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1. Introduction

We let H ∶ RD → R be a C2 function and ψ ∶ RD → R be a Lipschitz
and differentiable function whose gradient is Lipschitz. We are interested in
partial differential equations of the form

(1.1)

⎧⎪⎪⎨⎪⎪⎩

∂tg −H(∇g) = 0 on (0,+∞) ×RD

g(0, ⋅) = ψ on RD.

The equation (1.1) may not have any differentiable solution [5, Section 3.2 Ex-
amples 5 & 6]. But, by introducing the notion of viscosity solution it is
possible to guarantee that (1.1) admits exactly one solution [5, Section 10].
In the literature, many efforts have been devoted to identifying contexts
in which the notion of viscosity solution coincides with other weaker no-
tions of solution. It is for example well-known that when H is convex, any
semi-convex function which solves (1.1) almost everywhere is in fact equal
to the viscosity solution [5, Section 3.2 Theorem 7]. It has also been recently
proven that when H is convex and the initial condition is regular enough,
any semi-concave function which solves (1.1) almost everywhere is equal to
the viscosity solution [7].

A particularly striking, but for the moment hypothetical, application of
this type of result would be the identification of the limit free energy of some
mean-field spin glass models via partial differential equations arguments. In
this context, one studies the limiting value of a quantity associated to a
fully connected and random ensemble of spins, called the limit free energy
[1, 4, 11]. The limit free energy depends on a time parameter t ∈ R+ and
a space parameter q which belongs to a closed convex cone embedded in
L2([0, 1),RD). It is known that the limit free energy is a semi-concave func-
tion [1, Proposition 3.8] which satisfies an equation of the form (1.1) “almost
everywhere” (outside a Gaussian null set) [1, Theorem 2.6 & Proposition 7.2].
In this sense, the limit free energy is a semi-concave weak solution of an
equation of the form (1.1) on a subset of an Hilbert space. To understand
the behavior of the limit free energy, one wishes to assert that it is in fact the
unique viscosity solution of the corresponding equation [9, Conjecture 2.6].
For models whose free energy solves an equation of the form (1.1) with a
convex nonlinearity, the limit free energy has already been identified via
probabilistic methods [1, 6, 10, 11, 12]. Thus, the truly interesting regime
for this kind of application is the one where H is not assumed to be convex
(nor concave). This highlights the need of establishing selection principles
with no convexity assumptions on the nonlinearity.

One such a selection principle has been identified in [2] and fruitfully used
to identify the limit free energy of a family of statistical inference problems.
But this result still relies on convexity assumptions for the initial condition
ψ which are not satisfied by the corresponding initial condition appearing in
the context of spin glasses. In this paper, we show that when the viscosity
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solution of (1.1) is regular enough, (1.1) admits exactly one semi-concave
weak solution. This establishes a selection principle which holds regardless
of the convexity properties of H and ψ.

We equip RD with the standard scalar product x ⋅ y = ∑D
d=1 xdyd, and we

denote by ∣ ⋅ ∣ the associated norm.

Theorem 1.1. We recall that H ∶ RD → R is a C2 function and ψ ∶ RD → R
is a Lipschitz differentiable function whose gradient is Lipschitz. Let T > 0,
we assume that the unique viscosity solution g of (1.1) is differentiable on
(0, T ) × RD, and that there exists L ⩾ 0 such that for every t ∈ [0, T ) and
x, y ∈ RD,

∣∇g(t, x) −∇g(t, y)∣ ⩽ L∣x − y∣.
In this case, there is a unique Lipschitz function f ∶ [0, T ]×RD → R satisfying
the following properties.

(1) f(0, ⋅) = ψ.
(2) For almost every (t, x) ∈ (0, T ) ×RD, f is differentiable at (t, x) and

∂tf(t, x) −H(∇f(t, x)) = 0.
(3) There exists c > 0 such that for every t ∈ [0, T ), x↦ c

2 ∣x∣
2 − f(t, x) is

convex.

In addition, the unique Lipschitz function f described above is the viscosity
solution g.

In condition (3) in Theorem 1.1, if the function x ↦ c
2 ∣x∣

2 − f(t, x) is
replaced by the function x↦ c

2 ∣x∣
2+f(t, x) then the statement of Theorem 1.1

remains true. This is because we can replace (ψ,H) by (−ψ, p↦ −H(−p))
without affecting the hypotheses on ψ and H.

We point out that when the nonlinearity H is strongly convex (meaning
that there exists θ > 0 such that p↦H(p)− θ∣p∣2 is convex), if the solution g
of (1.1) is differentiable on (0, T ′) ×RD, then for every ε > 0, g satisfies the
regularity assumption of Theorem 1.1 with T = T ′ − ε [8, Theorem 15.1].

As shown in [7, Section 6], when g is not assumed to be differentiable with
Lipschitz gradient there may be several Lipschitz functions satisfying (1), (2)
and (3) simultaneously. We also point out that condition (3) is pivotal for
the validity of Theorem 1.1 as illustrated in the following example.

Example 1.2. Consider
⎧⎪⎪⎨⎪⎪⎩

∂tg + (∂xg)2 = 0 on (0,+∞) ×R
g(0, ⋅) = 0 on R.

The viscosity solution of the equation above is the smooth function g = 0.
The function

f(t, x) =
⎧⎪⎪⎨⎪⎪⎩

∣x∣ − t if ∣x∣ ⩽ t
0 otherwise,

is Lipschitz and satisfies conditions (1) and (2) in Theorem 1.1, while f ≠ g.
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2. Control on the gradient of semi-concave functions

Definition 2.1. Let h ∶ RD → R and c > 0, we say that h is c-semi-convex
on RD when for every x, y ∈ RD and λ ∈ [0,1], we have

h(λx + (1 − λ)y) ⩽ λh(x) + (1 − λ)h(y) + c
2
λ(1 − λ)∣x − y∣2.

We say that h is c-semi-concave on RD when −h is c-semi-convex on RD.

Note that by the parallelogram identity, a function h is c-semi-concave if
and only if c

2 ∣ ⋅ ∣
2 − h is convex.

We let L∞(RD,R) denote the set of essentially bounded functions RD → R,
we equip it with the essential supremum norm,

∥h∥∞ = ess-supx∈RD ∣h(x)∣.
Sometimes, we will consider bounded functions defined on a subset A ⊆ RD,
in this case we denote by ∥ ⋅ ∥∞,A the corresponding norm. Given a Lipschitz

function h ∶ RD → R, h is differentiable almost everywhere, according to
Rademacher’s theorem. We let ∇h denote the almost everywhere derivative
of h, we have ∣∇h∣ ∈ L∞(RD,R).

Proposition 2.2. Let h ∶ RD → R be a bounded function, assume that there
exists c > 0 such that h is c-semi-concave or c-semi-convex. Then, h is
Lipschitz and

∥∣∇h∣∥2∞ ⩽ 4c∥h∥∞.
More precisely, at every point of differentiability x ∈ RD of h we have
∣∇h(x)∣2 ⩽ 4c∥h∥∞.

Proof. Up to replacing h by −h, we can assume without loss of generality

that h is c-semi-convex. We define C = 2
√
∥h∥∞
c and L = 2

√
∥h∥∞c.

Step 1. We show that for every x, y ∈ RD, if ∣x − y∣ ⩽ C, then
∣h(x) − h(y)∣ ⩽ L∣x − y∣.

Without loss of generality, we may assume that x ≠ y, define t = C
∣x−y∣ ∈ [1,+∞)

and set z = x + t(y − x). We have,

y = 1

t
z + (1 − 1

t
)x.
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Note that t = ∣z − x∣/∣y − x∣, by c-semi-concavity of h, we have

h(y) − h(x) ⩽ 1

t
(h(z) − h(x)) + c

2

1

t
(1 − 1

t
) ∣z − x∣2.

In addition,

1

t
(1 − 1

t
) ∣z − x∣2 = 1

t
(1 − 1

t
) t2∣y − x∣2

= (t − 1)∣y − x∣2

⩽ t∣y − x∣2

= C ∣x − y∣.

So,

h(y) − h(x) ⩽ 2∥h∥∞
t
+ c
2
C ∣y − x∣ = L∣y − x∣.

Finally, since x and y play symmetric roles, we have

∣h(y) − h(x)∣ ⩽ L∣y − x∣.

Step 2. We show that h is L-Lipschitz.

Fix x, y ∈ RD and let n ∈ N∗ be large enough so that
∣y−x∣
n ⩽ C. For

k ∈ {0, . . . , n}, define

xk = x +
k

n
(y − x).

We have ∣xk+1 − xk∣ ⩽ C, so according to Step 1 the following holds,

∣h(y) − h(x)∣ ⩽
n−1
∑
k=0
∣h(xk+1) − h(xk)∣

⩽
n−1
∑
k=0

L∣xk+1 − xk∣

= L∣x − y∣.

Step 3. Conclusion.

According to Step 2, h is L-Lipschitz on RD. It follows from Rademacher’s
theorem that h is differentiable almost everywhere. Let x ∈ RD be a point of
differentiability of h. For every ε > 0 and v ∈ RD ∖ {0}, we have

∣h(x + εv) − h(x)∣
ε

⩽ L∣v∣.

Letting ε→ 0 and taking the supremum over v, it follows that ∣∇h(x)∣ ⩽ L.
Finally, taking the essential supremum over x ∈ RD, we obtain

∥∣∇h∣∥∞ ⩽ L = 2
√
c∥h∥∞. □



WEAK-STRONG UNIQUENESS PRINCIPLE 5

3. The case of null initial condition

In this section, we prove Theorem 1.1 under the additional assumption
that ψ = 0. In this case, the viscosity solution of (1.1) does not depend
on x and satisfies g(t, x) = tH(0). This allows us to give a simple proof
of Theorem 1.1 which we use as a guideline for the proof with general ψ
in Section 5. This simple proof relies on the fact that thanks to a simple
reparametrization, we can assume that H(0) = 0 and ∇H(0) = 0.

Proof of Theorem 1.1 when ψ = 0. Let

v(t, x) = f(t, x − t∇H(0)) − tH(0),
we have for almost every (t, x) ∈ (0, T ) ×RD,

∂tv − (H(∇v) −H(0) −∇H(0) ⋅ ∇v) = 0.
Therefore, replacing f by v if needed, we can assume without loss of generality
that H(0) = 0 and ∇H(0) = 0. Under this assumption, we have g = 0 and we
wish to show that f = 0.

For every ℓ ⩾ 0, there exists a constant c(ℓ) > 0 such that for every p ∈ RD

satisfying ∣p∣ ⩽ ℓ, we have

∣H(p)∣ ⩽ c(ℓ)∣p∣2.
Since f is jointly Lipschitz on [0, T ] ×RD, there exists ℓ ⩾ 0 such that for
every (t, x) ∈ [0, T ] ×RD,

∣f(t, x) − 0∣ ⩽ ℓt.
Hence, f(t, ⋅) is bounded and satisfies the hypotheses of Proposition 2.2. In
particular, taking c = c(ℓ) for almost every (t, x) ∈ [0, T ] ×RD, we have

∣f(t, x)∣ ⩽ ∫
t

0
∣∂tf(s, x)∣ds

⩽ ∫
t

0
∣H(∇f(s, x))∣ds

⩽ c∫
t

0
∣∇f(s, x)∣2ds

⩽ c∫
t

0
∥∣∇f(s, ⋅)∣∥2∞ds

⩽ c′∫
t

0
∥f(s, ⋅)∥∞ds,

where c′ > 0 is some constant depending on ℓ and the constant of (3). Taking
the essential supremum over x ∈ RD, we discover that for almost every
t ∈ [0, T ) we have

∥f(t, ⋅)∥∞ ⩽ c′(ℓ)∫
t

0
∥f(s, ⋅)∥∞ds.

Finally, by Lipschitz continuity, the previous display actually holds for every
t ∈ [0, T ). Applying Gronwall’s lemma [3, Theorem 2.1], we deduce that for
every t ∈ [0, T ], ∥f(t, ⋅)∥∞ = 0 and so f = 0. □
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4. Characteristic curves

In this section, we consider g ∶ [0, T ] ×RD → R the viscosity solution of

⎧⎪⎪⎨⎪⎪⎩

∂tg −H(∇g) = 0 on (0, T ) ×RD

g(0, ⋅) = ψ on RD.

We assume that g satisfies the regularity assumption of Theorem 1.1. That
is, g is differentiable on (0, T ) × RD, and there exists L ⩾ 0 such that for
every t ∈ [0, T ) and x, y ∈ RD,

∣∇g(t, x) −∇g(t, y)∣ ⩽ L∣x − y∣.
Under this assumption, we build the characteristic curves associated to g.
Let b = −∇H(∇g), by the Picard-Lindelöf theorem, for every x ∈ RD, the
ordinary differential equation

⎧⎪⎪⎨⎪⎪⎩

φ̇(t) = −b(t, φ(t))
φ(0) = x,

admits a unique strong solution on [0, T ), we denote it by t↦X(t, x). For
every t ∈ [0, T ), we define Xt =X(t, ⋅).

Proposition 4.1. There exists a constant c > 0 such that for every t ∈ [0, T ),
the map Xt ∶ RD → RD is bijective and ect-Lipschitz. Furthermore, the
inverse map (Xt)−1 is ect-Lipschitz.

Proof. We let c > 0 be such that for every t ∈ [0, T ) and x, y ∈ RD, we have

∣b(t, x) − b(t, y)∣ ⩽ c∣x − y∣.

Step 1. We show that for every x, y ∈ RD, we have

e−
ct
2 ∣x − y∣ ⩽ ∣Xt(x) −Xt(y)∣ ⩽ e

ct
2 ∣x − y∣.

Fix x, y ∈ RD, we have

d

dt
∣Xt(x) −Xt(y)∣2 = 2 (Ẋt(x) − Ẋt(y)) ⋅ (Xt(x) −Xt(y))

= 2(b(t,Xt(x)) − b(t,Xt(y))) ⋅ (Xt(x) −Xt(y)) .
By definition of c, it follows from the Cauchy-Schwarz inequality that

−2c∣Xt(x) −Xt(y)∣2 ⩽ d

dt
∣Xt(x) −Xt(y)∣2 ⩽ 2c∣Xt(x) −Xt(y)∣2.

Finally, applying Gronwall’s lemma [3, Theorem 2.1], we deduce that

e−ct∣x − y∣ ⩽ ∣Xt(x) −Xt(y)∣ ⩽ ect∣x − y∣.
Step 2. We show that for every t ∈ [0, T ), Xt ∶ RD → RD is bijective.

Let t ∈ [0, T ), it follows from Step 1 that Xt is injective. We have for every
x ∈ RD,

∣X(t, x) − x∣ ⩽ t∥b∥∞,[0,t]×RD .
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Fix y ∈ RD, the previous display implies that the closed convex envelope of
the set {y + x −Xt(x)∣x ∈ RD} is convex and compact. We let

C = conv{y + x −Xt(x)∣x ∈ RD}.

According to Step 1, the map

Φ ∶
⎧⎪⎪⎨⎪⎪⎩

CÐ→ RD

xz→ y + x −Xt(x)

is continuous. By definition of C, we have Φ(C) ⊆ {y +x−Xt(x)∣x ∈ RD} ⊆ C.
Since C is convex and compact, by Brouwer’s fixed point theorem, there
exists x∗ ∈ C such that x∗ = Φ(x∗). In particular, we have y = Xt(x∗) and
Xt is surjective.

Step 3. Conclusion.

Let t ∈ [0, T ), we have shown in Step 1 that Xt was ect-Lipschitz and in
Step 2 that Xt was bijective. In addition, the inequality

ect∣x − y∣ ⩽ ∣Xt(x) −Xt(y)∣

is equivalent to

∣(Xt)−1(x) − (Xt)−1(y)∣ ⩽ ect∣x − y∣.
Thus (Xt)−1 is ect-Lipschitz. □

Proposition 4.2. For every t ∈ [0, T ) and every Lebesgue negligible set
A ⊆ RD, the sets Xt(A) and (Xt)−1(A) are also Lebesgue negligible.

Proof. We prove that (Xt)−1(A) is Lebesgue negligible only using the fact
that (Xt)−1 is Lipschitz, a similar proof would yield that Xt(A) is negligible.
We let Ln denote the n-dimensional Lebesgue measure. We say that a subset
of the form Q(y0, r) = y0+[−r, r]D with y0 ∈ RD and r ⩾ 0 is a cube. Note that
by translation invariance of the Lebesgue measure, LD(Q(y0, r)) does not
depend on y0. We let c > 0 denote the constant appearing in Proposition 4.1.

Step 1. We show that for every t ∈ [0, T ) and every cube Q ⊆ RD, we have

LD ((Xt)−1(Q)) ⩽ (
√
Dect)

D
LD(Q).

Let y0 ∈ RD and r ⩾ 0 such that Q = Q(y0, r). We let ∣ ⋅ ∣∞ denote the sup
norm on RD. According to Proposition 4.1, there exists c > 0 such that Xt

is ect-Lipschitz with respect to ∣ ⋅ ∣. We have for every y ∈ Q,

∣(Xt)−1(y) − (Xt)−1(y0)∣∞ ⩽ ∣(Xt)−1(y) − (Xt)−1(y0)∣
⩽ ect∣y − y0∣
⩽ ect
√
D∣y − y0∣∞

⩽ ect
√
Dr.
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Thus, (Xt)−1(Q) ⊆ Q((Xt)−1(y0), ect
√
Dr). It follows that

LD ((Xt)−1(Q)) ⩽ LD (Q((Xt)−1(y0), ect
√
Dr))

= (ect
√
D)

D
LD(Q((Xt)−1(y0), r))

= (ect
√
D)

D
LD(Q(y0, r)).

Step 2. We show that for every t ∈ [0, T ) and every LD-negligible set A ⊆ RD,
the set (Xt)−1(A) is also LD-negligible.
By definition of the Lebesgue measure, for every ε > 0 there exists a sequence
of cubes (Qn)n⩾1 such that

A ⊆
∞
⋃
n=1

Qn,

and ∑∞n=1LD(Qn) ⩽ ε. According to Step 1, for every n ⩾ 1 we have

LD((Xt)−1(Qn)) ⩽ (
√
Dect)DLD(Qn).

Therefore,

LD((Xt)−1(A)) ⩽ LD (
∞
⋃
n=1
(Xt)−1(Qn))

⩽
∞
∑
n=1
LD ((Xt)−1(Qn))

⩽
∞
∑
n=1
(
√
Dect)DLD(Qn)

⩽ (
√
Dect)Dε.

Letting ε→ 0, we obtain that LD((Xt)−1(A)) = 0. □

We define the inverse flow map Y ∶ [0, T ) ×RD → [0, T ) ×RD by

Y (t, x) = (t, (Xt)−1(x)).
According to Proposition 4.1, Y is bijective, we let Y −1 denote its inverse.

Proposition 4.3. For every Lebesgue negligible set N ⊆ [0, T )×RD, the sets
Y −1(N) and Y (N) are Lebesgue negligible.

Proof. Let N ⊆ [0, T )×RD such that LD+1(N) = 0. We prove that Y −1(N) is
Lebesgue negligible, a similar proof would also yield that Y (N) is Lebesgue
negligible. For every t ∈ [0, T ), define

Nt = {x ∈ RD∣(t, x) ∈ N}.
We have

∫
T

0
LD(Nt)dt = LD+1(N) = 0,
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so for almost all t ∈ [0, T ), LD(Nt) = 0. It follows from Step 2 that for almost
all t ∈ [0, T ), LD((Xt)−1(Nt)) = 0 and thus

LD+1(Y −1(N)) = ∫[0,T )×RD
1Y −1(N)(t, x)dxdt

= ∫
T

0
∫
RD

1N(t, (Xt)−1(x))dxdt

= ∫
T

0
∫
RD

1(Xt)−1(Nt)(x)dxdt

= ∫
T

0
LD((Xt)−1(Nt))dt

= 0. □

For the sake of completeness, we finish this section by proving the following
proposition, which states that when ∇g is locally jointly Lipschitz, ∇g is
constant along the flow of solution Y −1 and that the characteristic curves are
in fact straight lines. We will not use this result in the proof of Theorem 1.1,
but it gives us a hint on how to generalize the construction of the function v
appearing in Section 3.

Proposition 4.4. Assume that for every compact subset K ⊆ [0, T )×RD, ∇g
is Lipschitz on K. Then, for every x ∈ RD, the function t ↦ ∇g(t,X(t, x))
is constant on [0, T ) and for every t ∈ [0, T ), we have

X(t, x) = x − t∇H(∇ψ(x)).

Proof. The function ∇g is locally Lipschitz on (0, T )×RD so it is differentiable
almost everywhere on (0, T )×RD, differentiating (1.1) with respect to x, we
have for almost all (t, x) ∈ (0, T ) ×RD,

∂t∇g(t, x) = ∇2g(t, x)∇H(∇g(t, x)).
Furthermore, according to Proposition 4.3, for almost every (t, x) ∈ (0, T ) ×
RD, ∇g is differentiable at (t,Xt(x)). Using the previous display, we discover
that for almost all (t, x) ∈ (0, T ) ×RD,

d

dt
∇g(t,Xt(x)) = ∂t∇g(t,Xt(x)) +∇2g(t,Xt(x))Ẋ(t, x)

= (∂t∇g −∇2g∇H(∇g)) (t,Xt(x))
= 0.

The function t↦ ∇g(t,Xt(x)) is absolutely continuous as the composition
of two Lipschitz continuous functions. Thus, we can integrate the previous
display with respect to t and obtain that for almost all x ∈ RD, we have
for all t ∈ (0, T ), ∇g(t,Xt(x)) = ∇ψ(x). Finally, since x ↦ ∇g(t,Xt(x))
and x ↦ ∇ψ(x) are continuous on RD we have as desired for every (t, x) ∈
(0, T ) ×RD,

∇g(t,Xt(x)) = ∇ψ(x).
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In particular, since we have Ẋt(x) = −∇H(∇g(t,Xt(x)), we discover that

Ẋ(t, x) = −∇H(∇ψ(x)) and thus

X(t, x) = x − t∇H(∇ψ(x)).
□

As a consequence of Proposition 4.4, we see that the function v of Section 3
is in fact the function (t, x)↦ (f −g)(t,Xt(x)). This fact will be our guiding
rail to prove Theorem 1.1.

5. Proof of the main result

In this section, we adapt the argument of Section 3 using the results of
Section 4 to prove Theorem 1.1. In what follows, we fix H ∶ RD → R a
C2 function and ψ ∶ RD → R a Lipschitz and differentiable function with
Lipschitz gradient. We also assume that g the viscosity solution of (1.1) is
differentiable, and that there exists L ∈ R such that for every t ∈ [0, T ) and
every x, y ∈ RD,

∣∇g(t, x) −∇g(t, y)∣ ⩽ L∣x − y∣.

Lemma 5.1. Assume the hypotheses of Theorem 1.1 and let u = f −g. There
exists a constant c > 0 such that for almost all x ∈ RD, for all t ∈ [0, T ),

∣u(t,Xt(x))∣ ⩽ c∫
t

0
∣∇u(s,Xs(x))∣2ds.

Proof. Given a matrix A ∈ RD×D, we define ∣A∣op = sup∣x∣⩽1 x ⋅Ax. Let L ⩾ 0
be such that for every t ∈ [0, T ), f(t, ⋅) and g(t, ⋅) are L-Lipschitz, we set

c = 1

2
sup
∣r∣⩽2L

∣∇2H(r)∣op.

For every p, q ∈ RD such that ∣p∣, ∣q∣ ⩽ L, we have

∣H(p + q) −H(p) − q ⋅ ∇H(q)∣ ⩽ c∣q∣2.
By Rademacher’s theorem, f is differentiable almost everywhere on (0, T ) ×
RD. Thus, according to Proposition 4.3, we have that for almost all (t, x) ∈
(0, T ) × RD, f is differentiable at (t,Xt(x)). Fix x ∈ RD such that, for
almost all t ∈ (0, T ), f is differentiable at (t,Xt(x)). At every point of
differentiability s ∈ (0, T ), we have

d

ds
u(s,Xs(x)) = ∂tu(s,Xs(x)) + Ẋ(s, x) ⋅ ∇u(s,Xs(x))

= (H(∇f) −H(∇g) −∇H(∇g) ⋅ ∇u) (s,Xs(x))
= (H(∇g +∇u) −H(∇g) −∇H(∇g) ⋅ ∇u) (s,Xs(x)).

The function t↦ u(t,Xt(x)) is Lipschitz so for every t ∈ [0, T ), we have

u(t,Xt(x)) = ∫
t

0

d

ds
u(s,Xt(x))ds.
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Hence, for all t ∈ [0, T ),

∣u(t,Xt(x))∣ ⩽ ∫
t

0
∣ d
ds
u(s,Xt(x))∣ds

= ∫
t

0
∣ (H(∇u +∇g) −H(∇g) −∇H(∇g) ⋅ ∇u) (s,Xs(x))∣ds

⩽ c∫
t

0
∣∇u(s,Xs(x))∣2ds

This is the desired result. □

Proof of Theorem 1.1. By definition, we have that g the viscosity solution of
(1.1) is a Lipschitz function on [0, T ] ×RD satisfying g(0, ⋅) = ψ. According
to [5, Section 10 Theorem 1], for all (t, x) ∈ (0, T ) ×RD, we have

∂tg(t, x) −H(∇g(t, x)) = 0.
In addition, since for every t ∈ [0, T ), ∇g(t, ⋅) is L-Lipschitz, it follows that
for every x, y ∈ RD,

(∇g(t, x) −∇g(t, y)) ⋅ (x − y) ⩽ L∣x − y∣2.
The previous display implies that g(t, ⋅) is L-semi-concave and thus g is a
Lipschitz function satisfying (1), (2) and (3) in Theorem 1.1. Let us now
prove that g is the unique Lipschitz function satisfying (1), (2) and (3) in
Theorem 1.1. To do so, we will prove that the function u = f − g is the null
function. Let us mention that a similar argument than the one that yielded
the L-semi-concavity of g(t, ⋅) can be used to prove that g(t, ⋅) is L-semi-
convex, this means in particular that the function u(t, ⋅) is semi-concave.

Let c > 0 be the constant appearing in Lemma 5.1. According to Propo-
sition 4.3, for almost all (t, y) ∈ RD, Lemma 5.1 holds at (t, (Xt)−1(y)),
thus

∣u(t, y)∣ ⩽ c∫
t

0
∣∇u(s,Xs((Xt)−1(y))∣2ds.

Taking the essential supremum over y ∈ RD, we obtain that for all t ∈ [0, T ),

∥u(t, ⋅)∥∞ ⩽ c∫
t

0
∥∣∇u(s, ⋅)∣∥2∞ds.

Finally, appealing to Proposition 2.2 we obtain for all t ∈ [0, T ),

∥u(t, ⋅)∥∞ ⩽ c′∫
t

0
∥u(s, ⋅)∥∞ds,

for some constant c′ > 0. It then follows by Gronwall’s lemma [3, Theorem 2.1]
that for every t ∈ [0, T ), ∥u(t, ⋅)∥∞ = 0 and thus f = g on [0, T ] ×RD. □
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