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Abstract. In this short note, we consider models of optimal Bayesian inference of
finite-rank tensor products. We add to the model a linear channel parametrized by
h. We show that at every interior differentiable point h of the free energy (associated
with the model), the overlap concentrates at the gradient of the free energy and the
minimum mean-square error converges to a related limit. In other words, the model is
replica-symmetric at every differentiable point. At any signal-to-noise ratio, such points
h form a full-measure set (hence h = 0 belongs to the closure of these points). For a
sufficiently low signal-to-noise ratio, we show that every interior point is a differentiable
point.
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1. Introduction

Recently, there has been tremendous progress in understanding the information-
theoretical aspect of statistical inference models. These works often utilize the toolbox
from the mean-field spin glass theory. In particular, the Bayesian inference of finite-rank
tensor products in the optimal case (where the posterior is known) can be seen as a simple
variant of a mean-field spin glass model. One important feature of the optimal model is
that the system is always in the replica symmetry regime. This means that the spin-glass
order parameter, the overlap, always concentrates (under a small perturbation).

In this note, we clarify the connection between the differentiability of the limit free
energy associated with the inference model and the concentration of the overlap as well
as the convergence of minimal mean-square errors. The theme is closely related to the
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so-called generic model in the spin glass (see [54, Section 15.4] and [47, Section 3.7]). In
the context of optimal Bayesian inference, we show that at any differentiable point (with
respect to the parameter h for an additional linear channel (or external field)) of the limit
free energy, the overlap concentrates. In other words, the model is replica-symmetric at
such points. This is different from the result by Barbier in [3] that shows the concentration
of the overlap under an average of small perturbation (which corresponds to the same
phenomenon in general non-generic spin glass models).

The parameter h also corresponds to the spatial parameter in the Hamilton–Jacobi
equation representation of the limit free energy. Since the limit free energy is Lipschitz,
Lebesgue-almost-every point is differentiable. Moreover, under our assumption, the initial
condition (namely, the free energy associated with the linear channel) is smooth. Hence,
we can solve the equation using characteristic lines for a short time (small signal-to-noise
ratio) and the solution is smooth. Therefore, in this regime, every interior point h is a
differentiable point.

This short-time regularity result is less obvious in our case because the equation is not
posed on the entire Euclidean space but on a closed convex cone. Hence, it is important
that the nonlinearity “points in the right direction” so that the characteristics do not
leave the domain.

1.1. Setting and the main result. Throughout, we write R+ = [0,∞) and R++ = (0,∞).
For any matrices a, b or vectors of the same dimension, we write a ⋅ b = ∑ij aijbij as the

entry-wise inner product and write ∣a∣ =
√
a ⋅ a. Throughout, we fix D ∈ N and let SD be

the linear space of D ×D real symmetric matrices. We view SD as a subspace of RD×D
and endow SD with the aforementioned entry-wise inner product. Let SD+ (resp. SD++)
be the subset of SD consisting of positive semi-definite (resp. definite) matrices. Notice
that SD+ (resp. SD++) is a closed (resp. open) convex cone in SD. We can identify SD

isometrically with a Euclidean space and put the Lebesgue measure on it. Throughout, a
full-measure subset of SD+ means that its complement in SD+ has Lebesgue measure zero.

We consider the statistical inference problem of general tensor products as in [21,
Section 1.1]. Fix D (which is K in [21]) to be the rank of the signal. For each N ∈ N, we
denote the RN×D-valued signal by X. We assume that the distribution of X is known
and we denote it by PN . Fix any p ∈ N and we view the tensor product X⊗p as an
Np ×Dp-matrix in terms of the Kronecker product. Fix any deterministic A ∈ RDp×L for
some L ∈ N. We view A as the matrix describing the interaction of entries in X⊗p. Let
t ⩾ 0 and we interpret 2t as the signal-to-noise ratio. The RNp×L-valued noisy observation
Y is given by

Y =
√

2t

Np−1X
⊗pA +W

where W is an Np ×L matrix with i.i.d. standard Gaussian entries. In addition to Y , we
also consider an independent RN×D-valued linear channel

Y =X
√
2h +Z(1.1)

for an N ×D matrix Z consisting of i.i.d. standard Gaussian entries. From the perspective
of statistical mechanics, Y gives rise to an external field in the system.

For N ∈ N, t ∈ R+, and h ∈ SD+ , we consider the random Hamiltonian

HN(t, h,x) =
√

2t

Np−1 (x
⊗pA) ⋅ Y − t

Np−1 ∣x
⊗pA∣2

+
√
2h ⋅ (x⊺Y ) − h ⋅ (x⊺x) .

(1.2)
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Here,
√
h is the matrix square root of h, which is well-defined for h ∈ SD+ . The randomness

in HN(t, h,x) comes from X, W , and Z. We define the associated Gibbs measure by

⟨⋅⟩N,t,h ∝ exp (HN(t, h,x))dPN(x).(1.3)

By the Bayes rule, the Gibbs measure satisfies

⟨g (x)⟩N,t,h = E [g (X) ∣Y,Y ](1.4)

for any bounded measurable function g. Slightly abusing the notation, we denote still
by ⟨⋅⟩N,t,h its tensorized version, which allows us, for instance, to consider independent

samples x and x′ from ⟨⋅⟩N,t,h.

let FN(t, h) be the enriched free energy (see [21, (1.3)]) defined by

FN(t, h) =
1

N
log∫

RN×D
exp (HN(t, h,x))dPN(x).(1.5)

We write

FN(t, h) = EFN(t, h)

where E averages over the randomness of X, W , and Z. As a consequence, FN(t, h) is
nonrandom. We view FN as a real-valued function on R+ × SD+ .

We often impose some of the following assumptions:

(H1) For each N ∈ N, every entry in X is in [−1,+1] a.s. under PN .
(H2) As N →∞, (FN(0, ⋅))N∈N converges pointwise everywhere to some continuously

differentiable function ψ ∶ SD+ → R.
(H3) For every compact subset K ⊆ R+ × SD+ , we have limN→∞E ∣FN − FN ∣

2

L∞(K) = 0.

A stronger assumption is the following:

(HS) For each N ∈ N, row vectors in X are i.i.d. with a fixed distribution P1. Let X1

be the first row-vector of X. Under P1, entries of X1 are in [−1,+1].
Under (HS), (H1) clearly holds; (H2) holds with ψ = F 1(0, ⋅) because in this case
FN(0, ⋅) = F 1(0, ⋅) for every N ∈ N; and we can deduce (H3) using standard techniques
[24, Lemma C.1] (this lemma assumes that X has i.i.d. entries but the same argument
holds for (HS)).

Define H ∶ SD → R (as in [21, (1.4)]) by

H(q) = (AA⊺) ⋅ q⊗p, ∀q ∈ SD.(1.6)

Theorem 1.1 ([21] limit of free energy). Assume (H1), (H2), and (H3). The function
FN converges pointwise everywhere on R+ × SD+ to the unique Lipschitz viscosity solution
of

∂tf −H(∇hf) = 0, on R+ × SD
+(1.7)

with initial condition f(0, ⋅) = ψ.
Moreover, f always admits the representation by the Hopf formula:

f(t, h) = sup
h′∈SD

+

{h′ ⋅ h − ψ∗(h′) + tH (h′)} , ∀(t, h) ∈ R+ × SD
+ ;(1.8)

if in addition H is convex on SD+ , then f admits the representation by the Hopf–Lax
formula:

f(t, h) = sup
h′∈SD

+

{ψ(h + h′) − tH∗(h′/t)} , ∀(t, h) ∈ R+ × SD
+ .(1.9)
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This is the main result from [21] combined with other results. We give a detailed
explanation in Section 2. In (1.8) and (1.9), ψ∗ and H∗ are monotone convex conjugate
defined in (2.1).

Remark 1.2 (Almost everywhere differentiability). Since FN is Lipschitz with coefficient
uniform in N (evident from (3.5) and (H1)), we have that f is Lipschitz and thus f is
differentiable almost everywhere on R+ × SD+ by Rademacher’s theorem. □

Next, we introduce two versions of minimal mean-square errors to be considered here:

MMSEN(t, h) =
1

N
E [(X −E [X ∣Y,Y ])⊺ (X −E [X ∣Y,Y ])] ,(1.10)

mmseN(t, h) =
1

Np
E ∣X⊗pA −E [X⊗pA ∣Y,Y ]∣2 .(1.11)

These are natural measures of performance. Here, MMSEN(t, h) is the SD+ -valued MMSE
matrix introduced in [50, 51, 52]; mmseN(t, h) is natural in the tensor inference setting,
which is similar to the one considered in [49, (18)]. In the estimation of low rank symmetric
matrices [35] (Theorem 1.1) and low-rank asymmetric matrices [40] (Proposition 2), the
limit of mmseN(t,0) was identified. The convergence of matrix MMSE in the inference
of second-order matrix tensor products was studied in [49, Section II.B].

Lastly, for each N ∈ N, we consider the D ×D overlap matrix defined by

Q = 1

N
X⊺x.(1.12)

Our main results are summarized as follows.

Theorem 1.3. Assume (H1), (H2), and (H3). Let t ∈ R++. Then, at every differentiable
point h ∈ SD++ of f(t, ⋅) (which forms a full-measure subset of SD+ ), we have that f(⋅, h) is
also differentiable at t and the following holds:

(1) The gradient ∇hf(t, h) is the unique maximizer of the Hopf formula (1.8) at
(t, h).

(2) The overlap concentrates at the value ∇hf(t, h), namely,

lim
N→∞

E ⟨∣Q −∇hf(t, h)∣⟩N,t,h = 0.

(3) Under the stronger assumption (HS), we have

lim
N→∞

MMSEN(t, h) = E [X⊺1X1] −∇hf(t, h),

lim
N→∞

mmseN(t, h) = (AA⊺) ⋅ (E [X⊺1X1])
⊗p − ∂tf(t, h).

Moreover, if ψ is twice differentiable with bounded derivatives (which is satisfied un-
der (HS)), setting

L = ∥∇H(∇ψ)∥Lip ,(1.13)

we have that f is twice differentiable everywhere on [0, L−1) × SD+ .

Proof. Parts (1), (2), and (3) follow from Propositions 2.1, 4.1, and 3.1, respectively. The
short-time differentiability result is from Lemma 5.1 and Proposition 5.3. □

Results in Propositions 2.1, 4.1, and 3.1 are slightly more general than the above. We
clarify that even though the short-time differentiability holds at (t, h) with h ∈ SD+ ∖ SD++,
the results in Parts (2) and (3) do not seem trivially extendable to such points, including
the most interesting case when h = 0.
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The main result [3] gives the concentration of Q under the measure EhE ⟨⋅⟩N,t,h where
Eh is a local average of h over a shrinking set as N → ∞. Moreover, points in the
shrinking set converge to 0. Our Part 2 can be interpreted as a pointwise concentration
result without average and we are able to recover the value of the limit overlap, but the
differentiable point h has to be away from 0.

1.2. Other related works. Our representation of the limit free energy is based on the
Hamilton–Jacobi equation approach. This perspective was first used by Guerra in [28]
and works along the same line include [10, 1, 12, 11, 9, 27], which considered equations
in finite-dimensions corresponding to the regime of replica symmetry or finite-step replica
symmetry breaking. Mourrat started a more mathematical treatment of the approach
in [44, 41]. In particular, the regime of full replica symmetry breaking is associated with
an infinite-dimensional Hamilton–Jacobi equation [46, 43, 45, 20, 17, 30, 31]. Through
this approach, optimal Bayesian inference models are studied in [42, 15, 23, 21, 25]. The
well-posedness of the Hamilton–Jacobi equations are considered in [24, 22, 32, 33].

Here, we work in the optimal setting, where the system is replica-symmetric so that
the relevant equation and the variational formula for the limit free energy are both
finite-dimensional. Works investigating the limit of free energy or equivalently mutual
information include [5, 35, 7, 40, 8, 34, 38, 35, 39, 51, 49, 36, 7, 37]. In the non-optimal
setting where the prior and the noise are mismatched, the system is in general no longer
replica-symmetric. Works in this harder scenario include [13, 4, 6, 48, 29].

As aforementioned, the interplay between the differentiability of the limit free energy
and the convergence of overlap is a key feature in the generic spin glass models. This
idea was also used in [20, 17, 18, 30] to study the limit of the overlap. A similar idea was
employed in [19, 16] to understand simpler order parameters, such as the self-overlap and
the mean magnetization.

2. Maximizers of variational representations

We start by describing how to combine results from different works to get Theorem 1.1.
We start with clarifying the meaning of ψ∗ and H∗ in (1.8) and (1.9). For any (−∞,∞]-
valued function g defined on a subset of SD containing SD+ , its monotone convex conjugate
g∗ ∶ SD → (−∞,∞] is defined as

g∗(h) = sup
h′∈SD

+

{h ⋅ h′ − g(h′)} , ∀h ∈ SD.(2.1)

Proof of Theorem 1.1. The main part of the theorem and the Hopf formula are direct
consequences of [21, Theorem 5.1 and Theorem 1.1]. The Hopf–Lax formula is valid due
to [22, Proposition 6.2]. To apply this proposition, we need to verify that SD+ satisfies
the so-called Fenchel–Moreau property (see [22, Definition 6.1]) which is verified in [23,
Proposition B.1]. Also, we need ψ to be increasing, which follows from the monotonicity
of FN implied by the positivity of ∇FN evident from (3.5). Lastly, we need H to be
increasing on SD+ , which is proved in [21, Lemma 4.2]. □

As a consequence of the envelope theorem (c.f. [26, Theorem 2.21]), we can deduce the
following result on the maximizers of variational formulas.

Proposition 2.1 (Properties of maximizers). Assume (H1), (H2), and (H3). Let f be
given as in Theorem 1.1. Then, for every (t, h) ∈ R+ ×SD+ , there is a maximizer h⋆ of the
Hopf formula (the right-hand side in (1.8) at (t, h)) and the following holds:

(a1) if f(t, ⋅) is differentiable at h, then h⋆ is uniquely given by h⋆ = ∇hf(t, h) and
f(⋅, h) is also differentiable at t with ∂tf(t, h) = H(∇hf(t, h));
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(a2) if f(⋅, h) is differentiable at t, then h⋆ satisfies H(h⋆) = ∂tf(t, h).

Under an additional assumption that H is convex on SD+ , for every (t, h) ∈ R+ × SD+ ,
there is a maximizer h◊ of the Hopf–Lax formula (the right-hand side in (1.9) at (t, h))
and the following holds:

(b1) if f(t, ⋅) is differentiable at h, then h◊ satisfies ∇hψ(h + h◊) = ∇hf(t, h);
(b2) if f(⋅, h) is differentiable at t and H∗ is differentiable, then h◊ satisfies

d
dt (−tH

∗(h◊/t)) = ∂tf(t, h).

Remark 2.2 (Alternative Hopf–Lax formula and results). When H is convex on SD+ , since
SD+ is a cone, one can also rewrite the Hopf–Lax formula (1.9) as

f(t, h) = sup
h′∈SD

+

{ψ(h + th′) − tH∗(h′)} , ∀(t, h) ∈ R+ × SD
+(2.2)

Using this formula and the same argument, we have that there is a maximizer h⧫ of (2.2)
satisfying ∇hψ(h+th⧫) = ∇hf(t, h) in case (b1) and h⧫ ⋅∇hψ(h+th⧫)−H∗(h⧫) = ∂tf(t, h)
in case (b2). □

Remark 2.3. When H is strictly convex on SD+ , H∗ is differentiable on SD.

Proof of Proposition 2.1. We only need to verify the existence of maximizers and that
they are contained in a fixed compact set when (t, h) varies in a bounded set. The rest
follows from the envelope theorem (we use the version in [26, Theorem 2.21] which is
stated on the entire Euclidean space but can be straightforwardly adapted to SD+ here).

For the Hopf formula in (1.8), since ψ is Lipschitz as argued in Remark 1.2, we can see
that ψ∗ is equal to +∞ outside a bounded set K independent of (t, h). Since the function
h′ ↦ h′ ⋅ h − ψ∗(h′) + tH(h′) is upper semi-continuous, we can deduce the existence of a
maximizer, which lies in K independent of (t, h).

For the Hopf–Lax formula in (1.9), since H is bounded on each centered ball, we can
see that H∗ grows super linearly in the sense that H∗(h′)/∣h′∣ diverges to +∞ as ∣h′∣
grows. This along with the Lipschitzness of ψ implies that maximizers exist and they
are contained in a compact set Kt,h. Also, it is easy to see that if (t, h) varies in a small
neighborhood, then Kt,h is contained in some fixed compact set. □

3. Limits of minimal mean square errors

Recall MMSEN(t, h) and mmseN(t, h) defined in (1.10) and (1.11).

Proposition 3.1 (Limit of MMSE). Assume (HS). Let (t, h) ∈ R+ × SD+ . If h ∈ SD++ and
f(t, ⋅) is differentiable at h, then

lim
N→∞

MMSEN(t, h) = E [X⊺1X1] −∇hf(t, h).(3.1)

If t ∈ R++ and f(⋅, h) is differentiable at t, then

lim
N→∞

mmseN(t, h) = (AA⊺) ⋅ (E [X⊺1X1])
⊗p − ∂tf(t, h).(3.2)

Moreover, the limits in (3.1) and (3.2) are related to the maximizers of variational
formulas (1.8) and (1.9) via Proposition 2.1.

Proof. We need the convexity of FN proven in [21, Lemma 2.3], which also implies the
convexity of f . Fix (t, h) ∈ R+ × SD+ , since FN is differentiable and FN converges to f
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pointwise, it is a classical result [53, Theorem 25.7] in convex analysis that

h ∈ SD
++ and f(t, ⋅) is differentiable at h Ô⇒ lim

N→∞
∇hFN(t, h) = ∇hf(t, h);(3.3)

t ∈ R++ and f(⋅, h) is differentiable at t Ô⇒ lim
N→∞

∂tFN(t, h) = ∂tf(t, h).(3.4)

Since we have fixed (t, h) and the value of N is clear from the context, we write ⟨⋅⟩ = ⟨⋅⟩N,t,h

to simplify the notation in (1.4). We also recall the following computation of derivatives
from [21, (2.1) and (2.2)]:

∂tFN(t, h) =
1

Np
E ∣⟨x⊗pA⟩∣2 , ∇hFN(t, h) =

1

N
E [⟨x⟩⊺ ⟨x⟩] .(3.5)

Let us first prove (3.2). For simplicity we write X̃ = X⊗pA and x̃ = x⊗pA. We start
with

NpmmseN(t, h)
(1.11)= E ∣X̃ ∣2 −E ∣E [X̃ ∣ Y,Y ]∣2 (1.4)= E ∣X̃ ∣2 −E ∣⟨x̃⟩∣2

(3.5)= E ∣X̃ ∣2 −Np∂tFN(t, h).

Hence, (3.2) follows from (3.4) and

lim
N→∞

N−pE ∣X̃ ∣2 = (AA⊺) ⋅ (E [X⊺1X1])
⊗p

(3.6)

which we explain in the following. We write n = (n1, . . . , np) ∈ {1, . . . ,N}p, d =
(d1, . . . , dp) ∈ {1, . . . ,D}p, and (X⊗p)nd = ∏

p
i=1Xnidi . Then, we can rewrite X⊗p =

((X⊗p)nd) and A = (Anl). In this notation, we compute

∣X̃ ∣2 = ∣X⊗pA∣2 =∑
l,n

∑
d,d′
(X⊗p)

nd
(X⊗p)

nd′
AdlAd′l

where the summations are over all possible values of these tuples. Let ∆N be the collection
of tuples n where all entries are distinct. Since rows of X are independent, we have that if
n ∈ ∆N , then E [(X⊗p)nd (X⊗p)nd′] =∏

p
i=1E [X1diX1d′i

]. Since entries of X are assumed

to be in [−1,+1] as in (H1) and limN→∞ ∣∆N ∣ /Np = 1, we thus have

N−pE ∣X̃ ∣2 = oN(1) + ∣∆N ∣−1E ∑
l,n∈∆N

∑
d,d′
(X⊗p)

nd
(X⊗p)

nd′
AdlAd′l

= oN(1) +∑
l

∑
d,d′

p

∏
i=1

E [X1diX1d′i
]AdlAd′l

which implies (3.6)

Next, we turn to (3.1). Similarly, as before, we can compute

NMMSEN(t, h)
(1.10),(1.4)= E [X⊺X] −E [⟨x⟩⊺ ⟨x⟩] (3.5)= E [X⊺X] −N∇hFN(t, h).

Then, (3.1) follows from (3.3) and the easy observation that E [X⊺X] = NE [X⊺1X1] due
to the independence of rows in X. □

4. Concentration of overlap

Recall the overlap matrix Q defined in (1.12).

Proposition 4.1 (Concentration of overlap). Assume (H1), (H2), and (H3). If f(t, ⋅) is
differentiable at h ∈ SD++ for some t ∈ R+, then the following holds:

● the averaged overlap converges:

lim
N→∞

E ⟨Q⟩N,t,h = ∇hf(t, h);(4.1)
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● the overlap concentrations:

lim
N→∞

E ⟨∣Q −E ⟨Q⟩N,t,h∣⟩N,t,h
= 0.(4.2)

Moreover, the limit of Q is related to the maximizers of variational formulas (1.8) and (1.9)
via Proposition 2.1; and to the limit of MMSE via Proposition 3.1.

Remark 4.2. The results in Proposition 4.1 still hold if we replace Q given in (1.12) by

R = 1

N
x⊺x′(4.3)

where x and x′ are two independent samples from the Gibbs measure ⟨⋅⟩N,t,h as in (1.4).

This claim follows from a special case of the well-known Nishimori identity (e.g. see [26,
Proposition 4.1]): for any bounded measurable g ∶ RN×D ×RN×D → R, we have

E ⟨g(x,x′)⟩
N,t,h

= E ⟨g(x,X)⟩N,t,h .(4.4)

Indeed, (4.4) implies that Q and R have the same distribution under E ⟨⋅⟩N,t,h. □

To prove (4.2), we need to compare Q with L defined by

L = N−1∇hHN(t, h,x)(4.5)

where HN(t, h,x) is given in (1.2). We view L as a matrix in SD and it is well-defined
for h ∈ SD++. Indeed, for h ∈ SD++ and a ∈ SD, we have h + εa ∈ SD++ for sufficiently small ε
and its matrix square root exists and is positive definite. Then, we can compute

a ⋅L = N−1 d

dε
HN(t, h + εa,x)∣

ε=0
= N−1 (

√
2D√h(a) ⋅ x

⊺Z + 2a ⋅ x⊺X − a ⋅ x⊺x)(4.6)

where D√h(a) is the derivative of the function h ↦
√
h at h along the direction of a,

namely,

D√h(a) = limε→0
ε−1 (

√
h + εa −

√
h) .(4.7)

We recall from [41, (3.7)] a useful estimate:

∣D√h(a)∣ ⩽ C ∣a∣ ∣h
−1∣

1
2(4.8)

where C > 0 is an absolute constant and h−1 is the matrix inverse of h ∈ SD++.
As in [3], it is more convenient to work with L instead of Q because L is closely related

to the free energy via:

⟨L⟩N,t,h = ∇hFN(t, h), E ⟨L⟩N,t,h = ∇hFN(t, h).(4.9)

Indeed, from (1.5) and (4.5), we can easily deduce (4.9). We will first derive the con-
centration of L and then relate it to that of Q via the following results extractable
from [3].

Lemma 4.3 ([3] Relation between Q and L). Assume (H1). Let t ∈ R+ and h ∈ SD++. For
brevity, write ⟨⋅⟩ = ⟨⋅⟩N,t,h and set

ℓ0(N) = (E ⟨∣L − ⟨L⟩∣2⟩)
1
2 , ℓ1(N) = (E ⟨∣L −E ⟨L⟩∣2⟩)

1
2 .(4.10)

Then, there is a constant C such that, for every N ∈ N,

E ⟨∣Q − ⟨Q⟩∣2⟩ ⩽ Cℓ0(N) +CN−
1
2 ,(4.11)

E ⟨∣Q − ⟨R⟩∣2⟩ ⩽ Cℓ0(N) +CN−
1
2 ,(4.12)

E ⟨∣Q −E ⟨Q⟩∣2⟩ ⩽ Cℓ0(N)
1
2 +Cℓ1(N) +CN−

1
4 .(4.13)
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Here, the constant C depends on D, h.

Proof. These results are contained in [3]. The setting in [3, Section 2.1] is more general and
covers our current setting. There is an additional factor −1

2 in front of the Hamiltonian [3]
(see display (3.4) therein) compared with (1.2). Also, L therein (see (4.1) and (4.2)) are
defined as differentiation of the Hamiltonian with respect to each entry of h. This is
related to our definition in (4.6) through choosing the testing matrix a to be 1 in certain
entries and 0 otherwise. However, in [3], diagonal entries and off-diagonal ones in L are
weighted differently, resulting in a difference by a factor of 2. In conclusion, each entry in
our L is equal to that of L in [3] up to a constant factor −2c with c ∈ Z depending only
on the position of the entry.

In terms of overlaps, Q are defined in the same way (see [3, (2.2)]). Here, R in (4.3) is

equal to Q(12) in [3, (3.9)]. Factors K, S, n there correspond to D, 1, N here.

Notice that the magnitude of the derivative of
√
h blows up when h approaches 0.

In [3], this is controlled by the parameter sn which determines the range for h (denoted
by λn; see (3.2) there). We absorb sn into the constant C since h is fixed. Results in [3]
hold with an additional local average Eλ of λ (corresponding to h here). There, this is
needed to have the concentration of L. In this lemma, since we encode the bounds in
terms of ℓ0(N) and ℓ1(N), we do not need this local average. Computations in [3] often
have Eλ but they are still valid without it.

With the above clarification, we are ready to describe how to extract the announced
results. Estimates in (4.11) and (4.12) correspond to (3.10) and (3.11) in [3, Theorem 3.1].
We can extract (4.11) from the first display below [3, (4.13)]. We absorb the factors
C(K,S) and sn therein into C here. We can extract (4.12) from the first display below
(4.19) in [3] together with the ensuing sentences. The estimate in (4.13) is contained in
the proof of [3, Theorem 3.2]. In the proof, whenever [3, (3.10) and (3.11)] are used, we

need to replace them by (4.11) and (4.12). This way, we replace every instance of
C(K,S)
(snn) 14

and OK,S((snn)−
1
4 ) in [3] by (ℓ0(N) +N−

1
2 )

1
2 . Then, (4.13) follows from [3, (4.23) and

the next display]. □

The concentration of L is achieved in [3] by applying a local average of the additional
field, which is a standard technique for spin glass models. Also, it is well-known in spin
glass that differentiability implies concentration [14]. The next result is of the same flavor.

Lemma 4.4 (Concentration of L). Assume (H1), (H2), and (H3). If f(t, ⋅) is differen-
tiable at (t, h) ∈ R+ × SD++, then

lim
N→∞

E ⟨∣L −E ⟨L⟩N,t,h∣⟩N,t,h
= 0.(4.14)

To prove this lemma, we need to recall the following estimates from [41]. For every
h ∈ SD++, recall that we denote by h−1 its matrix inverse. Also recall the noise matrix Z
from (1.1). Henceforth, we write ∇ = ∇h for brevity.

Lemma 4.5 ([41]). Assume (H1). There is a constant C > 0 such that, for every N ∈ N,
t ∈ R+, h ∈ SD++ and a ∈ SD,

a ⋅ ∇ (a ⋅ ∇FN(t, h)) ⩾ −CN−
1
2 ∣a∣2∣Z ∣ ∣h−1∣

3
2 ,(4.15)

a ⋅ ∇ (a ⋅ ∇FN(t, h)) ⩾ NE ⟨(a ⋅L − ⟨a ⋅L⟩)2⟩
N,t,h

−C ∣a∣2 ∣h−1∣ .(4.16)

Proof. Our FN(t, h) and Na ⋅ L (see (1.5) and (4.5)) correspond to FN(t,2h) and
2H ′N(a, h, x) in [41] (see (1.6) and the display after (3.18)). We remark that the in-
teraction structure of signals considered in [41] is quadratic, which is a special case of our
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setting (see the display above (1.6)). However, the structure of external fields is the same.
Since the computations to be recalled below are carried with respect to h, they still hold
in our setting.

The estimate in (4.15) is exactly the second bound in [41, (3.37)]. The estimate in (4.16)
follows from the combination of [41, (3.22) and (3.7)] together with the fact that entries
of x lie in [−1,+1]. □

Proof of Lemma 4.4. Fix (t, h) as in the statement. Since N is clear from the context,
we simply write ⟨⋅⟩h′ = ⟨⋅⟩N,t,h′ for any h′ ∈ SD+ . Also, we write FN(h′) = FN(t, h′) and
f(h′) = f(t, h′) for any h′ ∈ SD+ .

Since L is a symmetric matrix, (4.14) is equivalent to

lim
N→∞

E ⟨∣La −E ⟨La⟩h∣⟩h = 0(4.17)

for every a ∈ SD, where we used the shorthand notation La = a ⋅L. In fact, we can take a
from the orthogonal basis of SD consisting of matrices with only 0 or 1 entries. In this
way, (4.17) becomes the concentration of each entry of L. Henceforth, we fix an arbitrary
a and verify (4.17). We proceed in two steps.

Step 1. We show

lim
N→∞

E ⟨∣La − ⟨La⟩h∣⟩h = 0.(4.18)

We denote by (xl)l∈N independent copies of x under ⟨⋅⟩h and let Lla to be La with x

therein (see (4.6)) replaced by xl. Fix r0 > 0 sufficiently small so that h + sa ∈ SD++ for all
s ∈ [−r0, r0]. For r ∈ (0, r0], integrating by parts, we have

rE ⟨∣L1a −L2a∣⟩h = ∫
r

0
E ⟨∣L1a −L2a∣⟩h+sa ds − ∫

r

0
∫

τ

0

d

ds
E ⟨∣L1a −L2a∣⟩h+sa dsdτ.

Using (4.5) and (1.3), we can compute

d

ds
E ⟨∣L1a −L2a∣⟩h+sa = NE ⟨∣L1a −L2a∣ (L1a +L2a − 2L3a)⟩h+sa

⩾ −2NE ⟨∣L1a −L2a∣
2⟩

h+sa ⩾ −8NE ⟨∣La − ⟨La⟩h+sa∣
2⟩

h+sa .

Combining the above two displays, we get

E ⟨∣L1a −L2a∣⟩h ⩽
1

r
∫

r

0
E ⟨∣L1a −L2a∣⟩h+sa ds +

8N

r
∫

r

0
∫

τ

0
E ⟨∣La − ⟨La⟩h+sa∣

2⟩
h+sa dsdτ

⩽ 2

r
∫

r

0
E ⟨∣La − ⟨La⟩h+sa∣⟩h+sa ds + 8N ∫

r

0
E ⟨∣La − ⟨La⟩h+sa∣

2⟩
h+sa ds.(4.19)

Setting

εN = N ∫
r

0
E ⟨∣La − ⟨La⟩h+sa∣

2⟩
h+sa ds

and applying the Cauchy–Schwarz inequality to the first integrand in (4.19), we get

E ⟨∣L1a −L2a∣⟩h ⩽ 2
√

εN
rN
+ 8εN .(4.20)

By (4.16) from Lemma 4.5, there is a constant C > 0 depending only on h, a, and r0 such
that

NE ⟨∣La − ⟨La⟩h+sa∣
2⟩

h+sa ⩽ (a ⋅ ∇) (a ⋅ ∇FN(h + sa)) +C
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for every s ∈ [0, r0]. Hence, we have

εN ⩽ ∫
r

0

d2

ds2
FN(h + sa)ds +Cr = a ⋅ ∇FN(h + ra) − a ⋅ ∇FN(h) +Cr

⩽ FN(h + (r + τ)a) − FN(h + ra)
τ

− FN(h) − FN(h − τa)
τ

+Cr

for any τ ∈ (0, r0], where the last inequality follows from the convexity of FN (see [21,
Lemma 2.3]). Therefore, the above display along with (4.20) and the convergence of FN

to f given by Theorem 1.1 implies

lim sup
N→∞

1

8
E ⟨∣L1a −L2a∣⟩h ⩽

f(h + (r + τ)a) − f(h + ra)
τ

− f(h) − f(h − τa)
τ

+Cr

We first send r → 0 and then τ → 0. By the differentiability assumption on f , the
right-hand side becomes zero. This immediately yields (4.18).

Step 2. We show

lim
N→∞

E ∣⟨La⟩h −E ⟨La⟩h∣ = 0.(4.21)

We start with (4.9) which gives

E ∣⟨La⟩h −E ⟨La⟩h∣ = E ∣a ⋅ ∇FN(h) − a ⋅ ∇FN(h)∣ .(4.22)

Recall that r0 > 0 is fixed so that h+ sa ∈ SD++ for every s ∈ [−r0, r0]. For r ∈ (0, r0], we set

δN(r) = ∣FN(h − ra) − FN(h − ra)∣ + ∣FN(h) − FN(h)∣ + ∣FN(h + ra) − FN(h + ra)∣ .

By (4.15) from Lemma 4.5 and the Taylor expansion, there is a constant C depending
only on h, a, and r0 such that, for every r ∈ (0, r0],

FN(h + ra) − FN(h) ⩾ ra ⋅ ∇FN(h) −Cr2N−
1
2 ∣Z ∣,

FN(h − ra) − FN(h) ⩽ ra ⋅ ∇FN(h) +Cr2N−
1
2 ∣Z ∣.

The above two displays together give

a ⋅ ∇FN(h) − a ⋅ ∇FN(h) ⩽
FN(h + ra) − FN(h)

r
− a ⋅ ∇FN(h) +

δN(r)
r
+CrN−

1
2 ∣Z ∣,

a ⋅ ∇FN(h) − a ⋅ ∇FN(h) ⩾
FN(h) − FN(h − ra)

r
− a ⋅ ∇FN(h) −

δN(r)
r
−CrN−

1
2 ∣Z ∣.

The concentration assumption (H3) ensures limN→∞EδN(r) = 0. Recall from (1.1) that Z

is an N ×D matrix with i.i.d. standard Gaussian entries. Therefore, we have E∣Z ∣ ⩽
√
ND.

Also, FN converges to f pointwise as given by Theorem 1.1. Using these and (3.3), we
get

lim sup
N→∞

E ∣a ⋅ ∇FN(h) − a ⋅ ∇FN(h)∣ ⩽ ∣
f(h + ra) − f(h)

r
− a ⋅ ∇f(h)∣

+ ∣f(h) − f(h − ra)
r

− a ⋅ ∇f(h)∣ +Cr
√
D.

Now, sending r → 0 and using the differentiability of f at h, we deduce that the left-hand
side in the above vanishes. Finally, inserting this to (4.22), we arrive at (4.21).

Since (4.18) and (4.21) together yield (4.17), the proof is complete. □

Now, we are ready for the main task.
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Proof of Proposition 4.1. Recall Q from (1.12). Fix any (t, h) ∈ R+ ×SD++ such that f(t, ⋅)
is differentiable at h. We verify (4.1) and (4.2). First, (4.1) follows from (3.3), (3.5),
(4.4). Then, we turn to (4.2). Recall ℓ0(N) and ℓ1(N) from (4.10). It is straightfor-
ward to see ℓ0(N) ⩽ 2ℓ1(N). Hence, (4.2) follows from (4.13) in Lemma 4.3 provided
limN→∞ ℓ1(N) = 0. In the following, we deduce this from Lemma 4.4. Using (4.6), (4.8),
and assumption (H1), there is a constant depending only on h and D such that

∣a ⋅L∣ ⩽ C (N−
1
2 ∣Z ∣ + 1) ∣a∣

which immediately implies

∣L∣ ⩽ C (N−
1
2 ∣Z ∣ + 1) .

We write ⟨⋅⟩ = ⟨⋅⟩N,t,h for simplicity. Using this, we have that, for any r > 0,

E ⟨∣L −E ⟨L⟩∣2⟩ = E [⟨∣L −E ⟨L⟩∣2⟩1
N−

1
2 ∣Z∣⩽r] +E [⟨∣L −E ⟨L⟩∣

2⟩1
N−

1
2 ∣Z∣>r]

⩽ 2C(r + 1)E ⟨∣L −E ⟨L⟩∣⟩ + 8C2E [(N−1∣Z ∣2 + 1)1
N−

1
2 ∣Z∣>r]

Since Z is an N ×D matrix with i.i.d. standard Gaussian entries (see (1.1)), it is standard
(e.g. [55, Theorem 3.1.1]) to see that for every ε > 0, there is r > 0 such that the last term
is bounded by ε. Then, applying Lemma 4.4, we get

lim sup
N→∞

E ⟨∣L −E ⟨L⟩∣2⟩ ⩽ ε.

Sending ε→ 0, we can thus deduce limN→∞ ℓ1(N) = 0 and (4.2). □

5. Short-time regularity

Recall that ψ is the initial condition given in (H2). In this section, we assume that

ψ is twice differentiable with bounded derivatives (both first and second order),(5.1)

as assumed in the last part of Theorem 1.3. First, we show that this condition is satisfied
under the stronger assumption (HS). Note that under the condition in (5.1) the gradient
of ψ is a Lipschitz function. In this section, again, we write ∇ = ∇h for brevity.

Lemma 5.1. Under (HS), the condition in (5.1) holds.

Proof. Under (HS), we have ψ = F 1(0, ⋅). As previously, we write ⟨⋅⟩ in place of ⟨⋅⟩N=1,t=0,h.
We let x′ and x′′ denote independent copies of x under ⟨⋅⟩. Then, we can directly compute
the derivatives of F 1(0, ⋅) using Gaussian integration by parts (as proven in [41, (3.8) and
(3.10)]) and the Nishimori identity (4.4) (also [41, (3.3)]). More precisely we will use the
following identities, which hold for any R-valued bounded measurable function g and any
RN×D-valued bounded measurable function G,

E ⟨g(x,x′)⟩ = E ⟨g(x,X)⟩ ,

E ⟨Z ⋅G(x,X)⟩ = E ⟨(x − x′′)
√
2h ⋅G(x,X)⟩ ,

E ⟨Z ⋅G(x,x′,X)⟩ = E ⟨(x + x′ − 2x′′)
√
2h ⋅G(x,x′,X)⟩ .

For a ∈ SD, we denote by a ⋅ ∇ the operator defined by taking the directional derivative
in direction a with respect to h, that is

(a ⋅ ∇)g(h) = lim
ε→0

g(h + εa) − g(h)
ε

.
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Recall from (4.7) that D√h(a) denotes the derivative in the direction a of the square root
function at h. Then, we have

(a ⋅ ∇)H1(0, h,x) =
√
2D√h(a) ⋅ x

⊺Z + 2a ⋅ x⊺X − a ⋅ x⊺x

Differentiating ψ in direction a we obtain

(a ⋅ ∇)ψ(h) = E⟨(a ⋅ ∇)H1(0, h,x)⟩.

Using the first Gaussian integration by part identity as recalled above, we recover [21,
(2.2)], namely

(a ⋅ ∇)ψ(h) = E⟨a ⋅ x⊺X⟩.

The boundedness of the signal yields that ∣(a ⋅ ∇)ψ(h)∣ ⩽ C ∣a∣ and thus the first derivative
of ψ is bounded. Furthermore, differentiating the expression in the previous display in
direction b ∈ SD yields

(b ⋅ ∇)(a ⋅ ∇)ψ(h) = E ⟨a ⋅ x⊺X ((b ⋅ ∇)H1(0, h,x) − (b ⋅ ∇)H1(0, h,x′))⟩ .

Again using the Gaussian integration by part identities we obtain, like in [41, (3.27)], an
expression of the form

(b ⋅ ∇)(a ⋅ ∇)ψ(h) = E⟨(a ⋅ x⊺X) b ⋅ P (x,x′,x′′,X)⟩,

where P is some explicit homogeneous polynomial of degree 2. Again, from the bounded-
ness of the signals, we see that

∣(b ⋅ ∇)(a ⋅ ∇)ψ(h)∣ ⩽ C ∣a∣∣b∣.

This proves that the second derivative of ψ is bounded. □

We consider the nonlinearity H as in (1.6). For each h ∈ SD+ , the characteristic line
t↦X(t, h) emitting from h is defined as

X(t, h) = h − t∇H(∇ψ(h)), ∀t ∈ R+.

Under (5.1), the goal is to show that the solution of (1.7) is twice differentiable for a short
time. For equations defined on the entire Euclidean space, this is a standard result [26,
Exercise 2.10]. But in our case, since the domain is the convex cone SD+ , this standard
argument does not apply directly. We need to ensure that the characteristics in the
backward direction do not leave SD+ . Fortunately, we have

∇H(a) ∈ SD
+ , ∀a ∈ SD

+

which is a result of the monotonicity of H proved in [21, Lemma 4.2]. Also, ∇ψ takes
value in SD+ since FN(0, ⋅) is increasing in the direction of SD+ as ∇FN(0, h) ∈ SD+ (see [21,
Lemma 2.1]) and ψ is the limit of FN(0, ⋅). Hence, we always have ∇H(∇ψ(h)) ∈ SD+ ,
which means that the characteristics go further into the cone SD+ when traced backward.

Recall L from (1.13). We first show that when t < L−1 the characteristics form a
diffeomorphism.

Lemma 5.2. Assume (5.1). Let t ∈ [0, L−1), then the following holds.

(1) The map X(t, ⋅) ∶ SD+ →X(t, SD+ ) admits a differentiable inverse function Z(t, ⋅).
(2) We have X(t, SD+ ) ⊃ SD+ .

By an inverse function, we mean X(t,Z(t, h)) = h for every h ∈ SD+ here.
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Proof. Due to the definition of L and t < L−1, we can see that det(∇X(t, h)) > 0 for every
h ∈ SD+ . Therefore, in each local neighborhood, X(t, ⋅) is invertible. The definition of
L and t < L−1 also ensure that the preimage of any bounded set under X(t, ⋅) is still
bounded. Therefore, we can resort to classical results on the invertibility of maps (e.g. [2,
Theorem 1.8 in Chapter 3]) to get the existence of a continuous map Z(t, ⋅) that serves
as the inverse of X(t, ⋅). Again using t < L−1, we can first verify that Z(t, ⋅) is Lipschitz.
Then, using the smoothness of X(t, ⋅) and the invertibility condition, we can verify that
Z(t, ⋅) is differentiable everywhere. This verifies Part (1).

We show that for each k ∈ SD+ there is h such that X(t, h) = k. Let Ct,k ⊆ SD+ denote

the closed convex envelope of {k + t∇H(∇ψ(h))∣h ∈ SD+ } and let

Φt,k ∶
⎧⎪⎪⎨⎪⎪⎩

Ct,k Ð→ Ct,k

hz→ k + t∇H(∇ψ(h))
.

Since Φt,k is continuous and Ct,k is a compact convex set (as ∇ψ is bounded), it follows
from Brouwer’s fixed point theorem that Φt,k admits a fixed point h∗ ∈ Ct,k which satisfies
k = h∗ − t∇H(∇ψ(h∗)) =X(t, h∗). Hence, Part (2) is valid. □

Lemma 5.2 allows us to consider the restriction of Z(t, ⋅) to SD+ . Then, we can proceed
via the standard argument of characteristics to show the existence of a smooth solution
for a short time.

Proposition 5.3. Assume (5.1). Let L be given as in (1.13) and let f be the unique
Lipschitz viscosity solution of (1.7) with initial condition f(0, ⋅) = ψ. Then, the restriction
of f to [0, L−1) × SD+ is twice differentiable everywhere.

The proof is classical but we choose to include it here for completeness.

Proof. It is sufficient to construct a twice-differentiable Lipschitz increasing solution u
of (1.7) on [0, L−1) × SD+ with u(0, ⋅) = ψ. Indeed, we can conclude that f coincide with
u on the prescribed domain from the uniqueness of solution on [0, L−1) × SD+ (see [22,
Corollary 3.2] which can be easily adapted to the domain [0, L−1) × SD+ from R+ × SD+ ).

With this explained, we turn to the construction of u. We define

U(t, h) = ψ(h) − t∇H(∇ψ(h)) ⋅ ∇ψ(h) + tH(∇ψ(h)), ∀(t, h) ∈ R+ × SD
+ .

Let Z be given by Lemma 5.2 and we can restrict it to [0, L−1) × SD+ . Then, we set

u(t, h) = U(t,Z(t, h)), ∀(t, h) ∈ [0, L−1) × SD
+ .

We first verify the initial condition. Since U(0, ⋅) = ψ and Z(0, ⋅) is the identity map, we
get u(0, ⋅) = ψ as desired.

From the definition of u, it is clear that u is differentiable everywhere. Then, we
verify that u satisfies the equation (1.7), the procedure of which will also show that u
is twice-differentiable. To carry out computations, we introduce some notation. Let
d = D(D − 1)/2 and we fix any orthogonal basis {e1, . . . , ed} for SD. For any suitable
function g, we write gt for the derivative in t and gi for the directional derivative in h
along ei, for i ∈ {1, . . . , d}.

For convenience, we identify the linear inner product space SD with Rd and think of
SD+ as a subset of Rd. This allows us to think of the gradient of a scalar function g (such
as ψ, H, U , and u) as a column vector ∇g = (gi)1⩽i⩽d in Rd; its Hessian ∇2g = (gij)1⩽i,j⩽d
as a symmetric d × d matrix; an Rd-valued function G = (Gi)1⩽i⩽d (such as X and Y ) as
a column vector; and its gradient ∇G = (Gi

j)1⩽i,j⩽d as a d× d matrix. In the following, we

view ⋅ as the inner product in Rd and always evaluate matrix multiplication (including
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matrix multiplied by a vector) before evaluating the inner product. For (t, h) clear from
the context, we also write ∇gZ or gZt to indicate that we evaluate ∇g or gt at the spatial
variable Z(t, h).

In the following computations, we keep (t, h) ∈ [0, L−1)×SD+ implicit. We first compute
the spatial derivative of u. We start with some basic computations.

∇U = (Ui)1⩽i⩽d = ∇ψ − t (∇2H(∇ψ)∇2ψ)⊺∇ψ,
∇X = (Xi

j)1⩽i,j⩽d = I − t∇2H(∇ψ)∇2ψ,

∇u = (∇Z)⊺∇UZ .(5.2)

where I is the d × d identity matrix. The first two relations give

∇U = (∇X)⊺∇ψ.

This along with (5.2) and the fact that Z is the inverse of X implies

(5.3) ∇u = ∇ψZ .

Next, we compute the derivative of u in t. We start with

Ut = −∇H(∇ψ) ⋅ ∇ψ +H(∇ψ)
Xt = −∇H(∇ψ),(5.4)

ut = UZ
t +∇UZ ⋅Zt

Therefore,

(5.5) ut = −∇H (∇ψZ) ⋅ ∇ψZ +H (∇ψZ) + (∇XZ)⊺∇ψZ ⋅Zt.

Notice that the last term is of the form A⊺v ⋅ v′ for a matrix A and vectors v, v′. We can
rearrange it into Av′ ⋅ v. Since Z is the inverse of X, we get

XZ
t +∇XZZt = 0.

Using this, (5.4) and the aforementioned rearrangement to cancel the first and third
terms in (5.5), we get

ut = H (∇ψZ) .

This along with (5.3) implies that u satisfies the equation (1.7) in the classical sense.
Moreover, we can also infer from them that u is twice differentiable everywhere. Finally,
from (5.3) and the monotony of ψ, we get that ∇u ∈ SD+ , so u(t, ⋅) is an increasing
function. □
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