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TD12 : Harmonic Functions and Miscellaneous

Exercise 1 — Point transience of Brownian motion.
Let d > 2, and let B be an R%valued Brownian motion.

(1) Assume that d = 2, show that almost surely { By, t € [0, 1]} is negligible with respect
to the Lebesgue measure.
(2) Show that for every z,y € R we have P,(y € {B;,t > 0}) = 0.

Exercise 2 — Counterezample.
Let U = {z € R2,0 < |z| < 1} C R? be the punctured unit disk and let ¢ : 9U — R be
the function defined by ¢(x) = 1,4. Consider the Laplace equation

Au=0 onU
u=q on OU.

(1) Show that the Brownian expectation does not define a continuous solution of the
equation above.

(2) Show that in fact this Laplace equation doesn’t have any solution. (Hint: any
continuous solution is of the form u(x) = g(|z|))

Exercise 3 — Gambler’s ruin in several dimensions.
Let r, R € (0,00) such that » < R and d > 1, consider the annulus

U={zeR,r<|z| <R}

Let B be a R-valued Brownian motion, we let T, (resp. Tx) denote the hitting time of
the ball of radius r (resp. R) centered at 0 by B. The hitting time of QU by B is given by
Toy =T, N Tr. Recall the definition of the Laplacian operator,
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(1) Let ¢,C € Rand let ¢ : 90U — R be the function defined by ¢(z) = c1jy=r+C1jy/=r.
Give a solution of the Laplace equation

Au=0on U
u = @ on OU.

(2) Using u compute P, (7T, < Tg).
(3) for |x| > r, compute P(T, < 00).
(4) Assume that d = 2, Show that almost surely, for every z € R?* and & > 0 there
exists an increasing sequence (t,), € (R,)Y such that ¢, — oo and |B(t,) —z| < .
1



(5) Assume that d > 3, show that Py-almost surely lim;_,, |B:| = oco. (Hint: Consider
the events A, = { for every t > T3, |B;| > n}.)

Exercise 4 — Law of iterated logarithms for random walks.

Let B be a Brownian motion, define ¥ (t) = \/2tloglogt.

(1) Let (7},), be a sequence of stopping times such that 7,, — oo almost surely and
T,/ Tni1 — 1 almost surely. For every g > 4, we define

Dy ={B(¢") - B(¢"") > ¢(¢" — ¢* 1)}

= {q min B(t) — B(¢") - \/q_k}
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In what follows we admit the existence of ¢ > 0 such that P(Dy) > ¢/(klogk).
(a) Show that lim sup ig:)) < 1 almost surely.
(b) Show that P(limsup Doy, N Q) = 1.

(c) Show that almost surely for infinitely many & > 1, we have

min Btzw(qk)<1_1_i>_\/q_k

qF<t<gh+1 q V4

(Hint: You may use the inequality ¥ (¢* — ¢*71) > ¥ (¢*)(1 — 1/q).)
y considering the sequence n = mnt\n > 1,1, = ¢";, show that almost
d) B ideri h k inf 1,7, k1 sh h 1
surely,

lim sup ig:n)) =

(2) Define a sequence of stopping times recursively by Ty = 0 and

Ty = inf{t > Ty, |B(t) — B(T,)| = 1},

show that T, /n — 1 almost surely.
(3) Let (X&) be a sequence of independent uniform random variables in {—1,1} and

Sp = p_; Xi. Show that,

limsup —— = 1.
¥(n)
Exercise 5 — Quadratic and absolute variation.
Let ¢ > 0, a partition ¢ of [0,¢] is a finite sequence 0 = ¢, < t; < ... < t, = t, given
a partition we define its length #¢ = n and its mesh-size |t| = maxj<;<z |t; — t;—1|. Let
f:[0,t] — R be a measurable function, we define the total variation of f on [0,¢] by

#t
TV,(f) =limsup > [ f(t:) — f(tiz1)].
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Where supj, <, should be understood as the supremum over all partitions of [0,¢] with
mesh-size < e. Similarly, we define the quadratic variation of f on [0, t] by

#t
QVi(f) = (limsup Y "(f(t:) — f(tim1))™

e—0 |t|§€ i—1

(1) Let (t™), be a sequence of partitions with [t*)| — 0. For every k > 1, let

#tk)
_ _ 2
Xe= 2 (B =By P
(a) Assume that the sequence (X}); converges in L*(£2) to some constant random
variable X, show that X =t almost surely.
(b) Show that (Xj), converges in L?(Q) toward the constant random variable
taking only the value .
k
(c) Show that if (¢t®)); is such that S5, Z;ﬁ;)(tgk) - tl@l)Q < 00, then (X)
converges almost surely.
(d) What can you say about the random variable QV;(B) ?
(2) Show that almost surely the trajectories of the Brownian do not have bounded
total variation, that is P(TV;(B) = oo) = 1. (Hint: what can you say about the
quadratic variation of a continuous function with finite total variation 7).

Exercise 6 — A weaker condition for the first Wald’s lemma.
We wish to show that when 7T is a stopping time with E[T'/?] < oo, Wald’s lemma still
applies and E[Br| =0
(1) Define 7 := min{k : 4% > T'}. Set M(t) := max[y B and X}, := M (4*)—2""2. Show
that (X}) is a supermartingale for the filtration (Fy ), and that 7 is a stopping
time.
(2) Show that E[M(47)] < oo and conclude.
(3) Show that when T is the hitting time of 1, then E[T?] < oo for all a < 1/2, yielding
that our result is in some sense optimal.



