TD1: Continuous-time stochastic processes

Exercice 1 — Modification and indistinguishability.

- (1) Show that two functions from \mathbb{R}_+ to \mathbb{R} that are rightcontinuous and coincide on a (possibly countable) dense subset of \mathbb{R}_+ , are the same.
- (2) Deduce that two continuous-time stochastic processes with real values $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ that are modifications of each other and have rightcontinuous trajectories, are actually indistinguishable.
- (3) Construct a process $(X_t)_{t\geq 0}$ that is a modification of the trivial process $(Y_t)_{t\geq 0}$ defined by $Y_t = 0$, but whose trajectories are almost surely discontinuous everywhere. (Thus clearly X is distinguishable from Y).

Hint: Construct first a process X that is a modification of Y but whose trajectories differ at one (necessarily random) time.

Exercice 2 — Stopping times and measurability.

Let X be a minimal continuous-time stochastic process, with values in a discrete countable subset I of \mathbb{R} .

- (1) Draw two possible trajectories, one with and one without explosion, and remind the main notations used in the course.
- (2) Assume that If X is right continuous of left continuous and show the following
 - (a) If T is a stopping time with respect to $(\mathcal{F}_t)_{t\geq 0}$, finite a.s., then X_T is F_T -measurable.
 - (b) J_0, J_1, \ldots are \mathcal{F}_{∞} -measurable, and stopping times with respect to \mathcal{F} .
 - (c) S_1, S_2, \ldots are \mathcal{F}_{∞} -measurable.
 - (d) Y_n is \mathcal{F}_{∞} -measurable and \mathcal{F}_{J_n} -measurable.

Hint: For (a), you may first show that a function Z is \mathcal{F}_T -measurable if and only if for all $t \geq 0$, the function $Z \mathbb{1}_{T \leq t}$ is \mathcal{F}_t -measurable.

Exercice 3 — Poisson process.

Keeping the same notations, we say that X is a standard Poisson process if:

- The times S_n between consecutive jumps are iid exponential random variables with parameter 1.
- The jump process satisfies $Y_n = n$.
- (1) Show that there is almost surely no explosion.
- (2) Show that X has independent and stationary increments.

(3) Compute the expectation

$$\mathbb{E}[f(J_1,\ldots,J_n)\,\mathbb{1}_{X_t=n}]$$

- for $n \ge 1$ and f nonnegative measurable test function.
- (4) Deduce the law of X_t and the law of the Poisson process.
- (5) Deduce also the law of (J_1, \ldots, J_n) conditioned on $X_t = n$.
- (6) (Feller's autobus paradox) Modelize the arrival times of buses at a stop by a Poisson process. Assuming you arrive at the stop at time t, what is the distribution of the time you have to wait for a bus? What is the distribution of the time between this bus and the subsequent one? Where is the paradox?

Exercice 4 — Composed Poisson Processes.

Let ν be a probability measure on \mathbb{R}^n and $\lambda > 0$. Let $X = (X_t)_{t \ge 0}$ be a Poisson process of intensity λ and let $(M_k)_{1 \le k \le n}$ be a sequence of iid random variables of law ν taken independent of X. We define, the composed Poisson process of parameter $\lambda \nu$ by

$$Z_t = \sum_{k=1}^{X_t} M_k.$$

- (1) Show that the increments of the process Z are stationary and independent,
- (2) Let $t \ge 0$ and $\xi \in \mathbb{R}$, compute $\mathbb{E}[e^{i\xi Z_t}]$, deduce the value of the expectation and of the variance of Z_t .
- (3) Let $p \in [0, 1]$, assume that $\nu = (1 p)\delta_0 + p\delta_1$. Show that the processes Z and X Z are independent Poisson process of respective intensity $p\lambda$ and $(1 p)\lambda$.
- (4) Deduce from the previous question that the sum of two Poisson process is also a Poisson process.
- (5) Assume that ν is supported on \mathbb{N}^* , show that a composed Poisson process of intensity $\lambda \nu$ is a continuous time Markov chain, describe its intensity matrix.