ENS de Lyon — Mathematic department Master 1 — Spring 2025
Stochastic processes V. Issa & E. Jacob

TD1: Continuous-time stochastic processes

Exercice 1 — Modification and indistinguishability.

(1) Show that two functions from R, to R that are rightcontinuous and coincide on a
(possibly countable) dense subset of R, are the same.

Let f and g be two such functions that coincide on some dense set D C R,. Let
t >0, for every n > 1 there exists t,, € DN[t+1/n,t+2/n|. We have f(t,) = g(t,)
and t,, | t, letting n — oo, we obtain f(t) = g(t).

(2) Deduce that two continuous-time stochastic processes with real values (X;);>o and
(Y:)i>0 that are modifications of each other and have rightcontinuous trajectories,
are actually indistinguishable.

If Y is a modification of X then for every ¢t > 0, P(X; = ¥;) = 1. Since Q
is countable, P(Vt € Q N [0, +00), X; = Y;) = 1. Since the trajectories are right
continuous, the event {Vt € Q N[0, 4+00), X; = Y;} and {Vt € [0, +o0), X; = Y;},
coincide so P(Vt € [0,+00), X; = Y;) = 1 and X is indistinguishable from Y.

(3) Construct a process (X;):>o that is a modification of the trivial process (Y;):>o de-
fined by Y; = 0, but whose trajectories are almost surely discontinuous everywhere.
(Thus clearly X is distinguishable from Y').

(Hint: Construct first a process X that is a modification of Y but whose trajec-
tories differ at one (necessarily random) time.)

Consider a uniform random variable U € [0, 1], the process X; = 1y(t) is a
modification of Y but its trajectories only have one point of discontinuity (at ¢t = U).
To circumvent this, we define X; = 1y ¢(t). Since U + Q and its complement are
dense, the trajectories of X are almost surely discontinuous everywhere. We have,

P(X, = Y)) = P(X, = 0) = P(U ¢ ~t+Q) = 1,

so X is a modification of Y.

Exercice 2 — Scaling Property.
Let (N¢)i>0 be a Poisson process with intensity A > 0. Show that for every ¢ > 0, (Net)i>o0
is a Poisson process with intensity c\.
We call N’ the new process. The trajectories of N are cadlag so clearly the trajectories of
N’ are also cadlag. We have Nj = Ny = 0 almost surely. For every t > 0, N — N/_ =
Nt — Nieyy— € {0,1} almost surely. Finally, let (J,), denote the sequence of jump times
of N, that is

Jo = inf{t > 0| N, > n}.

Similarly, we define (J),, for N" and we have J = J,/c. If S,, = J,— J,_1, then S/, = S, /¢
and since S,, ~ exp(A) we have S/, ~ exp(cA). So N’ is a Poisson process with intensity
cA.
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Exercice 3 — Measurability.

Let I be a nonempty set, we consider the space R equipped with the o-algebra B(R)®-.
Recall that B(R)®! is the smallest o—algebra such that each projection m; : RY — R is
measurable.

(1) Build a m-system that generates B(R)®!. Deduce that a probability measure on
(R?, B(R)®!) is characterized by its finite dimensional marginals.

Recall a 7m-system is a subset of P(R) that is stable under finite intersection.
Given a family A = (A;);e; of B(R), we say that A is finitely supported if for every
index ¢ € I, except a finite number, A; = R. By definition, the product o-algebra
B(R)®! is the o-algebra generated by IT = {[[,.; Ai, (Ai)iers is finitely supported}.
If A and B are finitely supported, setting C; = A; N B; we have [[,.,C; =
(ILic; A) N (1, Bi) so I is a m-system.

Let P, Q be two probability measures on (R, B(R)®!) with the same finite dimen-
sional marginals. Then, P, () are equal on the m-system II. By the monotone class
lemma we have P = @ on o(IT) = B(R)".

(2) Show that (X;);es is a random variable on (R, B(R)®?) if and only if for every
t € I, X, is a random variable on [.

If X is measurable, then X; = m; o X is measurable as the composition of two
measurable functions. If for every ¢t € I, X; is measurable. Then the m-system II is
contained in

M ={AeBR)*|X'(A) e F}.

Since M is a monotone class (stable by difference and increasing union), B(R)®! =
o(IT) € M. Thus, X : (2, F) — (R, B(R)®!) is measurable.

(3) We equip R? with the product topology, recall that the product topology is the
coarsest topology (i.e the topology with the fewest open sets) that make the pro-
jections 7; : R — R continuous.

(a) Give a basis of open sets for the product topology on R? and show that the o—
algebra generated by this basis is B(R?). 7 = {(¢,¢), ¢,¢ € Q} is a countable
basis of open set of R. So, T; = {m; *(U), (i,U) € I x T} is a countable basis
of RY. In particular B(R?) = o(T7),

(b) Assume that I is countable and show that the Borel o-algebra on R is B(R)®-.
When R’ is equipped with the product topology, the projections m; : R — R
are continuous so they are measurable and B(R)®! ¢ B(R!). This holds even
when [ is not countable. Conversely 7; C B(R)®!, and since 7; is countable
the open sets of R! are contained in B(R)®!, so B(R') C B(R)®’.

(4) We equip C([0,1]) with the topology of uniform convergence, and we denote £ the
Borel g-algebra associated to this topology. Show that the restriction of B(R)®0:1]
to C([0,1]) is £. For short, we let C = C(|[0, 1]), and we define

F={ANC|A e B[R}

The restriction to C of the projections m; : R — R are continuous with respect to
the sup-norm, so they are £-measurable. Since F is generated by the sets of the



form 7;1(A) N C with A € B(R), we have shown F C &.

Let D denote the set of polynomial functions on [0, 1], by the Stone-Weierstrass
theorem, D is a dense subset of C. In particular, B = { B(f, 7)} (f,r)e DxQ%}is
countable basis of open set for C. In particular, every open set in C is a countable
union of open set in B, so &€ = o(B). To conclude, let us show that B ¢ F. We
fix (f,r) € D x Q7 observe that B(f,r) is the countable union of the closed balls
B(f,r") with v € QN (0,7). Finally,

B(f,r') ={g € C|Vz € [0,1] NQ,|f(x) — g(x)| <+'}
= () = '(f@) = fl@)+r)nc

i€[0,1]NQ

e F.

Exercice 4 — Composed Poisson Processes.

Let v be a probability measure on R” and A > 0. Let X = (X;)¢>0 be a Poisson process
of intensity A and let (My)1<k<n be a sequence of iid random variables with law v taken
independent of X. We define, the composed Poisson process of parameter A\v by

Xt
7, = Z M,
k=1

(1) Show that the increments of the process Z are stationary and independent, By
definition, the process (X;); has stationary and independent increments such that

X; — X has a Poisson law with parameter A(t — s). Since we have 7, — Z, =

2(; x. My, the result follows.

(2) Let t > 0 and £ € R, compute E[e®?]. What is the expectation and the variance
of Z; 7 We can use Wald’s formula to compute E[e®%],
E[e*%] =F |E

Xt
H €M ‘ Xt] ]
L k=1
.
=E|[]E [e*"" ]Xt]]
Lk=1
e
=E |[]E [eiﬁMk}]
Lk=1

—E |(E[])™].




If we let p(&) denote the characteristic function of M) we have
d _
_ 1§24
E[Z] = - 5\ e_oB[e7]

= E [Xi0(0)¥71¢'(0)]
=E[X,]E[M].

(3) Let p € [0,1], assume that v = (1 — p)dy + pd;. Show that the processes Z and
X — Z are independent Poisson process of respective intensity pA and (1 — p)A.

(4) Deduce from the previous question that the sum of two Poisson process is also a
Poisson process.



