TD10 : Continuous Time Martingales

Exercise 1 - Hitting time of a line.
Let $a \geq 0$ and $b \in \mathbb{R}$, define $T=\inf \left\{t \geq 0, B_{t}=a t+b\right\}$. Compute $\mathbb{P}(T<\infty)$.
Exercise 2 - All hypotheses matter.
Let B be a Brownian motion and S, T two stopping times such that $S \leq T<\infty$ almost surely.
(1) Show that if $\mathbb{E}[S]<\infty$ and $\mathbb{E}[T]<\infty$, then $\mathbb{E}\left[B_{S}^{2}\right] \leq \mathbb{E}\left[B_{T}^{2}\right]$.
(2) Find two stopping times S and T with $\mathbb{E}[S]<\infty$, such that $\mathbb{E}\left[B_{S}^{2}\right]>\mathbb{E}\left[B_{T}^{2}\right]$.

Exercise 3 - Brownian gambler's ruin.
For any $c \in \mathbb{R}$, we let

$$
T_{c}:=\inf \left\{t \geq 0: B_{t}=c\right\}
$$

be the hitting time of c by $\left(B_{t}\right)_{t \geq 0}$. Let $a, b>0$, we let $T:=T_{-a} \wedge T_{b}$ be the hitting time of $\{-a, b\}$ by $\left(B_{t}\right)_{t \geq 0}$.
(1) What is the law of B_{T} ?
(2) Compute $\mathbb{E}[T]$.

Exercise 4 - Exponential martingale and computations.
Let B be a Brownian motion, we recall that for every $\lambda \in \mathbb{R}$, the process $\left(e^{\lambda B_{t}-t \lambda^{2} / 2}\right)_{t \geq 0}$ is a martingale, called the exponential martingale. We let for any $a>0$,

$$
T_{a+}:=\inf \left\{t \geq 0: B_{t}>a\right\}
$$

(1) For every $a>0$ and $\mu \geq 0$, compute the Laplace transform $\mathbb{E}\left[e^{-\mu T_{a^{+}}}\right]$. (Hint: use the exponential martingale).
(2) Let $\left(B^{(1)}, B^{(2)}\right)$ be a two-dimensional Brownian motion. For every $a \geq 0$, we let

$$
C_{a}:=B_{T_{a+}^{(1)}}^{(2)} .
$$

(a) Show that for any $b>0$, the process $C^{(b)}=\left(C_{b+a}-C_{b}\right)_{a \geq 0}$ is independent of $\mathcal{F}_{T_{b+}}$ and has the same law as $\left(C_{a}\right)_{a \geq 0}$. Deduce that $\left(C_{a}\right)_{a \geq 0}$ is a Markov process and give its transition kernel.
(b) Show that $\left(e^{\lambda\left(B_{t}^{(1)}+i B_{t}^{(2)}\right)}\right)_{t \geq 0}$ is a complex martingale, and deduce the characteristic function of C_{a} for $a>0$ fixed.
(c) Compute the distribution of C_{a}.

Exercise 5 - Exponential Martingale.
Show that if $\left(X_{t}\right)_{t \geq 0}$ is a process such that for any $\lambda \in \mathbb{R},\left(e^{\lambda X_{t}-t \lambda^{2} / 2}\right)_{t \geq 0}$ is a continuous martingale, then $\left(\bar{X}_{t}\right)_{t \geq 0}$ has the law of a Brownian motion.

Exercise 6 - Martingales derived from B.
Let B be a Brownian motion. For $n \geq 0$, we define the n-th Hermite polynomial H_{n} by,

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-\frac{x^{2}}{2}}
$$

We equip the vector space $\mathbb{R}[X]$ of real polynomials with the scalar product,

$$
P \cdot Q=\int_{\mathbb{R}} P(x) Q(x) \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} d x
$$

(1) Show that $\left(H_{n}\right)_{n \geq 0}$ is an orthogonal family in $\mathbb{R}[X]$.
(2) Show that for every $\lambda, b \in \mathbb{R}, e^{\lambda b-\frac{\lambda^{2}}{2}}=\sum_{n \geq 0} \frac{H_{n}(b)}{n!} \lambda^{n}$.
(3) Show that for every $n \geq 0$, the process $\left(t^{n / 2} H_{n}\left(\frac{B_{t}}{\sqrt{t}}\right)\right)_{t \geq 0}$ is a martingale.

