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TD1: Continuous-time stochastic processes

Exercice 1 — Modification and indistinguishability.

(1) Show that two functions from R+ to R that are rightcontinuous and coincide on a
(possibly countable) dense subset of R+, are the same.

Let f and g be two such functions that coincide on some dense set D ⊂ R+. Let
t ≥ 0, for every n ≥ 1 there exists tn ∈ D∩ [t+1/n, t+2/n]. We have f(tn) = g(tn)
and tn ↓ t, letting n → ∞, we obtain f(t) = g(t).

(2) Deduce that two continuous-time stochastic processes with real values (Xt)t≥0 and
(Yt)t≥0 that are modifications of each other and have rightcontinuous trajectories,
are actually indistinguishable.

If Y is a modification of X then for every t ≥ 0, P(Xt = Yt) = 1. Since Q
is countable, P(∀t ∈ Q ∩ [0,+∞), Xt = Yt) = 1. Since the trajectories are right
continuous, the event {∀t ∈ Q ∩ [0,+∞), Xt = Yt} and {∀t ∈ [0,+∞), Xt = Yt},
coincide so P(∀t ∈ [0,+∞), Xt = Yt) = 1 and X is indistinguishable from Y .

(3) Construct a process (Xt)t≥0 that is a modification of the trivial process (Yt)t≥0 de-
fined by Yt = 0, but whose trajectories are almost surely discontinuous everywhere.
(Thus clearly X is distinguishable from Y ).

(Hint : Construct first a process X that is a modification of Y but whose trajec-
tories differ at one (necessarily random) time.)

Consider a uniform random variable U ∈ [0, 1], the process Xt = 1U(t) is a
modification of Y but its trajectories only have one point of discontinuity (at t = U).
To circumvent this, we define Xt = 1U+Q(t). Since U +Q and its complement are
dense, the trajectories of X are almost surely discontinuous everywhere. We have,

P(Xt = Yt) = P(Xt = 0) = P(U /∈ −t+Q) = 1,

so X is a modification of Y .

Exercice 2 — Scaling Property.
Let (Nt)t≥0 be a Poisson process with intensity λ > 0. Show that for every c > 0, (Nct)t≥0

is a Poisson process with intensity cλ.
We call N ′ the new process. The trajectories of N are càdlàg so clearly the trajectories of
N ′ are also càdlàg. We have N ′

0 = N0 = 0 almost surely. For every t ≥ 0, N ′
t − N ′

t− =
Nct − N(ct)− ∈ {0, 1} almost surely. Finally, let (Jn)n denote the sequence of jump times
of N , that is

Jn = inf{t ≥ 0
∣∣Nt ≥ n}.

Similarly, we define (J ′
n)n for N ′ and we have J ′

n = Jn/c. If Sn = Jn−Jn−1, then S ′
n = Sn/c

and since Sn ∼ exp(λ) we have S ′
n ∼ exp(cλ). So N ′ is a Poisson process with intensity

cλ.
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Exercice 3 — Measurability.
Let I be a nonempty set, we consider the space RI equipped with the σ-algebra B(R)⊗I .
Recall that B(R)⊗I is the smallest σ–algebra such that each projection πi : RI → R is
measurable.

(1) Build a π-system that generates B(R)⊗I . Deduce that a probability measure on
(RI ,B(R)⊗I) is characterized by its finite dimensional marginals.

Recall a π-system is a subset of P(R) that is stable under finite intersection.
Given a family A = (Ai)i∈I of B(R), we say that A is finitely supported if for every
index i ∈ I, except a finite number, Ai = R. By definition, the product σ-algebra
B(R)⊗I is the σ-algebra generated by Π = {

∏
i∈I Ai, (Ai)i∈I is finitely supported}.

If A and B are finitely supported, setting Ci = Ai ∩ Bi we have
∏

i∈I Ci =
(
∏

i∈I Ai) ∩ (
∏

∈I Bi) so Π is a π-system.
Let P,Q be two probability measures on (RI , B(R)⊗I) with the same finite dimen-
sional marginals. Then, P,Q are equal on the π-system Π. By the monotone class
lemma we have P = Q on σ(Π) = B(R)I .

(2) Show that (Xt)t∈I is a random variable on (RI ,B(R)⊗I) if and only if for every
t ∈ I, Xt is a random variable on I.
If X is measurable, then Xt = πt ◦ X is measurable as the composition of two

measurable functions. If for every t ∈ I, Xt is measurable. Then the π-system Π is
contained in

M = {A ∈ B(R)⊗I
∣∣X−1(A) ∈ F}.

Since M is a monotone class (stable by difference and increasing union), B(R)⊗I =
σ(Π) ⊂ M. Thus, X : (Ω,F) → (RI ,B(R)⊗I) is measurable.

(3) We equip RI with the product topology, recall that the product topology is the
coarsest topology (i.e the topology with the fewest open sets) that make the pro-
jections πi : RI → R continuous.
(a) Give a basis of open sets for the product topology on RI and show that the σ–

algebra generated by this basis is B(RI). T = {(q, q′), q, q′ ∈ Q} is a countable
basis of open set of R. So, TI = {π−1

i (U), (i, U) ∈ I × T } is a countable basis
of RI . In particular B(RI) = σ(TI),

(b) Assume that I is countable and show that the Borel σ-algebra on RI is B(R)⊗I .
When RI is equipped with the product topology, the projections πi : RI → R
are continuous so they are measurable and B(R)⊗I ⊂ B(RI). This holds even
when I is not countable. Conversely TI ⊂ B(R)⊗I , and since TI is countable
the open sets of RI are contained in B(R)⊗I , so B(RI) ⊂ B(R)⊗I .

(4) We equip C([0, 1]) with the topology of uniform convergence, and we denote E the
Borel σ-algebra associated to this topology. Show that the restriction of B(R)⊗[0,1]

to C([0, 1]) is E . For short, we let C = C([0, 1]), and we define

F = {A ∩ C
∣∣A ∈ B(RI)}.

The restriction to C of the projections πi : RI → R are continuous with respect to
the sup-norm, so they are E-measurable. Since F is generated by the sets of the
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form π−1
i (A) ∩ C with A ∈ B(R), we have shown F ⊂ E .

Let D denote the set of polynomial functions on [0, 1], by the Stone-Weierstrass
theorem, D is a dense subset of C. In particular, B = {B(f, r)

∣∣ (f, r) ∈ D×Q∗
+} is

countable basis of open set for C. In particular, every open set in C is a countable
union of open set in B, so E = σ(B). To conclude, let us show that B ⊂ F . We
fix (f, r) ∈ D ×Q∗

+, observe that B(f, r) is the countable union of the closed balls
B̄(f, r′) with r′ ∈ Q ∩ (0, r). Finally,

B̄(f, r′) = {g ∈ C
∣∣ ∀x ∈ [0, 1] ∩Q, |f(x)− g(x)| ≤ r′}

=
⋂

i∈[0,1]∩Q

π−1
i ([f(x)− r′, f(x) + r′]) ∩ C

∈ F .

Exercice 4 — Composed Poisson Processes.

Let ν be a probability measure on Rn and λ > 0. Let X = (Xt)t≥0 be a Poisson process
of intensity λ and let (Mk)1≤k≤n be a sequence of iid random variables with law ν taken
independent of X. We define, the composed Poisson process of parameter λν by

Zt =
Xt∑
k=1

Mk.

(1) Show that the increments of the process Z are stationary and independent, By
definition, the process (Xt)t has stationary and independent increments such that
Xt − Xs has a Poisson law with parameter λ(t − s). Since we have Zt − Zs =∑Xt

k=Xs
Mk, the result follows.

(2) Let t ≥ 0 and ξ ∈ R, compute E[eiξZt ]. What is the expectation and the variance
of Zt ? We can use Wald’s formula to compute E[eiξZt ],

E[eiξZt ] = E

[
E

[
Xt∏
k=1

eiξMk
∣∣Xt

]]

= E

[
Xt∏
k=1

E
[
eiξMk

∣∣Xt

]]

= E

[
Xt∏
k=1

E
[
eiξMk

]]
= E

[(
E
[
eiξMk

])Xt
]
.
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If we let φ(ξ) denote the characteristic function of Mk we have

E[Zt] =
d

dξ

∣∣
ξ=0

E[eiξZt ]

= E
[
Xtφ(0)

Xt−1φ′(0)
]

= E [Xt]E [M1] .

(3) Let p ∈ [0, 1], assume that ν = (1 − p)δ0 + pδ1. Show that the processes Z and
X − Z are independent Poisson process of respective intensity pλ and (1− p)λ.

(4) Deduce from the previous question that the sum of two Poisson process is also a
Poisson process.


