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Abstract. It has recently been shown in [4] that, upon constraining the
system to stay in a balanced state, the Parisi formula for the mean-field
Potts model can be written as an optimization problem over permutation-
invariant functional order parameters.

In this paper, we focus on permutation-invariant mean-field spin glass
models. After introducing a correction term in the definition of the free
energy and without constraining the system, we show that the limit free
energy can be written as an optimization problem over permutation-
invariant functional order parameters. We also show that for some models
this optimization problem admits a unique optimizer. In the case of
Ising spins, the correction term can be easily removed, and those results
transfer to the uncorrected limit free energy.

We also derive an upper bound for the limit free energy of some
nonconvex permutation-invariant models. This upper bound is expressed
as a variational formula and is related to the solution of some Hamilton-
Jacobi equation. We show that if no first order phase transition occurs,
then this upper bound is equal to the lower bound derived in [17]. We
expect that this hypothesis holds at least in the high temperature regime.

Our method relies on the fact that the free energy of any convex
mean-field spin glass model can be interpreted as the strong solution of
some Hamilton-Jacobi equation.
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1. Introduction

1.1. Preamble. Let D > 1 be an integer, that we will keep fixed throughout
the paper. We study Gaussian processes (HN(σ))σ∈RD×N , whose covariance
is of the form

(1.1) E[HN(σ)HN(τ)] = Nξ (
στ∗

N
) .

Here στ∗ = (σd ⋅ τd′)1⩽d,d′⩽D, x ⋅ y is the standard scalar product on RN and

ξ ∶ RD×D → R is a function given by an absolutely convergent power series.
Unless stated otherwise, we will always assume that ξ is convex on the set
of positive semi-definite matrices. We give ourselves for each N a reference
probability measure PN on RD×N of the form PN = P⊗N1 where P1 is a

compactly supported probability measure on RD. For every t ⩾ 0, One can
associate a random probability measure on RD×N to the process HN called
the Gibbs measure and denoted by ⟨⋅⟩. It is defined by

⟨h(σ)⟩ =
∫ h(σ) exp (

√
2tHN(σ) −Ntξ (σσ

∗

N ))dPN(σ)

∫ exp (
√
2tHN(σ) −Ntξ (σσ

∗

N
))dPN(σ)

.

An important step, in understanding the Gibbs measure associated to the
family of processes (HN)N is the computation of the large N limit of the
free energy

(1.2) FN(t) = −
1

N
E log∫ exp(

√
2tHN(σ) −Ntξ (

σσ∗

N
))dPN(σ).

For the models of interest here, a variational formula for the limiting value
of FN(t) is known, this is the celebrated Parisi formula. The Parisi formula
was first conjectured in [24] using a sophisticated non-rigorous argument
now referred to as the replica method. The convergence of the free energy
as N → +∞ was rigorously established in [14] in the case of the so-called
Sherrington-Kirkpatrick model which corresponds to D = 1, ξ(x) = x2 and
P1 = Unif({−1,1}). The Parisi formula for the Sherrington-Kirkpatrick
model was then proven in [13, 26]. This was extended to the case D = 1,
P1 = Unif({−1,1}) and ξ(x) = ∑p⩾1 apx

p with ap ⩾ 0 in [20]. Some models
with D > 1 such as multispecies models, the Potts model, and a general class
of models with vector spins were treated in [21, 22, 23], under the assumption
that ξ is convex on RD×D. Finally, the case D > 1 was treated in general in
[7] assuming only that that ξ is convex on the set of positive semi-definite
matrices. The following version of the Parisi formula is [7, Corollary 8.2].

Theorem 1.1 ([7]). If ξ is convex on SD
+ , then for every t > 0,

(1.3) lim
N→+∞

FN(t) = sup
q
{ψ(q) − t∫

1

0
ξ∗ (q(u)

t
)du} .

Here SD
+ denotes the set of positive semi-definite symmetric matrices in

RD×D. We equip RD×D with the order A ⩽ B if and only B −A ∈ SD
+ . The
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supremum in (1.3) is taken over the set of bounded functions in

(1.4) Q(SD
+ ) = {q ∶ [0,1)→ SD

+ ∣ q is càdlàg and nondecreasing}.
The function ψ is the cascade transform of the measure P1 and ξ∗ is the
convex conjugate of ξ with respect to the cone SD

+ . We postpone the precise
definition of these objects to (2.5) and (3.5) respectively.

Let SD denote the group of permutations of {1, . . . ,D}, we say that ξ
is permutation-invariant and P1 is permutation-invariant when for every
permutation s ∈SD,

(1.5) ∀R ∈ RD×D, ξ(R) = ξ ((Rs(d),s(d′))1⩽d,d′⩽D) ,
(1.6)

∀χ ∈ Cb(RD), ∫ χ(x1, . . . , xD)dP1(x) = ∫ χ(xs(1), . . . , xs(D))dP1(x).

We will show that when ξ and P1 are permutation-invariant, the supremum
in (1.3) can be taken over the set of permutation-invariant paths in Q(SD

+ ).
This result can be interpreted as an absence of breaking of permutation-
invariance by the system. This persistence of permutation-invariance was
predicted to happen for the Potts model (see (1.7) below) in [11]. It has
been rigorously proven that the Potts model does not break its permutation
invariance, but only after constraining the system to stay in a balanced state

[4] or by introducing a correction term of the form −Ntξ (σσ∗N ) [5]. In (1.2)

the correction term of [5] is also present, but our result is general enough to
cover models where P1 is supported on {−1,1}D and ξ only depends on the
diagonal coefficients of its argument, for those models the correction term is
constant and our main results transfer to the uncorrected free energy.

1.2. Main results. Let Q(R+) denote the set of càdlàg and nondecreasing
functions [0,1) → R+. Let U denote a uniform random variable in [0,1),
given p1, p2 ∈ Q(R+), we let (p1, p2)⊥ ∶ [0,1)→ SD

+ be defined by

(p1, p2)⊥ = p1 (idD −
1D
D
) + p2

1D
D
,

where idD denotes the D × D identity matrix and 1D the D × D matrix
whose coefficients are all equal to 1. As will be proven in Section 4, every
permutation-invariant path in Q(SD

+ ) is of the form (p1, p2)⊥.
Heuristically, given a maximizing path q in (1.3), the law of the matrix

q(U) is the limiting distribution of στ∗

N where σ and τ are two independent
random variables with law ⟨⋅⟩. For some specific models, the distribution
of the overlap matrix has some additional properties, and those additional
properties allow us to write the limit free energy as an optimization over a
smaller set of paths. For example, consider the Potts model which corresponds
to the family of processes

(1.7) HPotts
N (σ) = 1√

N

N

∑
i,j=1

Jijσi ⋅ σj .



ON PERMUTATION-INVARIANT OPTIMIZERS FOR PARISI FORMULA 3

Here (Jij)i,j⩾1 denotes a family of independent standard Gaussian random

variables. The process HPotts
N satisfies (1.1) with ξ(R) = ∑D

d,d′=1R
2
dd′ . Often,

the Potts model is considered with reference measure P1 = Unif{e1, . . . , eD},
where (e1, . . . , eD) denote the canonical basis of RD. With this assumption,
the terms of the form σi ⋅ σj appearing in (1.7) only take the value 0 or 1. In

this case, if we sample two independent random variables σ, τ ∈ RD×N with

law ⟨⋅⟩, their overlap matrix R = στ∗

N satisfies ∑D
d,d′=1Rdd′ = 1 almost surely

and for every s ∈ SD, the matrices R and (Rs(d)s(d′))1⩽d,d′⩽D are equal in
law under E⟨⋅⟩. This means that if q is a maximizing path for the Parisi
formula of the Potts model, we should expect that

q = p(idD −
1D
D
) + 1D

D2
= (p, 1

D
)
⊥

for some p ∈ Q(R+). This observation on the set of optimal paths in (1.3) for
the Potts model was leveraged in [5, 4]. In [4], the authors show that when
the system is constrained to stay in a balanced state, the limit free energy of
the Potts model can be written a supremum over Q(R+). In [5], the author
does not constrain the system but introduces a correction term of the form

−Ntξ (σσ∗N ) like in (1.2) and obtains results similar to [4].

In this paper, we show that similar results can be obtained in different
settings. We will focus on permutation-invariant models, that is models with
ξ and P1 satisfying (1.5) and (1.6). We will show that for those models, the
following variational formula holds.

Theorem 1.2. Assume that ξ is convex on SD
+ and permutation-invariant,

assume that P1 is permutation-invariant. Then, for every t ⩾ 0,

lim
N→+∞

FN(t) = sup
(p1,p2)

inf
(r1,r2)

⎧⎪⎪⎨⎪⎪⎩
ψ((p1, p2)⊥)

−⟨p1, r1⟩L2 − ⟨p2, r2⟩L2 + t∫
1

0
ξ ((p1(u)

D − 1
, p2(u))

⊥
)du
⎫⎪⎪⎬⎪⎪⎭
.

(1.8)

Where the supremum and the infimum are taken over (Q(R+) ∩L∞)2.

Similarly to the Potts model, at the heuristic level (1.8) follows from the
fact that given two independent random variables σ and τ under ⟨⋅⟩, for every
s ∈SD, the matrices στ∗

N and (σs(d)⋅τs(d′)
N )

1⩽d,d′⩽D
are equal in law under E⟨⋅⟩.

This means that every maximizing path should be of the form q = (p1, p2)⊥
where p1, p2 ∈ Q(R+) and the limit free energy should be a supremum over
Q(R+)2.

We will also consider permutation-invariant models, where the interaction
function ξ is further assumed to only depend on σ1⋅τ1

N , . . . , σD ⋅τD
N . In this case,

we identify the map R ↦ ξ(R) defined on RD×D with the map x↦ ξ(diag(x))
defined on RD. Since ξ only depends on the diagonal coefficients of its
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argument, we only need to keep track of the diagonal of the overlap matrix
and the limit free energy can be written as a supremum over Q(R+)D.
Performing the same heuristic computation as above, we then expect that
under our permutation invariance assumptions, the limit free energy can in
fact be written as a supremum over Q(R+). We will show that this is indeed
the case.

Given a maximizing path r of the Parisi formula, the law of the random
variable r(U) is called a Parisi measure. When D = 1, it is known that
there exists a unique Parisi measure [1]. In this case, the proof relies on a
strict concavity property of the Parisi functional. However, when D > 1, for
technical reasons this strict concavity property does not carry over well to
Q(SD

+ ) or Q(R+)D. But, in (1.9) below, the Parisi formula is written as a
maximization over Q(R+), the set of 1-dimensional paths. Thanks to this,
we can proceed as in [1] to prove uniqueness of Parisi measures.

Theorem 1.3. Assume that ξ is convex on SD
+ , permutation-invariant and

only depends on the diagonal coefficients of its argument, assume that P1 is
permutation-invariant. Then, for every t > 0,

(1.9) lim
N→+∞

FN(t) = sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
ξ∗ (p(u)idD

t
)du} .

In addition, the supremum in (1.9) is reached at a unique p∗ ∈ Q(R+) ∩L∞.

Let us now comment on the inclusion of the term −Ntξ (σσ∗N ) in the

definition of the free energy (1.2). Consider again the Potts model, that is

ξ(R) = ∑D
d,d′=1R

2
dd′ and P1 = Unif{e1, . . . , eD}. For any σ ∈ {e1, . . . , eD}N , we

have σσ∗

N = diag(α1, . . . , αD) where

αd =
1

N
#{i ⩽ N,σi = ed}.

So, ξ(σσ∗/N) = ∑D
d=1 α

2
d with ∑D

d=1 αd = 1 and αd ⩾ 0. This means that for

the Potts model, the value of the correction term −Ntξ (σσ∗N ) is minimal on

configurations of the form σ = (ed, . . . , ed) and maximal on configurations
satisfying αd = 1

D . In particular, at least in the case of the Potts model,
even though we are not constraining the system to stay in a balanced state,
the correction term favors configurations σ ∈ RD×N which are balanced.
Thankfully, this is not always the case and for some models the correction

term −Ntξ (σσ∗N ) can be removed. For example, if we assume that ξ only

depends on the diagonal coefficients of its argument and P1 is supported on
{−1,1}D, then the correction term is constant. In this case, the variational
formula (1.9) can be rewritten as a variational formula for the uncorrected
free energy.
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Let α ⩾ 1, for σ ∈ R2×N define

HBP+SK
N (σ) = 1√

N

N

∑
i,j=1

J11
ij σ1iσ1j +

1√
N

N

∑
i,j=1

J22
ij σ2iσ2j +

1√
N

N

∑
i,j=1

J12
ij σ1iσ2j ,

where J11 = (J11
ij )i,j⩾1 and J22 = (J22

ij )i,j⩾1 are independent families of inde-

pendent centered Gaussian random variables with variance α/2 and (J12
ij )i,j⩾1

is a family of independent Gaussian random variables with variance 1 and
independent of J11 and J22. The process HBP+SK

N satisfies (1.1) with,

ξBP+SK(R) = α
2
R2

11 +
α

2
R2

22 +R11R22.

Choosing P1 = Unif({−1,1}2) as the reference probability measure, Theo-

rem 1.3 can be applied to HBP+SK
N to discover that the system does not break

its permutation invariance. One can wonder what happens when 0 ⩽ α < 1,
in this case ξBP+SK is nonconvex on S2

+ and there is no known generalization
of Theorem 1.1. In Section 7, we will discuss some results that are applicable
in this case.

When ξ is not assumed to be convex on SD
+ , to the best of our knowledge,

there is no proof of the fact that FN(t) converges as N → +∞. Building
upon an interpolation argument developed in [2, Section 2.1], we will show
that for permutation-invariant models where ξ only depends on the diagonal
coefficients of its argument and is nonconvex on SD

+ , the right-hand side in
(1.9) is an upper bound on the lim sup of the free energy.

Theorem 1.4. Assume that ξ is permutation-invariant and only depends
on the diagonal coefficients of its argument, assume that P1 is permutation-
invariant. Then, even when ξ is nonconvex, we have for every t > 0,

lim sup
N→+∞

FN(t) ⩽ sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
Ξ∗ (p(u)idD

t
)du} ,

where Ξ(x) = 1
D ∑

D
d=1 ξ(xd, . . . , xd).

In addition, we show that if no first order phase transition occurs, then
the upper bound of Theorem 1.4 matches the lower bound derived in [17, 15].
The no first order phase transition hypothesis is formally written in (Hξ,P1)
below, note that this hypothesis is true when ξ is convex. We refer to
Theorem 7.10 below for a formal version of Theorem 1.5.

Theorem 1.5. Assume that the hypotheses of Theorem 1.4 hold and further
assume that no first order phases transition occurs, then for every t > 0,
FN(t) converges as N → +∞ and

lim
N→+∞

FN(t) = sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
Ξ∗ (p(u)idD

t
)du} ,

where Ξ(x) = 1
D ∑

D
d=1 ξ(xd, . . . , xd).
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As explained in Remark 7.12 below, it is plausible that there exists tc > 0
such that no first order phase transition occurs on [0, tc). In this case, the
argument used to prove Theorem 1.5 allows to identify the limit free energy
on [0, tc].

1.3. Motivations. Most of the proof we derive below rely on the following
result, which we state informally.

Theorem 1.6 ([16, 7]). Assume that ξ is convex on SD
+ , then for every t ⩾ 0,

lim
N→+∞

FN(t) = f(t,0),

where f ∶ R+ ×Q(SD
+ )→ R is the unique solution of

(1.10)

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∇f) = 0 on R+ ×Q(SD
+ )

f(0, ⋅) = ψ on Q(SD
+ ).

In Section 2 we will give a precise definition of f and ψ, we will also
explain the precise meaning of (1.10). In the context of Theorem 1.2 and
Theorem 1.3, this approach trough partial differential equations does not
seem to possess any clear advantage when compared with the methods
developed in [5]. The true power of Theorem 1.6 is revealed when dealing
with nonconvex models. When ξ is nonconvex, the Parisi formula completely
breaks down. To the best of our knowledge, until recently, it seems that there
was no clear conjecture on what the limit of the free energy should be in this
case. In [16, Conjecture 2.6], it is proposed that results such as Theorem 1.6
should generalize to nonconvex models. Further development in [17, 15] have
led to the following lower bound for the free energy of nonconvex models.

Theorem 1.7 ([17, 15]). For every t ⩾ 0,
lim inf
N→+∞

FN(t) ⩾ f(t,0),

where f ∶ R+ ×Q(SD
+ )→ R is the unique solution of

(1.11)

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∇f) = 0 on R+ ×Q(SD
+ )

f(0, ⋅) = ψ on Q(SD
+ ).

To identify the limit free energy of nonconvex models, a possible approach
is to prove an upper bound for lim supN→+∞ FN(t) and compare it with
f(t,0). In Section 7, we will show that

f(t,0) ⩽ lim inf
N→+∞

FN(t) ⩽ lim sup
N→+∞

FN(t) ⩽ g(t,0),

where g is the solution of an equation similar to (1.10) (see (7.11) below).
We are able to phrase the upper bound this way thanks to the fact that the
proofs of Theorem 1.2 and Theorem 1.3 are formalized in the language of
partial differential equations. In particular, we will show that under some
unproven regularity assumption on f , f(t, 0) and g(t, 0) are equal. We refer
to Section 7.4 for a more precise discussion.
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1.4. Organization of the paper. We only consider permutation-invariant
models. That is, models with ξ permutation-invariant and PN = P⊗N1 with P1

permutation-invariant and compactly supported. Without loss of generality,
we will assume that P1 is supported inside the unit ball of RD. Excluding
Section 7, ξ is always assumed to be convex on SD

+ .

In Section 2 we will give a precise definition of the functions f and ψ
appearing in Theorem 1.6, we will also explain the precise meaning of (1.10).
In Section 3 we will define an appropriate notion of solution for (1.10)
following [10]. In particular, in Section 2 we introduce a variant of the free
energy FN(t) which will depend on t ∈ R+ and an extra parameter q ∈ Q(SD

+ ).
This enriched version of the free energy will be denoted FN(t, q) and satisfies
FN(t, 0) = FN(t). It is through the introduction of this extra parameter that
it is possible to obtain a partial differential equation for the limiting objects.
In section 4 we will introduce some basic notations on permutation-invariant
matrices and paths that will be useful for the later sections. We make
the elementary but important remark that the set of permutation-invariant
matrices is isomorphic to R2 and the set of permutation-invariant vectors
is isomorphic to R. The bulk of our analysis is in Section 5, in this section
we start by showing that the enriched free energy is permutation-invariant,
namely for every permutation s ∈SD,

FN(t, (qdd′)1⩽d,d⩽D) = FN(t, (qs(d)s(d′))1⩽d,d⩽D).

Thanks to this property and (1.10), we can write a partial differential equation
satisfied by (t, q) ↦ limN→+∞ FN(t, q) on the set of permutation-invariant
paths. Since the set of permutation-invariant paths in Q(SD

+ ) is isomorphic
to Q(R2

+), we will deduce Theorem 1.2. Moreover, when ξ is further assumed
to only depend on the diagonal coefficient of its argument, it is even possible
to write a partial differential equation on the set of permutation-invariant
paths in Q(R+)D which is isomorphic to Q(R+), this will yield the variational
formula (1.9) of Theorem 1.3. Using a strict concavity property of the Parisi
functional, in Section 6 we will deduce the existence and the uniqueness of
an optimizer in the variational formula (1.9). Finally, in Section 7 we assume
that ξ is permutation-invariant and depends only on the diagonal coefficients
of its argument, but we do not assume that ξ is convex. We will show that
under those hypotheses if ξ admits an absolutely convergent power series
and satisfies (1.1), then

∀x ∈ RD
+ , ξ(x) ⩽

1

D

D

∑
d=1

ξ(xd, . . . , xd).

With this inequality, we will prove Theorem 1.4 via a simple interpolation
argument. To conclude, we will explore how this upper bound is related to
the lower bound for the free energy of nonconvex models derived in [17, 15]
and we will prove a rigorous version of Theorem 1.5, namely Theorem 7.10.
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2. The enriched free energy

The method we propose relies on the fact that the limit free energy
f(t) = limFN(t) solves a partial differential equation. At this stage, f only
depends on one parameter, in order to obtain a partial differential equation,
we are going to introduce an extra parameter. The nature of this parameter
will not be the same for models that satisfy (1.1) and models that satisfy
(1.1) under the additional assumption that ξ only depends on the diagonal
coefficients of its argument. We will provide the construction for the first
class of models and then explain the additional adjustments that can be
made when ξ only depends on the diagonal coefficients of its argument.

Here SD
+ denotes the set of positive semi-definite symmetric matrices in

RD×D and SD
++ the set of positive symmetric matrices in RD×D. We equip

RD×D with the order A ⩽ B if and only B −A ∈ SD
+ . The extra parameter

we introduce in the definition of the free energy belongs to the space

(2.1) Q(SD
+ ) = {q ∶ [0,1)→ SD

+ ∣ q is càdlàg and nondecreasing}.

In general paths in Q(SD
+ ) are not defined at u = 1, but if q ∈ Q(SD

+ ) ∩L∞
we can set

q(1) = lim
u↑1

q(u) ∈ SD
+ .

We let R be a Poisson Dirichlet cascade, briefly R is a specific random
probability measure on the unit sphere of a separable Hilbert space (H,∧),
such that given two independent random variables α,α′ ∈ H sampled from
R, the random variable α ∧ α′ is uniformly distributed in [0,1] (see [20,
Section 2] and [7, Section 4]). We let ⟨⋅⟩R denote the expectation with
respect to R⊗N and U the support of R. By construction of R, almost surely
U is an ultrametric set, that is almost surely for every α1, α2, α3 ∈ U,

α1 ∧ α3 ⩾min (α1 ∧ α2, α2 ∧ α3) .

Let q ∈ Q(SD
+ ) ∩ L∞, according to [7, Propsoition 4.1] R-almost surely,

there exists a RD-valued centered Gaussian process (wq(α))α∈U such that

E [wq(α) (wq(α′))∗] = q(α ∧ α′).

Let N ⩾ 1, and consider (W q
N(α))α∈U be a (RD)N -valued random process

whose coordinates are independent and have the same law as (wq(α))α∈U.
We set

(2.2) FN(t, q) = −
1

N
log∬ exp(Ht,q

N (σ,α))dPN(σ)dR(α),
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where

Ht,q
N (σ,α) =

√
2tHN(σ) − tNξ (

σσ∗

N
) +
√
2W q

N(α) ⋅ σ − q(1) ⋅ σσ
∗.

We let FN(t, q) = EFN(t, q), the function FN ∶ R+ × (Q(SD
+ ) ∩L∞) → R is

Lipschitz, more precisely according to [7, Proposition 5.1], we have

(2.3) ∣FN(t, q) − FN(t′, q′)∣ ⩽ ∣q − q′∣L1 + ∣t − t′∣ sup
∣a∣⩽1
∣ξ(a)∣.

Here, ∣a∣ denotes the Frobenius norm of a ∈ RD×D, that is the norm associated
to the scalar product

a ⋅ b =
D

∑
d,d′=1

add′bdd′ .

Using (2.3), we can then extend FN by continuity to R+ × (Q(SD
+ ) ∩L1).

Note that if 0 denotes the null path, we have FN(t,0) = FN(t). So the
function we have defined is indeed an extension of the free energy.

Let us now introduce the notion of differentiability that we will use to
formulate the partial differential equation (1.10). Given q ∈ Q(SD

+ ) ∩L2, we
let

Adm(q) = {κ ∈ L2∣ ∃r > 0, ∀t ∈ [0, r], q + tκ ∈ Q(SD
+ ) ∩L2}.

The set Adm(q) is the set of admissible directions at q. Let g ∶ Q(SD
+ )∩L2 →

R, we say that g is Gateaux differentiable at q ∈ Q(SD
+ ) ∩L2 when for every

κ ∈ Adm(q), the following limit exists

g′(q;κ) = lim
t↓0

g(q + tκ) − g(q)
t

,

and there exists a unique d ∈ L2 such that for every κ ∈ Adm(q),

g′(q;κ) = ⟨d, κ⟩L2 .

In this case, the vector d ∈ L2 is denoted ∇g(q) and we call it the Gateaux
derivative of g at q. Note that ∇g(q) ∈ L2, so we can make sense of expressions

of the form ∫
1
0 ξ(∇g(q)(u))du, provided that the integral converges. Such

expressions will be simply abbreviated by ∫ ξ(∇g(q)) in what follows.

We define Q↑(SD
+ ) as the set of paths q ∈ Q(SD

+ ) ∩L2 such that q(0) = 0,
and there exists a constant c > 0 such that u↦ q(u)− cuidD is nondecreasing
and for all u < v,

Ellipt(q(v) − q(u)) ⩽ 1

c
.

Here, for m ∈ SD
++, Ellipt(m) denotes the ratio of the biggest and smallest

eigenvalue of m. When ξ is convex, which will always be the case except in
Section 7, it can be shown that FN converges pointwise to some Lipschitz
function f ∶ R+ × (Q(SD

+ ) ∩L1) → R. Furthermore, according to [7, Propo-

sitions 7.2 & 8.6], f ∶ R+ × (Q(SD
+ ) ∩ L2) → R is Gateaux differentiable on
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(0,+∞) × (Q↑(SD
+ ) ∩L∞) and satisfies

(2.4)

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∇f) = 0 on (0,+∞) × (Q↑(SD
+ ) ∩L∞)

f(0, ⋅) = ψ on Q↑(SD
+ ) ∩L∞,

where we have defined ψ = limN→+∞ FN(0, ⋅). In fact, since we have assumed
that PN = P⊗N1 we simply have

(2.5) ψ = F 1(0, ⋅).
The fact that f is a solution of (2.4) at every point where it is differentiable
is a consequence of the cavity computations conducted in [7] (see [7, Propos-
tion 7.2]), this result is robust and holds true even when ξ is nonconvex. The
real miracle is the fact that f is differentiable at every (nice) points, this is
proven in [7, Propostion 8.6] and relies strongly on the fact that ξ is convex
on SD

+ . We stress that in general, nonlinear partial differential equations
such as (2.4) do not always have a differentiable solution. Therefore, to study
(2.4) and other similar equations, we will need to appeal to the notion of
viscosity solution. this notion will be introduced precisely in Section 3. Also
note, that according to [7, Proposition 3.6], we have ∇f(t, q) ∈ Q(SD

+ ) ∩L2.
This means that the behavior of (2.4) is only governed by the restriction of
ξ to SD

+ , this is why we can assume only that ξ is convex on SD
+ .

In this framework, the Parisi formula can be seen as a consequence of a
variational representation for the viscosity solution of (2.4). According to [9,
Theorem 4.6 (2)], for (t, q) ∈ R+ ×Q(SD

+ ) ∩L2, we have

f(t, q) = sup
p∈Q(SD

+
)∩L∞

inf
r∈Q(SD

+
)∩L∞

{ψ(q + p) − ⟨p, r⟩L2 + t∫
1

0
ξ(r(u))du} .

At q = 0 this yields, limN→+∞ FN(t) = supp∈Q(SD
+
)Pt,ξ,P1(p), where

(2.6) Pt,ξ,P1(p) = ψ(p) − sup
r∈Q(SD

+
)∩L∞

{⟨p, r⟩L2 − t∫
1

0
ξ(r(u))du} .

As explained in the proof of [7, Proposition 8.1], one can recover the “usual”
Parisi functional from Pt,ξ,P1 by plugging in paths of the form ∇ξ ○ p. If we
define θ(a) = a ⋅ ∇ξ(a) − ξ(a), we have

Pt,ξ,P1(t∇ξ ○ p) = ψ(t∇ξ ○ p) − t∫
1

0
θ(p(u))du.

Before moving to the next section, we explain the adjustments that can
be made to obtain a simpler Hamilton-Jacobi equation when ξ is assumed to
only depend on the diagonal coefficients of its argument. Henceforth, we will
refer to models with this additional property as diagonal models. For those
models, we identify the function A↦ ξ(A) defined on RD×D and the function
x↦ ξ(diag(x)) defined on RD. Recall that heuristically, the paths q are to
be understood as encoding the limiting distribution of the overlap matrix,
στ∗

N . When the model is diagonal, we do not need to keep track of the full
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overlap matrix and encoding the distribution of the diagonal coefficients is
enough. To this end, let us introduce another space of paths,

Q(RD
+ ) = {q ∶ [0,1)→ RD

+ ∣ q is càdlàg nondecreasing}.

Here, by q is nondecreasing we mean that for every u ⩽ v, q(v) − q(u) ∈ RD
+ .

Note that Q(RD
+ ) is isomorphic to the subset of Q(SD

+ ) composed of the
paths that are valued in the set of diagonal matrices. If q ∈ Q(RD

+ ) we denote
by diag(q) the associated diagonal matrix valued path. We then define
Q↑(RD

+ ) as the set of paths q ∈ Q(RD
+ ) such that the path diag(q) belongs

to Q↑(SD
+ ). In order to not get mixed up with the previous definition of

enriched free energy, we will denote by F
diag
N the restriction of FN to Q(RD

+ ).
That is, for every (t, q) ∈ R+ × (Q(RD

+ ) ∩L1),

F
diag
N (t, q) = FN(t,diag(q)).

As previously, the sequence (F diag
N (t, q))N converges to f(t,diag(q)). We

let fdiag(t, q) = f(t,diag(q)), the function fdiag is Gateaux differentiable on
(0,+∞) × (Q↑(RD

+ ) ∩L∞) and solves

(2.7)

⎧⎪⎪⎨⎪⎪⎩

∂tf
diag − ∫ ξ(∇fdiag) = 0 on (0,+∞) × (Q↑(RD

+ ) ∩L∞)
fdiag(0, ⋅) = ψdiag on Q↑(RD

+ ) ∩L∞,

where we have defined ψdiag(q) = ψ(diag(q)). This can be checked by
differentiating fdiag and using (2.4). The point of this derivation is that we
can now express the limit free energy of diagonal models as the value at (t, 0)
of the solution of a Hamilton-Jacobi equation on Q(RD

+ ) rather than Q(SD
+ ).

This yields a different variational representation for the limit free energy.

3. Hamilton-Jacobi equations on closed convex cones

As explained above, Hamilton-Jacobi equations on closed convex cones,
such as (2.4) and (2.7), will play an important role in this paper. Here,
we summarize some known results on those equations. We will focus on
the theory of Hamilton-Jacobi equations on closed convex cones in finite
dimensional Hilbert spaces. But, most of the result exposed below remain
valid in infinite dimensional Hilbert spaces [9]. We will use both settings in
the following sections.

Let (H, ⟨⋅, ⋅⟩H) be a finite dimensional Hilbert space. Let C ⊆ H, we say
that C is a closed convex cone when C is a closed set and for every s, t ⩾ 0,
x, y ∈ C, we have

sx + ty ∈ C.
In what follows, we fix a nonempty closed convex cone C ⊆H. We will assume
that the interior of C is nonempty and that the only vector belonging to C
and −C simultaneously is 0. When dealing with infinite dimensional Hilbert
spaces like in [9], C is allowed to have empty interior, but for simplicity we
do not consider this possibility in this section.
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Let ψ ∶ C → R be a Lipschitz function and H ∶H → R be such that H ∣C is
locally Lipschitz. We are interested in equations of the form

(3.1)

⎧⎪⎪⎨⎪⎪⎩

∂tv −H(∇v) = 0 on (0,+∞) × C̊
v(0, ⋅) = ψ on C.

When C = Rd, there is already a rich theory for equations like (3.1) [12,
Section 10]. One of the main accomplishments of this theory is the intro-
duction of a suitable notion of solution. Equation (3.1) may not have any
differentiable solution [12, Section 3.3 Example 6]. But, by introducing
the notion of viscosity solutions (see Definition 3.1 below), it is possible to
guarantee existence and uniqueness of solutions under some mild conditions,
provided that we allow non-differentiable functions to solve (3.1).

Most of the theory of viscosity solutions on Rd can be adapted for Hamilton-
Jacobi equations on closed convex cones [10]. In principle, when Rd is replaced
by C, some boundary conditions should be enforced to guarantee that (3.1)
admits a unique solution. But this requirement can be bypassed provided
that some monotony conditions on ψ and H hold.

Given D ⊆ C, a function ϕ ∶ (0,+∞) ×D → R is said to be differentiable at
(t, x) ∈ (0,+∞) ×D when there exists a unique (a, p) ∈ R ×H such that the
following holds as (s, y) ∈ (0,+∞) ×D tends to (t, x),

ϕ(s, y) = ϕ(t, x) + (s − t)a + ⟨x − y, p⟩H +O (∣s − t∣2 + ∣x − y∣2H) .

In this case, (a, p) is denoted (∂tϕ(t, x),∇ϕ(t, x)). When ϕ is differentiable
at every point in (0,+∞)×D and the function (t, x)↦ (∂tϕ(t, x),∇ϕ(t, x)) is
continuous, we say that ϕ is smooth. Note that the notions of differentiability
and smoothness defined here make sense even when x does not belong to the
interior of C and does not requires D to be an open set.

Definition 3.1 (Viscosity solutions).

(1) An upper semi-continuous function v ∶ R+ × C → R is a viscosity

subsolution of (3.1) when for every (t, x) ∈ (0,+∞) × C̊ and every

smooth function ϕ ∶ (0,+∞) × C̊ → R such that v − ϕ has a local
maximum at (t, x), we have

∂tϕ(t, x) −H(∇ϕ(t, x)) ⩽ 0.

(2) A lower semi-continuous function v ∶ R+ × C → R is a viscosity super-

solution of (3.1) when for every (t, x) ∈ (0,+∞)× C̊ and every smooth

function ϕ ∶ R+ × C̊ → R such that v −ϕ has a local minimum at (t, x),
we have

∂tϕ(t, x) −H(∇ϕ(t, x)) ⩾ 0.

(3) A continuous function v ∶ R+ × C → R is a viscosity solution when it
is both a viscosity subsolution and a viscosity supersolution.
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We define the dual cone C∗ of the cone C by setting,

(3.2) C∗ = {x ∈H∣ ∀y ∈ C, ⟨x, y⟩H ⩾ 0}.

The dual cone C∗ is a closed convex cone and satisfies (C∗)∗ = C. Given
A,B ⊆H, we say that g ∶ A→ R is B-nondecreasing when for every x,x′ ∈ A,
if x−x′ ∈ B then g(x) ⩾ g(x′). Note that, if h ∶ C → R is differentiable, then h
is C∗-nondecreasing if and only if ∇h(C) ⊆ C. We define V(C) to be the set of
functions v ∶ R+ × C → R, such that for every t ⩾ 0, v(t, ⋅) is C∗-nondecreasing
and such that the following estimates hold

(3.3) sup
t>0
x∈C

∣v(0, x) − v(t, x)∣
t

< +∞ and sup
t>0
∥v(t, ⋅)∥Lip < +∞.

Here, ∥v(t, ⋅)∥Lip denotes the optimal Lipschitz constant of v(t, ⋅). The
following theorem is extracted from [10, Theorem 1.2].

Theorem 3.2 ([10]). Let ψ ∶ C → R be a Lipschitz and C∗-nondecreasing
function and let H ∶H → R be such that H ∣C is C∗-nondecreasing and locally
Lipschitz. Then, the Hamilton-Jacobi equation

(3.4)

⎧⎪⎪⎨⎪⎪⎩

∂tv −H(∇v) = 0 on (0,+∞) × C̊
v(0, ⋅) = ψ on C,

admits a unique viscosity solution in V(C) that will be denoted v.

Theorem 3.2 ensures that (3.1) is well posed as long as ψ and H are
C∗-nondecreasing. When H is convex and some additional requirements are
put on the cone C it is possible to obtain an explicit representation for the
unique viscosity solution. We refer to this representation as the Hopf-Lax
representation of the viscosity solution.

Given g ∶ C → R ∪ {+∞}, we define the (monotone) convex conjugate of g
over C by

(3.5) g∗(y) = sup
x∈C
{⟨x, y⟩H − g(x)} .

When C = Rd, the functions that satisfy g∗∗ = g are exactly the lower
semicontinuous convex functions [25, Section 12]. If we let

g∗∗(x) = sup
y∈C∗
{⟨x, y⟩H − g(y)}

denote the convex conjugate of g∗ over C∗, we have that g∗∗ is lower semi-
continuous, convex and C-nondecreasing. So, the functions satisfying g = g∗∗
must be lower semicontinuous, convex and C-nondecreasing.

Definition 3.3. We say that a closed convex cone C has the Fenchel-Moreau
property when for every g ∶ C → R∪{+∞} not identically equal to +∞, we have
g∗∗ = g if and only if g is lower semicontinuous, convex and C-nondecreasing.
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Theorem 3.4 ([10]). Assume that C has the Fenchel-Moreau property. Let
ψ ∶ C → R be a Lipschitz and C∗-nondecreasing function and let H ∶ H → R
be such that H ∣C is C∗-nondecreasing, locally Lipschitz and convex. Then,

the unique viscosity solution v of (3.4) admits the Hopf-Lax representation,
that is for every (t, x) ∈ R+ × C,

v(t, x) = sup
y∈C

inf
z∈C
{ψ(x + y) − ⟨y, z⟩H + tH(z)} .

Most of the cones that we will encounter in this document have the
Fenchel-Moreau property. Examples of cones with the Fenchel-Moreau
property include RD

+ and SD
+ . We refer to [8] for an in-depth study of

Fenchel-Moreau cones. Note that the cones Q(SD
+ ), Q(RD

+ ) and Qj(SD
+ ),

Qj(RD
+ ) defined below are all Fenchel-Moreau cones, for those cones the Hopf-

Lax representation will therefore be available. Note that when ψ is assumed
to be convex and H is possibly nonconvex, another variational representation
for the viscosity solution is available [10, Proposition 6.3]. Finally, we point
out that, as proven in [10, Theorem 1.2 (1)], the comparison principle also
remains valid for (3.1). Note that crucially, to use the comparison principle,
the condition to be a viscosity solution needs only to be checked on the
interior of C. This means that in practice when dealing with solutions of
(3.1), the boundary points of C do not need to be considered.

Theorem 3.5 ([10]). Let u, v ∈ V(C), assume that u is a viscosity subsolution
and v is a viscosity supersolution. Then,

sup
(t,x)∈R+×C

{u(t, x) − v(t, x)} = sup
x∈C
{u(0, x) − v(0, x)} .

We conclude this section by using the comparison principle to prove a
stability result for approximate strong solutions of (3.1) on C̊.
Proposition 3.6. Let ψ ∶ C → R be a Lipschitz and C∗-nondecreasing
function, and let H ∶H → R be such that H ∣C is C∗-nondecreasing and locally

Lipschitz. Let g ∈ V(C), assume that g(0, ⋅) = ψ, that g is differentiable on

(0,+∞) × C̊ and that there exists a constant c > 0 such that

(3.6) sup
t>0,x∈C̊

∣∂tg(t, x) −H(∇g(t, x))∣ ⩽ c.

Then, for every t ⩾ 0, supx∈C ∣v(t, x) − g(t, x)∣ ⩽ ct. Where v is the unique
viscosity solution of (3.4).

Proof. Define g̃(t, x) = g(t, x) + ct, we have g̃ ∈ V(C) and g̃(0, ⋅) = ψ. In

addition, g̃ is differentiable on (0,+∞) × C̊ and

∂tg̃ −H(∇g̃) ⩾ 0 on (0,+∞) × C̊.
Therefore g̃ is supersolution of (3.4) on C̊. According to the comparison
principle [10, Theorem 1.2 (1)], we have v − g̃ ⩽ 0 on R+ × C. So for every
x ∈ C,

v(t, ⋅) − g(t, ⋅) ⩽ ct.
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Similarly, we show that (t, x) ↦ g(t, x) − ct is a subsolution and use the
comparison principle to deduce g(t, ⋅) − v(t, ⋅) ⩽ ct on R+ × C. Combining
those two bounds, we obtain the desired result. □

4. Permutation-invariant objects

In this section, we introduce basic notations and results for matrix valued
paths. Those results will be useful in later sections for the analysis of
Hamilton-Jacobi equations.

4.1. Permutation-invariant matrices. Let m ∈ RD×D, for every s ∈SD

we define ms = (ms(d),s(d′))1⩽d,d′⩽D. When for every s ∈SD, m
s =m we say

that m is permutation-invariant. An in depth study of permutation-invariant
matrices is conducted in [18], for the sake of completeness we extract the
following result. Recall that idD denotes the D ×D identity matrix and 1D
denotes the D ×D matrix whose coefficients are all equal to 1.

Proposition 4.1 ([18]). Let m ∈ RD×D be permutation-invariant. We have

(4.1) m =

⎛
⎜⎜⎜⎜⎜
⎝

a t ⋯ ⋯ t
t ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ t
t ⋯ ⋯ t a

⎞
⎟⎟⎟⎟⎟
⎠

= aidD + t (1D − idD) ,

where a =m11 and t =m12. The matrix m admits two eigenvalues λ1 = a − t
and λ2 = a− t+Dt (or 1 eigenvalue when t = 0) and can be expressed in terms
of its eigenvalues via

m = 1

D

⎛
⎜⎜⎜⎜⎜
⎝

λ2 + (D − 1)λ1 λ2 − λ1 ⋯ ⋯ λ2 − λ1
λ2 − λ1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ λ2 − λ1

λ2 − λ1 ⋯ ⋯ λ2 − λ1 λ2 + (D − 1)λ1

⎞
⎟⎟⎟⎟⎟
⎠

= λ1 (idD −
1D
D
) + λ2

1D
D
.

(4.2)

Proof. Let m ∈ RD×D be permutation-invariant, and let a =m11 and t =m12.
Let d, d′ ∈ {1, . . . ,D}, if d ≠ d′ there exists s ∈SD, such that (s(d), s(d′)) =
(1,2), since m is permutation-invariant, this yields md,d′ = t. Otherwise,
d = d′ and there exists s ∈ SD, such that (s(d), s(d′)) = (1,1), from which
it follows that md,d = a. This proves that m = aID + t (1D − idD). Moreover,

the characteristic polynomial of the matrix 1D is χ1D
(X) = (X −D)XD−1.

The eigenvalues of m can be deduced from the fact that if t ≠ 0, χm(X) =
tDχ1D

(X−a+t
t
). □

In what follows, for every λ1, λ2 ∈ R, we will denote by m(λ1, λ2) the
matrix λ1 (idD − 1D

D
)+λ2 1D

D . According to Proposition 4.1, m(λ1, λ2) is the
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only D ×D permutation-invariant matrix whose eigenvalues are λ1 and λ2.
Recall that RD×D is equipped with the Frobenius inner product

m ⋅ n =
D

∑
d,d′=1

mdd′ndd′ .

In particular, we have m(λ) ⋅m(µ) = (D − 1)λ1µ1 + λ2µ2. As per (3.5), we
let ξ∗ denote the convex conjugate of ξ with respect to the cone SD

+ , that is

ξ∗(m) = sup
n∈SD

+

{m ⋅ n − ξ(n)} .

For every λ1, λ2 ∈ R, we define

(4.3) ξ⊥(λ1, λ2) = ξ (m(
λ1

D − 1
, λ2)) .

We equip RD with the standard inner product x ⋅ y = ∑D
d=1 xdyd, and let ξ∗⊥

denote the convex conjugate of ξ⊥ with respect to R2
+,

ξ∗⊥(λ) = sup
µ∈R2

+

{λ ⋅ µ − ξ⊥(µ)} .

Proposition 4.2. For every λ1, λ2 ∈ R, we have

ξ∗⊥(λ1, λ2) = ξ∗ (m (λ1, λ2)) .

Proof. Clearly, ξ∗(m(λ1, λ2)) ⩾ (ξ⊥)∗(λ1, λ2). Conversely, given n ∈ SD
+ ,

we define n0 = 1
D! ∑s∈SD

ns. The matrix n0 is permutation-invariant and

positive semi-definite, by Proposition 4.1, there exists µ1, µ2 ∈ R2
+ such that

n0 = m (µ1/(D − 1), µ2). Furthermore, since ξ is convex and permutation-
invariant, we have

ξ(n0) ⩽
1

D!
∑

s∈SD

ξ(ns) = ξ(n).

Therefore,

m (λ1, λ2) ⋅ n − ξ(n) =m (λ1, λ2) ⋅ n0 − ξ(n)
= λ ⋅ µ − ξ(n)

⩽ λ ⋅ µ − ξ (m( µ1
D − 1

, µ2))

⩽ (ξ⊥)∗(λ1, λ2).

Taking the supremum over n ∈ SD
+ , we obtain the desired inequality. □

4.2. Permutation-invariant paths. Let V = SD or V = RD, we equip V
with any norm ∣ ⋅ ∣. For p ∈ [1,+∞), we denote by Lp([0,1), V ) or simply
Lp the set of functions h ∶ [0,1) → V such that ∣h∣p is integrable. As usual,
functions in Lp are to be understood as equivalence classes of functions
modulo equality almost everywhere. We define the p-norm on Lp, by

∣h∣Lp = (∫
1

0
∣h(u)∣pdu)

1/p
.
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The set L∞ is the set of essentially bounded functions, and we equip it with
the sup norm

∣h∣L∞ = ess-supu∈[0,1)∣h(u)∣.

When V is equipped with a scalar product x ⋅ y and ∣ ⋅ ∣ is the associated
Euclidean norm, the norm ∣ ⋅ ∣L2 is Hilbertian and comes from the scalar
product

⟨h, k⟩L2 = ∫
1

0
h(u) ⋅ k(u)du.

At fixed p ∈ [1,+∞], the different norms ∣ ⋅ ∣Lp obtained by changing the
norm ∣ ⋅ ∣ on V are all equivalent. Therefore, the statement h ∈ Lp does
not depend on the particular norm ∣ ⋅ ∣ we choose, but the precise value of
∣h∣Lp does. Given q ∈ Q(R2

+), we let q⊥ ∈ Q(SD
+ ) be the path defined by

q⊥(u) = m(q(u)). For q ∈ Q(SD
+ ) and s ∈ SD, we define qs ∈ Q(SD

+ ) by
qs(u) = (q(u))s = (qs(d),s(d′)(u))1⩽d,d′⩽D. As previously, we equip SD with

the Frobenius inner product and R2 with the standard inner product.

Proposition 4.3. Let q ∈ Q(SD
+ ), assume that for every s ∈ SD, we have

qs = q, then there exists q = (q1, q2) ∈ Q(R2
+) such that q = q⊥. In addition,

for every p ∈ [1,+∞], q ∈ Lp if and only if q ∈ Lp. Moreover, when q ∈ L2, we
have for every q′ = (q′1, q′2) ∈ Q(R2

+) ∩L2,

⟨q, (q′)⊥⟩L2 = ⟨q1, (D − 1)q′1⟩L2 + ⟨q2, q′2⟩L2 .

Proof. Let u ∈ [0,1), for every s ∈ SD, the matrix q(u) ∈ SD
+ satisfies

(q(u))s = q(u). According to Proposition 4.1, there exists q(u) ∈ R2
+ such

that q(u) =m(q(u)). If u ⩽ v, we have

m(q(v) − q(u)) = q(v) − q(u) ∈ SD
+ ,

so q1(v) − q1(u) ⩾ 0 and q2(v) − q2(u) ⩾ 0.
In addition, the map m(λ1, λ2) ↦ (λ1, λ2) is continuous according to

Proposition 4.1. This justifies that q ∈ Q(R2
+) and by definition q⊥ = q. Let

∣x∣p = ( 1
D ∑

D
d=1 ∣xd∣p)

1/p
denote the normalized p-norm on RD and ∣x∣∞ =

sup1⩽d⩽D ∣xd∣. We equip SD with the norm

N2(m) = sup
∣x∣2=1

∣mx∣2.

When m ∈ SD
+ , N2(m) is equal to the biggest eigenvalue of m. Therefore, for

every λ1, λ2 ∈ R+,
N2(m(λ1, λ2)) =max{λ1, λ2}.

Thus, for every u ∈ [0, 1), N2(q(u)) = ∣q(u)∣∞, in particular q ∈ Lp if and only
if q ∈ Lp.
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Finally, assume that q ∈ L2, then by the previous argument q ∈ L2. Recall
that we have m(λ) ⋅m(µ) = (D − 1)λ1µ1 + λ2µ2, for every q′ ∈ R2

+, we have

⟨q, (q′)⊥⟩L2 = ∫
1

0
m(q(u)) ⋅m(q′(u))du

= ∫
1

0
(D − 1)q1(u)q′1(u) + q2(u)q′2(u)du

= ⟨q1, (D − 1)q′1⟩L2 + ⟨q2, q′2⟩L2 .

□

4.3. Piecewise linear approximations of paths. Given a finite dimen-
sional vector space V and a cone C ⊆ V . For every j ⩾ 1, we define

(4.4) Qj(C) = {x ∈ Cj ∣ ∀i ∈ {1, . . . , j}, xi − xi−1 ∈ C}.

As previously, we only use (V,C) = (SD, SD
+ ) or (V,C) = (RD,RD

+ ). We
will always adopt the convention x0 = 0. Given x ∈ Qj(RD

+ ), we define
Λjx ∈ Q(RD

+ ) to be the path that linearly interpolates between the values
(0,0), (1j , x1), (

2
j , x2), . . . , (1, xj). More precisely, for every u ∈ [0,1),

(4.5) Λjx(u) =
j

∑
i=1

1[ i−1
j

, i
j
)(u) (xi−1 + j (u −

i − 1
j
) (xi − xi−1)) .

We will write 1i instead of 1[ i−1
j

, i
j
) in what follows, with the understanding

that 1j+1 = 0. We also define

1̃i(u) = j (u −
i − 1
j
)1i(u) + j (

i + 1
j
− u)1i+1(u).

Note that we have Λjx = ∑j
i=1 xi1̃i.

We equip R2 with the normalized ℓ1-norm, ∣v∣ = 1
2(∣v1∣ + ∣v2∣) and the

standard normalized scalar product v ⋅ w = 1
2(v1w1 + v2w2). For every p ∈

[1,+∞), we equip (R2)j with the norm ∣ ⋅ ∣p, defined by

(4.6) ∣x∣p =
⎛
⎝
1

j

j

∑
i=1
∣xi∣p
⎞
⎠

1
p

.

We also equip (R2)j with the normalized scalar product,

⟨x, y⟩j =
1

j

j

∑
i=1
xi ⋅ yi.

Given a path, p ∈ Q(R+) ∩L1 we set

Λjp(u) = (⟨p(u), j1̃i⟩L2)1⩽i⩽j ,

this defines a path Λjp ∈ Qj(R+). For every q ∈ Q(RD
+ ), if we write q(u) =

(qd(u))1⩽d⩽D, then qd ∈ Q(R+) and we define

Λjq(u) = (Λjq1(u), . . . ,ΛjqD(u)).
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The linear maps Λj ∶ Qj(R2
+)→ Q(R2

+) ∩L1 and Λj ∶ Q(R2
+) ∩L1 → Qj(R2

+)
form an adjoint pair in the following sense, for every p ∈ Q(R2

+) ∩ L1 and
x ∈ Qj(R2

+), we have

⟨Λjx, p⟩L2 = ⟨x,Λjp⟩j .

Proposition 4.4. There exists a constant c > 0 such that for every j ⩾ 1
and every q = (q1, q2) ∈ Q(R2

+) ∩L∞, we have

∣q −ΛjΛjq∣L1 ⩽ c∣q∣L
∞

j
.

Proof. Let p ∈ Q(R+)∩L∞, to lighten notations, we let pi = p ( ij ) and define

p = (pi)1⩽i⩽j ∈ Qj(R+). For every i ∈ {1, . . . , j}, we have

pi + pi−1
2

⩽ ⟨p, j1̃i⟩L2 ⩽ pi + pi+1
2

.

Therefore ∣jp ⋅ 1̃i − pi∣ ⩽max{pi+1−pi2 , pi−pi−12
} ⩽ pi+1−pi−1

2 . Summing over i, we

obtain ∣Λjp − p∣1 ⩽ ∣p∣L∞j . In addition, given x ∈ (R+)j , we have

∣Λj(x)∣L1 ⩽
j

∑
i=1
∣xi∣∣1̃i∣L1 = ∣x∣1.

Therefore,

∣ΛjΛjp −Λj(p)∣L1 ⩽ ∣Λjp − p∣1 ⩽
∣p∣L∞
j

.

Observe, that for u ∈ [ i−1j ,
i
j ), ∣Λ

jp(u) − p(u)∣ ⩽ pi − pi−1, thus

∣Λj(p) − p∣L1 ⩽ ∣p∣L
∞

j
.

Combining the previous two displays, we obtain

∣ΛjΛjp − p∣1 ⩽ ∣ΛjΛjp −Λj(p)∣1 + ∣Λj(p) − p∣1 ⩽
∣p∣L∞
j
+ ∣p∣L

∞

j
= 2∣p∣L∞

j
.

Finally, given q ∈ Q(R2
+) ∩L∞ if we write q(u) = (q1(u), q2(u)), then q1, q2 ∈

Q(R+) ∩L∞. Applying the bound in the previous display to q1 and q2, we
obtain

∣ΛjΛjq − q∣L1 = 1

2
(∣ΛjΛjq1 − q1∣L1 + ∣ΛjΛjq2 − q2∣L1)

⩽ ∣q1∣L
∞ + ∣q2∣L∞
j

⩽ 2∣q∣L∞
j

.

□

Recall that given a closed convex cone C we have defined its dual cone C∗
in (3.2).
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Proposition 4.5. For every x ∈ (R2
+)j, we have

∣Λj(x)∣L1 ⩽ ∣x∣1.

In addition, if x ∈ (Qj(R2
+))∗, then (Λj(x))⊥ ∈ (Q(SD

+ ) ∩L2)∗.

Proof. Let x = (x1, x2) ∈ (R2
+)j , we have ∣1̃i∣L1 = 1

j . So,

∣Λjx1∣L1 =
RRRRRRRRRRR

j

∑
i=1
x1i1̃i

RRRRRRRRRRRL1

⩽
j

∑
i=1
x1i ∣1̃i∣L1 =

1

j

j

∑
i=1
∣x1i∣.

It follows that,

∣Λjx∣L1 = ∣Λ
jx1∣L1 + ∣Λjx2∣L1

2
⩽ ∣x1∣1 + ∣x2∣1

2
= ∣x∣1.

This proves the first part of the proposition, let us now further assume that
x ∈ (Qj(R2

+))∗. Let q ∈ Q(SD
+ ) ∩ L2, the path 1

D! ∑s∈SD
qs is permutation-

invariant. According to Proposition 4.3, there exists q ∈ Q(R2
+) ∩ L2 such

that 1
D! ∑s∈SD

qs = q⊥. We have

⟨q, (Λjx)⊥⟩L2 = ⟨q, 1

D!
∑

s∈SD

(Λjx)⊥,s
−1

⟩
L2

= ⟨ 1

D!
∑

s∈SD

qs, (Λjx)⊥⟩
L2

= ⟨q⊥, (Λjx)⊥⟩
L2

= ⟨(D − 1)q1,Λjx1⟩L2 + ⟨q2,Λjx2⟩L2

= ⟨(D − 1)Λjq1, x1⟩j + ⟨Λjq2, x2⟩j .

We have ((D − 1)Λjq1,Λjq2) ∈ Qj(R2
+), so by definition of (Qj(R2

+))∗, the
last line in the previous display is ⩾ 0. This justifies (Λj(x))⊥ ∈ (Q(SD

+ ) ∩
L2)∗. □

Recall the definition of ξ⊥ from (4.3). Also recall that, given r ∈ Q we use

the notation ∫ h(r) as a shorthand for ∫
1
0 h(r(u))du.

Proposition 4.6. Let q ∈ Q(R2
+) ∩L1, for every j ⩾ 1, we have

∫ ξ⊥(ΛjΛjq) ⩽ ∫ ξ⊥(q).
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Proof. We let ρ1, . . . , ρj ∈ R2
+ denote the coordinates of Λjq. By convexity of

ξ, we have

∫ ξ⊥(ΛjΛjq) = ∫
1

0
ξ⊥(ΛjΛjq(u))du

=
j

∑
i=1
∫[ i−1

j
, i
j
)
ξ⊥ (ρi−1 + j (u −

i − 1
j
) (ρi − ρi−1))du

=
j

∑
i=1
∫[ i−1

j
, i
j
)
ξ⊥ (j (

i

j
− u)ρi−1 + j (u −

i − 1
j
)ρi)du

⩽
j

∑
i=1
∫[ i−1

j
, i
j
)
j ( i
j
− u) ξ⊥ (ρi−1) + j (u −

i − 1
j
) ξ⊥ (ρi)du

=
j

∑
i=1

ξ⊥ (ρi−1) + ξ⊥ (ρi)
2j

.

Using Jensen’s inequality, it follows that ξ⊥ (ρi) ⩽ ⟨ξ⊥(q), j1̃i⟩L2 . Finally,

since ∑j
i=1 1̃i = 1, we obtain

∫ ξ⊥(ΛjΛjq) ⩽ ∫ ξ⊥(q).

□

5. The free energy and Hamilton-Jacobi equations

We recall that f(t, q) = limN→+∞ FN(t, q). In this section, we use the fact
that f solves (2.4) and the permutation invariance of the model to show
that limFN(t,0) can be expressed as the value at (t,0) of the solution of a
reduced Hamilton-Jacobi equation.

5.1. The equation for models with matrix valued paths. Given q ∈
Q(R2

+), recall that we have defined q⊥(u) = m(q(u)). The goal of this
section is to show that the functions defined by f⊥(t, q) = f(t, q⊥) is the
viscosity solution of some Hamilton-Jacobi on Q(R2

+). Since we know that f
is Gateaux differentiable and solves (2.4), this will basically only amount to
computing the Gateaux derivatives of f⊥.

Proposition 5.1. For every t ⩾ 0, q ∈ Q(SD
+ ) ∩L2 and s ∈SD, we have

(5.1) f(t, qs) = f(t, q).

Proof. Let q ∈ Q(SD
+ ) and t ⩾ 0, recall from (2.2) that we have

FN(t, q) = −
1

N
E log∬ exp(Ht,q

N (σ,α))dPN(σ)dR(α),

where

Ht,q
N (σ,α) =

√
2tHN(σ) − tNξ (

σσ∗

N
) +
√
2W q

N(α) ⋅ σ − q(1) ⋅ σσ
∗.
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The process (Ht,q
N (σ,α))σ∈RD,α∈U is a Gaussian process with the following

mean and covariance,

EHt,q
N (σ,α) = −tNξ (

σσ∗

N
) − q(1) ⋅ σσ∗,

Cov (Ht,q
N (σ,α),H

t,q
N (τ, β)) = 2N (tξ (

στ∗

N
) + 1

N

N

∑
i=1
σi ⋅ q(α ∧ β)τi) .

Let us show that for every s ∈SD, we have

(Ht,qs
−1

N (σ,α))σ∈RD,α∈U
(d)= (Ht,q

N (σ
s, α))σ∈RD,α∈U.

To proceed, we compute the covariance and the mean of those two Gaussian
processes and discover that they are equal. Let σ, τ ∈ RD and α,β ∈ U, since
ξ is permutation-invariant, we have ξ ( (σ

s)(τs)∗
N ) = ξ (στ∗N ). Therefore,

EHt,qs
−1

N (σ,α)Ht,qs
−1

N (τ, β) = 2N (tξ (στ
∗

N
) + 1

N

N

∑
i=1
σi ⋅ qs

−1

(α ∧ β)τi)

= 2N (tξ (στ
∗

N
) + 1

N

N

∑
i=1
σsi ⋅ q(α ∧ β)τ si )

= 2N (tξ ((σ
s)(τ s)∗

N
) + 1

N

N

∑
i=1
σsi ⋅ q(α ∧ β)τ si )

= EHt,q
N (σ

s, α)Ht,q
N (τ

s, β).
In addition,

EHt,qs
−1

N (σ,α) = −Ntξ (σσ
∗

N
) − qs

−1

(1) ⋅ σσ∗

= −Ntξ ((σσ
∗

N
)
s

) − q(1) ⋅ (σσ∗)s

= −Ntξ (σ
s(σs)∗

N
) − q(1) ⋅ σs(σs)∗

= EHt,q
N (σ

s, α).
The desired equality in law follows. We now show that f(t, qs) = f(t, q).
According to the previous result and the permutation invariance of PN , we
have

FN(t, qs) = −
1

N
E log∬ exp(Ht,qs

N (σ,α))dPN(σ)dR(α)

= − 1

N
E log∬ exp(Ht,q

N (σ
s−1 , α))dPN(σ)dR(α)

= − 1

N
E log∬ exp(Ht,q

N (σ,α))dPN(σ)dR(α)

= FN(t, q).
Letting N → +∞, we obtain the desired result.
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□

Proposition 5.2. For every (t, q) ∈ (0,+∞) × (Q↑(R2
+) ∩ L∞), f(t, ⋅) is

Gateaux differentiable at q⊥ and the path ∇f(t, q⊥) ∈ Q(SD
+ ) is permutation-

invariant that is, for every u ∈ [0,1) and s ∈SD,

(∇f(t, q⊥)(u))s = ∇f(t, q⊥)(u).

Proof. According to [7, Proposition 8.6], f(t, ⋅) is Gateaux differentiable at
q⊥. Let κ ∈ L2([0,1), SD) such that for ε > 0 small enough q⊥ + εκ ∈ Q(SD

+ ).
According to Proposition 5.1, we have for every s ∈SD,

f(t, q⊥ + εκs) − f(t, q⊥)
ε

= f(t, q
⊥ + εκ) − f(t, q⊥)

ε
.

Letting ε→ 0, we obtain that ⟨∇f(t, q⊥), κ⟩L2 = ⟨∇f(t, q⊥), κs⟩L2 . So,

⟨∇f(t, q⊥), κ⟩L2 = ⟨(∇f(t, q⊥))s
−1

, κ⟩L2 .

This means that (∇f(t, q⊥))s−1 = ∇f(t, q⊥). □

For q ∈ Q(R2
+) ∩ L2, we define f⊥(t, q) = f(t, q⊥), ψ⊥(q) = ψ(q⊥). Recall

the definition of ξ⊥ in (4.3).

Proposition 5.3. The function f⊥ is Gateaux differentiable at every (t, q) ∈
(0,+∞) × (Q↑(R2

+) ∩L∞), and it satisfies

(5.2)

⎧⎪⎪⎨⎪⎪⎩

∂tf
⊥ − ∫ ξ⊥(∇f⊥) = 0 on (0,+∞) × (Q↑(R2

+) ∩L∞)
f⊥(0, ⋅) = ψ⊥.

Proof. According to [7, Propositions 7.2 & 8.6], f is Gateaux differentiable
at every (t, q) ∈ (0,+∞) × (Q↑(SD

+ ) ∩L∞) and we have

∂tf(t, q) = ∫ ξ(∇f(t, q)).

Let t > 0 and q = (q1, q2) ∈ Q↑(R2
+) ∩L∞ and let κ = (κ1, κ2) ∈ L2([0,1),R2)

such that for ε > 0 small enough q + εκ ∈ Q↑(R2
+). Passing to the limit as

ε→ 0 in
f⊥(t, q + εκ) − f⊥(t, q)

ε
= f(t, q

⊥ + εκ⊥) − f(t, q⊥)
ε

,

yields ⟨∇f⊥(t, q), κ⟩L2 = ⟨∇f(t, q⊥), κ⊥⟩L2 . According to Proposition 5.2, the
path ∇f(t, q⊥) is permutation-invariant. According to Proposition 4.3, there
exists r = (r1, r2) ∈ Q(R2

+) such that, ∇f(t, q⊥) = r⊥ and we have

⟨(∇f⊥(t, q))1, κ1⟩L2 + ⟨(∇f⊥(t, q))2, κ2⟩L2 = ⟨(D − 1)r1, κ1⟩L2 + ⟨r2, κ2⟩L2 .

So, ∇f⊥(t, q) = ((D − 1)r1, r2). In particular, for every u ∈ [0,1),
ξ⊥(∇f⊥(t, q)) = ξ(r⊥) = ξ(∇f(t, q⊥)).

Finally, we have

∂tf
⊥(t, q) = ∂tf(t, q⊥) = ∫ ξ(∇f(t, q⊥)) = ∫ ξ⊥(∇f⊥(t, q)).

□
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If (5.2) was written on Q(R2
+) ∩ L2 rather than Q↑(R2

+) ∩ L∞, then we
could immediately conclude that f⊥ is a solution in the viscosity sense
and (1.8) would directly follow from the Hopf-Lax representation. This is
indeed how are going to argue, but to do so we need to show that we can
neglect boundary points. That is, paths in Q(R2

+)∩L2 that do not belong to
Q↑(R2

+) ∩L∞. This can be done using the content of Section 3. To connect
the two settings, we will need to consider finite dimensional approximations
of (5.2). Recall the definition of the lift and projection maps Λj and Λj from
Section 4.3. Given (t, x) ∈ R+ ×Qj(R2

+), we define f⊥,j(t, x) = f⊥(t,Λjx) and
Hj
⊥(x) = ∫ ξ⊥(Λjx).

Proposition 5.4. There exists a constant c > 0 such that the following holds.

For every j ⩾ 1, the function f⊥,j is differentiable on (0,+∞) × ˚Qj(R2
+) and

for every (t, x) ∈ (0,+∞) × ˚Qj(R2
+),

∣∂tf⊥,j(t, x) −Hj
⊥(∇f⊥,j(t, x))∣ ⩽

c

j
.

Furthermore, f⊥,j ∈ V(Qj(R2
+)).

Proof. Step 1. We show that f⊥,j ∈ V(Qj(R2
+)).

According to [7, Proposition 5.1], f ∶ R+ × (Q(SD
+ ) ∩L1)→ R is Lipschitz.

More precisely, we have for every (t, q), (t′, q′) ∈ R+ × (Q(SD
+ ) ∩L1),

∣f(t, q) − f(t′, q′)∣ ⩽ ∣q − q′∣L1 + ∣t − t′∣ sup
∣a∣⩽1
∣ξ(a)∣.

Let ∣ ⋅ ∣ denote the Frobenius norm on SD. There exists a constant c > 0
depending only on ∣ ⋅ ∣ such that the following holds. For every x ∈ Qj(R2

+),
we have

∣(Λjx)⊥∣L1 = ∫
1

0
∣m(Λjx(u))∣du

= ∫
1

0
∣Λjx1(u)∣ ∣idD −

1D
D
∣ + ∣Λjx2(u)∣ ∣

1D
D
∣du

⩽ c∫
1

0

∣Λjx1(u)∣ + ∣Λjx2(u)∣
2

du

= c∣Λjx∣L1

⩽ c∣x∣1,

where the last line is a consequence of Proposition 4.5. Since f⊥,j(t, x) =
f(t, (Λjx)⊥), it follows that f⊥,j ∶ R+×Qj(R2

+)→ R is Lipschitz. In particular,

sup
t>0,x∈Qj(R2

+
)

∣f⊥,j(t, x) − f⊥,j(0, x)∣
t

< +∞ and sup
t>0
∥f⊥,j(t, ⋅)∥Lip < +∞.

Furthermore, according to [7, Proposition 3.6], for every t ⩾ 0, f(t, ⋅) is
(Q(SD

+ )∩L2)∗-nondecreasing. Let x, y ∈ Qj(R2
+), such that y−x ∈ (Qj(R2

+))∗,
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we have (Λjx)⊥, (Λjy)⊥ ∈ Q(SD
+ ) ∩ L∞ and according to Proposition 4.5,

(Λj(y − x))⊥ ∈ (Q(SD
+ ) ∩L2)∗. Therefore,

f⊥,j(t, y) − f⊥,j(t, x) = f(t, (Λjy)⊥) − f(t, (Λjx)⊥) ⩾ 0.
Thus, f⊥,j(t, ⋅) is (Qj(R2

+))∗-nondecreasing and we have proven that f⊥,j ∈
V(Qj(R2

+)). This concludes Step 1.

Step 2. We show that there exists c > 0 such that for every j ⩾ 1 and every

(t, x) ∈ (0,+∞) × ˚Qj(R2
+), f⊥,j is differentiable at (t, x) and

∣∂tf j(t, x) −Hj
⊥(∇f j(t, x))∣ ⩽

c

j
.

For every x ∈ ˚Qj(R2
+), Λjx ∈ Q↑(R2

+) ∩ L∞. Using Proposition 5.3, we

deduce that f⊥,j is differentiable on (0,+∞) × ˚Qj(R2
+) and for every (t, x) ∈

(0,+∞) × ˚Qj(R2
+) we have ∇f⊥,j(t, x) = Λj(∇f⊥(t,Λjx)). In addition, we

have

∂tf
⊥,j(t, x) = ∂tf⊥(t,Λjx)

= ∫ ξ⊥(∇f⊥(t,Λjx))

=Hj
⊥(∇f⊥,j(t, x)) + ∫ (ξ⊥(∇f⊥(t,Λjx)) − ξ⊥(ΛjΛj∇f⊥(t,Λjx))) .

Since f⊥ is 1-Lipschitz with respect to L1-norm, we have ∣∇f⊥(t,Λjx))∣L∞ ⩽ 1.
Now, using Step 1 and Proposition 4.4 we discover that

∣∂tf⊥,j(t, x) −Hj
⊥(∇f⊥,j(t, x))∣ = ∣ξ⊥(∇f⊥(t,Λjx)) − ξ⊥(ΛjΛj∇f⊥(t,Λjx))∣1

⩽ ℓ⊥∣∇f⊥(t,Λjx) −ΛjΛj∇f⊥(t,Λjx)∣L1

⩽ c
j
,

where ℓ⊥ = sup∣a∣⩽1 ∣ξ⊥(a)∣ and c ⩾ 0 is some constant depending on ξ and

∣ ⋅ ∣. □

Theorem 5.5. The function f⊥ is the unique viscosity solution of

(5.3)

⎧⎪⎪⎨⎪⎪⎩

∂tu
⊥ − ∫ ξ⊥(∇u⊥) = 0 on (0,+∞) × (Q(R2

+) ∩L2)
u⊥(0, ⋅) = ψ⊥.

In addition, for every (t, q) ∈ (0,+∞)×(Q(R2
+)∩L2), f⊥ admits the Hopf-Lax

representation at (t, q),

(5.4) f⊥(t, q) = sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞

{ψ⊥(p + q) − ⟨p, r⟩L2 + t∫
1

0
ξ⊥ (r)} .

Remark 5.6. Taking q = 0 in (5.4), we obtain Theorem 1.2.

Proof. According to [9, Theorem 4.6], (5.3) has a unique Lipschitz viscosity
solution u⊥ and it is given by the variational formula (5.4). Let us show that
f⊥ and u⊥ coincide on [0,+∞) × (Q(R2

+) ∩L2).
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Let j ⩾ 1, define Let ψ⊥,j = f⊥,j(0, ⋅). According to Proposition 5.4,

ψ⊥,j is (Qj(R2
+))∗-nondecreasing and Lipschitz. In addition, Hj

⊥∣Qj(R2
+
) is

(Qj(R2
+))∗-nondecreasing and locally Lipschitz. According to Theorem 3.2,

the following Hamilton-Jacobi equation is well posed

⎧⎪⎪⎨⎪⎪⎩

∂tu
⊥,j −Hj

⊥(∇u⊥,j) = 0 on (0,+∞) × ˚Qj(R2
+)

u⊥,j(0, ⋅) = ψ⊥,j .

We let u⊥,j ∈ V(Qj(R2
+)) be its unique viscosity solution.

Step 1. We show that, for every (t, q) ∈ R+ × (Q(R2
+) ∩L∞),

f⊥(t, q) = lim
j→+∞

u⊥,j(t,Λjq).

According to Proposition 3.6 and Proposition 5.4, there exists c > 0 such
that for every j ⩾ 1 and (t, x) ∈ R+ ×Qj(R2

+), we have

(5.5) ∣f⊥,j(t, x) − u⊥,j(t, x)∣ ⩽ ct
j
.

Let q ∈ Q(R2
+) ∩ L∞, according to Proposition 4.4 as j → +∞ we have

ΛjΛjq → q in L1. By Lipschitz continuity of f⊥ we have

f⊥(t, q) = lim
j→+∞

f⊥,j(t,Λjq) = lim
j→+∞

u⊥,j(t,Λjq).

Step 2. We show that, for every (t, q) ∈ R+ × (Q(R2
+) ∩L∞),

lim
j→+∞

u⊥,j(t,Λjq) = u⊥(t, q).

According to [10, Theorem 1.2 (2) (d)], u⊥,j admits the Hopf-Lax representa-
tion. That is, for every (t, x) ∈ R+ ×Qj(R2

+),

u⊥,j(t, x) = sup
y∈Qj(R2

+
)

inf
z∈Qj(R2

+
)
{ψ⊥,j(x + y) − ⟨y, z⟩j + t∫ ξ⊥(Λjz)} .

Similarly, from [9, Theorem 1.1], we know that for every (t, q) ∈ R+×(Q(R2
+)∩

L2) we have

u⊥(t, q) = sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞

{ψ⊥(q + p) − ⟨p, r⟩L2 + t∫ ξ⊥(r)} .

Step 2.1 We show that, limj→+∞ u⊥,j(t,Λjq) ⩽ u⊥(t, q).
Observe that Qj(R2

+) = {Λjp, p ∈ Q(R2
+) ∩L∞}. So,

u⊥,j(t,Λjq) = sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞
{ψ⊥(ΛjΛjq +ΛjΛjp)

−⟨Λjp,Λjr⟩j + t∫ ξ⊥(ΛjΛjr)}.
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Since, ⟨Λjp,Λjr⟩j = ⟨ΛjΛjp, r⟩L2 and {ΛjΛjp, p ∈ Q(R2
+)∩L∞} ⊆ Q(R2

+)∩L∞.
We have

u⊥,j(t,Λjq) ⩽ sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞
{ψ⊥(ΛjΛjq + p)

−⟨p, r⟩L2 + t∫ ξ⊥(ΛjΛjr)}.

Finally, according to Proposition 4.6, we have ∫ ξ⊥(ΛjΛjr) ⩽ ∫ ξ⊥(r), so

u⊥,j(t,Λjq) ⩽ sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞

{ψ⊥(ΛjΛjq + p) − ⟨p, r⟩L2 + t∫ ξ⊥(r)} .

Using the Lipschitz continuity of ψ⊥, we discover that

u⊥,j(t,Λjq) ⩽∣ΛjΛjq − q∣1

+ sup
p∈Q(R2

+
)∩L∞

inf
r∈Q(R2

+
)∩L∞

{ψ⊥(q + p) − ⟨p, r⟩L2 + t∫ ξ⊥(r)} .

Using Proposition 4.4, we obtain limj→+∞ u⊥,j(t,Λjq) ⩽ u⊥(t, q).
Step 2.2 We show that, limj→+∞ u⊥,j(t,Λjq) ⩾ u⊥(t, q).
For every ε > 0, there exists p ∈ Q(R2

+) ∩L∞, such that

u⊥(t, q) ⩽ ε + ψ⊥(p + q) + inf
r∈Q(R2

+
)∩L∞

{−⟨p, r⟩L2 + t∫ ξ⊥(r)} .

We have {Λjz, z ∈ Qj(R2
+)} ⊆ Q(R2

+) ∩L∞. So,

u⊥(t, q) ⩽ ε + ψ⊥(p + q) + inf
z∈Qj(R2

+
)
{−⟨p,Λjz⟩L2 + t∫ ξ⊥(Λjz)} .

Using the Lipschitz continuity of ψ⊥, we have ψ⊥(p + q) ⩽ ψ⊥,j(Λjp +Λjq) +
∣ΛjΛj(p + q) − (p + q)∣L1 . And we have ⟨p,Λjz⟩L2 = ⟨Λjp, z⟩j . So,

u⊥(t, q) ⩽ ε + ∣ΛjΛj(p + q) − (p + q)∣L1 + ψ⊥,j(Λjp +Λjq)

+ inf
z∈Qj(R2

+
)
{−⟨Λjp, z⟩j + t∫ ξ⊥(Λjz)} .

Since, {Λjp, p ∈ Q(R2
+) ∩L∞} ⊆ Qj(R2

+), obtain

u⊥(t, q) ⩽ ε + ∣ΛjΛj(p + q) − (p + q)∣L1 + u⊥,j(t,Λjq).
Using Proposition 4.4 and letting j → +∞, we obtain

u⊥(t, q) ⩽ ε + lim
j→+∞

u⊥,j(t,Λjq),

since ε > 0 is arbitrary this concludes Step 2.

Step 3. Conclusion.

From Step 1 and Step 2, we deduce that f⊥ and u⊥ coincide on R+ ×
(Q(R2

+)∩L∞). Since Q(R2
+)∩L∞ is dense in Q(R2

+)∩L2 with respect to L1

convergence and f⊥ and u⊥ are both Lipschitz continuous with respect to
∣ ⋅ ∣L1 , we conclude that f⊥ and u⊥ coincide on R+ × (Q(R2

+) ∩L2). □
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5.2. The equation for models with vector valued paths. In this section,
we repeat the analysis of Section 5.1 under the additional assumption that
the interaction function ξ only depends on the diagonal coefficients of the
overlap matrix. In this case, we can use the fact the value of the limit free
energy is encoded by a Hamilton-Jacobi equation on Q(RD

+ ), as pointed out
in (2.7). In this setting, permutation-invariant paths q ∈ Q(RD

+ ) are of the
form q = (p, . . . , p) with p ∈ Q(R+). Leveraging symmetries of the problem,
this will allow us to show that the limit free energy is in fact encoded by a
Hamilton-Jacobi equation on Q(R+). Since the proofs are very similar, we
will not write them out in as many details as in the previous section.

For p ∈ Q(R+), we let q = diag(p, . . . , p) ∈ Q(SD
+ ) denote the path such that

q(u) is the diagonal matrix with diagonal coefficients (p(u), . . . , p(u)). We
define f †(t, p) = f(t,diag(p, . . . , p)), ψ†(p) = ψ(diag(p, . . . , p)). Recall that
here, we identify the function A↦ ξ(A) defined on RD×D and the function
x↦ ξ(diag(x)) defined on RD. With this in mind, we set ξ†(λ) = ξ(λ, . . . , λ).

Proposition 5.7. The function f† is Gateaux differentiable at every (t, p) ∈
(0,+∞) × (Q↑(R+) ∩L∞) and satisfies

⎧⎪⎪⎨⎪⎪⎩

∂tf
† − ∫ ξ† (∇f

†

D ) = 0 on (0,+∞) × (Q↑(R+) ∩L∞)
f†(0, ⋅) = ψ† on Q↑(R+) ∩L∞.

Proof. We reproduce the proof of Proposition 5.3, replacing f by fdiag,
the function defined by fdiag(t, q) = f(t,diag(q)) for q ∈ Q(RD

+ ). Let
(t, p) ∈ R+ × (Q↑(R+) ∩L∞) according to Proposition 5.2, f is Gateaux
differentiable at (t,diag(p, . . . , p)) and its gradient is a permutation-invariant
path. Therefore, fdiag is Gateaux differentiable at (t, (p, . . . , p)) and its gra-
dient ∇fdiag(t, (p, . . . , p)) ∈ Q(RD

+ ) satisfies ∇fdiag(t, (p, . . . , p)) = (r, . . . , r)
for some r ∈ Q(R+). It follows that f † is Gateaux differentiable at (t, p) and
its Gateaux derivative satisfies ∇f †(t, p) =Dr. According to (2.7), we have

∂tf
†(t, p) = ∂tfdiag(t, p) = ∫ ξ(∇fdiag(t, (p, . . . , p))) = ∫ ξ† (

∇f †(t, p)
D

) .

□

Recall from (4.4) that

Qj(R+) = {x ∈ Rj
+∣ x1 ⩽ . . . ⩽ xj}.

Also recall that given x ∈ Qj(R+), Λjx denote the path which linearly
interpolates between the values (0,0), (1j , x1), . . . , (1, xj) and that given p ∈
Q(R+) the vector Λjp ∈ Qj(R+) is defined so that Λj and Λj form an adjoint

pair. As previously, we define f †,j(t, x) = f †(t,Λjx) and Hj
† (x) = ∫

1
0 ξ†(Λ

jx).

Proposition 5.8. There exists a constant c > 0 such that the following holds.

For every j ⩾ 1, the function f†,j is differentiable on (0,+∞) × ˚Qj(R+) and



ON PERMUTATION-INVARIANT OPTIMIZERS FOR PARISI FORMULA 29

for every (t, x) ∈ (0,+∞) × ˚Qj(R+),

∣∂tf†,j(t, x) −Hj
† (
∇f†,j(t, x)

D
)∣ ⩽ c

j
.

Furthermore, f†,j ∈ V(Qj(R+)).

Proof. The proof will follow from Proposition 5.4 and the fact that f †(t, p) =
f⊥(t, (p, p)).
Step 1. We show that f †,j ∈ V(Qj(R+)).

According to Proposition 5.4, f⊥,j ∈ V(Qj(R2
+)). In particular,

sup
t>0

x∈Qj(R+)

∣f †,j(t, x) − f †,j(0, x)∣
t

= sup
t>0

x∈Qj(R+)

∣f⊥,j(t, (x,x)) − f⊥,j(0, (x,x))∣
t

⩽ sup
t>0

y∈Qj(R2
+
)

∣f⊥,j(t, y) − f⊥,j(0, y)∣
t

< +∞.

Similarly,

sup
t>0
∥f †,j(t, ⋅)∥Lip = sup

t>0
∥x↦ f⊥,j(t, (x,x))∥Lip

⩽ sup
t>0
∥f⊥,j(t, ⋅)∥Lip

< +∞.

Furthermore, given x,x′ ∈ Qj(R+), it is clear that if x′ −x ∈ (Qj(R+))∗, then
(x′, x′) − (x,x) ∈ (Qj(R2

+))∗. So,

f †,j(t, x′) − f †,j(t, x) = f⊥,j(t, (x′, x′)) − f⊥,j(t, (x,x)) ⩾ 0.

Thus, f †,j(t, ⋅) is (Qj(R+))∗-nondecreasing. We have proven that f †,j ∈
V(Qj(R2

+)), this concludes Step 1.

Step 2. We show that there exists c > 0 such that for every j ⩾ 1 and every

(t, x) ∈ (0,+∞) × ˚Qj(R+), f †,j is differentiable at (t, x) and

∣∂tf †,j(t, x) −Hj
† (
∇f †,j(t, x)

D
)∣ ⩽ c

j
.

For every x ∈ ˚Qj(R+), (x,x) ∈ ˚Qj(R2
+). Using Proposition 5.4, we deduce

that f †,j is differentiable on (0,+∞)× ˚Qj(R+) and for every (t, x) ∈ (0,+∞)×
˚Qj(R+), we have

∂tf
†,j(t, x) −Hj

† (
∇f †,j(t, x)

D
) = ∂tf⊥,j(t, (x,x)) −Hj

⊥(∇f⊥,j(t, (x,x))).

The result then follows from Proposition 5.4. □
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Theorem 5.9. The function f† is the unique viscosity solution of,

(5.6)

⎧⎪⎪⎨⎪⎪⎩

∂tu
† − ∫ ξ† (∇u

†

D ) = 0 on (0,+∞) × (Q(R+) ∩L2)
u†(0, ⋅) = ψ†.

In addition, for every (t, r) ∈ [0,+∞)×(Q(R+)∩L2), f† admits the Hopf-Lax
representation,

(5.7) f†(t, r) = sup
p∈Q(R+)∩L∞

{ψ†(p) − t∫
1

0
ξ∗ (p − r

t
, . . . ,

p − r
t
)} .

Remark 5.10. Taking r = 0 in (5.7), we obtain the variational formula (1.9)
of Theorem 1.3.

Remark 5.11. Here, since (5.6) is written over the set of 1-dimensional
paths, a different version of the Hopf-Lax representation is available [9,
Proposition A.3]. This allows us to write the viscosity solution as a “sup”
rather than a “sup inf”.

Remark 5.12. Reproducing the proof of Proposition 4.2, we have for every
λ ⩾ 0,

ξ∗(λ, . . . , λ) = (ξ† (
⋅
D
))
∗
(λ).

Proof. According to [9, Theorem 4.6] and [9, Proposition A.3], (5.6) has
a unique Lipschitz viscosity solution u† and it is given by the variational
formula (5.7). Let us show that f † and u† coincide on [0,+∞)×(Q(R+)∩L2).

Let j ⩾ 1, define ψ†,j = f †,j(0, ⋅), according to Proposition 5.8, ψ†,j is

(Qj(R+))∗-nondecreasing and Lipschitz. In addition,Hj
† ∣Qj(R+) is (Q

j(R+))∗-
nondecreasing and locally Lipschitz. Let u†,j ∈ V(Qj(R+)) be the unique
viscosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tu
†,j −Hj

† (
∇u†,j

D ) = 0 on (0,+∞) × ˚Qj(R+)
u†,j(0, ⋅) = ψ†,j .

Step 1. We show that, for every (t, p) ∈ R+ × (Q(R+) ∩L∞),

f †(t, p) = lim
j→+∞

u†,j(t,Λjp).

According to Proposition 3.6 and Proposition 5.8, there exists c > 0 such that
for every j ⩾ 1 and (t, x) ∈ R+ ×Qj(R+), we have

∣f †,j(t, x) − u†,j(t, x)∣ ⩽ ct
j
.

Let p ∈ Q(R+) ∩ L∞, according to Proposition 4.4, as j → +∞ we have
ΛjΛjp→ p in L1. By Lipschitz continuity of f † we have

f †(t, p) = lim
j→+∞

f †,j(t,Λjp) = lim
j→+∞

u†,j(t,Λjp).
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Step 2. We show that, for every (t, p) ∈ R+ × (Q(R+) ∩L∞),

lim
j→+∞

u†,j(t,Λjp) = u†(t, p).

According to [10, Theorem 1.2 (2) (d)], u†,j admits the Hopf-Lax representa-
tion. That is, for every (t, x) ∈ R+ ×Qj(R+),

u†,j(t, x) = sup
y∈Qj(R+)

inf
z∈Qj(R+)

{ψ†,j(x + y) − ⟨y, z⟩j + t∫ ξ† (
Λjz

D
)} .

Similarly, from [9, Theorem 4.6], we know that for every (t, p) ∈ R+×(Q(R+)∩
L2) we have

u†(t, p) = sup
r∈Q(R+)∩L∞

inf
s∈Q(R+)∩L∞

{ψ†(p + r) − ⟨r, s⟩L2 + t∫ ξ† (
s

D
)} .

Step 2.1 We show that, limj→+∞ u†,j(t,Λjq) ⩽ u†(t, q).
Observe that Qj(R+) = {Λjp, p ∈ Q(R+) ∩L∞}. So,

u†,j(t,Λjp) = sup
r∈Q(R+)∩L∞

inf
s∈Q(R+)∩L∞

{ψ†(ΛjΛjp +ΛjΛjr)

−⟨Λjr,Λjs⟩j + t∫ ξ(ΛjΛjs)}.

Since, ⟨Λjr,Λjs⟩j = ⟨ΛjΛjr, s⟩L2 and {ΛjΛjr, r ∈ Q(R+)∩L∞} ⊆ Q(R+)∩L∞.
We have

u†,j(t,Λjp) ⩽ sup
r∈Q(R+)∩L∞

inf
s∈Q(R+)∩L∞

{ψ†(ΛjΛjp + r)

−⟨r, s⟩L2 + t∫ ξ† (
ΛjΛjs

D
)}.

Finally, according to Proposition 4.6, we have ∫ ξ†(ΛjΛjs/D) ⩽ ∫ ξ†(s/D),
so

u†,j(t,Λjp) ⩽ sup
p∈Q(R+)∩L∞

inf
r∈Q(R+)∩L∞

{ψ†(ΛjΛjp + r)

−⟨r, s⟩L2 + t∫ ξ† (
s

D
)}.

Using the Lipschitz continuity of ψ†, we discover that

u†,j(t,Λjp) ⩽∣ΛjΛjp − p∣1

+ sup
p∈Q(R+)∩L∞

inf
r∈Q(R+)∩L∞

{ψ†(p + r) − ⟨r, s⟩L2 + t∫ ξ† (
s

D
)}.

Using Proposition 4.4, we finally obtain limj→+∞ u†,j(t,Λjp) ⩽ u†(t, p).
Step 2.2 We show that, limj→+∞ u†,j(t,Λjp) ⩾ u†(t, p).
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For every ε > 0, there exists r ∈ Q(R+) ∩L∞, such that

u†(t, p) ⩽ ε + ψ†(p + r) + inf
s∈Q(R+)∩L∞

{−⟨r, s⟩L2 + t∫ ξ† (
s

D
)} .

We have {Λjz, z ∈ Qj(R+)} ⊆ Q(R+) ∩L∞. So,

u†(t, p) ⩽ ε + ψ†(p + r) + inf
z∈Qj(R+)

{−⟨r,Λjz⟩L2 + t∫ ξ† (
Λjz

D
)} .

Using the Lipschitz continuity of ψ†, we have ψ†(p + r) ⩽ ψ†,j(Λjp +Λjr) +
∣ΛjΛj(p + r) − (p + r)∣L1 . And we have ⟨r,Λjz⟩L2 = ⟨Λjr, z⟩j . So,

u†(t, p) ⩽ ε + ∣ΛjΛj(p + r) − (p + r)∣L1 + ψ†,j(Λjp +Λjr)

+ inf
z∈Qj(R+)

{−⟨Λjr, z⟩j + t∫ ξ† (
Λjz

D
)} .

Since, Λjr ∈ Qj(R+), obtain

u†(t, p) ⩽ ε + ∣ΛjΛj(p + r) − (p + r)∣L1 + u†,j(t,Λjp).
Using Proposition 4.4 and letting j → +∞, we obtain

u†(t, p) ⩽ ε + lim
j→+∞

u†,j(t,Λjp),

since ε > 0 is arbitrary this concludes Step 2.

Step 3. Conclusion.

From Step 1 and Step 2, we deduce that f † and u† coincide on R+ ×
(Q(R+)∩L∞). Since Q(R+)∩L∞ is dense in Q(R+)∩L2 with respect to L1

convergence and f † and u† are both Lipschitz continuous with respect to L1,
we conclude that f † and u† coincide on R+ × (Q(R+) ∩L2). □

6. Uniqueness of the optimizer for diagonal models

Let P↑(RD
+ ) denote the set of probability measures on RD

+ of the form
Law(q(U)) with q ∈ Q(RD

+ ) and U a uniform random variable on [0,1).
The map q ↦ Law(q(U)) is an isometric bijection from Q(RD

+ ) to P↑(RD
+ ).

Therefore, we can also think of the Parisi functional

q ↦ ψ(q) − t∫
1

0
ξ∗ (q

t
) ,

as a functional depending on µ ∈ P↑(RD
+ ) rather than q ∈ Q(RD

+ ). In a sense,
replacing Q(RD

+ ) by P↑(RD
+ ) changes the geometry. Given µ0, µ1 ∈ P↑(RD

+ )
and q0, q1 ∈ Q(RD

+ ) such that µi = Law(qi(U)), in general, for λ ∈ (0,1) we
have

λµ1 + (1 − λ)µ0 ≠ Law(λq1(U) + (1 − λ)q0(U)).
When D = 1, this allows us to reveal a hidden concavity property of the
Parisi functional, according to [1, Theorem 2], the Parisi functional is strictly
concave on P↑(R+) = P(R+). This is the key property used to establish the
uniqueness of Parisi measures for models with D = 1 [1, Corollary 1].
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In the setting, D > 1 this approach seems to fail. A difficulty is that the
convexity of the set P↑(R+) is an exception rather than the rule. For every

D > 1, the set P↑(RD
+ ) is not convex, since for example,

δ
(0,1)+δ(1,0)

2 ∉ P↑(R2
+).

This is problematic, as given two possible maximizing probability measures
µ0 ≠ µ1 in P↑(RD

+ ), the Parisi functional may not even be defined at µ0+µ1

2 .

In [6, Theorem 1.2], it was pointed out that, that the restriction of the Parisi
functional to any “one-dimensional subspace of P↑(RD

+ )” is strictly concave.
Thanks to Theorem 1.3, the Parisi formula can be written as a supremum over
probability measures in P↑(RD

+ ) supported on {(λ, . . . , λ), λ ⩾ 0}. This space
is of course a “one-dimensional subspace” in the sense of [6, Theorem 1.2],
this allows us to prove uniqueness of Parisi measures.

Let P1(R+) denote the set of Borel probability measures on R+ with finite
first moment. Given µ ∈ P1(R+), for every u ∈ [0,1), we define

pµ(u) = inf{x ⩾ 0∣ µ([0, x]) > u}.

The path pµ ∈ Q(R+)∩L1 is the quantile function of the probability measure
µ and classically, Law(pµ(U)) = µ.

Proposition 6.1 ([6]). The map µ↦ ψ†(pµ) is strictly concave on P1(R+).

Proof. First, note that in [6] the Parisi functional depends on paths in,

Π(SD
+ ) = {π ∶ [0,1]→ SD

+ ∣ π is left-continuous and nondecreasing}.

The Parisi functional is continuous with respect to ∣ ⋅ ∣L1 , so one can replace
paths p ∈ Q(R+) ∩ L∞ with their left continuous version without affecting
the value of the Parisi functional. Hence, the distinction between Π and
Q is simply a matter of taste. Let ξ̃ ∶ RD×D → R be a convex function
satisfying (1.1) for some Gaussian process H̃N . Presumably, as a consequence
of [6, Theorem 1.2], choosing Ψ = sidD, we only have that the function

µ↦ ψ(∇ξ̃ ○Ψ ○ pµ) is strictly concave on P1(R+). But, ψ is independent of

the choice of ξ̃, and with ξ̃(R) = 1
2 ∑

D
d,d′=1R

2
dd′ we obtain that µ↦ ψ†(pµ) is

strictly concave on P1(R+). □

Proof of Theorem 1.3. The variational formula (1.9) follows from Theorem 5.9,
we now prove existence and uniqueness of an optimizer in (1.9). In the first
three steps of the proof, we explain that in (1.9), the supremum can be taken
over a subset of paths bounded in L∞, this yields existence of an optimizer.
The last step is dedicated to showing uniqueness of the optimizer through
Proposition 6.1.

Step 1. We show that there exists c ⩾ 0, such that for every λ > λ′ ⩾ c we
have

ξ∗† (λ) − ξ
∗
† (λ

′)
λ − λ′

⩾ 1.

Let a > 0, there exists b ⩾ 0 such that ξ†(λ) ⩽ b on [0, a]. Let I[0,a] denote
the convex function taking the value 0 on [0, a] and +∞ otherwise. We have
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ξ† ⩽ b + I[0,a] on R+. Thus, for λ ⩾ 0,

ξ∗† (λ) = sup
λ′⩾0
{λλ′ − ξ†(λ)}

⩾ sup
λ′⩾0
{λλ′ − b − I[0,a]}

= sup
λ′∈[0,a]

{λλ′ − b}

= aλ − b.

This imposes lim infλ→+∞
ξ∗† (λ)
λ ⩾ a. Since a > 0 is arbitrary, we have

lim inf
λ→+∞

ξ∗† (λ)
λ
= +∞.

Let c ⩾ 0 be so that for every λ ⩾ c,
ξ∗† (λ) − ξ

∗
† (0)

λ
⩾ 1.

Then, since ξ∗† is convex, its slope increases and for every λ > λ′ ⩾ c, we have

ξ∗† (λ) − ξ
∗
† (λ

′)
λ − λ′

⩾
ξ∗† (λ) − ξ

∗
† (0)

λ
⩾ 1.

This concludes Step 1.

Step 2. Let L∞⩽tc denote the ball of center 0 and radius tc in L∞. We show
that

sup
p∈Q(R+)∩L∞

{ψ†(p) − ∫ ξ∗† (
p

t
)} = sup

p∈Q(R+)∩L∞⩽tc
{ψ†(p) − ∫ ξ∗† (

p

t
)} .

Let LHS and RHS denote the left-hand side and right-hand side in the
previous display. It is clear that LHS ⩾ RHS, we only prove the other
inequality. Let p ∈ Q(R+) ∩ L∞, and let p̃ = p ∧ (tc) be the path which
coincides with p until u∗ = inf{u ∈ [0,1), p(u) > tc} and is constant = tc on
[u∗,1). We have

(ψ†(p) − t∫
1

0
ξ∗† (

p

t
)) − (ψ†(p̃) − t∫

1

0
ξ∗† (

p̃

t
))

⩽ ∫
1

0
∣p − p̃∣ − t∫

1

0
(ξ∗† (

p

t
) − ξ∗† (

p̃

t
))

= ∫
1

u∗
p − tc − t(ξ∗† (

p

t
) − ξ∗† (c))

= ∫
1

u∗
(p − tc)

⎛
⎝
1 −

ξ∗† (
p
t
) − ξ∗† (c)
p
t − c

⎞
⎠

⩽ 0.

Since ∣p̃∣L∞ ⩽ tc, this concludes Step 2.
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Step 3. We show that the sup in the variational formula of Theorem 1.3 is
reached at some p∗ ∈ Q(R+) ∩L∞.
The functional p↦ ψ†(p) − t ∫

1
0 ξ
∗
† (

p
t
) is continuous with respect to the L1-

norm. So, according to Step 2 it is enough to prove that the set Q(R+)∩L∞⩽tc
is compact with respect to L1 convergence. Let (pn)n be a sequence of paths
in Q(R+) which is bounded by tc in ∣ ⋅ ∣L∞ . By a diagonal argument, up
to extraction (not relabelled) we may assume that for every u ∈ Q ∩ [0,1),
we have limn→+∞ pn(u) = p(u) for some p(u) ∈ R+. The map u ↦ p(u) is
nondecreasing and bounded by tc on Q ∩ [0,1). For every v ∈ [0,1), the
quantity p(u) converges as u→ v in Q∩ [v, 1), we denote by p(v) its limiting
value. The function p ∶ [0, 1)→ R+ thus defined is càdlàg, nondecreasing and
bounded by tc. Since p is monotone, the set of discontinuities of p is countable.
Let v ∈ [0,1) be a point at which p is continuous, let u ∈ Q ∩ [v,1) we have
pn(v) ⩽ pn(u), letting n → +∞ we obtain lim supn→+∞ pn(v) ⩽ p(u) and
since p is continuous at v, letting u→ v yields lim supn→+∞ pn(v) ⩽ p(v). By
considering u ∈ Q ∩ [0, v], we can repeat the same argument to discover that
lim infn→+∞ pn(v) ⩾ p(v). In conclusion, pn → p pointwise on [0,1) outside
a countable set of points. Since ∣pn∣L∞ ⩽ tc, by dominated convergence, it
follows that pn → p in L1.

Step 4. We show that the sup in the variational formula of Theorem 1.3 is
reached at most at one p∗ ∈ Q(R+) ∩L∞.
By contradiction, assume that there are two maximizers p0 ≠ p1 of (1.9) in
Q(R+)∩L∞. Let µi ∈ P(R+) be the law of the random variable pi(U) where
U is a uniform random variable in [0,1). Let p = pµ ∈ Q(R+) ∩ L∞ denote
the quantile function of µ = µ0+µ1

2 ∈ P(R+). According to Proposition 6.1,
we have

ψ†(p) > ψ
†(p0) + ψ†(p1)

2
.

By definition

∫ ξ∗† (
p

t
) = 1

2
∫ ξ∗† (

p0
t
) + 1

2
∫ ξ∗† (

p1
t
) .

Therefore,

ψ†(p) − t∫ ξ∗† (
p

t
) > 1

2
(ψ†(p0) − t∫ ξ∗† (

p0
t
)) + 1

2
(ψ†(p1) − t∫ ξ∗† (

p1
t
)) .

This is a contradiction since in the previous display the left-hand side
is upper-bounded by limN→+∞ FN(t) and the right-hand side is equal to
limN→+∞ FN(t).

□

7. Upper-bound for nonconvex models

In this section, we assume that the interaction function ξ only depends
on the diagonal coefficients of its argument, and we do not assume that ξ
is convex. We give a proof of Theorem 1.4. We believe that this Theorem
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is related to the approach developed in [17, 15] where the limit free energy
of nonconvex models is lower bounded in terms of the value at (t,0) of the
viscosity solution of some Hamilton-Jacobi equation. Theorem 1.4 will follow
from a classic interpolation argument after observing that ξ satisfies the
following inequality

∀x ∈ RD
+ , ξ(x) ⩽

1

D

D

∑
d=1

ξ(xd, . . . , xd).

7.1. An inequality for permutation-invariant covariance functions.

Proposition 7.1. Let i1, . . . , iD ∈ N and I = ∑D
d=1 id, for every x1, . . . , xD ∈

R+, we have

(7.1)
1

D!
∑

s∈SD

D

∏
d=1

xid
s(d) ⩽

1

D

D

∑
d=1

xId.

In addition, if I is even then (7.1) holds for x1, . . . , xD ∈ R.

Proof. If I = 0 then the inequality is clear, otherwise by the inequality of
arithmetic and geometric means we have

D

∏
d=1

xid
s(d) ⩽

1

I

D

∑
δ=1

iδx
I
s(δ).

Summing over s ∈SD, we obtain

1

D!
∑

s∈SD

D

∏
d=1

xid
s(d) ⩽

1

I

D

∑
δ=1

iδ
1

D!
∑

s∈SD

xIs(δ).

Observing that 1
D! ∑s∈SD

xIs(δ) =
1
D ∑

D
d=1 x

I
d is independent of δ, we obtain

(7.1). Assume now that I is even, and let y ∈ RD, define xd = ∣yd∣. Let E be
the set of d ∈ {1, . . . ,D} such that yd < 0. We have

D

∏
d=1

yid
s(d) = (−1)

∑s(d)∈E id
D

∏
d=1

xid
s(d) ⩽

D

∏
d=1

xid
s(d).

Summing over s ∈SD and applying (7.1) to x, we obtain

1

D!
∑

s∈SD

D

∏
d=1

yid
s(d) ⩽

1

D!
∑

s∈SD

D

∏
d=1

xid
s(d)

⩽ 1

D

D

∑
d=1

xId

= 1

D

D

∑
d=1

yId.

Where the last line follows from the fact that xd = ±yd and I is even. □
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Recall that we have defined for every λ ∈ R, ξ†(λ) = ξ(λ, . . . , λ) and we

say that ξ is permutation-invariant when for every s ∈ SD and x ∈ RD,
ξ(xs) = ξ(x). Let A ∈ RD×D be a D ×D matrix and p ∈ N∗, we denote

A⊗p = (Ai1,j1 × ⋅ ⋅ ⋅ ×Aip,jp)1⩽i1,...,ip,j1,...,jp⩽D ∈ R
Dp×Dp

the p-fold tensor product of A with itself. For every C,C ′ ∈ RDp×Dp
we define

C ⋅C ′ = ∑
1⩽i1,...,ip,j1,...,jp⩽D

C(i1,j1),...,(ip,jp)C
′
(i1,j1),...,(ip,jp).

Proposition 7.2. Let ξ ∶ RD → R, such that ξ is permutation-invariant
and admits an absolutely convergent power series. Assume that for every,
N ⩾ 1 there exists a Gaussian process (HN(σ))σ∈RD×N such that for every
σ, τ ∈ RD×N ,

E [HN(σ)HN(τ)] = Nξ (
σ1 ⋅ τ1
N

, . . . ,
σD ⋅ τD
N

) .

Then, ξ† is convex on R+ and for every x ∈ RD
+ , we have

(7.2) ξ(x) ⩽ 1

D

D

∑
d=1

ξ†(xd).

Remark 7.3. For some ξ, (7.2) is not satisfied on RD. For example, assume
that D = 2 and consider ξ(x1, x2) = x1x2(x1 + x2), we have ξ†(λ) = 2λ3, and

ξ(−2,1) = 2 > −7 =
ξ†(−2) + ξ†(1)

2
.

Proof. Given σ, τ ∈ RD×N , we consider their overlap matrix

στ∗

N
= (σd ⋅ τd

′

N
)
1⩽d,d′⩽D

,

the diagonal of the overlap matrix στ∗

N is the overlap vector

R(σ, τ) = (σ1 ⋅ τ1
N

, . . . ,
σD ⋅ τD
N

) .

For every A ∈ RD×D, we define

ξ(A) = ξ(A11, . . . ,Add).

We have ξ(στ∗N ) = ξ (
σ1⋅τ1
N , . . . , σD ⋅τD

N
). According to [17, Poposition 6.6],

there exists a sequence of matrices (C(p))p⩾1 such that C(p) ∈ SDp

+ and, for

every A ∈ RD×D,

ξ(A) =∑
p⩾1

C(p) ⋅A⊗p.

Since ξ(A) only depends on the diagonal of A, the matrices C(p) must be
diagonal with nonnegative coefficients. In particular, there exists nonnegative
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real numbers (ai1,...,iD)i1,...,iD⩾0, such that for every x ∈ RD,

ξ(x) = ∑
i1,...,iD⩾0

ai1,...,iD

D

∏
d=1

xidd .

Therefore, for every λ ∈ R,

ξ†(λ) =∑
I⩾0

λI ∑
i1,...,iD⩾0
∑D

δ=1 iδ=I

ai1,...,iD

This shows that ξ† has a power series expansion with nonnegative coefficients,
so ξ† is convex on R+. In addition, since ξ is permutation-invariant, given

x ∈ RD
+ we have

ξ(x) = 1

D!
∑

s∈SD

ξ(xs)

= ∑
i1,...,iD⩾0

ai1,...,iD
1

D!
∑

s∈SD

D

∏
d=1

xid
s(d).

According to Proposition 7.1, we thus have

ξ(x) ⩽ ∑
i1,...,iD⩾0

ai1,...,iD
1

D

D

∑
d=1

x
∑D

δ=1 iδ
d

= 1

D

D

∑
d=1
∑
I⩾0

xId ∑
i1,...,iD⩾0
∑D

δ=1 iδ=I

ai1,...,iD

= 1

D

D

∑
d=1

ξ†(xd).

□

Remark 7.4. As a consequence of the proof of (7.2) we have just given and
the second part of Proposition 7.1, if the power series of ξ only has terms of
even degree, then (7.2) holds for x ∈ RD.

7.2. Positivity principle for multiple species. Roughly speaking, the
positivity principle is the statement that if σ, τ ∈ RD×N are independent
random variables drawn from the Gibbs measure, then almost surely in the
limit N → +∞ the overlaps σd⋅τd

N are all nonnegative. When D = 1, it is well
known that the positivity principle is verified as soon as the Gibbs measure
satisfies the so-called Ghirlanda–Guerra identities [20, Theorem 3.4]. When
D > 1 and PN is the uniform probability measure on a product of D spheres,
it was shown that the statement still holds true [3, Section 3.2]. In this
section, for the convenience of the reader and the sake of completeness, we
briefly explain how the arguments given to justify [3, Lemma 3.3] can be
adapted into a proof of the positivity principle for models with D > 1 and
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PN = P⊗N1 . The proofs are unchanged, and we simply replace the uniform

probability measure on a product of D spheres by P⊗N1 .

Given σ, τ ∈ RD×N , we let R(σ, τ) = (σd⋅τd
N )1⩽d⩽D. Given w ∈ [0,1]D, we

define

Rw(σ, τ) = w ⋅R(σ, τ)
D

= 1

D

D

∑
d=1

wd
σd ⋅ τd
N

.

We let W = (wq)q⩾1 denote a countable dense subset of [0,1]D. We assume
that W contains e1 . . . , eD and does not contain the null vector. We fix
p ⩾ 1, for every q ⩾ 1, we consider the centered Gaussian Process Hpert

N,p,q with
covariance

(7.3) EHpert
N,p,q(σ)H

pert
N,p,q(τ) =

N

4p+q
(Rwq(σ, τ))p .

Such a process can be explicitly defined by setting

Hpert
N,p,q(σ) =

2−(p+q)

N
p−1
2 D

p
2

D

∑
d1,...,dp=1

N

∑
i1,...,ip=1

J(d1,...,dp),(i1,...,ip)
p

∏
k=1

√
wdkσdk,ikτdk,ik ,

Where the coefficients J(d1,...,dp),(i1,...,ip) are independent standard normal

random variables. We fix (up,q)p,q⩾1 a sequence of numbers in [1,2] and we
let

(7.4) Hpert
N (σ) = ∑

p,q⩾1
up,qH

pert
N,p,q(σ).

Soon we are going to choose random coefficients (up,q)p,q⩾1 that are inde-
pendent and uniformly distributed in [1,2] and independent of every other
source of randomness. We denote by Eu the expectation with respect to this
law. We let cN = N−ω with 0 < ω < 1/2, and for every nonrandom function
H ∶ RD×N → R, we consider

H̃N(σ) =H(σ) + cNHpert
N (σ).

First, note that by introducing the perturbation cNH
pert
N we do not change

the limiting value of the free energy. Indeed, by applying Jensen’s inequality
twice, we obtain

(7.5) 0 ⩽ (− 1

N
E log∫ eH(σ)dPN(σ)) − (−

1

N
E log∫ eH̃(σ)dPN(σ)) ⩽

c2N
2
.

We let G̃N denote the Gibbs measure associated to H̃N , that is

(7.6) dG̃N(σ)∝ eH̃N (σ)dPN(σ).

We denote by EHpert
N

the expectation with respect to the randomness of the

Gaussian process Hpert
N . We denote by G̃⊗kN (A) the probability of the event

A under the probability measure G̃⊗kN . As usual, let σ, τ denote two random

variables sampled independently with law G̃N . The following lemma is [3,
Lemma 3.3].
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Lemma 7.5 ([3]). For every ε > 0,

lim
N→+∞

sup
H(σ)

EuEHpert
N
G̃⊗2N (∃d,

σd ⋅ τd
N

⩽ −ε) = 0,

where the sup is taken over all nonrandom functions H ∶ RD×N → R satisfying

∫ exp ∣H(σ)∣dPN(σ) < +∞ and Eu denote the expectation with respect to the
parameters (up,q)p,q⩾1 in (7.4).

Proof. It suffices to show that for every d ∈ {1, . . . ,D},

lim
N→+∞

sup
H(σ)

EuEHpert
N

G̃⊗2N (
σd ⋅ τd
N

⩽ −ε) = 0.

Let (σℓ)ℓ⩾1 be independent and identically distributed random variables with

law G̃N . We let Rℓ,ℓ′ = R(σℓ, σℓ
′), and for every d ∈ {1, . . . ,D}, Rd

ℓ,ℓ′ =
σℓ
d⋅σℓ′

d

N .

The result will follow from the fact that the array (Rd
ℓ,ℓ′)ℓ,ℓ′⩾1 satisfies the

Ghirlanda-Guerra identities in the limit N → +∞. More precisely, if we define
for any n ⩾ 1, R(n) = (Rℓ,ℓ′)1⩽ℓ,ℓ′⩽n and for every d ∈ {1, . . . ,D}, for every
real valued bound measurable function g = g(R(n)) and every continuous
function, h ∶ R→ R,

∆d(g, n, h) = ∣EG̃N (gh(Rd
1,n+1)) −

1

n
EG̃N (gh(Rd

1,2))

− 1
n

n

∑
l=2

EG̃N (gh(Rd
1,ℓ)) ∣.

Then, according to [3, Theorem A.3], we have

lim
N→+∞

sup
H

Eu∆
d(g, n, h) = 0.

We can then proceed as in [20, Theorem 3.4] to deduce the desired result. □

7.3. The interpolation. Given ς ∈ RN , we define

Hsym
N (ς) =HN(ς, . . . , ς).

We let Hsym,1
N , . . . ,Hsym,D

N be D independent copies of the Gaussian process

Hsym
N and we assume that (Hsym,1

N , . . . ,Hsym,D
N ) is independent of HN . For

every σ = (σ1, . . . , σD) ∈ RD×N , we define

(7.7) KN(σ) =
1√
D

D

∑
d=1

Hsym,d
N (σd).

The Gaussian process KN satisfies

E [KN(σ)KN(τ)] = NΞ (R(σ, τ)) ,

where Ξ(x) = 1
D ∑

D
d=1 ξ† (xd). Note that, Ξ† =ξ†, also note that according to

Proposition 7.2, the function Ξ is convex on RD
+ . In particular, the family

of Gaussian processes (KN)N⩾1 is covered by Theorem 1.3. Thus, the free
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energy of the Gaussian process KN converges when N → +∞ and the limit
free energy can be expressed using a variational formula. We let FN denote
the free energy of HN as in (1.2), and we let GN denote the free energy of
KN .

Theorem 7.6. Assume that ξ satisfies (7.2), we have for every t ⩾ 0,

(7.8) lim sup
N→+∞

FN(t) ⩽ lim
N→+∞

GN(t).

Remark 7.7. According to Proposition 7.2, as soon as ξ is permutation-
invariant, ξ satisfies (7.2). So we can deduce Theorem 1.4 from Theorem 7.6
by applying Theorem 1.3 to the Hamiltonian KN and observing that,

(ξ† (
⋅
D
))
∗
(λ) = Ξ∗(λ, . . . , λ).

Remark 7.8. Note that in fact, as stated, neither P1 nor ξ are required to
be permutation-invariant for Theorem 7.6 to hold. But if P1 or ξ is not
permutation-invariant, there is no reason to believe that (7.8) is a tight upper
bound, and in fact the proof of Theorem 7.10 given below breaks down in
this case.

Proof. Let Hpert
N be the Gaussian process defined in (7.4), we take it inde-

pendent of HN and KN . Recall that the covariance of Hpert
N depends on

some parameter u and we denote Eu the expectation with respect to this
parameter. Without loss of generality, throughout the proof we assume that
t = 1/2. For every λ ∈ [0,1], define

HN,λ(σ) =(
√
1 − λHN(σ) − (1 − λ)

N

2
ξ (R(σ,σ)))

+ (
√
λKN(σ) − λ

N

2
Ξ (R(σ,σ)))

+ cNHpert
N (σ).

Where cN = N−ω with 0 < ω < 1/2. We let ⟨⋅⟩λ denote the Gibbs measure
associated to HN,λ(σ) and we also define the associated free energy

φN(λ) = −
1

N
E log∫ exp (HN,λ(σ))dPN(σ)

Here, as previously, we use the symbol E to denote expectation with respect
to every source of randomness involved. In particular, E integrates out the
randomness of u and φN(λ) is a nonrandom quantity. Note that crucially,

thanks to (7.5), the nature of the term cNH
pert
N is indeed perturbative as it

does not influence the value of the limit free energy of ⟨⋅⟩λ. Inequality (7.8)
can be rewritten as

lim sup
N→+∞

φN(0) ⩽ lim sup
N→+∞

φN(1).
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We will prove this inequality by observing that φN is almost a nondecreasing
function of λ. For every λ ∈ (0,1), φN is differentiable at λ and we have

φ′N(λ) = −
1

N
E ⟨ d

dλ
HN,λ(σ)⟩

λ

= − 1

N
(E ⟨− 1

2
√
1 − λ

HN(σ) +
1

2
√
λ
KN(σ) +

N

2
(ξ −Ξ) (R(σ,σ))⟩

λ

) ,

Let us now treat the first term in the above display using Gaussian integration
by parts [20, Lemma 1.1]. For every σ, τ ∈ RD, we have

E [(− 1

2
√
1 − λ

HN(σ) +
1

2
√
λ
KN(σ))HN,λ(τ)]

= E [− 1

2
√
1 − λ

HN(σ)
√
1 − λHN(τ)] +E [

1

2
√
λ
KN(σ)

√
λKN(τ)]

+E[cNHpert
N (σ)]E [− 1

2
√
1 − λ

HN(σ) +
1

2
√
λ
KN(σ)]

+ ((1 − λ)ξ + λΞ)E [− 1

2
√
1 − λ

HN(σ) +
1

2
√
λ
KN(σ)]

= −1
2
Nξ (R(σ, τ)) + 1

2
NΞ (R(σ, τ)) + 0 + 0

= N
2
(Ξ − ξ) (R(σ, τ)) .

Thus, the Gaussian integration by parts formula yields

φ′N(λ) =
1

2
E ⟨(Ξ − ξ) (R(σ, τ))⟩ .

From Remark 7.4, if the power series that defines the function ξ does not
include any term of odd degree, then Ξ − ξ is nonnegative on RD which
implies that φ′N(λ) ⩾ 0 and we do not need the perturbation cNH

pert
N (σ) in

this case. However, if some terms of odd degree are present, then according to
Proposition 7.2 and Remark 7.3, we can only claim that Ξ− ξ is nonnegative
on RD

+ . Since the overlaps σd⋅τd
N can take values in [−1,1], the previous

display only implies

φ′N(λ) ⩾ δ(ε) −
∥Ξ − ξ∥∞

2
E ⟨1∃d, σd ⋅τd

N
⩽−ε⟩λ ,

where δ(ε) =min{ (Ξ−ξ)(R)2
∣ ∀d, Rd ∈ (−ε,1]}. Since Ξ− ξ is locally Lipschitz

and nonnegative on RD
+ , there exists C > 0 such that δ(ε) ⩾ −Cε. Therefore,

φN(1) ⩾ φN(0) −Cε −
∥Ξ − ξ∥∞

2
∫

1

0
E ⟨1∃d, σd ⋅τd

N
⩽−ε⟩λ dλ.

To control the remaining term, observe that

E ⟨1∃d, σd ⋅τd
N
⩽−ε⟩λ ⩽ supH

EuEHpert
N

G̃⊗2N (∃d,
σd ⋅ τd
N

⩽ −ε) ,
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where, as in Lemma 7.5, the supremum is taken over all nonrandom Hamil-
tonians H, EHpert

N
denotes the expectation with respect to Hpert

N and G̃N is

the Gibbs measure of H + cNHpert
N . In particular, the right-hand side in the

previous display is independent of λ and according to Lemma 7.5, it vanishes
in the limit N → +∞. Letting N → +∞, we obtain

lim sup
N→+∞

φN(1) ⩾ lim sup
N→+∞

φN(0) −Cε − 0.

Since ε > 0 is arbitrary, we can conclude by letting ε→ 0. □

7.4. Connections with the Hamilton-Jacobi approach. When ξ is
nonconvex, the Parisi formula completely breaks down. To the best of our
knowledge, until recently, it seems that there was no clear conjecture on what
the limit of the free energy should be in this case. In [16, Conjecture 2.6], it
is proposed that results such as Theorem 1.6 should generalize to nonconvex
models. It was later shown in [17, 15] that the lim inf of FN(t) as N → +∞
is lower bounded in terms of the viscosity solution of a Hamilton-Jacobi
equation. This lower bound holds, regardless of convexity and permutation
invariance.

Recall that ξ†(λ) = ξ(λ, . . . , λ) and ψ†(p) = ψ(p, . . . , p), also recall that

Ξ(x) = 1

D

D

∑
d=1

ξ(xd, . . . , xd).

If we combine the lower bound of [17, 15] with Theorem 7.6 and 5.9, we
obtain the following proposition.

Proposition 7.9. Assume that ξ is permutation-invariant and only depends
on the diagonal coefficients of its argument, assume that P1 is permutation-
invariant. Then, even when ξ is nonconvex on SD

+ , we have

(7.9) f(t,0) ⩽ lim inf
N→+∞

FN(t) ⩽ lim sup
N→+∞

FN(t) ⩽ g(t,0),

where f and g are the viscosity solutions of the following equations,

(7.10)

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∇f) = 0 on (0,∞) × (Q(RD
+ ) ∩L2)

f(0, ⋅) = ψ on Q(RD
+ ) ∩L2,

(7.11)

⎧⎪⎪⎨⎪⎪⎩

∂tg − ∫ ξ† (∇gD ) = 0 on (0,+∞) × (Q(R+) ∩L2)
g(0, ⋅) = ψ† on Q(R+) ∩L2.

The results of Section 5.2 can be regarded as a proof of the fact f(t,0) =
g(t,0) when ξ is convex. To prove this statement we only relied on the
convexity of ξ† and the fact that f is not simply a solution in the viscosity
sense but also a Gateaux differentiable solution. To the best of our knowledge,
there is no known proof of the fact that f is Gateaux differentiable when
ξ is nonconvex. Indeed, in the convex case, proving that f is Gateaux
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differentiable amounts to observing that it is semi-convex thanks to the Hopf-
Lax representation and semi-concave thanks to the fact it can be written
as the limit of the enriched free energy (see [7, Proposition 8.6]). Since the
Hopf-Lax representation for viscosity solutions is not available when ξ is
nonconvex, some innovative new ideas seem to be needed to prove (or disprove)
the Gateaux differentiability of f in the nonconvex case. Nevertheless, for
nonconvex models, we can formulate the following hypothesis.

The viscosity solution of (7.10) is Gateaux

differentiable on (0,∞) × (Q↑(RD
+ ) ∩L∞).

(Hξ,P1)

In physics terms, (Hξ,P1) can be regarded as the statement that no first or-
der phase transition occurs in the mean-field spin glass model with covariance
function ξ and reference measure P1. According to [7, Propositions 7.2 & 8.6],
when ξ is convex, (Hξ,P1) holds. When ξ is nonconvex, assuming (Hξ,P1)
holds, we obtain the following representation for the limit free energy.

Theorem 7.10. Assume that ξ is permutation-invariant and only depends
on the diagonal coefficients of its argument, assume that P1 is permutation-
invariant. If (Hξ,P1) is true, then for every t > 0, the free energy FN(t)
converges as N → +∞ and

(7.12) lim
N→+∞

FN(t) = g(t,0),

where g is the viscosity solution of (7.11). Furthermore, we have g(t,0) =
f(t,0), where f is the viscosity solution of (7.10) and

g(t,0) = sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
Ξ∗ (p(u)idD

t
)du} .

Remark 7.11. In fact, even if (Hξ,P1) only holds on a region of the form

[0, tc) × (Q↑(RD
+ ) ∩L∞) for some tc > 0 then (7.12) still holds for t ⩽ tc.

Remark 7.12. It seems plausible that there exists tc > 0 such that the weaker
version of (Hξ,P1) mentioned in Remark 7.11 holds. Indeed, ψ is Gateaux

differentiable on Q(RD
+ ) ∩ L2 and its gradient is a Lipschitz function [7,

Corollary 5.2]. Therefore, the characteristic curves

q ↦ q − t∇ξ(∇ψ(q)),

are injective when t ⩾ 0 is small enough (t < 1/∥∇ξ(∇ψ)∥Lip). Usually, the
viscosity solution remains differentiable as long as the characteristic curves
are injective.

When D = 1, the Parisi formula is a differentiable function of β =
√
2t

[19]. Therefore, the right-hand side of (7.12) is differentiable on (0,+∞) as
a function of t. So at least (Hξ,P1) is not in direct contradiction with (7.12).
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Conditionally on (Hξ,P1), Theorem 7.10 confirms [16, Conjecture 2.6] for
permutation-invariant models. Note that the argument given below will not
show that (t, q)↦ limN→+∞ FN(t, q) is the viscosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tf − ∫ ξ(∇f) = 0 on (0,∞) × (Q(RD
+ ) ∩L2)

f(0, ⋅) = ψ on Q(RD
+ ) ∩L2.

In fact, even under (Hξ,P1), it does not follow from the proof below that

FN(t, q) converges as N → +∞ when q is not of the form (p, . . . , p).
It is worth mentioning that Theorem 7.10 still holds if (Hξ,P1) is replaced

by the assumption that the enriched free energy converges as N → +∞ and
the limit is Gateaux differentiable on (0,∞)×(Q↑(RD

+ ) ∩L∞). To prove this
version of Theorem 7.10, one can adapt the argument given below, replacing
f the viscosity solution of (7.10) by the limit free energy and appealing to
[7, Proposition 7.2]. Note that when choosing to state Theorem 7.10 this
way, the convergence of the free energy as N → +∞ is a hypothesis, not a
conclusion.

Proof of Theorem 7.10. Let f and g denote the viscosity solutions of (7.10)
and (7.11). Given (7.9), it suffices to verify that f(t, 0) = g(t, 0) to prove the
desired result. As previously, for every p ∈ Q(R+) ∩L1, we let

f †(t, p) = f(t, (p, . . . , p)).

Step 1. We show that for every s ∈SD,

f(t, (p1, . . . , pD)) = f(t, (ps(1), . . . , ps(D))).

Given s ∈SD, we let

fs(t, (p1, . . . , pD)) = f(t, (ps(1), . . . , ps(D)))
ψs(p1, . . . , pD) = ψ(ps(1), . . . , ps(D)).

Since ψ depends only on P1 and not on ξ, according to Proposition 5.1, we
have ψs = ψ. Using the permutation invariance of ξ, it can be checked that
f s is a viscosity solution of (7.10). By uniqueness of the viscosity solution of
(7.10), we obtain fs = f .
Step 2. We show that f † is a strong solution of

⎧⎪⎪⎨⎪⎪⎩

∂tf
† − ∫ Ξ† (∇f

†

D ) = 0 on (0,+∞) × (Q↑(R+) ∩L∞)
f †(0, ⋅) = ψ† on Q↑(R+) ∩L∞.

Using Step 1, we can proceed as in the proof of Proposition 5.7 to discover that
for every (t, p) ∈ (0,+∞) × (Q↑(R+) ∩L∞), f †(t, ⋅) is Gateaux differentiable
at p and

(7.13) ∇f(t, (p, . . . , p)) = (∇f
†(t, p)
D

, . . . ,
∇f †(t, p)

D
) .
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It then follows from (Hξ,P1) that

∂tf
†(t, p)−∫ ξ† (

∇f †(t, p)
D

) = ∂tf(t, (p, . . . , p))−∫ ξ(∇f(t, (p, . . . , p))) = 0.

Finally, since ξ† = Ξ† we conclude Step 2.

Step 3. We show that f(t,0) = g(t,0).
According to Proposition 7.2, Ξ is convex on RD

+ and Ξ is the covariance
function of the process defined by (7.7). In Theorem 5.9 we have shown
that, when the nonlinearity is convex, any strong solution of a Hamilton-
Jacobi equation on Q↑(R+) ∩L∞ is also a viscosity solution on Q(R+) ∩L2.
Therefore, using Step 2 and applying Theorem 5.9 to Ξ† and f †, we discover

that f † the viscosity solution of
⎧⎪⎪⎨⎪⎪⎩

∂tf
† − ∫ Ξ† (∇f

†

D ) = 0 on (0,+∞) × (Q(R+) ∩L2)
f †(0, ⋅) = ψ† on Q(R+) ∩L2.

Once again, since Ξ† = ξ†, f † is in fact the viscosity solution of (7.11). Finally,

by uniqueness of the viscosity solution, it follows that f † = g and choosing
p = 0, we deduce f(t,0) = g(t,0). Thus FN(t) converges as N → +∞ and

lim
N→+∞

FN(t) = f(t,0) = g(t,0).

Step 4. We show that

g(t,0) = sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
Ξ∗ (p(u)idD

t
)du} .

According to Proposition 7.2, ξ† is convex on R+. Therefore, it follows from
the one dimensional Hopf-Lax representation [9, Proposition A.3] that,

g(t,0) = sup
p∈Q(R+)∩L∞

{ψ†(p) − t∫
1

0
(ξ† (

⋅
D
))
∗
(p(u)

t
)du} .

In addition, Ξ is convex on RD
+ and we have

(ξ† (
⋅
D
))
∗
(λ) = Ξ∗(λ, . . . , λ).

Thus,

g(t,0) = sup
p∈Q(R+)∩L∞

{ψ(pidD) − t∫
1

0
Ξ∗ (p(u)idD

t
)du} .

□
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