ENS de Lyon - Mathematic department
Stochastic processes

Master 1 - Spring 2024
V. Issa \& E. Jacob

TD3 : Continuous time Markov chains

Exercice 1 - Transition semigroups.
In this exercise, questions (3) is independent from the rest.
(1) Let $d \geq 1$, let $\left(\mu_{t}\right)_{t \geq}$ be a family of probability measures on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$. Assume that there exists a measurable function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that for every $t \geq 0$, the characteristic function of μ_{t} is given by $\xi \mapsto e^{t \phi(\xi)}$. Let $\left(X_{t}\right)_{t \geq 0}$ be independent random variables such that for every $t \geq 0, X_{t}$ has law μ_{t}. For every $t \geq 0$ and $x \in \mathbb{R}^{d}$, let $P_{t}(x, \cdot)$ be the law of $x+X_{t}$. Show that $\left(P_{t}\right)_{t \geq 0}$ is a Markov semigroup on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$.
(2) Using the previous question, show that the Poisson semigroup, the Gaussian semigroup, and the lognormal semigroup from lecture 2 are indeed Markov semigroups. Briefly explain why it's not possible to use question (1) to show that the Cauchy semigroup is indeed a Markov semigroup.
(3) Let (E, \mathcal{E}) be a measurable space, let $\left(P_{t}\right)_{t \geq 0}$ be a Markov semigroup on (E, \mathcal{E}) and let $h: \mathbb{R}_{+} \times E \rightarrow \mathbb{R}_{+}^{*}$ be a measurable function. For every $t \geq 0$ and every $x \in \mathbb{R}^{d}$, we define a measure $\hat{P}_{t}(x, \cdot)$ on E via,

$$
\frac{d \hat{P}_{t}(x, \cdot)}{d P_{t}(x, \cdot)}=\frac{1}{h(t, x)} h(t, \cdot)
$$

Assume that for every $t \geq 0$ and every $x \in \mathbb{R}^{d}$, we have,

$$
h(t, x)=\int_{E} h\left(t, x^{\prime}\right) d P_{t}\left(x, d x^{\prime}\right) .
$$

Show that $\left(\hat{P}_{t}\right)_{t \geq 0}$ is a Markov semigroup on (E, \mathcal{E}).
Exercice 2 - Markov Property at the first jump time.
Let X be a continuous Markov chain valued in a discrete set I with intensity matrix Q. Let ζ be the blow-up time of X and let T be a stopping time. Let η be a, possibly infinite, \mathcal{F}_{T}-measurable random variable. Consider a positive measurable function $f: I \rightarrow \mathbb{R}$.
(1) Let A be an \mathcal{F}_{T}-measurable and let $i \in I$, define $F_{i}(t)=\mathbb{E}_{i}\left[f\left(X_{t}\right)\right]$. Show,

$$
\mathbb{E}\left[f\left(X_{T+\eta}\right) \mathbf{1}_{A \cap\{T<\zeta\} \cap\{\eta<\infty\} \cap X_{T}=i}\right]=\mathbb{E}\left[F_{i}(\eta) \mathbf{1}_{A \cap\{T<\zeta\} \cap\{\eta<\infty\} \cap X_{T}=i}\right] .
$$

(2) Let $i_{0} \in I$, deduce from the previous question that,

$$
\mathbb{E}_{i_{0}}\left[f\left(X_{t}\right) \mathbf{1}_{J_{1} \leq t}\right]=\sum_{i \neq i_{0}} q_{i_{0} i} \int_{0}^{t} e^{-q\left(i_{0}\right) s} \mathbb{E}_{i}\left[f\left(X_{t-s}\right)\right] d s
$$

Exercice 3 - Bacterial Proliferation.
Consider a population of independent bacterias. Each bacteria splits into two bacterias
after an exponential time of parameter λ. Let X_{t} denote the number of bacterias in the population at time t and $m(t)=\mathbb{E}_{1}\left[X_{t}\right]$ the expected number of bacterias when there is only one bacteria at time $t=0$.
(1) Show that X is a continuous time Markov chain and give its intensity matrix.
(2) Show that for every $t \geq 0$, we have

$$
m(t)=e^{-\lambda t}+\int_{0}^{t} \lambda e^{-\lambda s} \mathbb{E}_{2}\left[X_{t-s}\right] d s
$$

(3) Deduce from the previous question that m satisfies an ordinary differential equation and use it to determine an explicit expression of m.
(4) Let $t \geq 0$, using a similar approach, compute the moment generating function of X_{t}. Give the law of X_{t} and for every $k \geq 1$, compute $\mathbb{P}_{1}\left(X_{t}=k\right)$.

