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Outline

Random triangulations: discrete models of random
two-dimensional geometry.
Planar case: very active in the last 20 years, motivated by
2-dimensional quantum gravity, exact enumeration helps a lot.
Higher genus: more recent, enumeration is much more
difficult!
"Random planar maps are fractals, random high genus maps
are expanders".
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Finite triangulations

−→

A triangulation with 2n faces is a set of 2n triangles whose
sides have been glued two by two, in such a way that we
obtain a connected, orientable surface.
The genus g of the triangulation is the number of holes of this
surface (g = 0 on the figure).
Our triangulations are of type I (we may glue two sides of the
same triangle), and rooted (oriented root edge).
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Some combinatorics

Let Tn,g be the set of triangulations of genus g with 2n faces,
and τ(n, g) its cardinal.
Let also τp(n, g) be the number of triangulations of size n and
genus g , where the face on the right of the root has perimeter
p. Can we compute those numbers?
In the planar case, exact formulas [Tutte, 60s]:

τ(n, 0) = 2
4n(3n)!!

(n + 1)!(n + 2)!!
∼

n→+∞

√
6
π

(12
√
3)nn−5/2,

where n!! = n(n − 2)(n − 4).... We also know τp(n, 0)
explicitely.
In general, double recurrence relations [Goulden–Jackson,
2008], but no close formula.
Known asymptotics when n→ +∞ with g fixed, but not when
both n, g → +∞.
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The planar case: global properties

Let Tn,g be a uniform triangulation in Tn,g . Equip Tn,g with
its graph metric.
Distances in Tn,0 are typically of order n1/4 [≈
Chassaing–Schaeffer 2004].
If the distances are renormalized by n1/4, Gromov–Hausdorff
convergence to the Brownian sphere[Le Gall 2011, ≈
Miermont 2011]: random compact metric space,
homeomorphic to the sphere and with Hausdorff dimension 4.
Similar results hold for Tn,g with g fixed and n→ +∞ (at
least for quadrangulations). [Bettinelli 2010,
Bettinelli–Miermont 2022].
Main tool: bijections with labelled trees or labelled tree-like
structures.
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A sample of T32400,0
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The planar case: local properties

Local convergence: two triangulations t and t ′ are close if
there is a large r such that Br (t) = Br (t ′), where Br denotes
the ball for the graph distance.

Theorem (Angel–Schramm 2003)

We have the convergence in distribution

Tn,0
(d)−−−−→

n→+∞
T

for the local topology, where T is an infinite triangulation of the
plane called the UIPT (Uniform Infinite Planar Triangulation).

Moreover, the UIPT has volume growth or order r4 [Angel
2004].
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The UIPT
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Convergence to the UIPT T: sketch of the proof

Let t be a small triangulation with perimeter p and 2m
internal faces.

t
(p = 6, m = 5)

⊂

T

Then P (t ⊂ Tn,0) =
τp(n−m,0)
τ(n,0) , and the limit is given by the

results of Tutte.

Exact
enumeration Probability⇒

In particular P (t ⊂ T) is explicit, which allows to explore T
"face by face" in a Markovian way ("peeling").
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The non-planar case: what is going on?

Euler formula: Tn,g has #E = 3n edges and
#V = n + 2− 2g vertices. In particular g ≤ n

2 .
Hence, the average degree in Tn,g is

2#E

#V
=

6n
n + 2− 2g

≈ 6
1− 2g/n

.

Interesting regime: g
n → θ ∈

(
0, 1

2

)
. The average degree in the

limit is strictly between 6 and +∞.
The d-regular infinite triangulation for d > 6 is hyperbolic, so
we expect a hyperbolic behaviour.
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The high genus case: local limits

Theorem (B.–Louf 2019)

Let gn
n → θ ∈

[
0, 1

2

)
. Then we have the convergence

Tn,gn
(d)−−−−→

n→+∞
Tθ

in distribution for the local topology, where Tθ is a random infinite
triangulation of the plane called PSHT.

In particular T0 is the UIPT, so if gn = o(n), the limit is the
same as for gn = 0.
For θ > 0, the triangulation Tθ is "hyperbolic": exponential
volume growth, transience of the simple random walk...
[Curien 2016]
The case θ = 1

2 is degenerate (vertices with "infinite degrees").
The limit is planar, although Tn,gn has a high genus! Also true
in other well-known contexts (e.g. random regular graphs).
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A sample of a PSHT
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Local limits: back to combinatorics

Natural idea to prove the theorem: as in the planar case, use
asymptotic results on the number τp(n, gn) of triangulations of
size n with genus gn and a boundary of length p.
Unfortunately, it seems very hard to obtain accurate
asymptotics.

On the other hand, let t0 = . Then

P (t0 ⊂ Tn,g ) =
τ1(n − 1, g)

τ(n, g)
=
τ(n − 1, g)

τ(n, g)

by a simple root transformation (erase the boundary edge and
glue two edges together).
But we also know that if g

n → θ, then

P (t0 ⊂ Tn,g ) −−−−→
n→+∞

P (t0 ⊂ Tθ) = λ(θ),

where λ(θ) satisfies an explicit equation.
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Local limits: back to combinatorics

We know that τ(n−1,g)
τ(n,g) ≈ λ

(g
n

)
and τ(2g − 1, g) is explicit, so

with a telescopic product we can estimate τ(n, g).

Theorem (B.–Louf, 2019)

When gn
n → θ ∈

[
0, 1

2

]
, we have

τ(n, gn) = n2gn exp (f (θ)n + o(n)) ,

where f (θ) = 2θ log 12θ
e + θ

∫ 1
2θ log 1

λ(θ/t)dt, and λ(θ) is as above.

Summary of the proof:

Very crude
enumeration Probability Not so crude

enumeration
⇒ ⇒
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Steps of the proof

Tightness from crude combinatorial estimates (the ratio
τ(n,g)
τ(n−1,g) is bounded).

Planarity and one-endedness of the limits come from the
Goulden–Jackson recurrence:

τ(n, g) = n2τ(n − 2, g − 1) + . . .

Any subsequential limit T is weakly Markovian: for any finite
triangulation t, the probability P (t ⊂ T ) is a function of the
perimeter and the volume of t.
Any weakly Markovian random triangulation of the plane is a
mixture of PSHT (i.e. TΘ for some random Θ).
Ergodicity: Θ is deterministic, characterized by the fact that
the average degree must be 6

1−2θ .
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High genus triangulations: global properties

The local behaviour of Tn,g for g
n → θ is now well understood,

but what about the global one?
At large scale, we expect Tn,g to behave roughly like a random
graph (e.g supercritical Erdös-Rényi, or uniform 3-regular):

hyperbolic local limits,
comparison with unicellular maps [Ray 2014] or with models
of random hyperbolic surfaces [Mirzakhani 2013],
the dual of a triangulation picked in

⋃
g Tn,g is a uniform

(connected) 3-regular graph (in this model g ≈ n
2 w.h.p.).

Many nice questions about the global structure of random
graphs: distances? Isoperimetric inequalities? Spectral gap?
Cut-off for the random walk? Percolation?
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Global distances

Distances are logarithmic and "almost all the same":

Theorem (B.–Chapuy–Louf 2023)

For θ ∈
(
0, 1

2

)
, there are constants cθ,Cθ > 0 such that if gn

n → θ,
then

P (cθ log n ≤ diam(Tn,gn) ≤ Cθ log n) −−−−→
n→+∞

1.

Theorem (B.–Chapuy–Louf 2023)

Let gn
n → θ ∈

(
0, 1

2

)
and let xn, yn, un, vn be four independent

uniform vertices of Tn,gn . Then

dTn,gn
(xn, yn)− dTn,gn

(un, vn)

is tight.
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Distances: logarithmic lower bound

Idea: first moment computation on paths of length `.
The size of the ball is bounded by the number of simple paths
of length ` from the root.
Cut along a path: the expected number of such paths is
τ2`(n,g)
τ(n,g) .

Fill the hole: τ2`(n,g)
τ(n,g) ≤

τ(n+`,g)
τ(n,g) ≤ C `θ = o(n) if ` ≤ cθ log n.

−→ −→
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Isoperimetric inequality

Two natural ways to tackle the upper bound: bijections with
labelled trees, or isoperimetric inequalities.
Ideally: if A ⊂ Tn,g , then |∂A| ≥ c min(|A|, |Tn,g\A|).
But random local limit, so there are "small defects".

Theorem (B.–Chapuy–Louf 2023)

For θ ∈
(
0, 1

2

)
, there are δθ,Kθ > 0 such that if gn

n → θ, the
following holds with high probability:
For any multicurve η which splits Tn,gn into two connected
components with n1 and n2 faces, if n2 ≥ n1 ≥ Kθ log n, then the
length of η is at least δθn1.

c1

c2

c3

size k1 size k2
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From isoperimetric inequalities to distance estimates

Let x ∈ Tn,g . For r ≥ Kθ log n, we have

|Br+1(x)\Br (x)| ≈ |∂Br (x)| ≥ δθ|Br (x)|,

so |Br+1(x)| ≥ (1 + δ)|Br (x) and |Br (x)| ≥ (1 + δ)r , so
Br (x) = Tn,g for r = C log n, up to the small defects.
Defects are actually not a problem: their volume is O(log n),
and so is their diameter.
Why are distances almost all the same?

let r be the first radius such that |Br (x)| ≥ εn,
then |Br+M(x)| ≥ (1 + δ)Mεn ≥ (1− ε)n for some finite M,
so most vertices y satisfy

r ≤ dTn,gn
(x , y) ≤ r + M.
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Proof of the isoperimetric inequality

Again, first moment computation on separating multicurves:
c1

c2

c3

size k1 size k2

We want to bound

τp1,...,pk (n1, g1)τp1,...,pk (n2, g2)

τ(n, g)

for


n1 + n2 = n,

n2 ≥ n1 ≥ K log n,

g1 + g2 = g − k + 1,
p = p1 + · · ·+ pk ≤ δn1.
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Proof of the isoperimetric inequality

First, get rid of boundaries:
τp1,...,pk (n1, g1) ≤ nkτ(n1 + p, g1) ≤ nkCpτ(n1, g1).
Reminder: τ(n, g) = n2g exp

(
nf
(g
n

))
eo(n), so

τp1,...,pk (n1, g1)τp1,...,pk (n2, g2)

τ(n, g)

≤ Cp n
2kn2g1

1 n2g2
2

n2g eo(n)

× exp

(
n1f

(
g1

n1

)
+ n2f

(
g2

n2

)
− nf

(g
n

))
.

The function f is concave! (explicit computation)
n2kn

2g1
1 n

2g2
2

n2g = n2 (n1
n

)2g1
(
n2
n

)2g2 .
If both pieces are macroscopic, this is e−cn, so this beats Cp

for p ≤ δn.
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Proof of the isoperimetric inequality

If n1 � n, the error factor eo(n) may be too large!
But we understand the ratios τ(n+1,g)

τ(n,g) , so we can estimate the

quotient τ(n2,g2)
τ(n,g) with an error eo(n1) instead of eo(n).

Everything is ≤ e−cn1 , so if n1 ≥ K log n, we can union bound
over (p1, . . . , pk), n1, n2, g1, g2...

Very crude
enumeration Probability Not so crude

enumeration
More

Probability!⇒ ⇒ ⇒
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Tentacles

In the isoperimetric inequality, do we really need to assume
n1, n2 ≥ Kθ log n?
Yes: with high probability, "tentacles" of length cθ log n
bounded by only 2 edges appear in Tn,gn .
Reason:

E [#tentacles of length `] ≈ n × P (tentacle around the root)

= n
τ(n − `, g)

τ(n, g)
≈ nλ(θ)`.

In particular, the Cheeger constant is of order 1
log n .

Interpretation: Tn,gn looks more like a supercritical
Erdös–Rényi component than like a uniform 3-regular graph.
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A few questions

Conjecture

There are two constants Dθ,D ′θ > 0 such that if gn
n → θ and xn, yn

are two uniform vertices of Tn,gn , then

1
log n

dTn,gn
(xn, yn)

P−−−−→
n→+∞

Dθ and
1

log n
diam(Tn,gn)

P−−−−→
n→+∞

D ′θ,

with D ′θ = 3Dθ.

Because of tentacles, if this is true, then D ′θ > Dθ (as in
supercritical Erdös–Rényi components).
Intermediate regime 1� g � n?
Transfer of any nice property of random graphs?
Universality? Proved for local limits [B.–Louf 2021], but not
for global properties (the function f is not explicit).
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THANK YOU !
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