TD3 : Continuous time Markov chains

Exercice 1 - Transition semigroups.

In this exercise, questions (3) is independent from the rest.

- (1) Let $d \ge 1$, let $(\mu_t)_{t\ge}$ be a family of probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. Assume that there exists a measurable function $\phi : \mathbb{R}^d \to \mathbb{R}$ such that for every $t \ge 0$, the characteristic function of μ_t is given by $\xi \mapsto e^{t\phi(\xi)}$. Let $(X_t)_{t\ge 0}$ be independent random variables such that for every $t \ge 0$, X_t has law μ_t . For every $t \ge 0$ and $x \in \mathbb{R}^d$, let $P_t(x, \cdot)$ be the law of $x + X_t$. Show that $(P_t)_{t\ge 0}$ is a Markov semigroup on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.
- (2) Using the previous question, show that the Poisson semigroup, the Gaussian semigroup, and the lognormal semigroup from lecture 2 are indeed Markov semigroups. Briefly explain why it's not possible to use question (1) to show that the Cauchy semigroup is indeed a Markov semigroup.
- (3) Let (E, \mathcal{E}) be a measurable space, let $(P_t)_{t\geq 0}$ be a Markov semigroup on (E, \mathcal{E}) and let $h : \mathbb{R}_+ \times E \to \mathbb{R}^*_+$ be a measurable function. For every $t \geq 0$ and every $x \in \mathbb{R}^d$, we define a measure $\hat{P}_t(x, \cdot)$ on E via,

$$\frac{d\hat{P}_t(x,\cdot)}{dP_t(x,\cdot)} = \frac{1}{h(t,x)}h(t,\cdot).$$

Assume that for every $t \geq 0$ and every $x \in \mathbb{R}^d$, we have,

$$h(t,x) = \int_E h(t,x') dP_t(x,dx').$$

Show that $(\hat{P}_t)_{t\geq 0}$ is a Markov semigroup on (E, \mathcal{E}) .

Exercice 2 — Markov Property at the first jump time.

Let X be a continuous Markov chain valued in a discrete set I with intensity matrix Q. Let ζ be the blow-up time of X and let T be a stopping time. Let η be a, possibly infinite, \mathcal{F}_T -measurable random variable. Consider a positive measurable function $f: I \to \mathbb{R}$.

(1) Let A be an \mathcal{F}_T -measurable and let $i \in I$, define $F_i(t) = \mathbb{E}_i[f(X_t)]$. Show,

$$\mathbb{E}[f(X_{T+\eta})\mathbf{1}_{A\cap\{T<\zeta\}\cap\{\eta<\infty\}\cap X_T=i}] = \mathbb{E}[F_i(\eta)\mathbf{1}_{A\cap\{T<\zeta\}\cap\{\eta<\infty\}\cap X_T=i}].$$

(2) Let $i_0 \in I$, deduce from the previous question that,

$$\mathbb{E}_{i_0}[f(X_t)\mathbf{1}_{J_1 \le t}] = \sum_{i \ne i_0} q_{i_0 i} \int_0^t e^{-q(i_0)s} \mathbb{E}_i[f(X_{t-s})] ds.$$

Exercice 3 — Bacterial Proliferation.

Consider a population of independent bacterias. Each bacteria splits into two bacterias

after an exponential time of parameter λ . Let X_t denote the number of bacterias in the population at time t and $m(t) = \mathbb{E}_1[X_t]$ the expected number of bacterias when there is only one bacteria at time t = 0.

- (1) Show that X is a continuous time Markov chain and give its intensity matrix.
- (2) Show that for every $t \ge 0$, we have

$$m(t) = e^{-\lambda t} + \int_0^t \lambda e^{-\lambda s} \mathbb{E}_2[X_{t-s}] ds.$$

- (3) Deduce from the previous question that m satisfies an ordinary differential equation and use it to determine an explicit expression of m.
- (4) Let $t \ge 0$, using a similar approach, compute the moment generating function of X_t . Give the law of X_t and for every $k \ge 1$, compute $\mathbb{P}_1(X_t = k)$.