M1 – Physique Fondamentale

Chapitre 5 : Diagrammes binaires

Enseignante : D. Baklouti

donia.baklouti@ias.u-psud.fr

A- Equilibres liquide-vapeur

Equilibre physique de 2 corps purs A₁ et A₂ répartis entre 2 phases au moins : 1 phase gaz et 1 phase liquide au moins.

- ⇒ Paramètres intensifs du système : T, P
 - x_i^{vap} : titre de A_i en phase vapeur
 - x_iliq: titre de A_i en phase liquide (si liquides miscibles)
- \Rightarrow Le système diphasé est divariant : v = (4 2) + 2 2 = 2
- ⇒ 2 études/diagrammes envisagés :
 - \Rightarrow Étude isotherme : P = P(x_2) à T cste dans chaque phase

$$\Rightarrow$$
 P = P(x_2^{vap}) et P = P(x_2^{liq})

 \Rightarrow Etude isobare : T = T(x₂) à T cste dans chaque phase

$$\Rightarrow$$
 T = T(x_2^{vap}) et T = T(x_2^{liq})

1/ Cas de la solution idéale

Solution idéale : les 2 gaz et les 2 liquides sont totalement miscibles, et les interactions A₁-A₁, A₁-A₂ et A₂-A₂ sont identiques

exp: l'air; mélange « dibromométhane, dibromopropane »

Si la solution liquide est idéale, alors A₁ et A₂ répondent à la loi de Raoult :

$$\Rightarrow P_1 = P_1^* x_1^{liq} \text{ et } P_2 = P_2^* x_2^{liq}$$

AT fixée, étudions $P = P(x_2^{liq})$ puis $P = P(x_2^{vap})$:

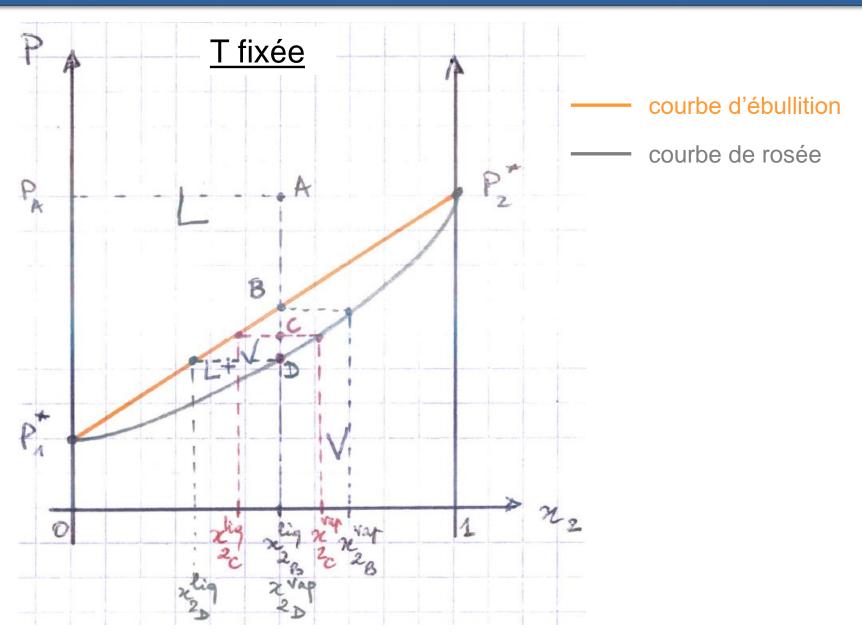
1)
$$P_1 = P_1^* x_1^{liq} = P_1^* (1-x_2^{liq})$$
; $P_2 = P_2^* x_2^{liq}$; et $P = P_1 + P_2$

$$\Rightarrow P = P_1^* + (P_2^* - P_1^*) x_2^{liq}$$
 équation courbe d'ébullition

2)
$$P_2 = x_2^{\text{vap}}.P$$
 (loi de Dalton); $P_2 = P_2^* x_2^{\text{liq}}$ et $x_2^{\text{liq}} = (P - P_1^*)/(P_2^* - P_1^*)$

$$\Rightarrow P = \frac{P_1^* P_2^*}{P_2^* - x_2^{vap} (P_2^* - P_1^*)}$$
 équation courbe de rosée

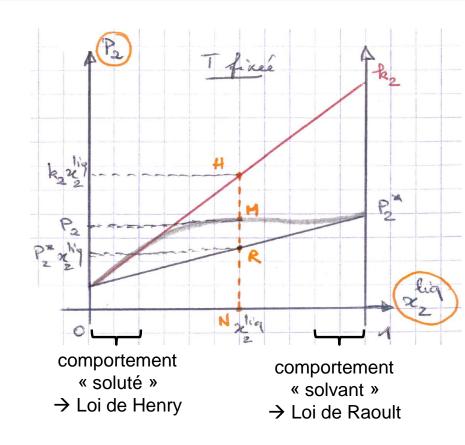
1/ Cas de la solution idéale



2/ Cas d'une solution réelle

Ici
$$k_2 > P_2^*$$
:

- \rightarrow Pour tout $x_2^{liq}: P_2 > P_2^* x_2^{liq}$
- → Il y a un écart positif à la loi de Raoult : la pression partielle mesurée est toujours supérieure à celle qu'aurait A₂ si son comportement était idéal.
- → Du fait de son comportement non idéal, A₂ a une plus grande tendance à passer dans la phase gaz : moindre interaction mixte 1-2 par rapport à 1-1 et 2-2.
- → Un écart négatif à la loi de Raoult traduit une plus faible tendance à passer dans la phase vapeur (P₂ < P₂^{*} x₂^{liq}), donc plus grande interaction 1-2.



$$\frac{NM}{NH} = \frac{P_2}{k_2 \cdot x_2} = \gamma_2^H(x_2)$$

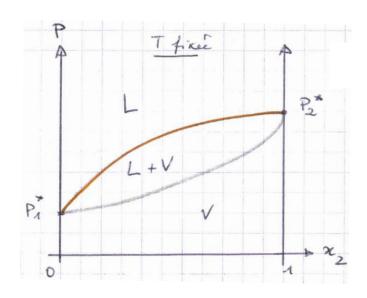
 γ_2^H : coefficient d'activité traduisant l'écart de A_2 en solution à la loi de Henry (\rightarrow réf. soluté infiniment dilué)

$$\frac{NM}{NR} = \frac{P_2}{P_2^* \cdot x_2} = \gamma_2^R(x_2)$$

 γ_2^R : coefficient d'activité traduisant l'écart de A_2 en solution à la loi de Raoult (\rightarrow réf. solvant pur)

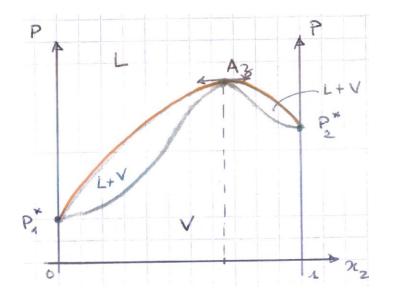
2/ Cas d'une solution réelle

Courbes isothermes



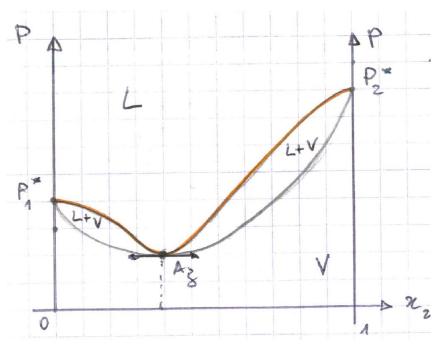
Diag. en fuseau simple

⇒ l'écart à l'idéalité est faible : les interactions 1-2 sont du même ordre de grandeur que 1-1 et 2-2.



- ⇒ écart à l'idéalité plus important et positif (P_i > P_i* x₂^{liq}) : on obtient un maximum pour les 2 courbes d'ébullition et de rosée. Ce max est appelé azéotrope.
- ⇒ Azéotrope positif : écart maximal et positif à la loi de Raoult.

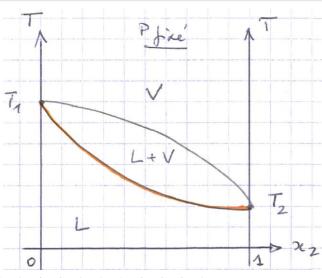
3/ Diagrammes liquides miscibles - vapeur



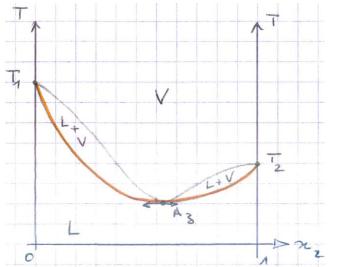
- ⇒ écart à l'idéalité plus important et négatif (P_i < P_i^{*} x₂^{liq}): on obtient un minimum pour les 2 courbes d'ébullition et de rosée. Ce min. est également appelé azéotrope.
- ⇒ Azéotrope négatif : écart négatif à la loi de Raoult.

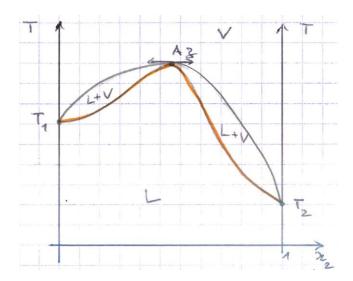
3/ Diagrammes liquides miscibles - vapeur

Courbes isobares



 T_1 et T_2 : températures d'ébullition de A_1 et A_2 purs sous la pression envisagée $(T_1 > T_2 \text{ si } P_1^* < P_2^* \text{ (}A_2 \text{ plus volatil que } A_1 \text{))}$



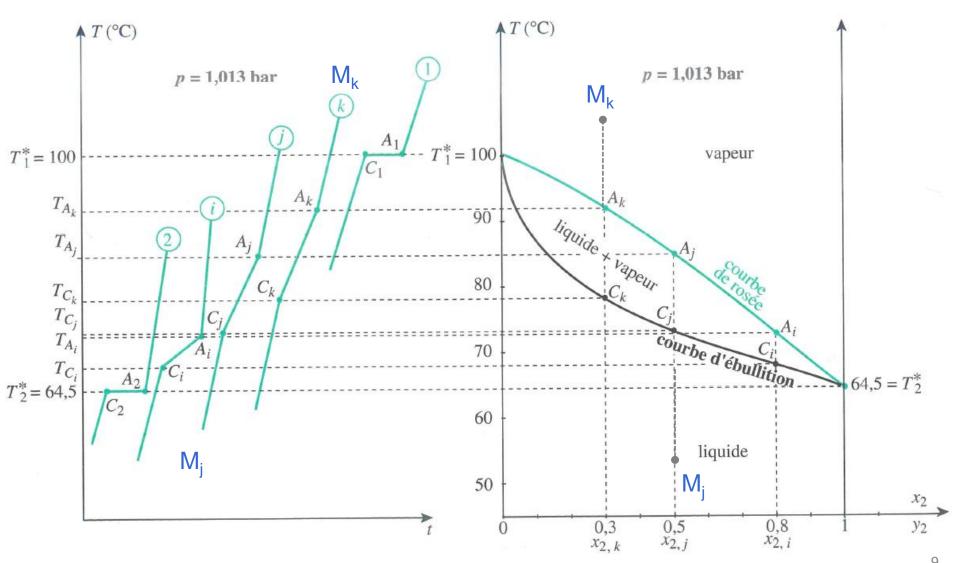


Ecart à l'idéalité important et positif
 → on obtient un minimum : azéotrope.

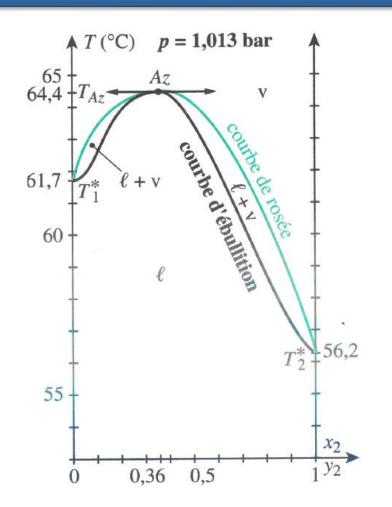
Ecart important et négatif à la loi de Raoult → maximum : azéotrope.

Courbes d'analyse thermique

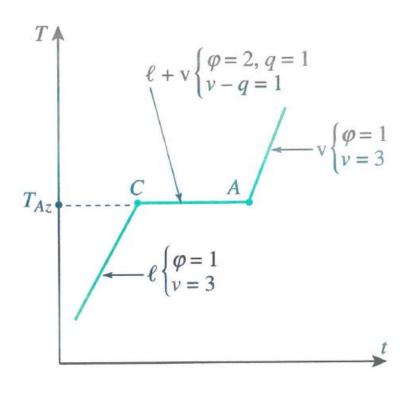
Mélange binaire $B_1 - B_2$



Courbes d'analyse thermique



Mélange binaire $B_1 - B_2$ avec azéotrope



Sous P fixée, un azéotrope bout à température cste pour donner une vapeur de même composition.

La courbe d'analyse thermique ressemble à celle du corps pur, mais pour l'azéotrope, sa composition dépend de P (ou T) fixée.

Théorème des moments

→ Permet de calculer en un point M du diag. les proportions entre les 2 phases.

n : quantité de matière totale en M

$$n = n_{liq} + n_{vap}$$

Bilan de matière sur A₂ :

$$x_2.n = x_2.(n_{liq} + n_{vap}) = x_2^{liq}.n_{liq} + x_2^{vap}.n_{vap}$$

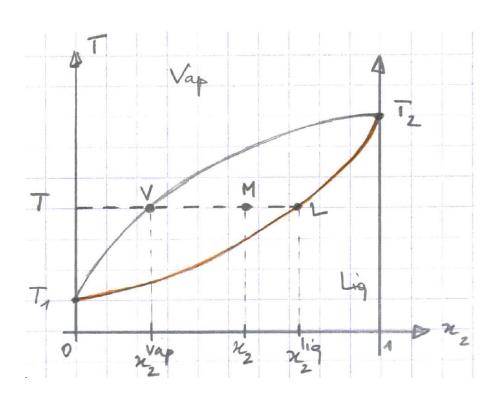
$$\Rightarrow n_{\text{vap}}(x_2 - x_2^{\text{vap}}) = n_{\text{liq}}(x_2^{\text{liq}} - x_2)$$

$$\Rightarrow$$
 $n_{vap} VM = n_{liq} ML$

ou
$$\frac{n_{vap}}{n_{liq}} = \frac{ML}{VM}$$

$$\Rightarrow \frac{n}{n_{liq}} = 1 + \frac{n_{vap}}{n_{liq}} = \frac{VM}{VM} + \frac{ML}{VM} = \frac{VL}{VM}$$

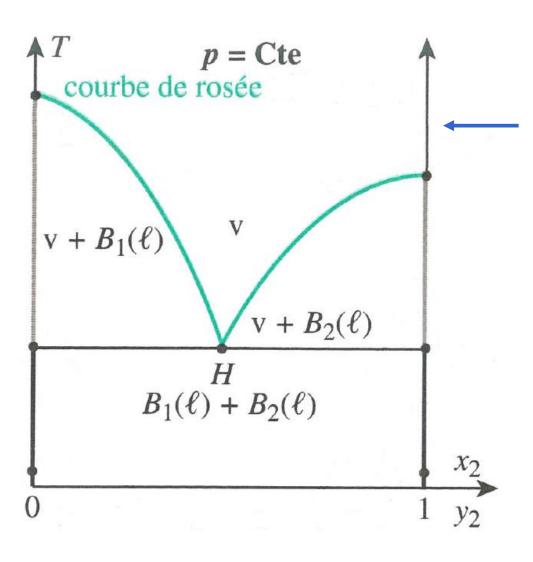
$$\Rightarrow \overline{\left[rac{n_{liq}}{n} = rac{VM}{VL}
ight]}$$
 et $\overline{\left[rac{n_{vap}}{n} = rac{ML}{VL}
ight]}$



Rq: si diagramme en fonction de w₂ (fraction massique)

→ théorème des moments à appliquer avec les masses m_{liq}, m_{vap} et m.

4/ Diag. liquides non miscibles - vapeur



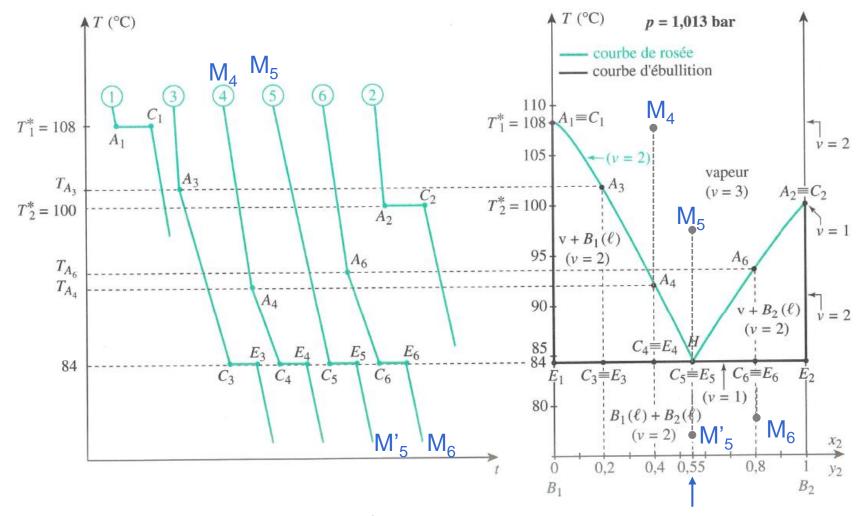
Mélange binaire $B_1 - B_2$ où les 2 liquides sont non miscibles et en équilibre avec la vapeur sous P cste.

H: point hétéroazéotropique

Droite horizontale passant par H : hétéroazéotrope.

Courbes d'analyse thermique

Mélange binaire $B_1 - B_2$



Lorsqu'on refroidit le mélange du point M₅ au point M'₅, on garde la même composition, celle de l'hétéroazéotrope.

B- Equilibres solide-liquide

Equilibre physique de 2 corps purs A₁ et A₂ répartis entre 2 phases au moins :

- 2 liquides miscibles totalement = 1 phase liquide
- ou liquides partiellement miscibles → présence d'une courbe de démixtion
- 2 solides miscibles = 1 phase solide (solution solide ou réelle)
- ou solides non miscibles = 2 phases solides (avec ou pas présence d'un composé défini)

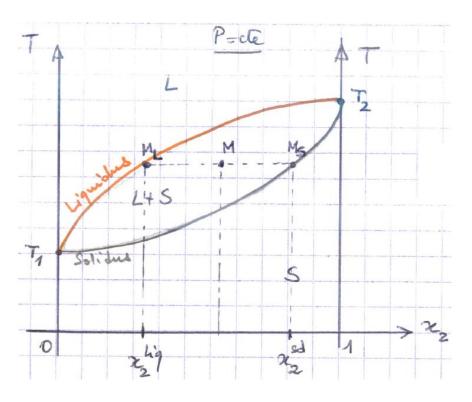
Remarque:

L'influence de P sur une phase condensée étant négligeable, l'étude isobare dépend peu de P et l'étude isotherme est inutile.

1/ Binaires solides miscibles - liquide

Mélange binaire $A_1 - A_2$

 T_1 et T_2 : températures de fusion de A_1 et A_2



Cas des solutions sensiblement idéales

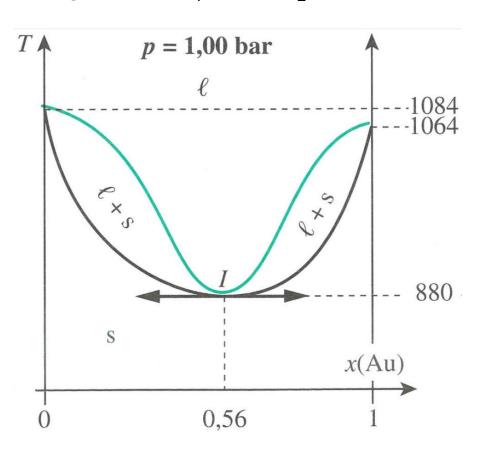
- État liq : les 3 interactions 1-1, 1-2 et 2-2 sont du même ordre de grandeur.
- A l'état solide, les interactions sont très fortes : l'organisation 3D des atomes dans le réseau cristallin de la solution solide exige que les 2 types d'atomes aient des rayons atomiques très voisins (et même réseau cristallin)
- → Solutions solides par substitution

Exp: binaire Ag - Au

Théorème des moments : $\frac{n_{sd}}{n} = \frac{M_L M}{M_L M_S}$ et $\frac{n_{liq}}{n} = \frac{M M_S}{M_L M_S}$

1/ Binaires solides miscibles - liquide

Mélange binaire A_1 (Cu) $-A_2$ (Au)



Cas des solutions réelles :

Solidus et liquidus peuvent présenter un minimum -> point indifférent I

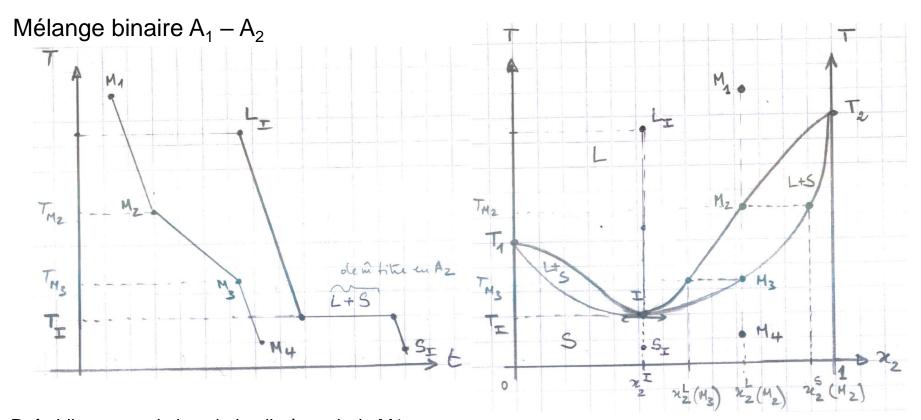
(le diag. avec maximum est très rare)

Un solide ayant la composition du point indifférent fond en donnant un liquide de même composition.

Aspect microscopique : ce cas correspond au cas de 2 métaux cristallisant dans le même système cristallin mais dont les rayons atomiques sont différents.

Lorsque les rayons des atomes sont voisins (cas Cu-Ag ou Ag-Au), la solution solide est idéale. Dans le cas Cu-Au, on s'éloigne de ce modèle ce qui conduit au diag. avec minimum.

Courbes d'analyse thermique

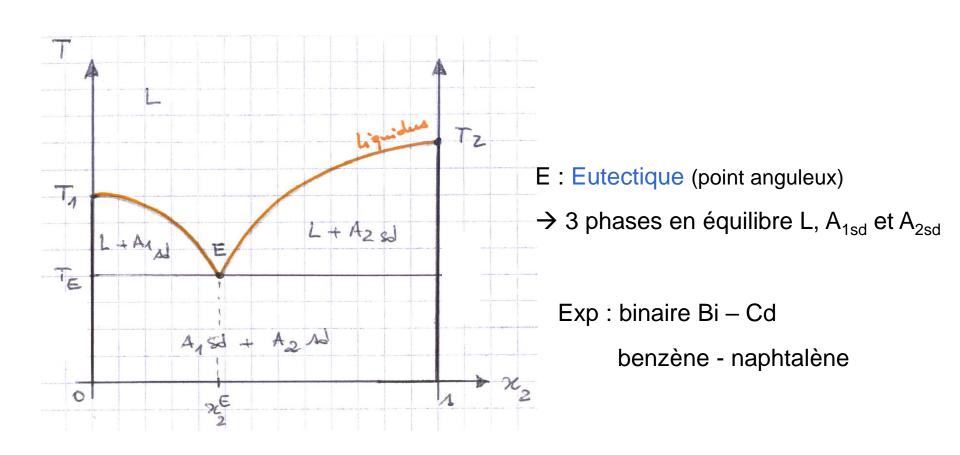


Refroidissement de la solution liq à partir de M1 :

- En M₂, la cristallisation commence et on obtient du solide de composition x₂S(M₂) en A₂ (plus riche en A₂ que le liq. de départ).
- La solidification étant exothermique, le refroidissement est plus faible et la courbe d'analyse thermique T=f(t) présente un changement de pente en M₂.
- La cristallisation se poursuit jusqu'au point M₃.
- Au-delà de M₃, le système redevient monophasique et le refroidissement redevient plus rapide.

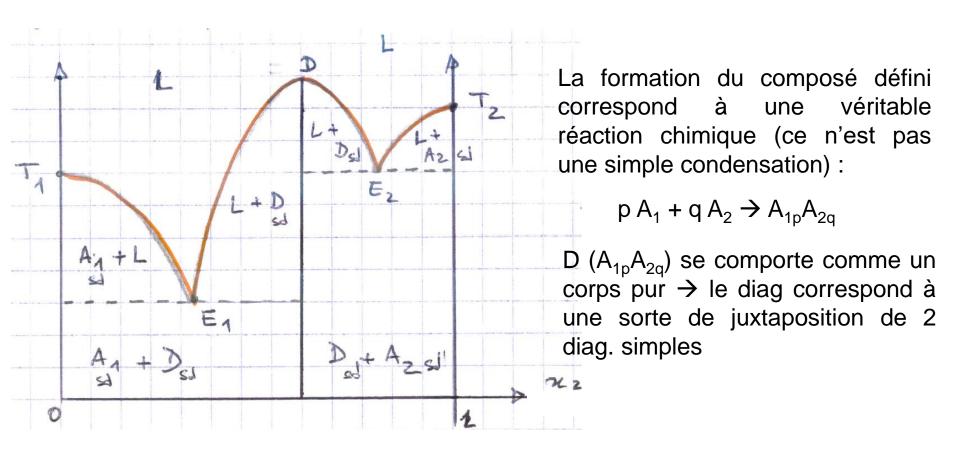
2/ Binaires solides non miscibles - liquide

L'insolubilité à l'état solide de A₁ et A₂ provient d'une trop grande différence entre les caractéristiques géométriques et électroniques des 2 constituants.



2/ Binaires solides non miscibles - liquide

Diagramme avec composé défini D, de formule A_{1p}A_{2q}



Point D = point de fusion congruent (le solide se comporte comme un solide pur fondant en un liquide de même composition).

3/ Aspect théorique : étude du liquidus

On cherche $T = f(x_2^{liq})$: équation du liquidus dans le cas où les solides sont non miscibles.

Partie T_1E : équilibre entre A_1^{liq} et A_1^{sd}

$$\Rightarrow \mu_1^{liq} = \mu_1^{sd}$$

Or, solides purs :
$$\mu_1^{sd} = \mu_1^{sd}$$
 ($a_1^{sd} = 1$)

et
$$\mu_1^{liq} = \mu_1^{\circ liq} + RT Ln(a_1^{liq})$$

a₁liq : activité de A₁ dans la phase liquide

Si la solution est idéale : $a_1^{liq} = x_1^{liq}$

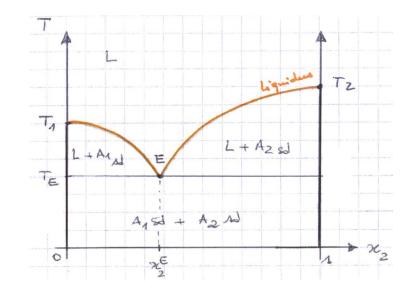
$$\Rightarrow \mu_1^{\text{oliq}} + RT \operatorname{Ln}(a_1^{\text{liq}}) = \mu_1^{\text{osd}}$$

$$\Rightarrow (\mu_1^{\text{iiq}} - \mu_1^{\text{sd}})/T = -R \text{ Ln}(a_1^{\text{liq}})$$

$$\Rightarrow R d(Ln(a_1^{liq})) = -d((\mu_1^{\circ liq} - \mu_1^{\circ sd})/T) = ((H_1^{\circ liq} - H_1^{\circ sd})/T^2)dT \quad (Gibbs-Helmoltz)$$

Or, $H_1^{\circ liq} - H_1^{\circ sd} = \Delta H^{\circ}_{1fusion}$ enthalpie molaire de fusion

$$\Rightarrow d\left(Ln\left(a_1^{liq}\right)\right) = \frac{\Delta H_{1fusion}^o}{RT^2}dT$$



3/ Aspect théorique : étude du liquidus

$$\Rightarrow d\left(Ln(a_1^{liq})\right) = \frac{\Delta H_{1fusion}^o}{RT^2} dT$$

On intègre en considérant l'enthalpie de fusion comme indépendante de T :

$$Ln(a_1^{liq}) = \frac{\Delta H_{1fusion}^o}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right)$$

pour T₁, $a_1^{liq} = 1$ et pour T, $a_1^{liq} = \gamma_1 x_1^{liq}$

$$Ln(\gamma_1 x_1^{liq}) = \frac{\Delta H_{1fusion}^o}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) = Ln(\gamma_1 (1 - x_2^{liq}))$$

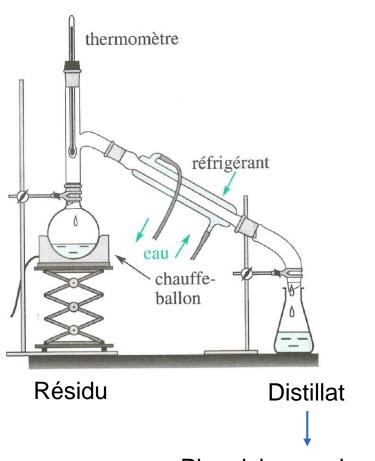
(la lecture de T pour une valeur connue de x_2^{liq} permet d'accéder à γ_1 et donc à a_1^{liq})

Partie T₂E: même chose

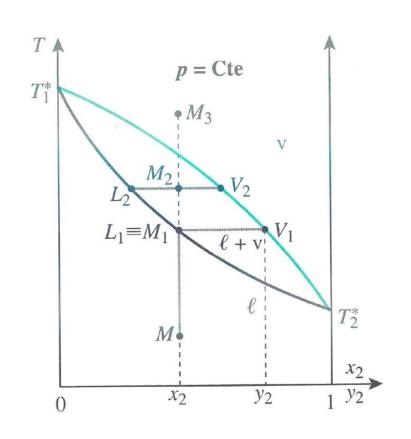
$$Ln(a_2^{liq}) = \frac{\Delta H_{2fusion}^o}{R} \left(\frac{1}{T_2} - \frac{1}{T} \right)$$

C- Application : la distillation

Distillation simple

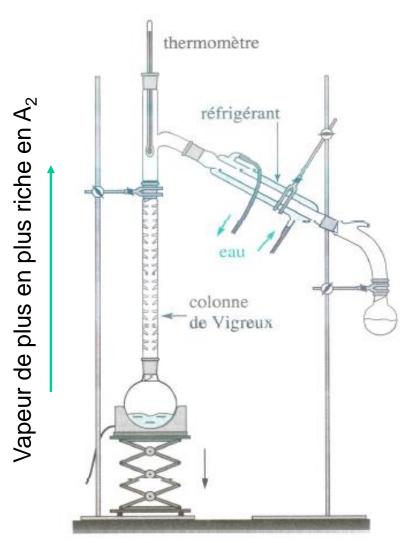


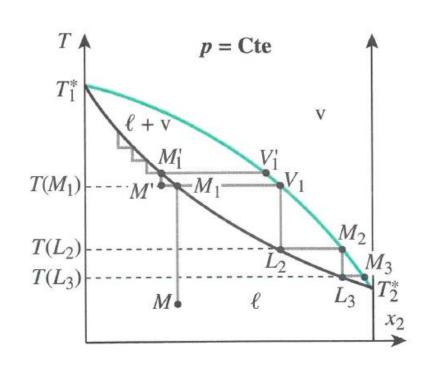
Plus riche que le mélange de départ en élément le plus volatil (ici A₂)



Distillation fractionnée

Distillation fractionnée

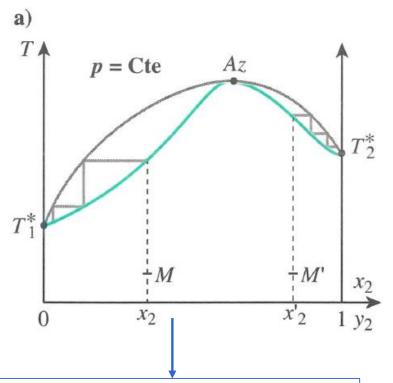




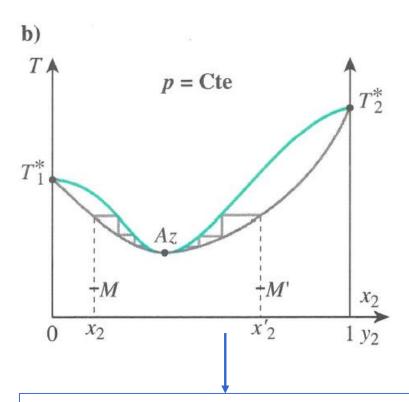
Si l'efficacité de la colonne le permet (plateaux théoriques), en fin de distillation : distillat = A_2 pur et résidu = A_1 pur (ou mélange enrichi en A_1)

Distillation fractionnée

Cas des mélanges binaires avec azéotrope



Distillat = A_2 pur ou A_1 pur mais non récupéré entièrement puisqu'il en reste dans le résidu (ballon).



Distillat = mélange azéotrope

Résidu = A_2 pur ou A_1 pur mais non récupéré entièrement puisqu'il en reste dans le distillat.