequality, do we really need to assume $n_{1}, n_{2} \geq K_{\theta} \log n$ ?
- Yes: with high probability, "tentacles" of length $c_{\theta} \log n$ bounded by only 2 edges appear in $T_{n, g_{n}}$.
- Reason:
$\mathbb{E}[\#$ tentacles of length $\ell] \approx n \times \mathbb{P}$ (tentacle around the root)

$$
=n \frac{\tau(n-\ell, g)}{\tau(n, g)} \approx n \lambda(\theta)^{\ell}
$$

- In particular, the Cheeger constant is of order $\frac{1}{\log n}$.
- Interpretation: $T_{n, g_{n}}$ looks more like a supercritical Erdös-Rényi component than like a uniform 3-regular graph.


## A few questions

## Conjecture

There are two constants $D_{\theta}, D_{\theta}^{\prime}>0$ such that if $\frac{g_{n}}{n} \rightarrow \theta$ and $x_{n}, y_{n}$ are two uniform vertices of $T_{n, g_{n}}$, then

$$
\begin{aligned}
& \frac{1}{\log n} d_{T_{n, g_{n}}}\left(x_{n}, y_{n}\right) \xrightarrow[n \rightarrow+\infty]{P} D_{\theta} \text { and } \frac{1}{\log n} \operatorname{diam}\left(T_{n, g_{n}}\right) \xrightarrow[n \rightarrow+\infty]{P} D_{\theta}^{\prime} \\
& \text { with } D_{\theta}^{\prime}=3 D_{\theta}
\end{aligned}
$$

- Because of tentacles, if this is true, then $D_{\theta}^{\prime}>D_{\theta}$ (as in supercritical Erdös-Rényi components).
- Intermediate regime $1 \ll g \ll n$ ?
- Transfer of any nice property of random graphs?
- Universality? Proved for local limits [B.-Louf 2021], but not for global properties (the function $f$ is not explicit).


## THANK YOU!

