TD12 : Harmonic Functions and Miscellaneous

Exercise 1 - Point transience of Brownian motion.
Let $d \geq 2$, and let B be an \mathbb{R}^{d}-valued Brownian motion.
(1) Assume that $d=2$, show that almost surely $\left\{B_{t}, t \in[0,1]\right\}$ is negligible with respect to the Lebesgue measure.
(2) Show that for every $x, y \in \mathbb{R}^{d}$, we have $\mathbb{P}_{x}\left(y \in\left\{B_{t}, t>0\right\}\right)=0$.

Exercise 2 - Counterexample.
Let $U=\left\{x \in \mathbb{R}^{2}, 0<|x|<1\right\} \subset \mathbb{R}^{2}$ be the punctured unit disk and let $\varphi: \partial U \rightarrow \mathbb{R}$ be the function defined by $\varphi(x)=\mathbf{1}_{x \neq 0}$. Consider the Laplace equation

$$
\begin{cases}\Delta u=0 & \text { on } U \\ u=\varphi & \text { on } \partial U\end{cases}
$$

(1) Show that the Brownian expectation does not define a continuous solution of the equation above.
(2) Show that in fact this Laplace equation doesn't have any solution. (Hint: any continuous solution is of the form $u(x)=g(|x|))$

Exercise 3 - Gambler's ruin in several dimensions.
Let $r, R \in(0, \infty)$ such that $r<R$ and $d \geq 1$, consider the annulus

$$
U=\left\{x \in \mathbb{R}^{d}, r<|x|<R\right\}
$$

Let B be a \mathbb{R}^{d}-valued Brownian motion, we let T_{r} (resp. T_{R}) denote the hitting time of the ball of radius r (resp. R) centered at 0 by B. The hitting time of ∂U by B is given by $T_{\partial U}=T_{r} \wedge T_{R}$. Recall the definition of the Laplacian operator,

$$
\Delta u=\sum_{i=1}^{d} \frac{\partial^{2} u}{\partial^{2} x_{i}}
$$

(1) Let $c, C \in \mathbb{R}$ and let $\varphi: \partial U \rightarrow \mathbb{R}$ be the function defined by $\varphi(x)=c \mathbf{1}_{|x|=r}+C \mathbf{1}_{|x|=R}$. Give a solution of the Laplace equation

$$
\left\{\begin{array}{l}
\Delta u=0 \text { on } U \\
u=\varphi \text { on } \partial U
\end{array}\right.
$$

(2) Using u compute $\mathbb{P}_{x}\left(T_{r}<T_{R}\right)$.
(3) for $|x|>r$, compute $\mathbb{P}\left(T_{r}<\infty\right)$.
(4) Assume that $d=2$, Show that almost surely, for every $x \in \mathbb{R}^{2}$ and $\varepsilon>0$ there exists an increasing sequence $\left(t_{n}\right)_{n} \in\left(\mathbb{R}_{+}\right)^{\mathbb{N}}$ such that $t_{n} \rightarrow \infty$ and $\left|B\left(t_{n}\right)-x\right| \leq \varepsilon$.
(5) Assume that $d \geq 3$, show that \mathbb{P}_{0}-almost surely $\lim _{t \rightarrow \infty}\left|B_{t}\right|=\infty$. (Hint: Consider the events $A_{n}=\left\{\right.$ for every $\left.t>T_{n^{3}},\left|B_{t}\right|>n\right\}$.)

Exercise 4 - Law of iterated logarithms for random walks.
Let B be a Brownian motion, define $\psi(t)=\sqrt{2 t \log \log t}$.
(1) Let $\left(T_{n}\right)_{n}$ be a sequence of stopping times such that $T_{n} \rightarrow \infty$ almost surely and $T_{n} / T_{n+1} \rightarrow 1$ almost surely. For every $q>4$, we define

$$
\begin{array}{r}
D_{k}=\left\{B\left(q^{k}\right)-B\left(q^{k-1}\right) \geq \psi\left(q^{k}-q^{k-1}\right)\right\} \\
\Omega_{k}=\left\{\min _{q^{k} \leq t \leq q^{k+1}} B(t)-B\left(q^{k}\right)-\sqrt{q^{k}}\right\}
\end{array}
$$

In what follows we admit the existence of $c>0$ such that $\mathbb{P}\left(D_{k}\right) \geq c /(k \log k)$.
(a) Show that $\lim \sup \frac{B\left(T_{n}\right)}{\psi\left(T_{n}\right)} \leq 1$ almost surely.
(b) Show that $\mathbb{P}\left(\lim \sup D_{2 k} \cap \Omega_{2 k}\right)=1$.
(c) Show that almost surely for infinitely many $k \geq 1$, we have

$$
\min _{q^{k} \leq t \leq q^{k+1}} B_{t} \geq \psi\left(q^{k}\right)\left(1-\frac{1}{q}-\frac{2}{\sqrt{q}}\right)-\sqrt{q^{k}}
$$

(Hint: You may use the inequality $\psi\left(q^{k}-q^{k-1}\right) \geq \psi\left(q^{k}\right)(1-1 / q)$.)
(d) By considering the sequence $n(k)=\inf \left\{n \geq 1, T_{n} \geq q^{k}\right\}$, show that almost surely,

$$
\limsup _{n \rightarrow \infty} \frac{B\left(T_{n}\right)}{\psi\left(T_{n}\right)}=1
$$

(2) Define a sequence of stopping times recursively by $T_{0}=0$ and

$$
T_{n+1}=\inf \left\{t>T_{n},\left|B(t)-B\left(T_{n}\right)\right|=1\right\},
$$

show that $T_{n} / n \rightarrow 1$ almost surely.
(3) Let $\left(X_{k}\right)_{k}$ be a sequence of independent uniform random variables in $\{-1,1\}$ and $S_{n}=\sum_{k=1}^{n} X_{k}$. Show that,

$$
\lim \sup \frac{S_{n}}{\psi(n)}=1
$$

Exercise 5 - Quadratic and absolute variation.
Let $t \geq 0$, a partition \underline{t} of $[0, t]$ is a finite sequence $0=t_{0} \leq t_{1} \leq \ldots \leq t_{n}=t$, given a partition we define its length $\# \underline{t}=n$ and its mesh-size $|\underline{t}|=\max _{1 \leq i \leq \# \underline{t}}\left|t_{i}-t_{i-1}\right|$. Let $f:[0, t] \rightarrow \mathbb{R}$ be a measurable function, we define the total variation of f on $[0, t]$ by

$$
T V_{t}(f)=\lim _{\epsilon \rightarrow 0} \sup _{|t| \leq \epsilon} \sum_{i=1}^{\# t}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right| .
$$

Where $\sup _{|t| \leq \epsilon}$ should be understood as the supremum over all partitions of $[0, t]$ with mesh-size $\leq \epsilon$. Similarly, we define the quadratic variation of f on $[0, t]$ by

$$
Q V_{t}(f)=\left(\lim _{\epsilon \rightarrow 0} \sup _{|t| \leq \epsilon} \sum_{i=1}^{\# \underline{t}}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)^{2}\right.
$$

(1) Let $\left(\underline{t}^{(k)}\right)_{k}$ be a sequence of partitions with $\left|\underline{t}^{(k)}\right| \rightarrow 0$. For every $k \geq 1$, let

$$
X_{k}=\sum_{i=1}^{\# t^{(k)}}\left(B_{t_{i}^{(k)}}-B_{t_{i-1}^{(k)}}\right)^{2}
$$

(a) Assume that the sequence $\left(X_{k}\right)_{k}$ converges in $L^{2}(\Omega)$ to some constant random variable X, show that $X=t$ almost surely.
(b) Show that $\left(X_{k}\right)_{k}$ converges in $L^{2}(\Omega)$ toward the constant random variable taking only the value t.
(c) Show that if $\left(\underline{t}^{(k)}\right)_{k}$ is such that $\sum_{k=1}^{\infty} \sum_{j=1}^{\# t^{(k)}}\left(t_{i}^{(k)}-t_{i-1}^{(k)}\right)^{2}<\infty$, then $\left(X_{k}\right)_{k}$ converges almost surely.
(d) What can you say about the random variable $Q V_{t}(B)$?
(2) Show that almost surely the trajectories of the Brownian do not have bounded total variation, that is $\mathbb{P}\left(T V_{t}(B)=\infty\right)=1$. (Hint: what can you say about the quadratic variation of a continuous function with finite total variation ?).

Exercise $6-A$ weaker condition for the first Wald's lemma.
We wish to show that when T is a stopping time with $\mathbb{E}\left[T^{1 / 2}\right]<\infty$, Wald's lemma still applies and $\mathbb{E}\left[B_{T}\right]=0$
(1) Define $\tau:=\min \left\{k: 4^{k} \geq T\right\}$. Set $M(t):=\max _{[0, t]} B$ and $X_{k}:=M\left(4^{k}\right)-2^{k+2}$. Show that $\left(X_{k}\right)$ is a supermartingale for the filtration $\left(\mathcal{F}_{4^{k}}\right)_{k}$, and that τ is a stopping time.
(2) Show that $\mathbb{E}\left[M\left(4^{\tau}\right)\right]<\infty$ and conclude.
(3) Show that when T is the hitting time of 1 , then $\mathbb{E}\left[T^{\alpha}\right]<\infty$ for all $\alpha<1 / 2$, yielding that our result is in some sense optimal.

