
Ecole Normale Supérieure de Lyon Université de Lyon
Master: Sciences de la Matière, A. A. 2024-2025

Analyse Numérique / Computational Physics (M1) - T. Roscilde, F. Caleca

General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every
TD session you are supposed to write computer codes to learn about the phenomenology
and efficiency of important algorithms, or, more ambitiously, to learn the physics of simple,
yet fundamental models. You should choose a programming platform (Python, Matlab,
Mathematica, C, Fortran, etc.), and you should be able to plot your results in the form
of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities
of Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form.
We assume that you have some familiarity with at least one programming platform; if this
is not the case, you should be able to familiarize yourself rapidly e.g. by attending online
tutorials.

TD2: Monte Carlo

In this exercise sheet, we shall get acquainted with the statistical analysis of a series of
correlated random variables; and we will later use the Monte Carlo scheme to calculate
some integrals of interest in physics.

1 Statistical analysis of a series of random variables

In this programming exercise, we will make use of a random number generator (RNG) to
revise some elementary aspects of the statistics of a series of random variables, and to
extract their correlation time.
To be able to work out the exercise, as well as all the exercises in this sheet, you need
to get a handle on a RNG, namely a function (or subroutine) which produces (pseudo-
)random numbers z uniformly distributed in the interval [0, 1]. Python and Matlab (for
instance) contain a built-in function producing (pseudo-)random numbers; the built-in RNG
of Fortran and C is generally not recommendable, but online you can easily find subroutines
to include in your code (e.g. the ran2 subroutine from Numerical Recipes).

1.1

In this first exercise we will do a simple analysis of the output of the RNG. Write a program
in which you perform M = nbMb subsequent extractions of a random number zi (i =
1, ...,M) structured in nb blocks of length Mb each, and define the block variables Za
(a = 1, ..., nb)

Za =
1

Mb

Mb∑
j=1

zi=(a−1)∗Mb+j (1)

which average the variables in the a-th block. Calculate numerically the averages

〈z〉 =
1

M

M∑
i=1

zi 〈z2〉 =
1

M

M∑
i=1

z2
i

〈Z〉 =
1

nb

nb∑
a=1

Za 〈Z2〉 =
1

nb

nb∑
a=1

Z2
a (2)

1



and build the corresponding variances

σ2
z = 〈z2〉 − 〈z〉2 σ2

Z = 〈Z2〉 − 〈Z〉2 (3)

You should verify numerically that, for Mb � 1 (Mb & 10, sufficiently large for the central-
limit theorem to apply), then

σ2
z ≈Mb σ

2
Z (4)

This offers some evidence that your RNG produces uncorrelated random numbers.

1.2

We now introduce some artificial correlations in the random numbers, by generating a
random sequence θi with the following procedure: given the random number at step i− 1,
θi−1

• extract a random number ξ;

• if ξ and θi−1 are both comprised in [0, 1/2] or in [1/2, 1], then θi = ξ;

• otherwise, extract a random number η ∈ [0, 1]: if η < p then θi = θi−1, otherwise
θi = ξ.

In this way the numbers θi−1 and θi have a higher probability of being in the same half of
the [0, 1] interval than in different halves. You can start by choosing with p = 1/2 (but it
may be interesting to vary p, see below).
In the exact same way as in the previous exercise, introduce the block variables

Θa =
1

Mb

Mb∑
j=1

θi=(a−1)∗Mb+j (5)

and calculate 〈θ〉, 〈θ2〉, 〈Θ〉, 〈Θ2〉 and use them to calculate σ2
θ and σ2

Θ.
You should observe that

σ2
θ < Mb σ

2
Θ . (6)

Use these quantities to estimate the autocorrelation time

τ =
1

2

σ2
Θ

σ2
θ

Mb (> 1/2) . (7)

You can control τ by varying p (the larger p, the larger τ).

1.3

If you plot the sequence of values θi you should observe that they vary over a characteristic
“time scale” which is comparable with τ . Can you see this?

2 Fourier transforms with Monte Carlo

In this exercise we shall calculate numerically the Fourier transform of a couple of relevant
functions using Markov-chain Monte Carlo. The Fourier transform of the f(x) function is
defined as:

f̃(k) =

∫
dx√
2π

f(x) e−ikx . (8)

If f(x) = f(−x), then f̃(k) ∈ R and one can replace e−ikx with cos(kx).
In particular we have that for a Gaussian function f(x) = exp(−x2), f̃(k) = e−k

2/4/
√

2.

2



2.1

As a first exercise, we would like first to write a Markov-chain Monte Carlo scheme in order
to verify the latter result on the Fourier transform of a Gaussian, by using the normalized
probability distribution

p(x) =
e−x

2

√
π

(9)

so that

f̃(k) =
1√
2

∫
dx p(x) cos(kx) =

1√
2
〈 cos(kx) 〉p . (10)

Build a Markov-chain Monte Carlo scheme with the following ingredients:

• Equilibration phase (comprising Meq iterations);

– 1) pick an initial position x (e.g. x = 0);

– 2) propose a new position x′ = x+ δx with δx a random number in the interval
[−∆,∆] 1;

– 3) accept the move with Metropolis-Hastings probabilityA(x→ x′) = min(1, p(x′)/p(x));

– 4) go to point 2);

• Measurement phase (comprising M iterations)

– go over points 2)-3) of the equilibration phase, but in addition accumulate the
values of cos(kx)/

√
2 to build the Monte Carlo estimate

f̃M (k) =
1

M

M∑
i=1

cos(kxi)√
2
≈ f̃(k) . (11)

How to choose Meq and M? You can take Meq ≈ 1000 and M ≈ 10000 (or smaller/larger,
depending on the speed of execution of your computer).
Repeating the above procedure for a grid of k points (e.g. k = 0, 0.1, 0.2, ..., 1.0) verify that
you obtain results coherent with the Fourier transform of the Gaussian.

2.2 (Bonus question)

If you could successfully implement the previous calculation, you are now all set to calculate
Fourier transforms of functions that cannot be calculated exactly. One such example is given
by

f(x) = exp(−x2 − εx4) (12)

whose Fourier transform can also be thought of as

f̃(k) =
1√
2

〈
cos(kx) e−εx

4
〉
p
. (13)

The Monte Carlo calculation of f̃(k) goes exactly as in the previous question, with a simple
modification of the function to average. You can choose e.g. ε = 0.1, and compare your
result for f̃(k) with the Fourier transform of a Gaussian.

1You can choose ∆ = 0.1 as a starter; taking a much smaller ∆ will increase the acceptance rate of
the updates but it introduces correlations between successive steps, while taking a much larger ∆ should
suppress the acceptance rate quite significantly.

3



3 Deviation from equipartition in a non-linear harmonic os-
cillator

Consider a classical anharmonic oscillator in one dimension, with unit mass and frequency,
whose Hamiltonian reads:

H =
p2

2
+
x2 + εx4

2
. (14)

Imagining the oscillator to be at equilibrium with a thermal bath at temperature T , the
average potential energy reads〈

x2 + εx4

2

〉
T

=
1

N

∫
dx

(
x2 + εx4

2

)
e
− 1

2kBT
(x2+εx4)

(15)

where N is a normalization factor.
In the absence of anharmonicity (ε = 0) this average value satisfies the so-called energy
equipartition 〈

x2

2

〉
T

=
1

2
kBT . (16)

3.1

Starting from the case ε = 0, build a Markov-chain Monte Carlo scheme as in the previ-

ous exercise in order to calculate
〈
x2

2

〉
T

; verify the energy equipartition by repeating the

calculation for several values of kBT .

3.2

Adding a small ε = 0.2, calculate the non-quadratic potential energy
〈
x2+εx4

2

〉
T

by using

Markov-chain Monte Carlo, and show numerically that equipartition is violated at suffi-
ciently high temperature (namely, the average potential energy is no longer linear in T ).
This should happen when 〈x2〉T ≈ ε〈x4〉T .

4


