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General rule for the TD sessions: the TD sessions are fully hands-on – namely, in every
TD session you are supposed to write computer codes to learn about the phenomenology
and efficiency of important algorithms, or, more ambitiously, to learn the physics of simple,
yet fundamental models. You should choose a programming platform (Python, Matlab,
Mathematica, C, Fortran, etc.), and you should be able to plot your results in the form
of two-dimensional functions y = f(x) (using matplotlib in Python, the plotting utilities
of Matlab and Mathematica, Gnuplot, etc.), or occasionally in a more complicated form.
We assume that you have some familiarity with at least one programming platform; if this
is not the case, you should be able to familiarize yourself rapidly e.g. by attending online
tutorials.

TD4: Numerical solution of ODEs

In this exercise sheet, we shall study numerically the physics of oscillators – and in so doing
experience a few methods of solution for systems of ordinary differential equations (ODEs).

1 The pendulum

The equation of motion for the angle θ formed by a pendulum of length l with respect to
the vertical direction is

θ̈(t) = −g
l

sin θ(t) . (1)

In the following we shall measure time in units of
√
l/g, so that the g/l disappears from the

equation. We can turn this second-order differential equation into a system of first-order
ones by introducing the variables y1(t) = θ(t), y2(t) = θ̇(t), so that we get the system{

ẏ1 = y2

ẏ2 = − sin y1
(2)

namely the system ẏ = f(y) with f(y) = (y2,− sin y1). We shall explore its solution upon
changing the initial conditions y(0) = y(0).
The energy of the pendulum (in units of mgl, with m the mass of the pendulum) is given
by

E(y) =
y22
2
− cos(y1) (3)

and it is conserved by the exact dynamics.

1.1 Euler method - phase portraits

1.1.1

Set up the Euler method
yn+1 = yn + hf(yn, tn) (4)

to solve the above system over a time window [0, t0]. You can choose t0 = 10 (but check
whether this time interval is enough to see all the interesting physics of the problem), and
a variable h, defining the number of steps M = t0/h. You could start from h = 0.1, but
you should check that your results do not depend too much on h by taking a smaller (or
larger) step and see what happens.
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1.1.2

We shall first reconstruct the behavior of the solution with initial conditions y
(0)
1 = θ(0), y

(0)
2 =

θ̇(0) = 0. Convince yourself that y
(0)
1 = 0 and y

(0)
1 = π are stationary points (the solution

does not evolve), and that the Euler method would give you the exact solution in this case.

Then monitor the evolution using the initial conditions y
(0)
1 = π/4, π/2, 3π/4 (or even a

finer grid in the interval [0, π]). For each of these initial conditions, record the sequence of
points (y1,n, y2,n) in a vector of length M + 1, and make a plot of y2,n vs. y1,n – this is
what is called a phase portrait of the dynamics. You should see that the phase portraits are
limit cycles – something familiar, because we know that the pendulum oscillates! (On the
other hand, if you choose too large a h, you should see that limit cycles are not properly
reproduced).

1.1.3

Now we introduce a second class of initial conditions, namely y
(0)
1 = 0 and a variable y

(0)
2

over the interval [0, 3] (but you could look at larger values as well). Study the evolution

for y
(0)
2 = 0.5, 1, 1.5, 2.5, 3: you should observe that something very drastic happens to the

phase portraits at some value of y
(0)
2 : can you make sense of it? What kind of motion of

the pendulum corresponds to the new phase portraits?

1.1.4

If you have recorded the phase portraits (y1,n, y2,n), you can check whether energy En =
E(y1,n, y2,n) (plotted as a function of n) is conserved along them. You will observe that
conservation of energy is far from perfect, but it improves when h is smaller.

1.2 Runge-Kutta 4

Now that you have the physics of the problem under control, we can look at some algorithmic
refinements, and implement the celebrated RK4 method, which is a method of order p = 4:

k1 = hf(yn, tn)

k2 = hf(yn + k1/2, tn + h/2)

k3 = hf(yn + k2/2, tn + h/2)

k4 = hf(yn + k3, tn + h)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (5)

You can use it for a couple of initial conditions (for instance (y
(0)
1 , y

(0)
2 ) = (3π/4, 0) and

(0, 2.5)), and compare the results with those of the Euler scheme. In particular, for the
same value of h (you could take h = 0.5, 0.1, 0.05), you can compare the energy curves En

obtained with the two methods. What can you deduce?

1.3 Implicit midpoint method

An (only apparently) less laborious Runge-Kutta method is represented by the implicit
midpoint method

yn+1 = yn + hf

(
yn + yn+1

2
, tn +

h

2

)
(6)

which defines a set of two non-linear equations{
y1,n+1 = y1,n + h

2 (y2,n + y2,n+1)

y2,n+1 = y2,n − h sin
(
y1,n+y1,n+1

2

)
.

(7)
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This method of order 2 has the advantage of being symplectic – namely it should guarantee
a much better conservation of the energy.
To implement this method, you should be able to solve the above system of equations

iteratively: namely you can start with the initial guess (y
(0)
1,n+1, y

(0)
2,n+1) = (y1,n, y2,n), and

then inject it into the right-hand side of Eqs. (7) to get a new estimate (y
(1)
1,n+1, y

(1)
2,n+1), etc.

until convergence is reached, namely until |y(k+1)
1,n+1 − y

(k)
1,n+1|, |y

(k+1)
2,n+1 − y

(k)
2,n+1| < η where η is

some tolerance that you fix (for instance, you can take η = 10−3).
For the same value of h and for the same initial conditions, you should compare the evolution
of the energy that you obtain with the Euler method (p = 1), the RK4 method (p = 4) and
the implicit midpoint method (p = 2). What can you deduce?

2 Van der Pol oscillator

The van der Pol (vdP) oscillator is a model of the dynamics of some special electrical
circuits, and its equation of motion reads:

ẍ− µ(1− x2)ẋ+ x = 0 (8)

where µ is a parameter that will be varied. Clearly when µ = 0 one recovers a simple
harmonic oscillator; on the other hand, for µ > 0 the system describes an oscillator subject
to a position-dependent viscous force.
The first-order ODE system corresponding to the vdP oscillator reads{

ẏ1 = ẋ = y2

ẏ2 = ẍ = µ(1− y21)y2 − y1
(9)

This system of equations represents a stiff one – with stiffness controlled by the parameter
µ – which may require a very small time step h to be properly studied.

2.1 Euler method and phase portraits

Starting from the initial condition y
(0)
1 = 1, y

(0)
2 = 0, and, using the Euler method, recon-

struct the phase portraits (plots of y2,n vs. y1,n) for µ = 0, 2, 5, 10, .... Choosing a given
h (e.g. h = 0.1), you should observe that for a sufficiently small µ a limit cycle (with an
asymmetric shape) appears in the evolution; while for a larger µ the limit cycle is no longer
well described. Given a value of µ for which you do not observe a well defined limit cycle
for h = 0.1, reduce h until you find the limit cycle.

2.2 Trapezoidal scheme

To take care of the stiff nature of the system, you can use an implicit scheme, namely the
trapezoidal rule

yn+1 = yn +
h

2
[f(yn, tn) + f(yn+1, tn + h)] . (10)

Write down the system of equations, which you may be able to solve analytically for
y1,n+1, y2,n+1 – or you can resort to an iterative solution for implicit schemes, as described
in the previous exercise.
Choosing the same time step h = 0.1, can you observe the correct limit cycle for values of
µ at which the Euler scheme failed to give you the correct result?
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