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Abstract. We study mean-field spin glass models with general vector
spins and convex covariance function. For those models, it is known
that the limit of the free energy can be written as the supremum of a
functional, this is the celebrated Parisi formula.

In this paper, we observe that the Parisi functional extends into a
concave and Lipschitz functional on the set of signed measures. We use
this fact and Fenchel-Moreau duality to derive an un-inverted version of
the Parisi formula. Namely, we show that the limit of the free energy can
be written as the infimum of a functional related to the Parisi functional.

This un-inverted formula can be interpreted as a Hopf-like formula
for some Hamilton-Jacobi equation in Wasserstein space.
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1. Introduction

1.1. Preamble. Let D ⩾ 1 be an integer, and let (HN(σ))σ∈(RN )D be

a centered Gaussian field such that, for every σ = (σ1, . . . , σD) and τ =
(τ1, . . . , τD) ∈ (RN)D, we have

(1.1) E [HN(σ)HN(τ)] = Nξ (
στ⊺

N
) ,

where ξ ∈ C∞(RD×D;R) is some fixed smooth function, and where στ⊺

denotes the matrix of scalar products

(1.2) στ⊺ = (σd ⋅ τd′)1⩽d,d′⩽D.

We often identify (RN)D with the space RD×N of D-by-N matrices, which
makes the notation in (1.2) natural. We assume that ξ has a convergent
power-series expansion. We also give ourselves a reference measure P1 on
RD of compact support, and we set PN = (P1)⊗N , which we think of as a
probability measure on RD×N . In other words, a sample σ = (σd,i)1⩽d⩽D,1⩽i⩽N
from PN is such that the columns (σ⋅,i)1⩽i⩽N are independent with law P1.
We are interested in the study of the large-N behavior of the free energy

(1.3) FN(t, δ0) = −
1

N
E log∫ exp(

√
2tHN(σ) − tNξ (

σσ⊺

N
)) dPN(σ),

where t ⩾ 0. The term ξ (σσ⊺N ) in (1.3) is introduced as a convenience

to simplify the expression of the limit; it is constant in classical cases of
interest, such as when the coordinates of σ takes values in {−1,1} and
ξ depends only on the diagonal entries of its argument. In general, the
second argument of FN can be any monotone probability measure on the
space SD

+ of positive semi-definite matrices, subject to a mild integrability
requirement; the expression in (1.3) is with this argument chosen to be the
Dirac mass at the origin. To explain what this space is, let us say that a
path q ∶ [0,1) → SD

+ is nondecreasing if for every u ⩽ v ∈ [0,1), we have
q(v) − q(u) ∈ SD

+ . A probability measure on SD
+ is said to be monotone if

it is the image of the Lebesgue measure on [0,1] through a nondecreasing
path from [0,1) to SD

+ . We write P↑(SD
+ ) to denote the set of monotone

measures on SD
+ , which is a subset of the set P(SD

+ ) of probability measures
on SD

+ . For every p ∈ [1,+∞], we also write Pp(SD
+ ) to denote the subspace

of P(SD
+ ) of measures with finite p-th moment, with the understanding that

P∞(SD
+ ) is the subset of probability measures with compact support; we

also write P↑p(SD
+ ) = P↑(SD

+ ) ∩ Pp(SD
+ ). We postpone the precise definition

of FN(t, µ) for arbitrary µ ∈ P↑1(S
D
+ ) to (2.5). In short, this quantity is

obtained by adding an energy term in the exponential on the right side of
(1.3) to encode the interaction of σ with an external magnetic field, and this
external magnetic field has an ultrametric structure whose characteristics
are encoded by the measure µ.
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One can check [12, Proposition 3.1] that FN(0, ⋅) does not depend on N ;

for every µ ∈ P↑1(S
D
+ ), we write

ψ(µ) = F 1(0, µ) = FN(0, µ).

This follows from the fact PN = P⊗N1 and that at t = 0 the N -body Hamilton-
ian has the same law as N copies of the 1-body Hamiltonian. When instead
PN is the uniform measure on the sphere of radius

√
N centered at 0 in

(RD)N , FN(0, ⋅) depends on N but converges to a smooth function of µ as
N → +∞ [12, Proposition 3.1]. In what follows, we focus on models with
PN = P⊗N1 .

When ξ is convex on SD
+ , the limiting value of FN(t, δ0) is known, this is

the celebrated Parisi formula. The Parisi formula was first conjectured in [19]
using a sophisticated non-rigorous argument now referred to as the replica
method. The convergence of the free energy as N → +∞ was rigorously
established in [10] in the case of the so-called Sherrington-Kirkpatrick model
which corresponds to D = 1, ξ(x) = x2 and P1 = Unif({−1,1}). The Parisi
formula for the Sherrington-Kirkpatrick model was then proven in [9, 21].
This was extended to the case D = 1, P1 = Unif({−1, 1}) and ξ(x) = ∑p⩾1 apx

p

with ap ⩾ 0 in [15]. Some models with D > 1 such as multispecies models, the
Potts model, and a general class of models with vector spins were treated in
[16, 17, 18], under the assumption that ξ is convex on RD×D. Finally, the
case D > 1 was treated in general in [4] assuming only that ξ is convex on
the set of positive semi-definite matrices. The following version of the Parisi
formula is [4, Corollary 8.2].

Theorem 1.1 ([4]). If ξ is convex on SD
+ , then we have for every t > 0

(1.4) lim
N→+∞

FN(t, δ0) = sup
µ∈P↑∞(SD

+ )
{ψ(µ) − t∫ ξ∗ (x

t
)dµ(x)} .

Here, ξ∗ denotes the convex dual of ξ with respect to the cone SD
+ , it is

the function RD×D → R ∪ {+∞} defined by

(1.5) ξ∗(a) = sup
b∈SD

+

{a ⋅ b − ξ(b)} .

1.2. Main results. In the classical version of the Parisi formula (1.4), the
limit free energy is written as the supremum of a functional. In this paper, we
manipulate the right-hand side of (1.4) to show that there exists a functional
related to ψ whose infimum is equal to the limit of the free energy. Unless
stated otherwise, we always work under the following assumptions, they are
used to make sure that Theorem 1.1 holds.

(H1) For every N ⩾ 1, PN = P⊗N1 .

(H2) The function ξ is convex on SD
+ .

(H3) The function ξ admits an absolutely convergent power series.
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Here and throughout, we will use ∫ hdµ as a shorthand for ∫SD
+
h(x)dµ(x).

When D = 1 we have that P↑(SD
+ ) = P(R+) is a convex set, and we have the

result of [2] on the convexity of the Parisi functional, which is essentially the
mapping −ψ, up to a linear term and a change of variables (see also [12]).
This motivates the introduction of ψ∗ the concave dual of ψ. The function
ψ∗ is defined for every Lipschitz function χ ∶ R+ → R by

ψ∗(χ) = inf
µ∈P1(R+)

{∫ χdµ − ψ(µ)} .

Given a Lipschitz function χ ∶ R+ → R, we also define for every x ∈ R+,

(1.6) Stχ(x) = sup
y∈R+
{χ(x + y) − tξ∗ (y

t
)} .

We recall that FN(t, µ) for µ ≠ δ0 is defined in (2.5).

Theorem 1.2. Assume (H1), (H2) and (H3), also assume that D = 1, then
for every t ⩾ 0 and µ ∈ P1(R+), we have

(1.7) lim
N→+∞

FN(t, µ) = inf
χ
{∫ Stχdµ − ψ∗(χ)} ,

where the infimum is taken over the set of 1-Lipschitz, convex and nonde-
creasing functions χ ∶ R+ → R.

We add that when χ is convex, according to [5, Proposition 6.3], for every
x ∈ R+, the quantity Stχ(x) can also be represented in the following way,

(1.8) Stχ(x) = sup
y∈R+
{xy − χ∗(y) + tξ(y)} ,

where χ∗(y) = supx∈R+ {xy − χ(x)} is the convex dual of χ.

We equip SD, the set of D ×D symmetric matrices, with the Frobenius
inner product,

x ⋅ y =
D

∑
d,d′=1

xdd′ydd′ .

We let ∣ ⋅ ∣ denote the associated norm and B(0, 1) denotes the centered unit
ball in SD with respect to ∣ ⋅ ∣ and Kξ = ∇ξ(SD

+ ∩B(0,1)). When D > 1, the
set P↑(SD

+ ) is not convex. Due to this technical difficulty, we were unable to
obtain the exact analog of (1.7) in this case. To circumvent this difficulty,
we build a Lipschitz extension of ψ defined on the set of signed measures on
Kξ. This yields a formula closely related to (1.7) in which ψ∗ and Stχ are
replaced by the following

(1.9) ψξ
∗(χ) = inf

µ∈P↑(SD
+ )∩P(Kξ)

{∫ χdµ − ψ(µ)} ,

(1.10) S̃tχ(x) = sup
y∈SD

+ ∩B(0,1)
{χ(x + t∇ξ(y)) − tξ∗ (∇ξ(y))} .
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Theorem 1.3. Assume (H1), (H2) and (H3), then for every t ⩾ 0 we have

(1.11) lim
N→+∞

FN(t, δ0) = inf
χ
{S̃tχ(0) − ψξ

∗(χ)} ,

where the infimum is taken over the set of 1-Lipschitz functions χ ∶ SD
+ → R.

When mean-field spin glass models were first studied, it seemed natural
to believe that the limit free energy could be written as the infimum of a
functional. In this sense (1.4) which was first put forward in [19], can be
referred to as an inverted variational formula. Below, we will therefore refer
to formulas such as (1.7) and (1.11) as un-inverted variational formulas. We
point out that a different un-inverted formula has already been obtained in
[14, Theorem 1], where it is shown that the limit free energy can be written
as an infimum over a set of martingales.

We finish this introduction by discussing some possible interpretations
and generalizations of Theorems 1.2 and 1.3. We rely on the fact that, as
pointed out in [12], the limit free energy is related to the viscosity solution
of some Hamilton-Jacobi equation on P↑(SD

+ ) (see Theorem 2.1 below).

One can show that any concave upper semicontinuous function on Rd

coincides with the infimum of the family of affine functions that upper
bound it, this is Fenchel-Moreau duality [23, Theorem 2.3.3]. The function
u(t, x) = a ⋅ x + b + tH(a) can be interpreted as the unique solution (in the
viscosity sense) of the Hamilton-Jacobi equation

⎧⎪⎪⎨⎪⎪⎩

∂tu −H(∇u) = 0 on (0,+∞) ×Rd

u(0, x) = a ⋅ x + b.

Given a Hamilton-Jacobi equation on Rd with concave and upper semicontin-
uous initial condition φ, one can represent its unique solution (in the viscosity
sense) as the infimum of the family of solutions with affine initial conditions
that upper-bound φ, this is the Hopf representation [8, Theorem 3.13]. Note
that for the Hopf representation to hold, it is not required to assume that
p↦H(p) is convex.

For Hamilton-Jacobi equations on P↑(SD
+ ), there is an important subtlety

and more precision is needed to define concave and affine functions. There
are two natural notions of geodesics on P↑(SD

+ ). The first are the geodesics
inherited from the inclusion of P↑(SD

+ ) into the space of signed measures
on SD

+ , those are the straight lines λ ↦ λµ + (1 − λ)µ′. The second are the
transport geodesics inherited from the inclusion of P↑(SD

+ ) into L2([0, 1), SD
+ )

via the space of nondecreasing paths q ∶ [0, 1) → SD
+ , those are the images of

the straight lines λ↦ λq+(1−λ)q′ in P↑(SD
+ ). This second kind of geodesics

are not straight lines in P↑(SD
+ ) and can be seen as the geodesics associated

to the optimal transport geometry in P↑(SD
+ ) .

For the Hamilton-Jacobi equation on P↑(SD
+ ) arising in the context of

spin glasses (see (2.10) below), both of those geometries play a role. The



A HOPF-LIKE FORMULA FOR MEAN-FIELD SPIN GLASS MODELS 5

transport derivative ∂µ in (2.10) is defined using the transport geometry and
tracks the infinitesimal slope of a function along the transport geodesics. On
the other hand, the initial condition ψ in (2.10) is concave along straight
lines λ↦ λµ + (1 − λ)µ′.

In [5, Theorem 1.1 (3)], it was shown that if the initial condition in (2.10)
is concave along transport geodesics, then, perhaps unsurprisingly, the Hopf
representation holds. But, it is known that this concavity assumption is not
satisfied by the initial condition of (2.10) in general [11, Section 6].

At first glance, the two competing geometries in the formulation of (2.10)
prevents the existence of a Hopf type representation for the solution. Indeed,
the initial condition is concave along straight lines, so the relevant affine
functions to consider for the Fenchel-Moreau duality are of the form µ ↦
∫ χ(x)dµ(x). But, for a Hamilton-Jacobi equation on P↑(SD

+ ) formulated
with the transport derivative ∂µ and with a fully general nonlinearity of the
form H(∂µf), there is no reason for the solution started with the initial
condition µ↦ ∫ χ(x)dµ(x) to be affine along straight lines. In the context
of (2.10), there are additional structures to exploit in the nonlinear term

∫ ξ(∂µf)dµ and this apparent incompatibility between the two geometries is
resolved. We show in Theorem 4.2 that the solution of (2.10) with initial
condition µ↦ ∫ χ(x)dµ(x) is

(t, µ) ↦ ∫ Stχ(x)dµ(x),

where Stχ is defined in (1.6). This proves that (2.10) does preserve affine
functions (at least when D = 1).

Theorem 1.2 is in fact the statement that when D = 1, the solution of
(2.10) is the infimum of the family of solutions with affine initial conditions
that upper-bound ψ and (1.7) can therefore be interpreted as a Hopf-like
formula for the solution of (2.10).

When ξ is not assumed to be convex on SD
+ , the Parisi formula breaks down

and the value of the limit free energy is not known. In [12] it was conjectured
that, in analogy with the convex case, the limit free energy should be related
to the solution of (2.10). We believe that, at least under some additional
assumptions on P1 and ξ (see (H4) and (H5)), the Hopf-like representation
derived in (1.7) should be available for the solution of (2.10) even when D > 1
and ξ is possibly non-convex on SD

+ . Together with [12, Conjecture 2.6],
this yields a conjectural variational formula for the limiting value of the free
energy when ξ is possibly non-convex on SD

+ (see Conjecture 7.4).

1.3. Organization of the paper. We start by giving a proper definition of
the enriched free energy in Section 2. In Section 3, we give a version of the
Fenchel-Moreau theorem which holds for concave functions defined on the
set of signed measures. In words, this result says that a concave function can
be written as the infimum of the family of affine functions that upper bound
it. In Section 4, using the Fenchel-Moreau theorem, we prove Theorem 1.2,
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the main argument is a sup− inf interchange performed using [20]. To do
so we rely crucially on the fact that P↑(R+) = P(R+) is a convex set. In
Section 5, to compensate for the lack of convexity of P↑(SD

+ ) when D > 1, we
show that any concave Lipschitz function ψ ∶ P↑(SD

+ ) → R can be extended
to a concave Lipschitz function on P(SD

+ ) (and even on the set of signed
measures). The results of Section 5 allows us to prove Theorem 1.3 using
similar arguments than in the proof of Theorem 1.2, this is done in Section 6.
Finally, in Section 7 we explain the link between the un-inverted formulas
and the Hopf-like representation for the viscosity solution of Hamilton-Jacobi
equations.

Acknowledgement. I warmly thank Jean-Christophe Mourrat for moti-
vating this project, as well as many helpful discussions and some decisive
comments and ideas for Section 5.

2. The enriched free energy

Let µ ∈ P↑1(S
D
+ ) be a measure with finite support, we can write

(2.1) µ =
K

∑
k=0
(ζk+1 − ζk)δqk ,

with K ∈ N, ζ0, . . . , ζK+1 ∈ R satisfying

(2.2) 0 = ζ0 < ζ1 < ⋅ ⋅ ⋅ < ζK < ζK+1 = 1,
and q0, . . . , qK ∈ SD

+ such that

(2.3) 0 = q−1 ⩽ q0 < q1 ⋅ ⋅ ⋅ < qK−1 < qK .
The definition of the enriched free energy will involve a probabilistic object
called the Poisson-Dirichlet cascade. We will briefly recall some properties
of this object, a full definition can be found in [15, Section 2.3]. We let

A = N0 ∪N1 ∪ ⋅ ⋅ ⋅ ∪NK .

We think of A as a tree rooted at N0 = {∅}, with depth K and such that
each non-leaf vertex has countably infinite degree. For every k ∈ {0, . . . ,K},
and α ∈ Nk ⊆ A, we let ∣α∣ = k denote the depth of α. For every leaf
α = (n1, . . . , nK) ∈ NK , we let

α∣
k
= (n1, . . . , nk),

with the understanding that α∣
0
is the root. For every α,α′ ∈ A we define

α ∧ α′ = sup{k ∈ {0, . . .K}∣α∣
k
= α′∣

k
} .

A Poisson-Dirichlet cascade is the set (vα)α∈NK of weights of a certain random
probability measure on the set NK of leaves of the tree A. Those weights are
constructed as follows. The children α1, α2, α3, . . . of each vertex α ∈ Nk for
k <K are decorated with the values (uαk)k⩾1 (arranged in decreasing order) of

an independent Poisson point process with intensity measure ζk+1x
−(1+ζk+1)dx.



A HOPF-LIKE FORMULA FOR MEAN-FIELD SPIN GLASS MODELS 7

The weight of the leaf α ∈ NK is then calculated by taking the product of
each of the weights associated to α∣

k
for k ∈ {1, . . .K}. Finally, the weights

are normalized so that their sum is 1. Namely, if α ∈ NK , we have

vα =
wα

∑β∈NK wβ
,

where wα = ∏K
k=1 uα∣

k

.

We say that a random vector z ∈ RD×N is standard Gaussian when
its coordinates in an orthonormal basis form a family of real independent
standard Gaussian random variables. Let (zα)α∈NK be a family of independent
standard Gaussian vectors on RD×N . For every σ ∈ RD×N and α ∈ NK , we
set

(2.4) Hµ
N(σ,α) =

K

∑
k=0
(2qk − 2qk−1)1/2zα∣k ⋅ σ,

where (2qk − 2qk−1)1/2 should be understood as the square root of the sym-
metric positive semi-definite matrix 2qk − 2qk−1. Here, D ×D matrices act on
RD×N via the standard multiplication of D ×D matrices by D ×N matrices.
Alternatively, Hµ

N can be defined as the unique centered Gaussian process

on RD ×NK with the following covariance

EHµ
N(σ,α)H

µ
N(τ, β) = 2qα∧β ⋅ στ

⊥.

For every t ⩾ 0, we define the enriched free energy at (t, µ) by

(2.5) FN(t, µ) = −
1

N
log∫ ∑

α∈NK

exp (Ht,µ
N (σ,α)) vαdPN(σ),

where

(2.6) Ht,µ
N (σ,α) =

√
2tHN(σ) −Ntξ (

σσ⊥

N
) +Hµ

N(σ,α) − qK ⋅ σσ
⊥.

We let Ẽ denote the expectation conditionally on the randomness coming
from (HN(σ))σ∈RD×N . We define the partially and fully averaged free energies

F̃N(t, µ) = Ẽ[FN(t, µ)],
FN(t, µ) = E[FN(t, µ)].

For every t ⩾ 0, F̃N(t, ⋅) is Lipschitz continuous on the set of finitely supported

measures in P↑∞(SD
+ ) [13, Proposition 3.1]. In particular FN and F̃N can be

extended by continuity to R+ × P↑1(S
D
+ ). We let ψ = F1(0, ⋅), that is ψ is the

unique Lipschitz continuous function on P↑1(S
D
+ ) such that for every finitely

supported µ as in (2.1), we have

(2.7) ψ(µ) = −E log∫ ∑
α∈NK

exp (Hµ
1 (σ,α) − qK ⋅ σσ

⊥) vαdP1(σ).
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Let U be a uniform random variable on [0, 1). Given a monotonically coupled
measure, µ ∈ P↑p(SD

+ ), there exists a unique nondecreasing right continuous

path with left limits qµ ∈ Lp([0, 1), SD) such that µ is the law of the random

variableXµ = qµ(U). We letQ(SD
+ ) denote the set of nondecreasing right con-

tinuous paths with left limits, and we defineQp(SD
+ ) = Q(SD

+ )∩Lp([0, 1), SD).
The set Qp(SD

+ ) is a closed convex cone of Lp([0, 1), SD), meaning that it is

a closed convex subset and for every q,q′ ∈ Qp(SD
+ ), t, t′ ⩾ 0 we have

tq + t′q′ ∈ Qp(SD
+ ).

The cone Q2(SD
+ ) is embedded in the Hilbert space L2([0,1), SD), we can

define its dual cone

Q2(SD
+ )∗ = {p ∈ L2([0,1), SD)∣∀q ∈ Q2(SD

+ ), ⟨p,q⟩L2 ⩾ 0} .

Let κ ∈ L2, according to [4, Lemma 3.5], we have κ ∈ Q2(SD
+ )∗ if and only if

for every t ∈ [0,1),

∫
1

t
κ(u)du ∈ SD

+ .

Given q,q′ ∈ Q1(SD
+ ), we write q ⩽ q′ whenever for every t ∈ [0,1),

∫
1

t
q′(u) − q(u)du ∈ SD

+ .

When q,q′ ∈ Q2(SD
+ ), we have q ⩽ q′ if and only if q′ − q ∈ Q2(SD

+ )∗. This

notation can be extended to P↑1(S
D
+ ) by setting µ ⩽ µ′ whenever qµ ⩽ qµ′ .

We say that a function defined on a subset of P↑1(S
D
+ ) is nondecreasing when

it is nondecreasing with respect to the order that we have just defined.

The dual of the closed convex cone Q2(SD
+ )∗ is the cone Q2(SD

+ ) itself,
more precisely we have

(2.8) Q2(SD
+ ) = {q ∈ L2([0,1), SD)∣∀p ∈ Q2(SD

+ )∗, ⟨p,q⟩L2 ⩾ 0} .

This property will be useful to show that certain functions defined on P↑2(S
D
+ )

are nondecreasing.

The point of introducing the enriched free energy (2.5) is [4, Corollary 8.2]
which we state as Theorem 2.1 below. Roughly speaking, Theorem 2.1 states
that the limit of the enriched free energy is the unique solution to a partial
differential equation. One can recover the classical Parisi formula (1.4) from
Theorem 2.1 by simply setting µ = δ0 in (2.9). Theorem 2.1 gives a new way
of interpreting the Parisi formula, which does not solely rely on a variational
representation. In particular, this point of view allows us to formulate a
credible conjecture for the limit free energy of models whose covariance
function ξ is nonconvex on SD

+ [12, Conjecture 2.6]. We refer to [4, 11, 13]
for partial results in this direction.
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Theorem 2.1 ([4]). Suppose that the function ξ is convex over SD
+ . Then

for every t ⩾ 0 and µ ∈ P↑1(S
D
+ ), we have

(2.9) lim
N→+∞

FN(t, µ) = sup
ν∈P↑∞(SD

+ ),ν⩾µ
{ψ(ν) − tE [ξ∗ (

Xν −Xµ

t
)]} .

Moreover, denoting by f(t, µ) the expression above, we have that f ∶ R+ ×
P↑2(S

D
+ ) → R solves the Hamilton-Jacobi equation

(2.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tf − ∫ ξ(∂µf)dµ = 0 on R+ × P↑2(S
D
+ )

f(0, ⋅) = ψ on P↑2(S
D
+ ).

Remark 2.2. When D = 1, as pointed out in [6, Propostion A.3], we can drop
the condition “ν ⩾ µ” in (2.9) and we have

(2.11) lim
N→+∞

FN(t, µ) = sup
ν∈P∞(R+)

{ψ(ν) − tE [ξ∗ (
Xν −Xµ

t
)]} .

In (2.10), the symbol ∂µ should be interpreted as a derivative of transport
type. Informally, this means that given any sufficiently smooth function
g ∶ P↑2(S

D
+ ) → R, the symbol ∂µg(µ) should be understood as an SD-valued

function defined on SD
+ that is square integrable with respect to the measure

µ and is such that the following holds as µ′ converges to µ in P↑2(S
D
+ ),

g(µ′) = g(µ) +E[∂µg(µ)(Xµ) ⋅ (Xµ′ −Xµ)] + o(E [∣Xµ′ −Xµ∣2]
1
2) .

Definition 2.3. Let g ∶ Q2(SD
+ ) → R and q ∈ Q2(SD

+ ). We say that g is
Fréchet differentiable at q if there exists a unique p ∈ L2([0, 1), SD) such that

lim
r→0

sup
q′∈Q2(SD

+ )
0<∣q−q′∣L2⩽r

g(q′) − g(q) − ⟨p,q′ − q⟩L2

∣q − q′∣L2

= 0.

In this case, we say that p is the Fréchet derivative of g at q and we denote
it ∇g(q).

The derivative ∂µ can be reinterpreted as a Fréchet derivative in the
following way. The map Ω ∶ µ ↦ qµ yields a nonlinear isometric bijection

between P↑2(S
D
+ ) and Q2(SD

+ ). Given a sufficiently smooth function g ∶
P↑2(S

D
+ ) → R, we define g = g ○ Ω−1. Then formally, we have for every

u ∈ [0,1)
∂µg(µ)(qµ(u)) = ∇g(qµ)(u).

In particular, setting f(t,q) = f(t,Ω−1q), the partial differential equation
(2.10) can be seen as a special case of

(2.12)

⎧⎪⎪⎨⎪⎪⎩

∂tf −H(∇f) = 0 on (0,+∞) ×Q2(SD
+ )

f(0,q) = ψ(Ω−1q),
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with H(p) = ∫
1
0 ξ(p(u))du. This is the point of view adopted in [6] to

prove that (2.10) is well-posed. Note that in (2.12) the nonlinearity H
doesn’t depend directly on q, while in (2.10) the nonlinearity depends on µ
through the integration of ξ(∂µf) with respect to µ. Despite this apparent
simplification, some important properties of f and ψ can only be seen when
they are considered as functions of µ and not q. For example ψ ∶ P↑2(S

D
+ ) → R

is concave along straight lines [3], but this doesn’t imply that q↦ ψ(Ω−1q)
is concave, since in general,

q(1−λ)µ0+λµ1
≠ (1 − λ)qµ0 + λqµ1 .

Finally, note that the cone Q2(SD
+ ) has empty interior in L2. We define

Q↑(SD
+ ) as the set of paths q ∈ Q2(SD

+ ) such that there exists c > 0 satisfying
the following for every u ⩽ v,

(q(v) − cvId) − (q(u) − cuId) ∈ SD
+ and Ellipt(q(v) − q(u)) ⩽ 1

c
,

where for m ∈ SD, Ellipt(m) ∈ [1,+∞) denotes the ratio between the smallest
and the largest eigenvalue of m. In practice Q↑(SD

+ ) plays the role of
the interior of Q2(SD

+ ) since for every q ∈ Q↑(SD
+ ) and every Lipschitz

κ ∶ [0,1) → SD, we have q + εκ ∈ Q2(SD
+ ) for every ε > 0 small enough.

3. Fenchel-Moreau duality in Wasserstein space

Let F ⊆ SD
+ be a closed set, and x0 ∈ F . Let L(F,x0) denote the set of Lips-

chitz functions χ ∶ F → R, equipped with the norm ∣χ∣L =max{∣χ(x0)∣, ∣χ∣Lip}
where

∣χ∣Lip = sup
x,y∈F
x≠y

{∣χ(x) − χ(y)∣
∣x − y∣

} .

When the point x0 is clear from context, we simply write L(F ). We let
L⩽1(F ) denote the unit ball of L(F ), that is

L⩽1(F ) = {χ ∈ L(F )∣ ∣χ∣L ⩽ 1}.
Note that, according to the Arzelà-Ascoli theorem, L⩽1(F ) is compact with
respect to the topology of local uniform convergence. We also let L0(F )
denote the set of functions χ ∈ L(F ) satisfying χ(x0) = 0 and L0⩽1(F ) =
L0(F ) ∩ L⩽1(F ).

Given a signed Borel measure ν on F with finite first moment, we define
its Kantorovich-Rubinstein norm,

∣ν∣M = sup
χ∈L⩽1(F )

{∫
F
χdν} .

We let M1(F ) denote the completion with respect to ∣ ⋅ ∣M of the set of
signed Borel measures on F having finite first moment. The closed linear
span of {δx∣x ∈ F} is M1(F ). Note that the distance d(ν, ν′) = ∣ν − ν′∣M
induced by the norm ∣ ⋅ ∣M coincides with the optimal transport distance
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when restricted to P1(F ) ×P1(F ) [22, Theorem 5.10], in particular for every
ν, ν′ ∈ P1(F ) we have

∣ν − ν′∣M = inf
π∈Π(ν,ν′)

{∫
F×F
∣x − y∣dπ(x, y)} ,

where Π(ν, ν′) denotes the set of probability measures π ∈ P1(F × F ) such
that π1 = ν and π2 = ν′. Here and throughout, π1 and π2 denote the first and
second marginal of the coupling π. More precisely, if pi ∶ F × F → F denotes
the projection on the i-th coordinate, we have πi = pi#π

Proposition 3.1. The continuous dual of (M1(F ), ∣ ⋅ ∣M) is (L(F ), ∣ ⋅ ∣L).

Proof. Let ℓ be a continuous linear form on (M(F ), ∣ ⋅ ∣M), for every x ∈ F
we let χ(x) = ℓ(δx). For every x, y ∈ F we have

∣χ(x) − χ(y)∣ = ∣ℓ(δx − δy)∣ ⩽ c∣δx − δy ∣M = c∣x − y∣,

therefore χ ∈ L(F ). For every x1, . . . , xK ∈ F and for every λ1, . . . , λK ∈ R,
we have

ℓ(
K

∑
k=1

λkδxk
) =

K

∑
k=1

λkχ(xk).

This means that for every finitely supported µ ∈ M1(F ),

ℓ(µ) = ∫ χdµ.

Since χ ∈ L(F ), the map µ ↦ ∫ χdµ defines a continuous linear form on
(M1(F ), ∣ ⋅ ∣M) that coincides with ℓ on the set of finitely supported measures.
By density, we have for every µ ∈ M1(F ),

ℓ(µ) = ∫ χdµ.

We have proven that (M1(F ), ∣ ⋅ ∣M)∗ = (L(F ), ∣ ⋅ ∣∗M), where

∣χ∣∗M = sup
∣µ∣M⩽1

{∫ χdµ} .

To conclude, let us show that for every χ ∈ L(F ), ∣χ∣∗M = ∣χ∣L. By construc-
tion, it is clear that ∣χ∣∗M ⩽ ∣χ∣L. To show the converse inequality, one can
plug in µ = ±(δx − δy)/∣x− y∣ and µ = ±δx0 in the previous display to discover
that

∣χ∣∗M ⩾
∣χ(x) − χ(y)∣
∣x − y∣

,

∣χ∣∗M ⩾ ∣χ(x0)∣. □

We say that a sequence of measures (µn)n inM1(F ) weakly converges to
µ inM1(F ) as n→ +∞ when for every χ ∈ L(F ),

lim
n→+∞∫ χdµn = ∫ χdµ.
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We say that a function φ ∶ M1(F ) → R∪ {−∞} is weakly upper semicontinu-
ous when for every sequence (µn)n that weakly converges to µ inM1(F ),
we have

lim sup
n→+∞

φ(µn) ⩽ φ(µ).

Every weakly upper semi-continuous function on M1(F ) is upper semi-
continuous (that is, with respect to strong convergence under ∣ ⋅ ∣M). The
converse is not true in general, but the following result holds.

Proposition 3.2. Let φ ∶ M1(F ) → R be a concave function, if φ is upper
semi-continuous then φ is weakly upper semi-continuous.

Proof. Since φ is concave and upper semi-continuous, the set

B = {(x,µ) ∈ R ×M1(F )∣φ(µ) ⩾ x},

of points below the graph of φ is closed and convex. In particular, it follows
from the Hahn-Banach separation theorem, that B is weakly closed [7,
Corollary 1.5]. This means that φ is weakly upper semi-continuous. □

Let us now give a statement of the Fenchel-Moreau duality in the context
of the dual pair (M1(F ),L(F )). Usually, the Fenchel-Moreau duality is
stated for convex functions, but it can be transformed into a statement about
concave functions (and vice-versa) replacing each function φ by its opposite
−φ. Here the functions we are ultimately interested in in Section 4 and 6
are concave, so we choose to state the Fenchel-Moreau duality as a result for
concave functions.

Let φ ∶ M1(F ) → R ∪ {−∞}, we define its concave conjugate φ∗ ∶ L(F ) →
R ∪ {−∞} by

φ∗(χ) = inf
µ∈M1(F )

{∫ χdµ − φ(µ)} .

Similarly, given a function ϕ ∶ L(F ) → R ∪ {−∞} we define its concave
conjugate ϕ∗ ∶ M1(F ) → R ∪ {−∞} by

ϕ∗(µ) = inf
χ∈L(F )

{∫ χdµ − ϕ(χ)} .

The following theorem is a translation of [23, Theorem 2.3.3] in our context.

Theorem 3.3 ([23]). Let φ ∶ M1(F ) → R ∪ {−∞} be a function that is not
identically equal to −∞. Then φ∗∗ = φ if and only if φ is concave and upper
semicontinuous.

The concave conjugate φ∗ of φ is defined as the infimum of a family of
affine functions, hence for some χ ∈ L(F ) we may have φ∗(χ) = −∞. We
define,

dom(φ∗) = {χ ∈ L(F )∣φ∗(χ) > −∞}.
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For every µ ∈ M1(F ), we have

inf
χ∈L(F )

{∫ χdµ − φ∗(χ)} = inf
χ∈dom(φ∗)

{∫ χdµ − φ∗(χ)} .

This alternative representation for φ∗∗ can be useful when the functions in
dom(φ∗) are shown to have special properties. The following proposition
states that when φ is 1-Lipschitz, the set dom(φ∗) is contained in the unit
ball of L(F ).

Proposition 3.4. Let φ ∶ (M1(F ), ∣ ⋅ ∣M) → R be a 1-Lipschitz function. For
every χ ∈ L(F ), if ∣χ∣L > 1, then

φ∗(χ) = −∞.

Proof. Let χ ∈ L(F ).
Step 1. We show that if ∣χ∣L > 1, then there exists µ′ ∈ M1(F ) such that
∣µ′∣M < 1 and ∫ χdµ′ < −1.
By contradiction, assume that for every µ ∈ M1(F ), if ∣µ∣M < 1, then

∫ χdµ ⩾ −1. In this case, for every µ ∈ M1(F ) and ε > 0, we have

∫ χd( −µ
(1 + ε)∣µ∣M

) ⩾ −1.

Letting ε→ 0 we obtain

∫ χdµ ⩽ ∣µ∣M.

Now taking the supremum over µ ∈ M1(F ), this yields ∣χ∣L ⩽ 1, a contradic-
tion.

Step 2. Conclusion.

Let 0 ∈ M1(F ) denote the null measure. For every µ ∈ M1(F ), we have

φ(µ) ⩾ φ(0) − ∣µ∣M.

It follows that

φ∗(χ) ⩽ −φ(0) + inf
µ∈M(F )

{∫ χdµ + ∣µ∣M} .

Assume that ∣χ∣L > 1, let µ′ ∈ M1(F ) be such that ∣µ′∣M < 1 and ∫ χdµ′ ⩽ −1
as in Step 1. We have

lim
t→+∞

(∫ χd(tµ′) + ∣tµ′∣M) = −∞.

Thus,

inf
µ∈M1(F )

{∫ χdµ + ∣µ∣M} = −∞,

and it follows that φ∗(χ) = −∞. □

We use the notation minx∈X f(x) to denote the value infx∈X f(x) when
there exists x0 ∈X such that f(x0) = infx∈X f(x).
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Corollary 3.5. Let φ ∶ M1(F ) → R ∪ {−∞} be a function that is not
identically equal to −∞. Assume that φ is 1-Lipschitz with respect to ∣ ⋅ ∣M
and concave, then for every µ ∈ M1(F ) we have

φ(µ) = min
χ∈L⩽1(F )

{∫ χdµ − φ∗(χ)} .

Of course, Corollary 3.5 is true if φ is only assumed to be L-Lipschitz
for some L ⩾ 0, in this case we need to minimize over L⩽L(F ) rather than
L⩽1(F ).

Proof. Step 1. We show that

φ(µ) = inf
χ∈L⩽1(F )

{∫ χdµ − φ∗(χ)} .

According to Proposition 3.4, we have φ∗(χ) = −∞ whenever χ ∉ L⩽1(F ),
therefore

inf
χ∈L(F )

{∫ χdµ − φ∗(χ)} = inf
χ∈L⩽1(F )

{∫ χdµ − φ∗(χ)} .

Combining this with Theorem 3.3, we obtain

φ(µ) = inf
χ∈L⩽1(F )

{∫ χdµ − φ∗(χ)} .

Step 2. We show that the infimum in the variational formula of Step 1 is
reached at some χ ∈ L⩽1.
For every n ⩾ 1, we let χn ∈ L⩽1(F ) be such that

inf
χ∈L⩽1(F )

{∫ χdµ − φ∗(χ)} ⩾ ∫ χndµ − φ∗(χn) −
1

n
.

The sequence (χn)n converges locally uniformly along a subsequence (nk)k
to some χ ∈ L⩽1(F ). In order to conclude it is enough to show that

lim inf
k→+∞

{∫ χnk
dµ − φ∗(χnk

)} ⩾ ∫ χdµ − φ∗(χ)

Let ν ∈ M1(F ), we have χnk
→ χ pointwise on F as k → +∞ and for every

x ∈ F ,
∣χnk
(x)∣ ⩽ 1 + ∣x − x0∣.

Therefore, by dominated convergence, we have

lim
k→+∞∫ χnk

dν = ∫ χdν.

Since we have

φ∗(χ) = inf
ν∈M1(F )

{∫ χdν − φ(ν)} ,

it follows that lim supk→+∞φ∗(χnk
) ⩽ φ∗(χ). Since we have

lim
k→+∞∫ χnk

dµ = ∫ χdµ,

this concludes the proof. □
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4. Scalar models

In this section, we focus on the case D = 1, and prove Theorem 1.2. Recall
that in this setting P↑(R+) = P(R+) is a convex set. Also recall that we have
defined for every Lipschitz function χ ∶ R+ → R,

Stχ(x) = sup
y∈R+
{χ(y) − tξ∗ (y − x

t
)} .

The function (t, x) ↦ Stχ(x) can be interpreted as the unique viscosity
solution of

(4.1)

⎧⎪⎪⎨⎪⎪⎩

∂tv − ξ(∇v) = 0 on (0,+∞) ×R+
v(0, ⋅) = χ.

4.1. Variational representation for the initial condition. Let ψ ∶
P1(R+) → R, for every Lipschitz function χ ∶ R+ → R, define

ψ∗(χ) = inf
µ∈P1(R+)

{∫ χdµ − ψ(µ)} .

We recall that L(R+) denotes the set of Lipschitz functions χ ∶ R+ → R,
we choose x0 = 0 as the reference point for the norm ∣ ⋅ ∣L. We also recall
that L⩽1(R+) denotes the unit ball of L(R+) and L0(R+) denote the set of
functions χ ∈ L(R+) satisfying χ(0) = 0. We let X denote the set of functions
χ ∈ L⩽1(R+) that are convex and nondecreasing, and X 0 = X ∩L0. Also recall
that given µ, ν ∈ P1(R+), we say that µ ⩽ ν whenever for every t ∈ [0,1),

(4.2) ∫
1

t
qν(u) − qµ(u)du ⩾ 0,

and that ψ ∶ P1(R+) → R is said to be nondecreasing whenever we have for
every µ, ν ∈ P1(R+),

µ ⩽ ν Ô⇒ ψ(µ) ⩽ ψ(ν).
Finally, recall that we equipM1(R+) with the norm ∣ ⋅ ∣M and we denote by
d the associated distance,

d(ν, ν′) = ∣ν − ν′∣M.

We recall that we use the notation minx∈X f(x) to denote the value infx∈X f(x)
when there exists x0 ∈X such that f(x0) = infx∈X f(x).

Lemma 4.1. Let ψ ∶ P1(R+) → R be a 1-Lipschitz, concave and nondecreasing
function. Then, for every µ ∈ P1(R+) we have

ψ(µ) = min
χ∈X 0

{∫ χdµ − ψ∗(χ)} .

In what follows, given h ∶ R+ → R, we use ∫ h(q) as a shorthand for

∫
1
0 h(q(u))du.
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Proof of Lemma 4.1. For every µ ∈ M1(R+), define

ψ(µ) = sup
ν∈P1(R+)

{ψ(ν) − d(µ, ν)} .

The function ψ ∶ M1(R+) → R is 1-Lipschitz as a supremum of Lipschitz
functions and is concave as a supremum of a jointly concave functional. In
addition, since ψ is 1-Lipschitz, for every µ ∈ P1(R+) we have ψ(µ) = ψ(µ).
For every χ ∈ L(R+), we let

ψ∗(χ) = inf
µ∈M1(R+)

{∫ χdµ − ψ(µ)} .

Step 1. We show that for every χ ∈ L⩽1(R+), ψ∗(χ) = ψ∗(χ).
Let χ ∈ L⩽1(R+), the map µ↦ ∫ χdµ is 1-Lipschitz onM1(R+) with respect
to ∣ ⋅ ∣M. In particular, for every ν ∈ P1(R+), we have

inf
µ∈M1(R+)

{∫ χdµ + d(ν,µ)} = ∫ χdν.

Thus,

ψ∗(χ) = inf
µ∈M1(R+)

{∫ χdµ − ψ(µ)}

= inf
µ∈M1(R+)

inf
ν∈P1(R+)

{∫ χdµ − ψ(ν) + d(µ, ν)}

= inf
ν∈P1(R+)

{−ψ(ν) + inf
µ∈M1(R+)

{∫ χdµ + d(µ, ν)}}

= inf
ν∈P1(R+)

{−ψ(ν) + ∫ χdν}

= ψ∗(χ).

Step 2. We show that, for every µ ∈ P1(R+),

ψ(µ) = min
χ∈L0

⩽1(R+)
{∫ χdµ − ψ∗(χ)} .

According to Corollary 3.5, we have for every µ ∈ M1(R+),

ψ(µ) = min
χ∈L⩽1(R+)

{∫ χdµ − ψ∗(χ)} .

According to Step 1, for every χ ∈ L⩽1(R+), ψ∗(χ) = ψ∗(χ). In addition, for

every c ∈ R, we have ψ∗(χ+ c) = ψ∗(χ)+ c. Therefore, since ψ is an extension
of ψ, it follows from the previous display that for every µ ∈ P1(R+),

ψ(µ) = min
χ∈L0

⩽1(R+)
{∫ χdµ − ψ∗(χ)} .

Step 3. We show that in the formula of Step 2, the minimum can be taken
over the set of χ ∈ L0⩽1(R+) that are nondecreasing and convex.
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Let λ denote the Lebesgue measure on R, let µ ∈ P1(R+) be such that the
associated path q = qµ ∶ [0,1) → R+ is surjective, belongs to Q↑(R+) and
satisfies λ(q−1(A)) = 0 for any λ-negligible set A ⊆ R. According to Step 2,
there exists χ ∈ L0⩽1(R+) such that

ψ(µ) = ∫ χdµ − ψ∗(χ).

In addition, for every µ′ ∈ P1(R+) we have,

ψ(µ′) ⩽ ∫ χdµ′ − ψ∗(χ).

Let q′ ∈ Q2(R+) such that q′ − q ∈ Q2(R+)∗, and let µ′ = Law(q′(U)). By
definition, we have µ′ ⩾ µ and,

∫ χ(q′) − ∫ χ(q) ⩾ ψ(µ′) − ψ(µ) ⩾ 0.

Now let κ ∈ Q2(R+)∗ be a Lipschitz path, for ε > 0 small enough we have
q + εκ ∈ Q2(R+), applying the previous display to q′ = q + εκ, we obtain

∫
1

0

χ(q(u) + εκ(u)) − χ(q(u))
ε

du ⩾ 0.

Since χ is Lipschitz, according to Rademacher’s theorem, χ is differentiable
almost everywhere, so for almost every u ∈ [0,1), we have

lim
ε→0

χ(q(u) + εκ(u)) − χ(q(u))
ε

= ∇χ(q(u))κ(u).

In addition,

∣χ(q(u) + εκ(u)) − χ(q(u))
ε

∣ ⩽ ∣κ(u)∣.

Therefore, by dominated convergence as ε→ 0, we have

⟨∇χ ○ q, κ⟩L2 ⩾ 0.
By density, the previous display holds for every κ ∈ Q2(R+)∗ and thus
∇χ ○ q ∈ Q(R+). Since q is surjective, the function ∇χ coincides almost
everywhere with a nondecreasing and R+-valued function. In addition, since
χ is Lipschitz, it is absolutely continuous, and we have for every x < y,

χ(y) − χ(x)
y − x

= 1

y − x ∫
y

x
∇χ(z)dz.

The right-hand side in the previous display is nonnegative and given a < x < b,
the mean value of ∇χ on [a, x] is smaller than the mean value of ∇χ on
[x, b]. Thus, χ satisfies

0 ⩽ χ(x) − χ(a)
x − a

⩽ χ(b) − χ(x)
b − x

.

This means that χ is convex and nondecreasing. This proves,

ψ(µ) = inf
χ∈X 0

{∫ χdµ − ψ∗(χ)} .
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In the previous display, the left and right-hand side are Lipschitz continuous
and the equality holds for µ in a dense subset of P1(R+). Therefore, by
density, the previous display holds for every µ ∈ P1(R+). □

4.2. Viscosity solution with linear initial condition. The goal of this
section is to show Theorem 4.2 below. The reader only interested in un-
inverted formulas for limN→+∞ FN(t, δ0) but not for limN→+∞ FN(t, µ) can
skip this subsection and directly go to Subsection 4.3, replacing the content
of Theorem 4.2 by the following elementary formula,

(4.3) sup
µ∈P∞(R+)

{∫ χdµ − t∫ ξ∗ ( ⋅
t
)dµ} = sup

x∈R+
{χ(x) − tξ∗ (x

t
)} .

Let (H, ⟨⋅, ⋅⟩H) be a Hilbert space. Given C ⊆ H, we say that C is a closed
convex cone when C is a closed set in H and for every x,x′ ∈ C and t, t′ ⩾ 0,
we have

tx + t′x′ ∈ C.
Given a closed convex cone C in H, we define its dual cone by

(4.4) C∗ = {y ∈ H∣∀x ∈ C, ⟨x, y⟩H ⩾ 0}.
For x,x′ ∈ H, we say that x ⩽ x′ when x′ − x ∈ C∗ and we say that g ∶ C → R
is C∗-nondecreasing whenever for every x,x′ ∈ C, we have

x ⩽ x′ Ô⇒ g(x) ⩽ g(x′).
We define V(C) as the set of functions V ∶ R+ × C → R such that, for some
L ⩾ 0 the following holds. For every t ⩾ 0, V (t, ⋅) is C∗-nondecreasing and
L-Lipschitz, and

sup
t>0
x∈C

{V (t, x) − V (0, x)
t

} < +∞.

Recall the notion of Fréchet derivative ∇ from Definition 2.3, also recall
that given a Fréchet differentiable function g ∶ Q2(R+) → R, we have for
every q ∈ Q2(R+), ∇g(q) ∈ L2([0,1),R). In particular expressions of the

form ∫ h(∇g(q)) should be understood as ∫
1
0 h(∇g(q)(u))du. The notion of

viscosity solution for (4.5) appearing in Theorem 4.2 below is introduced in
details in [6, Definition 1.4].

Theorem 4.2. Let χ ∶ R+ → R a Lipschitz, nondecreasing and convex
function. The function (t,q) ↦ ∫ Stχ(q) belongs to V(Q2(R+)) and is the
unique viscosity solution of

(4.5)

⎧⎪⎪⎨⎪⎪⎩

∂tV − ∫ ξ(∇V ) = 0 on (0,+∞) ×Q2(R+)
V (0,q) = ∫ χ(q) on Q2(R+).

To prove Theorem 4.2, we are going to use a notion of differentiability
that is weaker than Fréchet differentiability.

Definition 4.3. Let g ∶ Q2(SD
+ ) → R and q ∈ Q2(SD

+ ). We say that g is
Gateaux differentiable at q if the following conditions hold.
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(1) For every κ ∈ L2([0, 1), SD) such that q+εκ ∈ Q2(SD
+ ) for ε > 0 small

enough, the following limit exists and is finite,

g′(q, κ) = lim
ε→0+

g(q + εκ) − g(q)
ε

.

(2) There exists a unique p ∈ L2([0,1), SD) such that for every κ ∈
L2([0,1), SD) such that q + εκ ∈ Q2(SD

+ ) for ε > 0 small enough, we
have

g′(q, κ) = ⟨p, κ⟩L2 .

In this case, we say that p is the Gateaux derivative of g at q and we denote
it ∇g(q).

Since a Fréchet differentiable function is also Gateaux differentiable and
both derivatives are equal, there is no harm in using the symbol ∇ to denote
both the Gateaux and the Fréchet derivative. The Gateaux derivative allows
us to characterize differentiable nondecreasing functions, roughly speaking a
function g ∶ Q2(SD

+ ) → R is Q2(R+)∗-nondecreasing if and only if for every
q ∈ Q2(R+), we have ∇g(q) ∈ Q2(R+). In practice, this characterization is
not exactly true at points in Q2(R+) − Q↑(R+) since the set of admissible
directions at those points may not be rich enough.

Proposition 4.4. Let χ ∶ R+ → R be a Lipschitz function. The function X ∶
q↦ ∫

1
0 χ(q(u))du is Q2(R+)∗-nondecreasing if and only if χ is nondecreasing

and convex.

Proof. We start by showing the desired equivalence under the additional
assumption that χ is differentiable, and then we proceed by approximation.

Step 1. We assume that χ is differentiable on R+ and we show that X is
Gateaux differentiable on Q2(R+) and satisfies

∇X(q) = ∇χ ○ q.

Fix q ∈ Q2(R+), let κ ∈ L2 such that for ε > 0 small enough q + εκ ∈ Q2(R+).
For every u ∈ [0,1),

∣χ(q(u) + εκ(u)) − χ(q(u))
ε

∣ ⩽ ∣χ∣Lipκ(u).

and we have as ε→ 0,

χ(q(u) + εκ(u)) − χ(q(u))
ε

→ ∇χ(q(u))κ(u).

By dominated convergence, it follows that

X(q + εκ) =X(q) + ε∫
1

0
∇χ(q(u))κ(u)du + o(ε).

So X is Gateaux differentiable at q and ∇X(q) = ∇χ ○ q ∈ L∞([0,1),R).
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Step 2. We assume that χ is differentiable on R+ and we show that if χ
is nondecreasing and convex on R+, then X is Q2(R+)∗-nondecreasing on
Q2(R+).
If χ is nondecreasing and convex, then ∇χ ∶ R → R+ is nondecreasing and
R+-valued. In particular, for every q ∈ Q2(R+), we have

∇X(q) = ∇χ ○ q ∈ Q2(R+).

Thus, for every q,q′ ∈ Q2(R+) such that q′ − q ∈ Q2(R+)∗, we have

X(q′) −X(q) = ∫
1

0
⟨∇X(λq′ + (1 − λ)q),q′ − q⟩L2dλ ⩾ 0.

Step 3. We assume that χ is differentiable on R+ and we show that if X is
Q2(R+)∗-nondecreasing on Q2(R+), then χ is nondecreasing and convex on
R+.
Let q ∈ Q↑(R+) ∩L2, for every smooth function κ ∈ Q2(R+)∗ and every ε > 0
small enough we have q + εκ ∈ Q2(R+) and

X(q + εκ) −X(q)
ε

⩾ 0.

Letting ε→ 0, we obtain

⟨∇χ ○ q, κ⟩L2 ⩾ 0.
By density, this last display is in fact valid for all κ ∈ Q∗2 . Therefore
∇χ ○ q ∈ Q2(R+). This ensures that ∇χ is R+-valued and nondecreasing,
therefore χ is convex and nondecreasing.

Step 4. Approximation by differentiable functions.

We let η ∈ C∞(R+,R) be a smooth function supported on [1,2] that takes
nonnegative values and such that

∫
R+
η(x)dx = 1.

For every ε > 0, let ηε(x) = 1
εη (

x
ε
). We define,

χε(x) = ∫
R+
χ(x + y)ηε(y)dy,

For every x ∈ R+, we have

∣χε(x) − χ(x)∣ = ∣∫
R+
χ(x + y)ηε(y)dy − ∫

R+
χ(x)ηε(y)dy∣

⩽ ∫
R+
∣χ(x + y) − χ(x)∣ηε(y)dy

⩽ ∫
R+
∣χ∣Lipyηε(y)dy

= ε∣χ∣Lip∫
R+
yη(y)dy.
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Therefore as ε → 0, χε → χ uniformly on R+. In addition, for every x ∈ R+
and h ∈ (−ε, ε),

χε(x + h) − χε(x)
h

= ∫
x+2ε

x
χ(z)ηε(z − x − h) − ηε(z − x)

h
dz.

We have, uniformly over z ∈ [x,x + 2ε],

lim
h→0

ηε(z − x − h) − ηε(z − x)
h

= ∇ηε(z − x).

Therefore, χε is differentiable at x and

∇χε(x) = ∫
x+2ε

x
χ(z)∇ηε(z − x)dz.

Thus, the sequence (χε)ε is a sequence of Lipschitz differentiable functions
on R+ that converge uniformly on R+ towards χ.

Step 5. Conclusion.

Let (χε)ε be the sequence built in Step 4. Set

Xε(q) = ∫
1

0
χε(q(u))du.

We have,

Xε(q) = ∫
R+
X(q + y)ηε(y)dy,

where q + y denotes the path obtained by adding the constant y ∈ R+ to the
values of q. According to Step 4, χε is differentiable on R+.

If χ is nondecreasing and convex, then so is χε. According to Step 2, in
this case Xε is Q2(R+)∗-nondecreasing and letting ε → 0, we discover that
X is Q2(R+)∗-nondecreasing.

Conversely, if X is Q2(R+)∗-nondecreasing, then so is Xε, using Step 3
we discover that χε is convex and nondecreasing, and letting ε→ 0 we obtain
that χ is convex and nondecreasing. □

Proposition 4.5. Let χ ∶ R+ → R be a Lipschitz, nondecreasing and convex
function. For every t ⩾ 0, the function

(t,q) ↦ ∫
1

0
Stχ(q(u))du

belongs to V(Q2(R+)).

Proof. Since χ is convex, Stχ admits the Hopf representation [5, Proposi-
tion 6.3] that is, for every x ∈ R+, we have,

Stχ(x) = sup
y∈R+
{xy − χ∗(y) + tξ(y)} .

In particular, Stχ is the supremum of a family of affine functions of x, so Stχ
is convex on R+. By definition Stχ ∈ V(R+), so Stχ is Lipschitz and nonde-

creasing. It then follows from Proposition 4.4 that q ↦ ∫
1
0 Stχ(q(u))du

is Q2(R+)∗-nondecreasing and thus (t,q) ↦ ∫
1
0 Stχ(q(u))du belongs to

V(Q2(R+)). □
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For every j ⩾ 1, define

(4.6) Qj(R+) = {(xi)1⩽i⩽j ∈ Rj
+∣xi − xi−1 ∈ R+} .

The cone Qj(R+) is the set of nondecreasing sequences of R+ with j terms.
It is embedded in Rj and we equip it with the normalized Euclidean scalar
product,

⟨x, y⟩j =
1

j

j

∑
i=1
xiyi.

One can think of Qj(R+) as a finite dimensional approximation of Q1(R+).
Given x ∈ Qj(R+), we define a path ljx ∈ Q1(R+) by setting

ljx =
j

∑
i=1
xi1[ i−1

j
, i
j
).

Conversely, given a path q ∈ Q1(R+), we define pjq ∈ Qj(R+) by setting

(pjq)i = j ∫
i
j

i−1
j

q(u)du.

The linear maps lj and pj are adjoint in the following sense.

⟨q, ljx⟩L2 = ⟨pjq, x⟩j .

It follows that for every Q2(R+)∗-nondecreasing function φ ∶ Q2(R+) → R,
the function φ ○ lj is (Qj(R+))∗-nondecreasing on Qj(R+). We also define
for every x ∈ Rj ,

Hj(x) =
1

j

j

∑
i=1
ξ(jxi),

the function Hj ∶ Rj → R is locally Lipschitz, Rj
+-nondecreasing on Rj

+ and
(Qj(R+))∗-nondecreasing on Qj(R+). Given X ⊆ Rj , we let int(X) denote
the interior of X.

Proposition 4.6. Let χ ∶ R+ → R be a Lipschitz, nondecreasing and convex

function. The function (t, x) ↦ 1
j ∑

j
i=1 Stχ(xi) belongs to V(Rj

+) and is the

unique viscosity solution of

(4.7)

⎧⎪⎪⎨⎪⎪⎩

∂tvj −Hj(∇vj) = 0 on (0,+∞) × int(Rj
+)

vj(0, x) = 1
j ∑

j
i=1 χ(xi) on Rj

+.
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Proof. The initial condition φj ∶ x↦ 1
j ∑

j
i=1 χ(xi) is convex on Rj

+. We have,

φ∗j (y) = sup
x∈Rj

+

⎧⎪⎪⎨⎪⎪⎩
⟨x, y⟩j −

1

j

j

∑
i=1
χ(xi)

⎫⎪⎪⎬⎪⎪⎭

= sup
x1∈R+

. . . sup
xj∈R+

⎧⎪⎪⎨⎪⎪⎩

1

j

j

∑
i=1
xiyi − χ(xi)

⎫⎪⎪⎬⎪⎪⎭

= 1

j

j

∑
i=1

sup
xi∈R+

{xiyi − χ(xi)}

= 1

j

j

∑
i=1
χ∗(yi).

According to [5, Proposition 6.3], the unique viscosity solution vj of (4.7)
admits the Hopf representation,

vj(t, x) = sup
y∈Rj

+

{⟨x, y⟩j − φ∗j (y) + tHj(y)} .

Thus,

vj(t, x) = sup
y∈Rj

+

⎧⎪⎪⎨⎪⎪⎩

1

j

j

∑
i=1
(xiyi − χ∗(xi) + tξ(yi))

⎫⎪⎪⎬⎪⎪⎭

= sup
y1∈R+

. . . sup
yj∈R+

⎧⎪⎪⎨⎪⎪⎩

1

j

j

∑
i=1
(xiyi − χ∗(xi) + tξ(yi))

⎫⎪⎪⎬⎪⎪⎭

= 1

j

j

∑
i=1

sup
yi∈R+

{xiyi − χ∗(xi) + tξ(yi)}

= 1

j

j

∑
i=1
Stχ(xi).

By definition, vj ∈ V(Rj
+), this concludes the proof. □

Proposition 4.7. Let χ ∶ R+ → R be a Lipschitz, nondecreasing and convex

function. The function (t, x) ↦ 1
j ∑

j
i=1 Stχ(xi) belongs to V(Qj(R+)) and is

the unique viscosity solution of

(4.8)

⎧⎪⎪⎨⎪⎪⎩

∂tvj −Hj(∇vj) = 0 on (0,+∞) × int(Qj(R+))
uj(0, x) = 1

j ∑
j
i=1 χ(xi) on Q

j(R+).

Proof. According to [5, Theorem 1.2], (4.8) admits a unique viscosity solution
in V(Qj(R+)). Therefore, according to Proposition 4.6, it is enough to check
that vj ∣R+×Qj(R+)

is a viscosity solution of (4.8) and belongs to V(Qj(R+)).
Let (t, x) ∈ R+ × int(Qj(R+)) and ϕ ∶ (0,∞)× int(Qj(R+)) → R be a smooth
function. Assume that vj ∣R+×Qj(R+)

− ϕ has a local maximum at (t, x).
Up to modifying ϕ outside a ball of small radius around (t, x), we may
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assume that ϕ is the restriction to (0,∞)× int(Qj(R+)) of a smooth function

ϕ ∶ (0,∞)×Rj → R. By construction vj −ϕ coincide with vj ∣R+×Qj(R+)
−ϕ on

a neighborhood of (t, x) and thus has a local maximum at (t, x). Since vj is
the viscosity solution of (4.7), we have,

(∂tϕ −Hj(∇ϕ)) (t, x) ⩽ 0.

Since ϕ and ϕ coincide on a neighborhood of (t, x), the previous display

remains true if we replace ϕ by ϕ. We reach similar conclusions if we
assume that vj ∣R+×Qj(R+)

− ϕ has local minimum at (t, x). This proves that
vj ∣R+×Qj(R+)

is a viscosity solution of (4.8).

In addition, according to Proposition 4.6, we have for every (t, x) ∈
R+ ×Qj(R+),

vj(t, x) =
1

j

j

∑
i=1
Stχ(xi) = ∫ Stχ(ljx).

Therefore, according to Proposition 4.5, we have vj ∣R+×Qj(R+)
∈ V(Qj(R+))

which concludes. □

Proof of Theorem 4.2. According to Proposition 4.5, (t,q) ↦ ∫ Stχ(q) be-
longs to V(Q2(R+)). Let (t,q) ∈ R+ × Q2(R+), according to [6, Theo-
rem 4.6 (1)], the value of the unique viscosity solution of (4.5) at (t,q)
is the limit of vj(t, pjq) as j → +∞, where vj is the unique viscosity solution
of (4.8). According to Proposition 4.7, we have

vj(t, pjq) = ∫ Stχ(ljpjq).

Since x↦ Stχ(x) is Lipschitz, we have

∣∫ Stχ(ljpjq) − ∫ Stχ(q)∣ ⩽ c∣ljpjq − q∣L1 .

Finally, according to [6, Lemma 3.3 (7)] we have limj→+∞ ∣ljpjq − q∣L1 = 0.
This concludes the proof. □

4.3. Proof of the un-inverted Parisi formula.

Proof of Theorem 1.2. Let (t, µ) ∈ R+ × P∞(R+), and
f(t, µ) = lim

N→+∞
FN(t, µ).

According to Theorem 2.1 we have

f(t, µ) = sup
ν∈P∞(R+)

{ψ(ν) − tEξ∗ (
Xν −Xµ

t
)} .

We let Π(µ, ν) denote the set of probability measures π ∈ P∞(R+ ×R+) such
that π1 = µ and π2 = ν. According to [13, Proposition 2.5], we have

(4.9) Eξ∗ (
Xν −Xµ

t
) = inf

π∈Π(ν,µ)
∫ ξ∗ (y − x

t
)dπ(x, y).
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Define

Π(µ, ⋅) = ⋃
ν∈P∞(R+)

Π(µ, ν).

It follows respectively from [4, Proposition 3.6], [4, Corollary 5.2] and [2],
that ψ is nondecreasing, 1-Lipschitz and concave. Therefore, according to
Lemma 4.1 we have

f(t, µ) = sup
π∈Π(µ,⋅)

{ψ(π2) − t∫ ξ∗ (y − x
t
)dπ(x, y)}

= sup
π∈Π(µ,⋅)

inf
χ∈X 0

{∫ χdπ2 − ψ∗(χ) − t∫ ξ∗ (y − x
t
)dπ(x, y)}

= sup
π∈Π(µ,⋅)

inf
χ∈X 0

{∫ χdπ2 − ψ∗(χ) − t∫ ξ∗ (y − x
t
)dπ(x, y)} .

The sets Π(µ, ⋅) and X 0 are convex. In addition, according to the Arzelà-
Ascoli theorem, X 0 is compact with respect to the topology of local uniform
convergence. For every π ∈ Π(µ, ⋅), the map χ↦ ∫ χdπ2−ψ∗(χ) is lower semi-
continuous on X 0 with respect to the topology of local uniform convergence.
Similarly since ξ∗ is lower semi-continuous, according to Portmanteau’s
theorem for every χ ∈ X 0, the map π ↦ ∫ χdπ2−t ∫ ξ∗ (y−xt )dπ(x, y) is upper
semi-continuous with respect to convergence under the optimal transport
distance. Thus, according to [20, Corollary 3.4], we can interchange sup and
inf in the previous display to obtain

f(t, µ) = inf
χ∈X 0

⎧⎪⎪⎨⎪⎪⎩
−ψ∗(χ) + sup

π∈Π(µ,⋅)
{∫ χdπ2 − t∫ ξ∗ (y − x

t
)dπ(x, y)}

⎫⎪⎪⎬⎪⎪⎭

= inf
χ∈X 0

⎧⎪⎪⎨⎪⎪⎩
−ψ∗(χ) + sup

π∈Π(µ,⋅)
{∫ χdπ2 − t∫ ξ∗ (y − x

t
)dπ(x, y)}

⎫⎪⎪⎬⎪⎪⎭

= inf
χ∈X 0

⎧⎪⎪⎨⎪⎪⎩
−ψ∗(χ) + sup

ν∈P∞(R+)
{∫ χdν − tEξ∗ (

Xν −Xµ

t
)}
⎫⎪⎪⎬⎪⎪⎭

According to [6, Theorem 4.6 (2) and Proposition A.3], the viscosity solution
of (4.5) has the Hopf-Lax representation and it follows from Theorem 4.2
that

sup
ν∈P∞(R+)

{∫ χdν − tEξ∗ (
Xν −Xµ

t
)} = ∫ Stχdµ.

Thus, from the two previous displays or simply from (4.3) if µ = δ0, we have

f(t, µ) = inf
χ∈X 0

{−ψ∗(χ) + ∫ Stχdµ} .

Since f(t, ⋅) is Lipschitz continuous on P1(R+) and P∞(R+) is dense in
P1(R+), by density we can extend the equality of the last display to any
µ ∈ P1(R+). □
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5. Extension of concave functions

As discussed above, the main difficulty to generalize the results obtained
in Section 4 to the case D > 1 is the fact that the set P↑(SD

+ ) is nonconvex
when D > 1. Indeed, this prevents us from performing the sup-inf interchange
using [20] as in the proof of Theorem 1.2. To circumvent this difficulty, we
show that the initial condition ψ ∶ P↑(SD

+ ) → R is the restriction of a concave
and Lipschitz function defined on P(SD

+ ). Using this extension, we show
that at µ = δ0 the supremum over P↑(SD

+ ) in (2.9) can be rewritten as a
supremum over P(SD

+ ). Since the set P(SD
+ ) is convex, we can then perform

the sup-inf interchange and proceed as in the proof of Theorem 1.2. To do
this properly, we will need to use some compacity properties, so in what
follows SD

+ is going to be replaced by a compact subset K ⊆ SD
+ .

5.1. Optimal transport of monotone probability measures. Let K ⊆
SD
+ be a compact set and P(K) denote the set of Borel probability measures

on K. In this subsection, we study functions on possibly nonconvex subsets
K of P(K). We prove that if such a function is concave on every convex
subset of K, then it satisfies a Jensen-type inequality, provided that K is an
extreme set in its convex hull (see Definition 5.5).

As previously, L denotes the set of Lipschitz functions χ ∶ SD
+ → R, L⩽1

denote the set of 1-Lipschitz functions χ ∶ SD
+ → R, L0 denotes the set of

functions χ ∈ L satisfying χ(0) = 0 and L0⩽1 = L0 ∩L⩽1. We equip P(K) with
the optimal transport distance, for every µ, ν ∈ P(K),

d(µ, ν) = inf
π∈Π(µ,ν)

{∫
K×K
∣x − y∣dπ(x, y)} ,

where Π(µ, ν) denotes the set of probability measures π ∈ P(K × K) such
that π1 = µ and π2 = ν. The distance d also admits the following dual
representation [22, Theorem 5.10],

(5.1) d(µ, ν) = sup
χ∈L⩽1

{∫
SD
+
χd(µ − ν)} .

In what follows, we will consider a compact set K ⊆ P(K). The set P(K)
of probability measures on K will appear, we will equip this set with the
optimal transport distance d derived from the optimal transport distance d
on K, that is for every η, η′ ∈ P(K),

d(η, η′) = inf
π∈Π(η′,η′)

{∫
K×K

d(ν, ν′)dπ(ν, ν′)} ,

where Π(η, η′) denotes the set of probability measures π ∈ P(K ×K) such
that π1 = η and π2 = η′. As usual, the optimal transport distance d admits
the dual representation [22, Theorem 5.10],

(5.2) d(η, η′) = sup
X
{∫ X(ν)dη(ν) − ∫ X(ν)dη′(ν)} ,
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where the supremum is taken over the set of 1-Lipschitz functions X ∶K → R.

Proposition 5.1. Let E be a compact Polish space, we equip the set P(E)
of Borel probability measures on E with the optimal transport distance. Let
µ ∈ P(E), let (Xi)i⩾1 ∶ Ω → EN be independent and identically distributed
random variables with law µ, then almost surely

1

n

n

∑
i=1
δXi Ð→n→∞

µ.

Remark 5.2. By Caratheodory’s extension theorem, given a Borel probability
measure µ on a Polish space E, we can always construct a sequence of
independent and identically distributed random variables with law µ.

Proof. Let d denote the optimal transport distance on P(E). According to
[22, Theorem 6.9], since the space E is compact, given a sequence (µn)n⩾1
in P(E), we have µn → µ in (P(E), d) if and only if for every continuous
function h ∶ E → R,

lim
n→+∞∫ hdµn = ∫ hdµ.

Let C(E) denote the set of real-valued continuous functions on E. Since E
is compact and metrizable, (C(E), ∣ ⋅ ∣∞) is separable [7, Theorem 6.6]. Let
(hp)p be a dense sequence in (C(E), ∣ ⋅ ∣∞), to check convergence in (P(E), d),
it is sufficient to check convergence against hp for every p ⩾ 1. By the law of
large numbers, for every p ⩾ 1 the following holds almost surely

lim
n→∞

1

n

n

∑
i=1
hp(Xi) = ∫

E
hpdµ.

Let µ̃n = 1
n ∑

n
i=1 δXi ∈ P(E), since (hp)p is countable, almost surely we have

for every p ⩾ 1,

lim
n→∞∫E

hpdµ̃n = ∫
E
hpdµ.

That is, almost surely the sequence (µ̃n)n converges to µ in (P(E), d). □

Given η ∈ P(K), we define the barycenter Bar(η) ∈ P(K) by

Bar(η)(A) = ∫
K
ν(A)dη(ν).

The barycenter of η is the unique probability measure on K satisfying for
every continuous function h ∶ K → R,

∫
K
∫
K
h(x)dν(x)dη(ν) = ∫

K
h(x)dBar(η)(x).

Heuristically, we can think of Bar(η) as the first moment of η.

Remark 5.3. When η is a finitely supported probability measure, say of the
form ∑p

i=1 ciδνi , we have Bar(η) = ∑p
i=1 ciνi.
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Proposition 5.4. The barycenter map Bar ∶ (P(K),d) → (P(K), d) is
Lipschitz continuous and for every η, η′ ∈ P(K) and λ ∈ [0,1], we have

Bar(λη + (1 − λ)η′) = λBar(η) + (1 − λ)Bar(η′).

Proof. Let χ ∈ L⩽1, the map ν ↦ ∫ χdν is 1-Lipschitz on K. Let η, η′ ∈ P(K),
we have

d(Bar(η),Bar(η′)) = sup
χ∈L⩽1

{∫
K
χdBar(η) − ∫

K
χdBar(η′)}

= sup
χ∈L⩽1

{∫
K
∫
K
χdνdη(ν) − ∫

K
∫
K
χdνdη′(ν)}

⩽ sup
X
{∫

K
Xdη − ∫

K
Xdη′}

= d(η, η′).
□

Let C denote the closed convex hull of K in P(K).

Definition 5.5. We say that K is an extreme set in C when for every
η ∈ P(C), if Bar(η) ∈K then η ∈ P(K).

For example, if K is an extreme set in C, then taking η = λδµ + (1 − λ)δν ,
where µ, ν ∈ C and λ ∈ (0,1), we have that

λµ + (1 − λ)ν ∈K Ô⇒ µ, ν ∈K.

Proposition 5.6. The closed convex hull C of K satisfies

(5.3) C = {Bar(η)∣η ∈ P(K)} .

Proof. According to Proposition 5.4, the set defined in (5.3) is closed and
convex. Let C ′ ⊆ P(K) be a closed convex set containing K, let η ∈ P(K).
According to Proposition 5.1, there exists a sequence of finitely supported
measures (ηn)n such that ηn → η as n→ +∞. Since C ′ is convex, according
to Remark 5.3, we have Bar(ηn) ∈ C ′. In addition, since C ′ is closed, letting
n→∞ and using Proposition 5.4 we have Bar(η) ∈ C ′. We have proven that
{Bar(η)∣η ∈ P(K)} ⊆ C ′, therefore {Bar(η)∣η ∈ P(K)} is the closed convex
hull of K. □

Proposition 5.7. Assume that K is an extreme set in its convex hull. Let
η ∈ P(K) be such that Bar(η) ∈ K. There exists a sequence ηn ∈ P(K) of
finitely supported probability measures such that Bar(ηn) ∈K and ηn → η as
n→ +∞.

Proof. Let (νi)i⩾1 be a sequence of independent and identically distributed
random measures in K with law η, define

η̃n =
1

n

n

∑
i=1
δνi .
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According to Proposition 5.1, we have η̃n → η almost surely. Let us show
that almost surely for every n ⩾ 1, Bar(η̃n) ∈K. Define,

O = {ω ∈ Ω∣ ∀n ⩾ 1, Bar(η̃n(ω)) ∈K}.

Let Pn ∈ P(C) denote the law of the random probability measure Bar(η̃n) ∈ C.
The probability measure Pn is the only probability measure in P(C) that
satisfies for every h ∶ C → R,

∫
C
h(ν)dPn(ν) = ∫

Kn
h( 1

n

n

∑
i=1
νi)

n

∏
i=1

dη(νi).

For every A ⊆ C, we have,

Bar(Pn)(A) = ∫
C
ν(A)dPn(ν)

= ∫
Kn

1

n

n

∑
i=1
νi(A)

n

∏
i=1

dη(νi)

= ∫
K
ν(A)dη(ν)

= Bar(η)(A).

So Bar(Pn) = Bar(η) ∈K, since K is an extreme set in its closed convex hull,
we have Pn ∈ P(K) and almost surely Bar(η̃n) ∈K. Thus P(O) = 1 and for
almost all ω ∈ Ω, the measures ηn = η̃n(ω) satisfy the desired properties. □

Proposition 5.8. Assume that K is an extreme set in its closed convex hull,
let φ ∶K → R be a bounded upper semicontinuous function. Assume that for
every ν, ν′ ∈K, λ ∈ [0,1] such that λν + (1 − λ)ν′ ∈K we have

λφ(ν) + (1 − λ)φ(ν′) ⩽ φ (λν + (1 − λ)ν′) .

Then φ satisfies Jensen’s inequality, that is for every η ∈ P(K) such that
Bar(η) ∈K, we have

(5.4) ∫
K
φ(ν)dη(ν) ⩽ φ (Bar(η)) .

Proof. Assume that η is finitely supported, then η = ∑p
i=1 ciδνi for some νi ∈K

and ci > 0 such that ∑p
i=1 ci = 1 and ∑p

i=1 ciνi ∈K. Since K is an extreme set
in its convex hull C, for every nonempty I ⊆ {1, . . . , p}, we have

(5.5)
∑i∈I ciνi

∑i∈I ci
∈K.

It follows by induction on p ⩾ 1, that
p

∑
i=1
ciφ(νi) ⩽ φ(

p

∑
i=1
ciνi) .

Therefore, (5.4) holds when η is finitely supported. Assume now that η ∈
P(K), is any probability measure such that Bar(η) ∈ K. According to
Proposition 5.7, the probability measure η can be approximated, by finitely
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supported probability measures ηn ∈ P(K) with barycenters in K. Using
Proposition 5.4, we can pass to the limit in

∫
K
φ(ν)dηn(ν) ⩽ φ (Bar(ηn)) ,

and use the upper semicontinuity of φ to obtain (5.4). □

5.2. Monotone probability measures on a compact set. Let K be a
compact subset of SD

+ , define

(5.6) P↑(K) = P↑(SD
+ ) ∩ P(K).

In this section, we show that K = P↑(K) is a compact set and that K is
extreme in its convex hull. This means that Proposition 5.8 can be applied
to functions on P↑(K).

Recall that we have defined a partial order on SD by setting x ⩽ x′
whenever x′ − x ∈ SD

+ . We say that a subset S ⊆ SD
+ is totally ordered when

for every x,x′ ∈ S we have x ⩽ x′ or x′ ⩽ x.

Proposition 5.9. The set P↑(K) is a closed subset of (P(K), d), in par-
ticular P↑(K) is compact with respect to the topology induced by d. In
addition, for every µ ∈ P(K), the support of µ is totally ordered if and only
if µ ∈ P↑(K).

Proof. Let µn ∈ P↑(K) be a sequence that converges to some µ ∈ P(K). The
sequence (qµn)n is a Cauchy sequence in L1([0,1),K), let q ∈ L1([0,1),K)
denote its limit. There exists a subsequence (nk)k such that qµnk

→ q almost
everywhere, so there exists an almost everywhere representative of q in
Q1(SD

+ ), we also denote this representant by q and we have µ = Law(q(U)) ∈
P↑(K).

Let µ ∈ P↑(K) then for every x, y ∈ supp(µ) there exists u, v ∈ [0,1) such
that x = qµ(u) and y = qµ(v). We must have u ⩽ v or v ⩽ u, and since qµ
is nondecreasing, this implies x ⩽ y or y ⩽ x and supp(µ) is totally ordered.
Conversely, assume that supp(µ) is totally ordered, let (Xi)i be a sequence
of independent and identically distributed random variables with law µ, set

µ̃n =
1

n

n

∑
i=1
δXi .

According to Proposition 5.1, µ̃n → µ almost surely. Let us fix ω ∈ Ω such
that µ̃n(ω) → µ and define µn = µ̃n(ω). Since supp(µ) is totally ordered,
for every n ⩾ 1 there exists a permutation sn ∈ Sn such that the sequence
(Xsn(i)(ω))1⩽i⩽n is nondecreasing. Let

qn =
n

∑
i=1
Xsn(i)(ω)1[ i−1

n
, i
n
),

we have qn ∈ Q(SD
+ ) ∩L∞ and µn = Law(qn(U)) ∈ P↑(K). Since µn → µ and

P↑(K) is closed, we have µ ∈ P↑(K). □
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Proposition 5.10. The closed convex hull of P↑(K) is P(K) and P↑(K) is
an extreme set in P(K).

Proof. According to Proposition 5.6, to show that the closed convex hull
of P↑(K) is P(K), it suffices to show that for every µ ∈ P(K), there exists
η ∈ P(P↑(K)) such that µ = Bar(η).

According to Proposition 5.1, there exists a sequence of finitely supported
measures (µn)n such that µn → µ. For every n ⩾ 1, there exists pn, c

n
i , x

n
i

such that µn = ∑pn
i=1 c

n
i δxn

i
. Define,

ηn =
pn

∑
i=1
cni δδxn

i
,

we have µn = Bar(ηn). Up to extraction, the sequence (ηn)n converges
to some η ∈ P(P↑(K)). Therefore, according to Proposition 5.4, we have
µ = Bar(η). This proves that the closed convex hull of P↑(K) is P(K).

Let η be a probability measure on P(K), such that Bar(η) ∈ P↑(K). Let
A denote the support of Bar(η), we have,

0 = Bar(η)(Ac) = ∫
P(K)

ν(Ac)dη(ν).

So η-almost surely ν(Ac) = 0. The set A is a closed and according to
Proposition 5.9, A is totally ordered. In particular, η-almost surely, the
support of the measure ν is contained in A, therefore ν ∈ P↑(K). Thus,
η ∈ P(P↑(K)), which concludes the proof. □

5.3. Building the extension. In this section, we assume that the function
ξ ∶ RD×D → R is strictly convex on SD

+ . As usual U denotes a uniform random
variable in [0,1), let L∞⩽1 denote the set of functions [0,1) → SD

+ that are
essentially bounded by 1 in norm and define

(5.7) P↑ξ = {Law(∇ξ(q(U)))∣q ∈ Q(S
D
+ ) ∩L∞⩽1} ⊆ P↑(SD

+ ).

Recall that B(0,1) denotes the unit ball centered at 0 in SD, we let

Kξ = ∇ξ(B(0,1) ∩ SD
+ ).

The goal of this subsection is to prove that any Lipschitz and concave function
on the nonconvex set P↑ξ extends into a Lipschitz and concave function on

M1(Kξ) with the same Lipschitz constant.

Note that we have P↑ξ ⊆ P
↑(Kξ), but in general the inclusion is strict

when D > 1. The set P↑ξ is the image of P↑(B(0,1) ∩ SD
+ ) by the mapping

µ↦ ∇ξ#µ. The closed convex envelope and the closed linear span of P↑ξ are

respectively P(Kξ) andM1(Kξ). Note that since Kξ is compact,M1(Kξ)
is in fact equal to the set of signed measures on Kξ with finite mass.
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Definition 5.11. We say that a function φ ∶ P↑ξ → R is pre-concave, when

for every µ, ν ∈ P↑ξ and λ ∈ [0,1],

λµ + (1 − λ)ν ∈ P↑ξ Ô⇒ λφ(µ) + (1 − λ)φ(ν) ⩽ φ(λµ + (1 − λ)ν).

As in Section 3, we equipM1(Kξ) with the norm ∣ ⋅ ∣M and we denote by
d the distance induced by ∣ ⋅ ∣M. The restriction of the distance d to P(Kξ)
is the optimal transport distance. Given a continuous function φ ∶ P↑ξ → R,
for every µ′ ∈ M1(Kξ), we define

(5.8) φ(µ′) = sup
η∈P(P↑

ξ
)
{∫ φdη − d(Bar(η), µ′)} .

For every function χ ∈ L(Kξ), we also define

(5.9) φξ
∗(χ) = inf

µ∈P↑
ξ

{∫ χdµ − φ(µ)} .

We choose x0 = ∇ξ(0) as a reference point for the norm ∣ ⋅ ∣L in L(Kξ).
we equip P(P↑ξ) with the optimal transport distance inherited from the

restriction of the distance d to P↑ξ . That is for every η, η
′ ∈ P(P↑ξ),

(5.10) d(η, η′) = inf
π∈Π(η,η′)

{∫
P↑
ξ

d(ν, ν′)dπ(ν, ν′)} .

Here Π(η, η′) denotes the set of measures π ∈ P(P↑ξ × P
↑
ξ) with marginals

π1 = η and π2 = η′. As usual, the optimal transport distance d admits the
dual representation [22, Theorem 5.10],

(5.11) d(η, η′) = sup
X
{∫ X(ν)dη(ν) − ∫ X(ν)dη′(ν)} ,

where the supremum is taken over the set of 1-Lipschitz functions X ∶ P↑ξ → R.
The goal of this subsection is to show the following extension theorem,

which will be applied to the function ψ defined in (2.7) in the next section.

Theorem 5.12. For every 1-Lipschitz and pre-concave function φ ∶ P↑ξ → R,
the function φ ∶ M1(Kξ) → R defined by (5.8) is a 1-Lipschitz and concave
extension of φ. In addition, for every µ′ ∈ M(Kξ), we have

(5.12) φ(µ′) = min
χ∈L⩽1(Kξ)

{∫ χdµ − φξ
∗(χ)} .

Note that given S ⊆ SD
+ and χ ∶ S → R, by letting

χ(x) = inf
y∈S
{χ(y) + ∣χ∣Lip∣x − y∣} ,

we define a Lipschitz extension of χ to SD
+ with the same Lipschitz constant.

Therefore, in Theorem 5.12, (5.12) remains true if we take the minimum over
L⩽1(SD

+ ) rather than L⩽1(Kξ).
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Proposition 5.13. Let ξ ∈ C∞(RD×D,R) be a strictly convex function on
SD
+ , then the function ∇ξ ∶ SD

+ → RD×D is injective.

Proof. Let a ≠ b in SD
+ , the function γ ∶ t↦ ξ(ta + (1 − t)b) is strictly convex

on [0,1], so its derivative is strictly increasing on (0,1) and for every s < t
we have

(5.13) ∇ξ(sa + (1 − s)b) ⋅ (a − b) < ∇ξ(ta + (1 − t)b) ⋅ (a − b).
Letting s→ 0 and t→ 1, we obtain

(5.14) ξ(b) ⋅ (a − b) ⩽ γ′(1/3) < γ′(2/3) ⩽ ξ(a) ⋅ (a − b).
This justifies ∇ξ(a) ≠ ∇ξ(b). □

Proposition 5.14. The set P↑ξ is compact and is an extreme set in its closed

convex hull P(Kξ).

Proof. The set P↑ξ is the image of P↑(B(0,1) ∩ SD
+ ) by the continuous map

ν ↦ ∇ξ#ν. According to Proposition 5.9, P↑(B(0,1) ∩ SD
+ ) is compact,

so P↑ξ is compact. Let η ∈ P(P(Kξ)) be such that Bar(η) ∈ P↑ξ and let

ρ ∈ P↑(B(0,1) ∩ SD
+ ) such that Bar(η) = ∇ξ#ρ. In particular, we have

Bar(η) ∈ P↑(Kξ), since P↑(Kξ) is an extreme set in its convex hull according

to Proposition 5.10, it follows that η is supported on P↑(Kξ). Therefore, for
every µ in the support of η, we have µ ∈ P↑(Kξ) so the path qµ ∈ Q∞(SD

+ )
is well-defined and valued in Kξ. In particular given µ in the support of η,

there exists a, possibly non-monotone, map pµ ∶ [0,1) → B(0,1) ∩ SD
+ such

that for every u ∈ [0,1),
qµ(u) = ∇ξ(pµ(u)).

Moreover, we have µ = ∇ξ#Law(pµ(U)), this implies

(5.15) ∇ξ#∫ Law(pµ(U))dη(µ) = ∇ξ#ρ.

According to Proposition 5.13, ∇ξ ∶ SD
+ → SD

+ is injective, so we have

∫ Law(pµ(U))dη(µ) = ρ.

Finally, since ρ ∈ P↑(B(0,1) ∩ SD
+ ), and P↑(B(0,1) ∩ SD

+ ) is an extreme set
in its convex hull according to Proposition 5.10, we deduce that η-almost
surely Law(pµ(U)) ∈ P↑(B(0, 1) ∩SD

+ ). Hence, η-almost surely µ ∈ P↑ξ which

concludes. □

Proposition 5.15. For any bounded function φ ∶ P↑ξ → R, the function φ

defined by (5.8) is concave and 1-Lipschitz onM1(Kξ).

Proof. The function (η,µ′) ↦ ∫ φdη − d(Bar(η), µ′) is concave on P (P↑ξ) ×
M1(Kξ), so φ is concave as the supremum of a jointly concave functionnal.

For every η ∈ P (P↑ξ), the function µ′ ↦ ∫ φdη − d(Bar(η), µ′) is 1-Lipschitz,
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so φ is 1-Lipschitz as the pointwise supremum of a family of 1-Lipschitz
functions. □

Proposition 5.16. Assume that φ ∶ P↑ξ → R is 1-Lipschitz and pre-concave,

then the function φ defined by (5.8) is an extension of φ.

Proof. We fix µ′ ∈ P↑ξ and our goal is to show that φ(µ′) = φ(µ′). Choosing
η = δµ′ in (5.8), we obtain φ(µ′) ⩾ φ(µ′), so we only need to show the other
bound.

Step 1. We show that for every η ∈ P(P↑ξ), there exists η′ ∈ P(P↑ξ) such that

Bar(η′) = µ′ and d(η, η′) ⩽ d(Bar(η), µ′).
Let π be an optimal coupling between Bar(η) and µ′, the existence of such a
π is guaranteed by [22, Theorem 4.1]. According to [1, Theorem 5.3.1], there
exists a family of probability measures (µx)x∈Kξ

such that,

∫
Kξ×Kξ

h(x, y)dπ(x, y) = ∫
Kξ
∫
Kξ

h(x, y)dµx(y)dBar(η)(x).

Given a random probability measure ν ∈ P↑ξ sampled from η, we define

ν′ ∈ P(Kξ) as the unique probability measure satisfying

∫
Kξ

h(y)dν′(y) = ∫
Kξ
∫
Kξ

h(y)dµx(y)dν(x).

We let η′ ∈ P(P(Kξ)) be the law of the random variable ν′ ∈ P(Kξ). We
have,

∫
Kξ

h(y)dBar(η′)(y) = ∫
P↑
ξ

∫
Kξ

h(y)dν′(y)dη(ν)

= ∫
P↑
ξ

∫
Kξ
∫
Kξ

h(y)dµx(y)dν(x)dη(ν)

= ∫
Kξ
∫
Kξ

h(y)dµx(y)dBar(η)(x)

= ∫
Kξ×Kξ

h(y)dπ(x, y)

= ∫
Kξ

h(y)dµ′(y).

Therefore, Bar(η′) = µ′ ∈ P↑ξ . According to Proposition 5.14, this imposes

that η′ is supported on P↑ξ . Finally, by definition of the optimal transport
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distance, we have,

d(η, η′) ⩽ ∫
P↑
ξ

d(ν, ν′)dη(ν)

⩽ ∫
P↑
ξ

∫
Kξ
∫
Kξ

d(x, y)dµx(y)dν(x)dη(ν)

= ∫
Kξ
∫
Kξ

d(x, y)dµx(y)dBar(η)(x)

= ∫
Kξ
∫
Kξ

d(x, y)dπ(x, y)

= d(Bar(η), µ′).

This concludes Step 1.

Step 2. We show that φ(µ′) ⩽ φ(µ′).
Let η ∈ P(P↑ξ) and let η′ ∈ P(P↑ξ) be as built in Step 1. We have,

∫ φdη − d(Bar(η), µ′) = ∫ φdη′ + ∫ φd(η − η′) − d(Bar(η), µ′).

By Proposition 5.8, ∫ φdη′ ⩽ φ(µ′). Since φ is 1-Lipschitz, according to
(5.11), we have

∫ φd(η − η′) ⩽ d(η, η′).

In Step 1, we have built η′ so that −d(Bar(η), µ′) ⩽ −d(η, η′), therefore, it
follows from the two previous displays that

∫ φdη − d(Bar(η), µ′) ⩽ φ(µ′).

By taking the supremum over η ∈ P(P↑ξ) on the left-hand side, we can

conclude. □

Proposition 5.17. Let φ ∶ P↑ξ → R, the function φ defined in (5.8) satisfies

for every χ0 ∈ L⩽1(Kξ), φ∗(χ0) = φξ
∗(χ0).

Proof. Observe that when χ0 ∈ L⩽1(Kξ), the map µ↦ ∫ χ0dµ is 1-Lipschitz

onM1(Kξ) with respect to the distance d. In particular, for every ν ∈ P↑ξ ,
we have

inf
µ∈M1(Kξ)

{∫ χ0dµ + d(ν,µ)} = ∫ χ0dν.
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Thus,

φ∗(χ0) = inf
µ∈M1(Kξ)

{∫ χ0dµ − φ(µ)}

= inf
µ∈M1(Kξ)

inf
η∈P(P↑

ξ
)
{∫ χ0dµ − ∫ φdη + d(Bar(η), µ)}

= inf
η∈P(P↑

ξ
)
{−∫ φdη + inf

µ∈M1(Kξ)
{∫ χ0dµ + d(Bar(η), µ)}}

= inf
η∈P(P↑

ξ
)
{−∫ φdη + ∫ χ0dBar(η)}

= inf
η∈P(P↑

ξ
)
{∫ (−φ(ν) + ∫ χ0dν)dη(ν)}

= inf
ν∈P ↑

ξ

{−φ(ν) + ∫ χ0dν}

= φξ
∗(χ0).

□

Proof of Theorem 5.12. The function φ is 1-Lipschitz and concave on the set
M1(Kξ) according to Proposition 5.15. It follows from Corollary 3.5, that
for every µ′ ∈ M1(Kξ),

φ(µ′) = min
χ∈L⩽1(Kξ)

{∫ χdµ − φ∗(χ)} .

According to Proposition 5.17, we have for every χ ∈ L⩽1(Kξ), φ∗(χ) = φ
ξ
∗(χ),

thus

φ(µ′) = min
χ∈L⩽1(Kξ)

{∫ χdµ − φξ
∗(χ)} .

Finally, we have shown in Proposition 5.16 that φ is an extension of φ. □

6. Vector models

We now adapt the arguments of the proof of Theorem 1.2 to prove The-
orem 1.3. To do so we will use Theorem 5.12, which is proven to be valid
only when ξ is strictly convex on SD

+ . Therefore, the proof we give is only
valid when ξ is assumed to be strictly convex on SD

+ . We will fix this issue
in Section 6.2 using a continuity argument.

6.1. Strictly convex models. Let ξ = ξ+IB(0,1)∩SD
+
denote the function that

coincides with ξ on B(0, 1) ∩SD
+ and is equal to +∞ outside of B(0, 1) ∩SD

+ .
We define

θ(x) = x ⋅ ∇ξ(x) − ξ(x).
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Proposition 6.1. The function ξ∗ ∶ SD
+ → R is 1-Lipschitz and for every

x ∈ B(0,1) ∩ SD
+ , we have

θ(x) = ξ∗(∇ξ(x)).

Proof. For every y ∈ RD×D, we have

ξ∗(y) = sup
x∈B(0,1)∩SD

+

{x ⋅ y − ξ(x)} .

Therefore, ξ∗ is 1-Lipschitz as the supremum of a family of 1-Lipschitz
functions.

Let x ∈ B(0,1) ∩ SD
+ , from the definition of θ, it is clear that θ(x) ⩽

ξ∗(∇ξ(x)). Given x′ ∈ SD
+ , by convexity of ξ on SD

+ , we have for every
λ ∈ (0,1],

ξ(λx′ + (1 − λ)x) − ξ(x)
λ

⩽ ξ(x′) − ξ(x).

Letting λ→ 0 in the previous display, we obtain

x ⋅ ∇ξ(x) − ξ(x) ⩾ x′ ⋅ ∇ξ(x) − ξ(x′).
This proves that,

θ(x) = sup
x′∈SD

+

{x′ ⋅ ∇ξ(x) − ξ(x′)} = ξ∗(∇ξ(x)).

In particular, the supremum in the previous display is reached at x′ = x ∈
SD
+ ∩B(0,1) and we have,

θ(x) = sup
x′∈SD

+ ∩B(0,1)
{x′ ⋅ ∇ξ(x) − ξ(x′)} = ξ∗(∇ξ(x)). □

Recall that for every Lipschitz function χ ∶ SD
+ → R, we have defined for

every x ∈ SD
+ ,

S̃tχ(x) = sup
y∈SD

+ ∩B(0,1)
{χ(x + t∇ξ(y)) − tξ∗ (∇ξ(y))} .

Theorem 6.2. Assume that ξ is strictly convex on SD
+ , then Theorem 1.3

holds.

Proof. According to [4, Corollary 8.7 (2)], the following refinement of (2.9)
holds,

lim
N→+∞

FN(t) = sup
µ∈P↑

ξ

{ψ(µ) − t∫ ξ∗ ( ⋅
t
)dµ} .

We have, (tξ)∗ = tξ∗ ( ⋅t) so up to replacing ξ by tξ, we may assume without
loss of generality that t = 1.
Step 1. We show that

lim
N→+∞

FN(1) = sup
µ∈P(Kξ)

{ψ(µ) − ∫ ξ∗dµ} .
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We have

lim
N→+∞

FN(1) = sup
µ∈P↑(B(0,1)∩SD

+ )
{ψ(∇ξ#µ) − ∫ θdµ} .

According Proposition 6.1, we have ∫ θ(x)dµ(x) = ∫ ξ∗(∇ξ(x))dµ(x), re-
placing µ by ∇ξ#µ, we obtain

lim
N→+∞

FN(1) = sup
µ∈P↑

ξ

{ψ(µ) − ∫ ξ∗dµ} .

In addition, it follows from Theorem 5.12 that ψ is an extension of ψ, therefore
the previous display implies

(6.1) lim
N→+∞

FN(1) ⩽ sup
µ∈P(Kξ)

{ψ(µ) − ∫ ξ∗dµ} .

Conversely, let us fix µ ∈ P(Kξ), for every ε > 0, there exists η ∈ P(P↑ξ), such
that

ψ(µ) ⩽ ε + ∫ ψdη − d(Bar(η), µ).

Since ξ∗ is 1-Lipschitz according to Proposition 6.1 by definition of the
distance d, it follows that,

ψ(µ) − ∫ ξ∗dµ ⩽ ε + ∫ ψdη − ∫ ξ∗dµ − d(Bar(η), µ)

⩽ ε + ∫ (ψ(ν) − ∫ ξ∗dν)dη(ν)

+ ∫ ξ∗d(Bar(η) − µ) − d(Bar(η), µ)

⩽ ε + ∫ (ψ(ν) − ∫ ξ∗dν)dη(ν)

⩽ ε + sup
ν∈P↑

ξ

{ψ(ν) − ∫ ξ∗dν}

= ε + lim
N→+∞

FN(1).

Taking the supremum over µ ∈ P(Kξ), this yields

sup
µ∈P(Kξ)

{ψ(µ) − ∫ ξ∗dµ} ⩽ ε + lim
N→+∞

FN(1).

Finally, since ε > 0 is arbitrary, we obtain the desired result by letting ε→ 0.

Step 2. We show that

lim
N→+∞

FN(1) = inf
χ∈L0

⩽1

sup
µ∈P(Kξ)

{∫ χdµ − ψξ
∗(χ) − ∫ ξ∗dµ} .

According to Theorem 5.12, we have for every µ ∈ P(Kξ),

ψ(µ) = inf
χ∈L0

⩽1

{∫ χdµ − ψξ
∗(χ)} .
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It thus follows from Step 1 that

lim
N→+∞

FN(1) = sup
µ∈P(Kξ)

inf
χ∈L0

⩽1

G(χ,µ),

where,

G(χ,µ) = ∫ χdµ − ψξ
∗(χ) − ∫ ξ∗dµ.

The set P(Kξ) is convex compact with respect to the topology of the distance

d. For every χ ∈ L0⩽1 the map G(χ, ⋅) is concave and Lipschitz continuous with
respect to d. For every µ ∈ P(Kξ), the map G(⋅, µ) is convex and lower semi
continuous with respect to the topology of local uniform convergence. There-
fore, according to [20, Corollary 3.4] we can perform a sup-inf interchange in
the previous display to obtain,

lim
N→+∞

FN(1) = inf
χ∈L0

⩽1

sup
µ∈P(Kξ)

G(χ,µ).

Step 3. Conclusion.

Using Step 2, we have

lim
N→+∞

FN(1) = inf
χ∈L0

⩽1

⎧⎪⎪⎨⎪⎪⎩
−ψξ
∗(χ) + sup

µ∈P(Kξ)
{∫ χdµ − ∫ ξ∗dµ}

⎫⎪⎪⎬⎪⎪⎭

= inf
χ∈L0

⩽1

⎧⎪⎪⎨⎪⎪⎩
−ψξ
∗(χ) + sup

x∈B(0,1)∩SD
+

{χ(∇ξ(x)) − ξ∗(∇ξ(x))}
⎫⎪⎪⎬⎪⎪⎭

= inf
χ∈L0

⩽1

{S̃tχ(0) − ψξ
∗(χ)} .

□

6.2. Convex models. In this subsection, we prove Theorem 1.3 when ξ is
only assumed to be convex but not necessarily strictly convex. To do so, we
will use the fact that for every α > 0, x↦ ξ(x)+α∣x∣2 is strictly convex. This
allows us to establish (1.11) with α > 0 using Theorem 6.2, and we can then
let α → 0 to conclude.

We start by defining a family of Gaussian processes (Hα
N)N⩾1 with covari-

ance function ξα(x) = ξ(x) + α∣x∣2. For every σ ∈ (RD)N , we let

HPotts
N (σ) = 1√

N

N

∑
i,j=1

Jijσi ⋅ σj ,

where the Jij ’s are independent standard Gaussian random variables. We
choose (Jij)i,j⩾1 independent of (HN(σ))σ∈RD×N . For every α ⩾ 0, let

Hα
N(σ) =HN(σ) +

√
αHPotts

N (σ).
We have for every σ, τ ∈ (RD)N ,

E [Hα
N(σ)Hα

N(τ)] = Nξα (
στ⊥

N
) .
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We let F
α
N(t) denote the free energy of Hα

N , more precisely

F
α
N(t) = −

1

N
E log∫ exp(

√
2tHα

N(σ) −Ntξα (
σσ⊥

N
))dPN(σ).

Note that at α = 0, we have ξ0 = ξ, H0
N =HN and F

0
N(t) = FN(t). We let ⟨⋅⟩α

denote the Gibbs measure associated to F
α
N(t), it is a random probability

measure on RD×N defined by

d⟨⋅⟩α(σ) ∝ exp(
√
2tHα

N(σ) −Ntξα (
σσ⊥

N
))dPN(σ).

Proposition 6.3. For every t ⩾ 0, there exists a constant C ⩾ 0 such that
for every N ∈ N and every α,α′ ⩾ 0,

∣Fα
N(t) − F

α′

N (t)∣ ⩽ C ∣α − α′∣.

Proof. Without loss of generality, we may assume that t = 1/2. The function

α ↦ F
α
N(1/2) is continuous on R+ and differentiable on (0,+∞), and we have

d

dα
Fα
N(1/2) = −

1

N
E ⟨ 1

2
√
α
HPotts

N (σ) − N
2
∣σσ

⊥

N
∣
2

⟩
α

.

Using the Gaussian integration by part formula [15, Lemma 1.1], it follows
that,

d

dα
Fα
N(1/2) =

1

2
E ⟨∣στ

⊥

N
∣
2

⟩
α

.

Since the reference measure P1 is compactly supported, there exists a constant

c ⩾ 0 such that E ⟨⋅⟩α-almost surely ∣στ⊥N ∣
2
⩽D2c2, the result follows. □

For every χ ∈ L0⩽1, we let

ψα
∗ (χ) = inf

µ∈P↑
ξα

{∫ χdµ − ψ(µ)} ,

and

S̃α
t χ = sup

x∈B(0,1)∩SD
+

{χ(t∇ξα(x)) − tθα(x)} ,

where,

θα(x) = x ⋅ ∇ξα(x) − ξα(x) = θ(x) + α∣x∣2.

Proposition 6.4. For every t ⩾ 0, the function

α ↦ inf
χ∈L0

⩽1

{S̃α
t χ(0) − ψα

∗ (χ)} ,

is Lipschitz on R+.
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Proof. If for every χ ∈ L0⩽1, the functions α ↦ S̃α
t χ(0) and α ↦ ψα

∗ (χ) are
Lipschitz functions on R+ with Lipschitz constant independent of χ, then
the result follows because in this case α ↦ infχ∈L0

⩽1
{S̃α

t χ(0) − ψα
∗ (χ)} is the

infimum of a family of uniformly Lipschitz functions.

Step 1. We show that for every χ ∈ L0⩽1, α ↦ S̃α
t χ(0) is 3t−Lipschitz.

Let x ∈ B(0,1) ∩ SD
+ , the function

α ↦ χ(t∇ξ(x) + 2tαx) − tθ(x) − tα∣x∣2

is 3t-Lipschitz on R+ and we have

S̃α
t χ = sup

x∈B(0,1)
{χ(t∇ξ(x) + 2tαx) − tθ(x) − tα∣x∣2} .

Therefore, α ↦ S̃α
t χ(0) is 3t-Lipschitz on R+ as the supremum of a family of

3t-Lipschitz functions on R+.
Step 2. We show that for every χ ∈ L0⩽1, α ↦ ψα

∗ (χ) is 4−Lipschitz on R+.
Let α,α′ ⩾ 0, we have for every µ ∈ P↑(B(0,1) ∩ SD

+ )

∣∫ χ(∇ξ(x) + 2αx)dµ(x) − ∫ χ(∇ξ(x) + 2α′x)dµ(x)∣ ⩽ ∫ 2∣α − α′∣∣x∣dµ

⩽ 2∣α − α′∣.

In addition, since ψ is 1-Lipschitz with respect to the optimal transport
distance d, we have

∣ψ ((∇ξ + 2αidSD
+
)#µ) − ψ ((∇ξ + 2α′idSD

+
)#µ)∣

⩽ d((∇ξ + 2αidSD
+
)#µ, (∇ξ + 2α′idSD

+
)#µ)

⩽ sup
χ0∈L0

⩽1

{∫ χ0(∇ξ(x) + 2αx)dµ(x) − ∫ χ0(∇ξ(x) + 2α′x)dµ(x)}

⩽ sup
χ0∈L0

⩽1

{∫ 2∣α − α′∣∣x∣dµ(x)}

⩽ 2∣α − α′∣.

Finally, since

ψα
∗ (χ) = inf

µ∈P↑(B(0,1)∩SD
+ )
{∫ χ(∇ξ(x) + 2αx)dµ(x) − ψ ((∇ξ + 2αidSD

+
)#µ)} ,

we deduce that α ↦ ψα
∗ (χ) is 4-Lipschitz as the infimum of a family of

4-Lipschitz functions. □

Proof of Theorem 1.3. Let α > 0, ξα is strictly convex on SD
+ so according to

Theorem 6.2, we have

lim
N→+∞

F
α
N(t) = inf

χ∈L⩽1
{S̃α

t χ(0) − ψα
∗ (χ)} .
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According to Propositions 6.3 and 6.4, we can let α → 0 in the previous
display to obtain

lim
N→+∞

FN(t) = inf
χ∈L⩽1

{S̃tχ(0) − ψξ
∗(χ)} .

□

7. Interpretations of the main results

This last section has a more speculative flavor, its aim is to give an
interpretation of the main results of this paper through the lens of Hamilton-
Jacobi equations. We start by explaining why we think that (1.7) can be
interpreted as a Hopf-like formula. Assuming that this interpretation can
be made rigorous in the case D > 1, we construct a conjectural variational
formula for the limit free energy when ξ is not assumed to be convex on SD

+ .

7.1. Hopf and Hopf-like formulas. Let ψ ∶ Rn → R be a Lipschitz function
and let H ∶ Rn → R be a locally Lipschitz function. It is well known that the
Hamilton-Jacobi equation

(7.1)

⎧⎪⎪⎨⎪⎪⎩

∂tu −H(∇u) = 0 on (0,+∞) ×Rn

u(0, ⋅) = ψ

admits a unique viscosity solution u and that when ψ is concave, u admits the
Hopf representation [8, Theorem 3.13]. We recall this in the next proposition.

Proposition 7.1 ([8]). Assume that ψ ∶ Rn → R is Lipschitz and concave,
assume that H ∶ Rn → R is locally Lipschitz. Then, the unique viscosity
solution of (7.1) satisfies

(7.2) u(t, x) = inf
y∈Rn
{x ⋅ y − ψ∗(y) + tH(y)} ,

where ψ∗(y) = infx∈Rn {x ⋅ y − ψ(y)}.

Intuitively, the Hopf formula follows from the following observations. At
time t = 0, u(0, ⋅) coincides with the infimum of the family of values taken
by affine functions that upper bound ψ (this is Fenchel-Moreau duality),

(7.3) u(0, x) = inf
y∈Rn
{x ⋅ y − ψ∗(y)} .

For every y ∈ Rn the viscosity solution of (7.1) with the affine initial condition
x↦ x ⋅ y − ψ∗(y) is

(t, x) ↦ x ⋅ y − ψ∗(y) + tH(y).
Provided that we can interchange the semigroup of (7.1) with the infimum
in (7.3), we obtain (7.2).

Notice that in Proposition 7.1, the geodesics used to define the notion of
concavity and the notion of derivative (the symbol ∇ in (7.1)) are the same,
both notions are defined using straight lines in Rn.



A HOPF-LIKE FORMULA FOR MEAN-FIELD SPIN GLASS MODELS 43

For the rest of this subsection we assume that D = 1. Let ψ ∶ P1(R+) → R
be a nondecreasing Lipschitz function, we have explained that (2.10) could be
reformulated into (2.12). Now observe that in (2.12) the notion of derivative
(the symbol ∇ in (2.12)) is the Fréchet derivative in L2, it is defined using
straight lines in L2. Hence, as might be expected, it was shown in [6,
Theorem 4.6 (3)] that the Hopf representation is also available for viscosity
solutions of (2.10), provided that the function q ↦ ψ(Ω−1q) is concave. In
this case, f the unique solution of (2.12), satisfies

(7.4) f(t,q) = inf
p∈Q∞(R+)

{⟨q,p⟩L2 − ψ○(p) + t∫ ξ(p)} ,

where

ψ○(p) = inf
q∈Q2(R+)

{⟨q,p⟩L2 − ψ(Ω−1q)} .

Even thought (7.4) is the natural generalization of (7.2), this formula seems
to be of limited use in the context of spin glasses since for the function ψ
defined by (2.7), the function q ↦ ψ(Ω−1q) is not concave (nor convex) in
general as shown in [11, Section 6].

We now assume that ψ is given by (2.7). According to [2], the function
µ ↦ ψ(µ) is concave on P2(R+). When considering (2.10) in this case, the
geodesics used to define concavity and derivatives are not the same. We
use straight lines in P2(R+) to define concavity and transport geodesics in
P2(R+) (that is straight lines in L2) to define the symbol ∂µ appearing in
(2.10). Nonetheless, the formula (1.7) seems to be the natural adaptation of
(7.4) under this slightly unusual setup. Indeed, let f be the viscosity solution
of (2.10), recall that according to Lemma 4.1, we have

f(0, µ) = inf
χ∈X
{∫ χdµ − ψ∗(χ)} ,

where X denotes the set of Lipschitz functions χ ∶ R+ → R which are
nondecreasing and convex. Theorem 1.2 states that

(7.5) f(t, µ) = inf
χ∈X
{∫ Stχdµ − ψ∗(χ)} ,

and according to Theorem 4.2, (t, µ) ↦ ∫ Stχdµ − ψ∗(χ) is the unique
viscosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tu − ∫ ξ(∂µu)dµ = 0 on (0,+∞) × P2(R+)
u(0, µ) = ∫ χdµ − ψ∗(χ).

Therefore (7.5) and (7.4) have the same structure; those two formulas express
the viscosity solution as the infimum of a family of viscosity solutions started
at an affine initial condition. The only difference is that for (7.4) the relevant
linear initial conditions are of the form q↦ ⟨p,q⟩L2 when for (7.5) the relevant
linear initial conditions are of the form µ↦ ∫ χdµ. This is why we refer to
(1.7) as a Hopf-like formula.
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7.2. Some conjectures. In this subsection, we do not assume that D = 1.
When ξ is not assumed to be convex on SD

+ , the Parisi formula breaks down
and there is no known generalization of Theorem 1.1. In [11, 12, 13] it was
conjectured that results such as Theorem 2.1 should generalize to the setting
where the function ξ is not assumed to be convex on SD

+ . Namely, it should
hold under (H1) and (H3) only that the free energy converges as N → +∞
to the viscosity solution of (2.10). When ξ is not assumed to be convex the
Hopf-Lax representation for the viscosity solutions of (2.10) is not available
and variational representations for the limit free energy such as (2.9) are
proven to be false (see [11, Section 6]).

As explained in the previous subsection, for Hamilton-Jacobi equations
with possibly nonconvex nonlinearity, if the initial condition is concave,
a variational representation is available for the viscosity solution, and it
seems that the un-inverted formula (1.7) can be interpreted as an instance
of such a variational representation. One of the main ingredients for proving
(1.7) and coincidently also for the Hopf representation to hold is Fenchel-
Moreau duality (which manifests through Lemma 4.1 here). If one wishes
to generalize (1.7) to models with D > 1, a seemingly crucial step is thus
to generalize Lemma 4.1. The attentive reader will notice that a version
of Lemma 4.1 follows from Theorem 5.12, this allows us to write ψ as an
infimum over Lipschitz functions χ ∶ SD

+ → R. But this version of Lemma 4.1
is not strong enough for our purpose. Indeed, to guarantee that (7.12) below
is well-posed, one needs that the initial condition χ is nondecreasing [5,
Theorem 1.2 (2)]. The argument we have used in the proof of Lemma 4.1 to
show that the infimum could in fact be taken over nondecreasing χ’s doesn’t
seem to be easily applicable when D > 1. Indeed, we have used crucially the
fact that the set of surjective paths q ∈ Q(R+) is dense in Q(R+). When
D > 1, the set of surjective paths q ∈ Q(SD

+ ) is empty, as any surjective
function [0, 1) → SD

+ must be non-monotonous. In order to obtain a suitable
generalization of Lemma 4.1 to the case D > 1, we thus make the following
additional assumptions.

(H4) There exists compactly supported probability measures π1, . . . , πD ∈
P∞(R) such that P1 = π1 ⊗ ⋅ ⋅ ⋅ ⊗ πD.

(H5) The function ξ only depends on the diagonal coefficients of its ar-

gument. That is, there exists a function ξ ∶ RD → R such that
ξ(A) = ξ((Add)1⩽d⩽D).

Thanks to (H5) we can encode the limit free energy with a partial differential

equation on P↑2(R
D
+ ) rather than P↑2(S

D
+ ), and using (H4) we can adapt

Lemma 4.1. Let us explain this in more details.

The map x ↦ diag(x) which maps each vector x ∈ RD
+ to the matrix in

SD
+ whose diagonal coefficients are x1, . . . , xD, defines an injection from RD

+
to SD

+ . In particular each µ ∈ P↑1(R
D
+ ) can be interpreted as a probability

measure in P↑1(S
D
+ ). This means that the quantity FN(t, µ) is also defined
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when µ ∈ P1(RD
+ ). We can then easily adapt the arguments of [4, Section 8]

to prove the following theorem.

Theorem 7.2 (limit free energy for convex diagonal models). Assume that

(H1), (H2), (H3) and (H5) hold, then for every t ⩾ 0 and µ ∈ P↑1(R
D
+ ), we

have

(7.6) lim
N→+∞

FN(t, µ) = sup
ν∈P↑∞(RD

+ ),ν⩾µ
(ψ(ν) − tE [ξ∗ (

Xν −Xµ

t
)]) .

Moreover, denoting by f(t, µ) the expression above, we have that f ∶ R+ ×
P↑2(R

D
+ ) → R solves the Hamilton-Jacobi equation

(7.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tf − ∫ ξ(∂µf)dµ = 0 on R+ × P↑2(R
D
+ ),

f(0, ⋅) = ψ on P↑2(R
D
+ ).

Let ψ be the functional defined in (2.7) and let ψd ∶ P1(R+) → R denote
the function obtained from (2.7) when D = 1 and the reference probability
measure is πd. Given µ ∈ P(RD

+ ) let µ1, . . . , µD ∈ P(R+) denote its marginals.
Assumption (H4) yields the following simplification, for every µ ∈ P(RD

+ ),

(7.8) ψ(µ) =
D

∑
d=1

ψd(µd).

Let XD denote the set of functions χ ∶ RD
+ → R which satisfy

(7.9) χ(x) =
D

∑
d=1

χd(xd),

with χ1, . . . , χD ∶ R+ → R 1-Lipschitz, nondecreasing and convex. The set
XD is contained in the set of Lipschitz, nondecreasing and convex functions
on RD

+ . In particular if we combine (7.8) with Lemma 4.1 applied to each

ψd, we obtain the following for every µ ∈ P↑1(R
D
+ ),

(7.10) ψ(µ) = inf
χ∈XD

{∫ χdµ − ψ∗(χ)} ,

where, as usual,

(7.11) ψ∗(χ) = inf
µ∈P↑1(R

D
+ )
{∫ χdµ − ψ(µ)} .

With (7.10) in mind, we can expect that the mechanism leading to (7.5) in
the case D = 1, leads to the following result when D ⩾ 1.

Conjecture 7.3. Assume that (H1), (H3), (H4) and (H5) hold but with

ξ possibly non-convex on RD
+ , then f the unique viscosity solution of (7.7)

satisfies

f(t, µ) = inf
χ∈XD

{∫ Stχdµ − ψ∗(χ)} ,
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where Stχ(x) = supy∈RD
+
{x ⋅ y − χ∗(y) + tξ(y)} is the unique viscosity solution

of
⎧⎪⎪⎨⎪⎪⎩

∂tu − ξ(∇u) = 0 on (0,+∞) ×RD
+

u(0, ⋅) = χ.

Combining Conjecture 7.3 with [12, Conjecture 2.6], we obtain the following
conjectural variational formula for the limit free energy of nonconvex models.

Conjecture 7.4. Assume that (H1), (H3), (H4) and (H5) hold but with ξ
possibly non-convex on RD

+ , then

lim
N→+∞

FN(t, δ0) = inf
χ∈XD

{Stχ(0) − ψ∗(χ)} ,

where XD is defined in (7.9), Stχ(0) = supy∈RD
+
{−χ∗(y) + tξ(y)} is the value

at (t,0) of the unique viscosity solution of

(7.12)

⎧⎪⎪⎨⎪⎪⎩

∂tu − ξ(∇u) = 0 on (0,+∞) ×RD
+

u(0, ⋅) = χ,

and where

(7.13) ψ∗(χ) = inf
µ∈P↑1(R

D
+ )
{∫ χdµ − ψ(µ)} .
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