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General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every
TD session you are supposed to write computer codes to learn about the phenomenology
and efficiency of important algorithms, or, more ambitiously, to learn the physics of simple,
yet fundamental models. You should choose a programming platform (Python, Matlab,
Mathematica, C, Fortran, etc.), and you should be able to plot your results in the form
of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities
of Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form.
We assume that you have some familiarity with at least one programming platform; if this
is not the case, you should be able to familiarize yourself rapidly e.g. by attending online
tutorials.

TD1: Exact diagonalization

In this exercise sheet, we shall use exact diagonalization to learn about the physics of
particles in a periodic or quasi-periodic potential; and we will explore the use of the Lanczos
algorithm in a simplified form

1 Periodic potential for a quantum particle in a tight-binding
chain

In this programming exercise, we will learn about the quantum physics of a particle moving
in one dimension in the presence of a periodic potential. This problem will flesh out many
fundamental aspects of the physics of solids (cfr. the Condensed Matter lectures in M1).
We will focus our attention on the following tight-binding Hamiltonian, describing a quantum
particle which hops between N discrete positions in one dimension (with periodic boundary
conditions), and which is immersed in a periodic potential:

Ĥ(q, V ) = −
N−1∑
i=1

(|i〉〈i+ 1|+ |i+ 1〉〈i|)− (|1〉〈N |+ |N〉〈1|) + V
N∑
i=1

cos(qi) |i〉〈i| (1)

The first two terms describe the kinetic energy of the particle (|i + 1〉〈i| is the operator
making the particle hop from the state |i〉 to the state |i+ 1〉); and the last term describes
the periodic potential (in the form of a cosine) with

q =
2π

N
p p ∈ N, 0 ≤ p ≤ N/2 .

In particular m is chosen so that N/p = m ∈ N – this is the case of a so-called commensurate
potential, which describes an integer number m of periods over the periodic chain of length
N .

1.1

Write the matrix Hi,j = 〈i|Ĥ|j〉 in your computer code, for a length N and a value m and
V of your choice.
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1.2

Diagonalize the matrix using a library of your choice (standard diagonalization libraries
under numpy in Python, in Matlab or Mathematica; LAPACK library in C or Fortran;
etc.), namely solving the problem

Hψk = λkψ
(k) k = 1, ..., N .

Plot the spectrum of eigenvalues for V = 0 and V 6= 0 (e.g. for m = N/2): can you see the
appearance of ”holes” (so called ”band gaps”) in the spectrum when V > 0?

1.3

How does the number of gaps depend on m?

1.4

How does the width of the gaps depend on V ? Make a plot for a given gap and a fixed m.

1.5

Visualize some selected eigenvectors – namely plot the Hamiltonian eigenfunctions ψ
(k)
i =

〈i|ψ(k)〉 as a function of i = 1, ..., N . What is the main difference between the ground
state and the most excited state? And can you see a defining feature for the eigenvectors
corresponding to the two eigenvalues bounding an energy gap from below and from above?

2 Quantum particle in a quasi-periodic potential and Aubry-
André transition

In this programming exercise we shall consider the same model as in the previous exercise,
but this time the potential will be taken to be incommensurate, namely q = 2πα where α
is an irrational number. For definiteness, you can take α as the inverse of the golden ratio

α =
2√

5 + 1

but other values would give you the same physics (you can check this!). In this case the
potential never exactly repeat itself on the chain – it is called then ”quasi-periodic”.
You can use the same construction of the Hamiltonian matrix as in the previous exercise,
and just change the parameter q.

2.1

Diagonalize the Hamiltonian matrix for V = 0.5, 1, 1.5, 2, 2.5, 3. Plotting the spatial struc-

ture of any eigenstate (e.g. the ground state ψ
(0)
i , and more simply its square modulus

|ψ(0)
i |2) you should observe a radical change of behavior around a particular value of V .

Which one?

2.2

You can capture this transition (the so-called Aubry-André transition for a quantum particle
in a quasi-periodic potential) by studying a spatial property of the ground-state wavefunc-
tion, called the participation ratio

P (0)(V ) =
1

N

1∑
i

∣∣∣ψ(0)
i

∣∣∣4
2



where ψ
(0)
i is the ground state of Ĥ(q, V ) and we assume that the ground state is normalized.

The participation ratio P expresses the fraction of the chain which is effectively covered

by the wavefunction (e.g. P = 1 for a constant normalized wavefunction ψ
(0)
i = 1/

√
N , as

you can easily verify). Plot P (0)(V ) vs. V to visualize the Aubry-André transition in the
ground state.
Extra question. Repeat the same study using the k-the eigenstate with arbitrary k. What
do you observe for the behavior of P (k)(V )?

3 Modified Lanczos algorithm

In this programming exercise, we will try to find the lowest-energy eigenvalue and eigenstate
of the previous problem (particle in an incommensurate potential) by using a simplified
version of the Lanczos algorithm – the so-called modified Lanczos approach.

3.1

Use same matrix as in the previous exercises, for instance the H(q, V ) with V = 2 and
q = 4π/(1 +

√
5).

3.2

Generate a random vector u0 of length N , and normalize it. If you do not know how to
generate random numbers, just take a uniform vector with 1/

√
N on all entries.

3.3

Build the second Lanczos vector

β1u1 = Hu0 −
(
uT
0Hu0

)
u0 (2)

where β1 is the normalization factor.

3.4

Build the 2x2 matrix

H(1) =

(
uT
0Hu0 uT

0Hu1

uT
1Hu0 uT

1Hu1

)
(3)

which you can then diagonalize (even analytically!! It is possible for a 2x2 matrix) in order
to find the lowest-energy state

ψ
(1)
0 = a u0 + b u1 (a2 + b2 = 1) (4)

with corresponding eigenvalue E
(1)
0 .

3.5

Use ψ
(1)
0 as the new initial trial vector for the Lanczos approach, namely consider the

reduced 2-dimensional subspace spanned by ψ
(1)
0 and ψ

(1)
1 defined as

γ1ψ
(1)
1 = Hψ

(1)
0 −

[
(ψ

(1)
0 )THψ

(1)
0

]
ψ

(1)
0 (5)

where γ1 is the normalization factor. Then build the new matrix
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H(2) =

(
(ψ

(1)
0 )THψ

(1)
0 (ψ

(1)
0 )THψ

(1)
1

(ψ
(1)
1 )THψ

(1)
0 (ψ

(1)
1 )THψ

(1)
1

)
(6)

which you can again diagonalize to find its ground state ψ
(2)
0 and corresponding eigen-energy

E
(2)
0 .

3.6

Reiterating the above procedure you will obtain new estimates E
(3)
0 , E

(4)
0 , ... for the ground-

state energy. Monitor the convergence of the sequence E
(k)
0 to the exact value of E0 (which

you could determine in the previous exercise).
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