Intégration pt. II et intégrales à paramètre

Exercice 1 – *Uniforme intégrabilité d'une famille à un élèment*. Soit (X, \mathcal{A}, μ) un espace mesuré et $f \in L^1(\mu)$. Prouver que pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que pour tout $A \in \mathcal{A}$, $\mu(A) < \delta \Rightarrow \int_A |f| d\mu < \epsilon$.

Exercice 2 – *Lemme des moyennes*. Soit (X, \mathcal{T}, μ) un espace mesuré avec μ une mesure finie non nulle, et soit $f: X \to \mathbb{C}$ une fonction μ -intégrable pour laquelle on suppose qu'il existe un fermé F de \mathbb{C} tel que pour tout $A \in \mathcal{T}$ avec $0 < \mu(A) < +\infty$ on a

$$\frac{1}{\mu(A)} \int_A f(x) \, \mu(\mathrm{d} x) \in F.$$

- 1. Montrer que $f(x) \in F$ pour μ -presque tout $x \in X$. <u>Indication</u>: On pourra montrer que pour toute boule ouverte $B(z,r) \subset F^c$, on a $\mu(f^{-1}(B(z,r))) = 0$. Rappel topologique: Tout ouvert de \mathbb{C} s'écrit comme union dénombrable de boules ouvertes.
- 2. On dit qu'une mesure ν sur (X, \mathcal{T}) est σ -finie si il existe une suite croissante d'ensembles mesurables $(X_n)_{n\geq 1}$ tel que $\nu(X_n) < +\infty$ et $X = \bigcup_{n\geq 1} X_n$. Montrer que le résultat de la question précédente reste vrai si l'on remplace l'hypothèse « μ finie » par « μ σ -finie ».

Exercice 3 – *Lemme de Scheffé*. Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions positives intégrables qui converge simplement vers une fonction f intégrable. Montrer que si :

$$\int_X f_n d\mu \xrightarrow[n \to +\infty]{} \int_X f d\mu$$

Alors:

$$\int_X |f-f_n| d\mu \underset{n\to +\infty}{\longrightarrow} 0$$

Exercice 4 – *Continuité et dérivabilité sous le signe intégrale*. Soit (X, \mathcal{A}, μ) un espace mesuré et I un intervalle de \mathbb{R} .

- 1. (Continuité) Soit $f: I \times X \longrightarrow \mathbb{C}$ une application. Pour $t_0 \in I$, montrer que si :
 - (i): pour tout $t \in I$, la fonction $x \mapsto f(t, x)$ est mesurable de (X, \mathcal{A}) dans $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$.
 - (ii) : la fonction $t \mapsto f(t, x)$ est continue en t_0 μ -presque partout.
 - (iii) : (hypothèse de domination) il existe une fonction positive intégrable $g: X \longrightarrow \mathbb{R}_+$ telle que, pour tout $t \in I$, $|f(t,x)| \le g(x) \mu$ -presque partout.

alors, la fonction:

$$F(t) := \int_{Y} f(t, x) d\mu(x)$$

est bien définie sur I et est continue en t_0 .

- 2. (Dérivabilité) Supposons ici que I est un intervalle ouvert non vide. Pour $t_0 \in I$, montrer que si :
 - (i): pour tout $t \in I$, $f(t, .) \in \mathcal{L}^1(\mu)$
 - (ii) : $\frac{\partial f}{\partial t}(t_0, x)$ existe μ -presque partout.
 - (iii): il existe une fonction positive intégrable $g: X \longrightarrow \mathbb{R}_+$ telle que, pour tout $t \in I$,:

$$|f(t,x)-f(t_0,x)| \leq g(x)|t-t_0|$$

 μ -presque partout.

alors, la fonction:

$$F(t) := \int_X f(t, x) d\mu(x)$$

est bien définie sur I et dérivable en t_0 de dérivée :

$$F'(t) = \int_X \frac{\partial f}{\partial t}(t_0, x) d\mu$$

Exercice 5 – *Continuité de la primitive d'une fonction* \mathcal{L}^1 . Désignons par λ la mesure de Lebesgue sur \mathbb{R} . Soit $f \in \mathcal{L}^1(\lambda)$ et $a \in \mathbb{R} \cup \{-\infty\}$. Alors, la fonction F définie par :

$$F(t) := \int_a^t f(x)d\lambda(x) := \begin{cases} \int_{]a,t]} fd\lambda & \text{si } t \ge a \\ -\int_{[t,a[} fd\lambda & \text{si } t \le a \end{cases}$$

est continue en tout point de \mathbb{R} .

Exercice 6 – *Initiation à la transformation de Fourier*. On se place sur \mathbb{R} muni de la tribu des boréliens et de la mesure de Lebesgue.

Pour $f \in \mathbb{L}^1(\mathbb{R})$, on définit $\mathscr{F}(f)$ par $\mathscr{F}(f)(\xi) = \int_{\mathbb{R}} e^{-2i\pi x\xi} f(x) \, dx$ lorsque cela à un sens.

- 1. Montrer que $\mathscr{F}(f)$ est bien définie et continue sur \mathbb{R} , et bornée par $||f||_1$.
- 2. (*Parenthèse utile pour la suite*) Montrer que si g est une fonction de $\mathbb{L}^1(\mathbb{R})$, on peut trouver des suites $(y_k)_{k\in\mathbb{N}}$ et $(z_k)_{k\in\mathbb{N}}$, la première tendant en décroissant vers $-\infty$, la seconde tendant en croissant vers $+\infty$, et telles que $\lim_{k\to +\infty} g(y_k) = 0$ et $\lim_{k\to +\infty} g(z_k) = 0$.
- 3. On suppose de plus que f est de classe \mathscr{C}^1 et que sa dérivée est dans $\mathbb{L}^1(\mathbb{R})$. Montrer qu'alors $\mathscr{F}(f')(\xi) = 2i\pi \xi \mathscr{F}(f)(\xi)$ pour tout $\xi \in \mathbb{R}$.
- 4. Soit φ une fonction de classe \mathscr{C}^{∞} à support compact. En considérant $\mathscr{F}(\varphi-\varphi'')$, montrer qu'il existe une constante C telle que $|\mathscr{F}(\varphi)(\xi)| \leq \frac{C}{1+4\pi^2|\xi|^2}$ pour tout $\xi \in \mathbb{R}$.
- 5. Déduire de ce qui précède que si $f \in \mathbb{L}^1(\mathbb{R})$, alors $\mathscr{F}(f)(\xi)$ tend vers 0 lorsque $|\xi|$ tend vers $+\infty$. (On admet que pour $\varepsilon > 0$, il existe une fonction $\varphi \in \mathscr{C}^{\infty}$ tel que $||f \varphi||_1 \le \varepsilon$.)

Note : les résultats généraux et plus profonds sur la transformation de Fourier ainsi que sa définition sur $L^2(\mathbb{R}^n)$ sont au programme du cours du second semestre : intégration et probabilités.

Exercice 7 – La formule de Gauss. 1. Montrer que l'intégrale $\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt$ est finie pour tout s > 0.

- 2. Montrer que la fonction $\Gamma: \mathbb{R}_+^* \to \mathbb{R}_+$ est de classe \mathscr{C}^{∞} et donner une expression de ses dérivées.
- 3. Montrer que pour tout s > 0, on a

$$\lim_{n \to +\infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{s-1} dt = \Gamma(s).$$

4. En déduire la formule de Gauss

$$\forall s > 0$$
, $\Gamma(s) = \lim_{n \to +\infty} \frac{n! n^s}{s(s+1) \cdots (s+n)}$.

5. En utilisant la formula de la question précédente, démontrer que pour tout $k \in \mathbb{N}$, $\Gamma(k+1) = k!$.