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Abstract. We develop local cohomology techniques to study the finite slope
part of the coherent cohomology of Shimura varieties. The local cohomology
groups we consider are a generalization of overconvergent modular forms, and
they are defined by using a stratification on the Shimura variety obtained
from the Bruhat stratification on a flag variety via the Hodge-Tate period
map. We construct a spectral sequence from the local cohomologies to the
classical cohomology and use it to obtain classicality and vanishing results.
We also develop a theory of p-adic families and construct eigenvarieties. As
an application, we prove some new properties of Galois representations arising
from certain non-regular algebraic cuspidal automorphic representations.
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1. Introduction

In the 90’s, Coleman proved his classicality theorem for overconvergent p-adic
modular forms [Col96] and developed the theory of p-adic families of finite slope
overconvergent modular forms [Col97]. Subsequently, Coleman and Mazur con-
structed the eigencurve [CM98]. Since then, these works have been generalized to
a wide class of Shimura varieties.

These Coleman theories concern classical and overconvergent modular forms, or
zeroth cohomology of automorphic vector bundles on Shimura varieties. Recently
we have come to expect [Pil20], [BCGP18], [LPSZ19], [BP20] that there should be
some analogous “higher Coleman theories” concerning the higher coherent cohomol-
ogy of Shimura varieties. The goal of this paper is to develop such theories for a
rather general class of Shimura varieties.

1.1. Setup. Let (G,X) be a Shimura datum of abelian type, so by definition G/Q
is a reductive group and X is a complex analytic space with an action of G(R)
satisfying a list of axioms ([Del79]). There are two opposite parabolic subgroups of
G attached to (G,X), called Pµ and P stdµ , with common Levi Mµ. The space X
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embeds G(R)-equivariantly as an open subspace of FLstdG,µ(C) = G/P stdµ (C). This
is the Borel embedding.

For any neat compact open subgroup K ⊆ G(Af ), we let SK(C) = G(Q)\X ×
G(Af )/K be the corresponding Shimura variety over C. This is a finite disjoint
union of arithmetic quotients of X.

Any representation of P stdµ defines a G-equivariant vector bundle over FLstdG,µ.
Let Zs ⊆ G be the maximal torus of the center of G which splits over R but contains
no Q-split subtorus. We letM c

µ = Mµ/Zs. By pull back toX and descent to SK(C),
we obtain a functor from the category of representations of M c

µ to the category of
vector bundles on SK(C), called (totally decomposed) automorphic vector bundles.
We make a choice of Borel subgroup B contained in Pµ, let T be a maximal torus
contained in this Borel, and let T c = T/Zs. We label irreducible representations
of M c

µ by their highest weight in X?(T c)Mµ,+. For any weight κ ∈ X?(T c)Mµ,+ we
let Vκ be the corresponding vector bundle over SK(C).

The Shimura variety SK(C) has a structure of an algebraic variety SK defined
over a number field E, called the reflex field. For a combinatorial choice Σ of cone
decomposition, there are projective compactifications StorK,Σ whose (reduced) bound-
ary DK,Σ = StorK,Σ \ SK is a Cartier divisor. The vector bundles Vκ admit models
over SK and canonical extensions Vκ,Σ to StorK,Σ ([Mil90], [Har90a]). We also have
Vκ,Σ(−DK,Σ), the so called sub-canonical extension (its sections are holomorphic
cusp forms).

This paper is devoted to the study of the coherent cohomology of weight κ:
Hi(StorK,Σ,Vκ,Σ), Hi(StorK,Σ,Vκ,Σ(−DK,Σ)) as well as the interior cohomology:

H
i
(StorK,Σ,Vκ,Σ) = Im(Hi(StorK,Σ,Vκ,Σ(−DK,Σ))→ Hi(StorK,Σ,Vκ,Σ)).

They are independent of the cone decomposition Σ and we denote them simply by
Hi(K,κ), Hi(K,κ, cusp), and H

i
(K,κ).

We now fix a rational prime p and pass to the p-adic theory. We assume through-
out this paper that GQp is quasi-split (this assumption is necessary to have finite
slope families over all of weight space). We fix a finite extension F of Qp over which
GQp splits, and we assume that we have chosen T ⊆ B ⊆ Pµ so that T and B are
defined over Qp and Pµ is defined over F . We now pass to analytic geometry and
let StorK,Σ/Spa(F,OF ) be the adic Shimura variety. We assume for the rest of the
introduction that K = KpKp where Kp ⊂ G(Qp) is a certain congruence subgroup
(denoted Kp,1,0 in 3.5.1) possessing an Iwahori factorization

Kp = (U(Qp) ∩Kp) · T (Zp) · (U(Qp) ∩Kp)

where U and U denote the unipotent radicals of B and the opposite Borel. When
GQp is unramified, Kp will be an Iwahori subgroup.

Our study of the p-adic properties of coherent cohomology is based on the Hodge-
Tate period map introduced by Scholze [Sch15] and refined in [CS17] and [DLLZ19].
More specifically we will use the existence of a diagram

SKp
πHT //

��

FLG,µ

��
SKpKp

πHT,Kp// FLG,µ/Kp
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where FLG,µ = Pµ\G is the adic space associated to the Hodge-Tate flag space
FLG,µ = Pµ\G. Here we only view FLG,µ/Kp as a topological space, and the
“truncated” Hodge-Tate period map πHT,Kp as a continuous map. The map πHT
is equivariant for the right actions of the group G(Qp), while the map πHT,Kp is
equivariant for the action of the Hecke algebra Hp = F [Kp\G(Qp)/Kp] by corre-
spondences. It also extends to a map on the toroidal compactification πtorHT,Kp :

StorKpKp,Σ
→ FLG,µ/Kp. The basic idea in this paper is to use πtorHT,Kp to define

certain support conditions for coherent cohomology on the Shimura variety, and to
study the dynamical properties of certain Hecke operators at p.

We introduce some further notation. For a choice of + or − which we denote
from now on by ±, we consider the monoids

T± = {t ∈ T (Qp) | v(α(t)) ≥ 0,∀α ∈ Φ±}

where Φ+ denotes the positive roots of G with respect to T ⊆ B, and also the
associated commutative subalgebras of the Iwahori Hecke algebra

H±p = span{[KptKp] | t ∈ T±} ⊆ Hp.

These should be thought of as the algebra of “Up-type” Hecke operators. The reason
we consider both the + and − algebras is in order to study duality (we note that
[KptKp] and [Kpt

−1Kp] are transposes as correspondences), but the reader might
assume that all ±’s are just + on first reading.

We let W be the (absolute) Weyl group of G and WM ⊆ W the Weyl group
of Mµ. We write ` : W → Z for the length function and we write w0 ∈ W and
w0,M ∈ WM for the longest elements. In this paper a crucial role will be played
by the set MW ⊆ W of minimal length coset representatives for WM\W . It has
a unique longest element wM0 = w0,Mw0 of length d = dimSK = dimFLG,µ. We
define `± : MW → [0, d] by `+ = ` and `−(w) = d− `(w).

The set MW will index the “higher Coleman theories” constructed in this paper.
We recall how it arises naturally in the study of coherent cohomology, both from
the archimedean and p-adic points of view.

The coherent cohomologies Hi(K,κ) for κ ∈ X?(T c)Mµ,+ can be computed in
terms of automorphic forms on G ([Har90a], [Su18]). Cuspidal automorphic rep-
resentations π = π∞ ⊗ πf contribute to coherent cohomology according to the
archimedean component π∞. The (essentially) tempered π∞ which contribute to
coherent cohomology have been completely classified: according to work of Blasius-
Harris-Ramakrishnan, Mirkovich, Schmid, and Williams, they are exactly the so
called non-degenerate limits of discrete series (see [Har90a], theorems 3.4 and 3.5).
According to Harish-Chandra, for each element of MW there is a corresponding
family of (limits of) discrete series representations, parameterized by the infinites-
imal character (more accurately, this would be true if G(R) were semisimple and
simply connected).

We recall how the limits of discrete series contribute to coherent cohomology.
Beginning with a (dominant) “C-algebraic” infinitesimal character ν+ρ ∈ X?(T c)+

R
with ν ∈ X?(T c), then for a choice of w ∈ MW , if κw = −w0,Mw(ν + ρ) − ρ is
Mµ-dominant, then there is a (limit of) discrete series with infinitesimal character
ν+ρ contributing to coherent cohomology in weight κw and degree `(w). We recall
some features of this description:
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• The case of w = 1 corresponds to the family of holomorphic (limits of)
discrete series. They contribute to degree zero coherent cohomology.

• When ν + ρ is regular, κw is automatically Mµ-dominant, and the cor-
responding representations of G(R) are discrete series. Moreover a κ ∈
X?(T c)Mµ,+ with κ + ρ regular will be of the form κw for a unique ν and
w ∈ MW , and so cusp forms which are tempered at ∞ contribute to coho-
mology in weight κ in only a single degree.

• When ν + ρ is not regular, there will be some subset of MW (possibly
empty) for which κw is Mµ-dominant (we emphasize in particular that this
set may be nonempty but not contain 1, and this is a major motivation
for studying higher coherent cohomology of Shimura varieties). In this
case the corresponding representations of G(R) are limits of discrete series.
Beginning with a κ ∈ X?(T )+ with κ + ρ irregular, we will have κ = κw
for multiple w ∈ MW (with a range of lengths), and so the cohomology in
weight κ will have contributions from cuspidal automorphic representations
tempered at ∞ in a range of degrees.

We note that in this paper, our study of coherent cohomology is purely geometric,
and makes no use of the theory of automorphic forms or the results recalled above
(except in the application to local-global compatibility for irregular automorphic
representations in section 6.11). Nonetheless, it is useful to keep in mind, for
interpreting the results that follow.

Now we pass to p-adic geometry, beginning with the Hodge-Tate flag space
FLG,µ = Pµ\G. The set MW indexes the Schubert stratification of FLG,µ:

FLG,µ = Pµ\G =
∐

w∈WM

Pµ\PµwB

Passing to a more dynamical point of view, the set of fixed points for the action of
T on FLG,µ is exactly

FixT (FLG,µ) = {Pµw | w ∈ MW}
as indeed there is one T fixed point in each Schubert cell. A closely related fact
is that the set of points of FLG,µ(Cp)/Kp fixed by all of the “Up-type” Hecke
correspondences [KptKp] for t ∈ T± is

{PµwKp | w ∈ MW}.
(Here we say that a point xKp ∈ FLG,µ(Cp)/Kp is fixed by [KptKp] means that
x ∈ xKptKp.)

According to Scholze-Weinstein [SW13], FLG,µ(Cp)/Kp should be thought of
as the set of p-divisible groups “with G-structure” over OCp , equipped with a Kp

level structure (on the generic fiber). In particular, the points PµwKp for w ∈ MW
correspond to certain very special such p-divisible groups, which are fixed points for
the action of the “Up-type” Hecke correspondences. We can now pass to the Shimura
variety via the Hodge-Tate period map. According to Caraiani-Scholze [CS17], the
fibers of πHT are perfectoid Igusa varieties. In this paper we will consider the “Igusa
varieties” (πtorHT,Kp)−1(PµwKp) ⊂ StorK,Σ at finite level. We view them as some kind
of fixed subspaces for the “Up-type” Hecke correspondences. We emphasize that
in contrast to the situation at infinite level, they are not Zariski closed, and we
do not try to give them any geometric structure (in fact, we will only consider
neighborhoods of them, constructed using the Hodge-Tate period map).



6 G. BOXER AND V. PILLONI

We give two illustrative examples:

Example 1.1.1. If (G,X) = (GSp2g,H±g ) is the Siegel Shimura datum and Kp is
Iwahori, then the corresponding Shimura varieties are moduli spaces of polarized
abelian varieties of dimension g. The polarized p-divisible groups with Iwahori level
structures (G, λ, {Hi}0≤i≤2g) corresponding to the elements of MW are all ordinary
(i.e. G = µgp∞× (Qp/Zp)g) and the element w ∈ MW measures the relative position
of the canonical subgroup Hcan = µgp with the symplectic flag

0 = H0 ⊂ H1 ⊂ · · · ⊂ H2g = G[p]

giving the Iwahori level structure (alternatively, the 2g elements of MW correspond
to the 2g possibilities that Hi/Hi−1 for i = 1, . . . , g is either multiplicative or étale).
Passing to the Shimura variety, the “Igusa varieties” π−1

HT,Kp
(PµwKp) are simply the

(closures of the) corresponding components of the (quasi-compact, open) ordinary
locus.

Example 1.1.2. If (G,X) = (ResF/QGL2, (H±1 )[F :Q]) is a Hilbert Shimura datum
for F a totally real field in which p remains prime (for simplicity), then the cor-
responding Shimura varieties are (coarse) moduli spaces of abelian varieties of di-
mension [F : Q] with an action of OF . In this case, MW = W = {1, w}Hom(F,Cp).
For I ⊆ Hom(F,Cp) we write wI ∈ W for the element which is 1 in the factors
corresponding to the elements of I. Then the p-divisible group with OF -action
and Iwahori level structure corresponding to wI is (LTI × LTIc ,LTIc [p]) where
Ic = Hom(F,Cp) \ I, and LTI/OCp is the unique p-divisible group with OF -action
of height [F : Q] and such that LieLTI = ⊕τ∈ICp(τ) as F⊗Cp modules, where Cp(τ)
denotes the F ⊗ Cp module on which F acts via τ . The isogeny corresponding to
quotienting by LTI [p] witnesses these p-divisible groups as fixed points for the “Up-
type” Hecke correspondences. In particular, in contrast to the previous example,
only 1 = wHom(F,Cp) and w0 = w∅ correspond to ordinary p-divisible groups.

1.2. Overconvergent cohomologies. The first aim of this paper is the construc-
tion, for all w ∈ MW , weights κ ∈ X?(T c)Mµ,+, and choices ± of + or −, of some
finite slope, overconvergent cohomologies Hi

w(Kp, κ)±,fs and Hi
w(Kp, κ, cusp)±,fs.

These spaces carry actions of the algebras H±p for which the “Up-type” operators
[KptKp] for t ∈ T± act invertibly (hence “finite slope”) as well as actions of the
prime to p Hecke operators.

We explain the rough idea of the construction: we start with the complex
RΓU∩Z(U ,Vκ,Σ) of cohomology with support, where U ∩ Z ⊂ StorK,Σ is a suitably
chosen, locally closed neighborhood of the “Igusa variety” π−1

HT,Kp
(w · Kp). The

support conditions are chosen in order to have an action of the Hecke operators
[KptKp] for t ∈ T±, and so that furthermore sufficiently regular Hecke operators
act compactly. Then we use the spectral theory of compact operators to take the
finite slope part, i.e. pass to the part where the Hecke operators [KptKp] for t ∈ T±
act invertibly. The space H0

1(Kp, κ)+,fs is nothing but the usual space of finite slope
overconvergent modular forms of weight κ.

The following theorem summarizes the basic results about the finite slope over-
convergent cohomologies.
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Theorem 1.2.1. (1) (Spectral sequence to classical cohomology) There
is a H±p -equivariant spectral sequence

Ep,q1 =
⊕

w∈MW,`±(w)=p

Hp+q
w (Kp, κ)±,fs ⇒ Hp+q(K,κ)±,fs

and similarly for cuspidal cohomology.
(2) (Analytic continuation) The finite slope, overconvergent cohomologies

RΓw(Kp, κ)±,fs and RΓw(Kp, κ, cusp)±,fs, together with their Hecke ac-
tion, can be computed on arbitrarily small neighborhoods of the “Igusa va-
riety” π−1

HT,Kp
(w · Kp) ⊆ StorK,Σ. (See sections 5.3 and 5.4 for a precise

statement.)
(3) (Duality) There is a perfect pairing

〈, 〉 : Hi
w(Kp, κ, cusp)±,fs ×Hd−i

w (Kp, κ∨)∓,fs → F

such that for all t ∈ T±, the Hecke operators [KptKp] on the left and
[Kpt

−1Kp] on the right are adjoint. Moreover, these pairings are compat-
ible, via the spectral sequence of part (1), with the classical Serre duality
pairings

Hi(K,κ, cusp)×Hd−i(K,κ∨)→ F.

(Here κ∨ := −2ρnc−w0,Mκ where 2ρnc ∈ X?(T ) is the sum of the positive
roots of G which are not roots of Mµ. The canonical bundle of StorK,Σ is
V−2ρnc,Σ(−DK,Σ), and the dual of Vκ,Σ is V−w0,Mκ,Σ.)

(4) (Vanishing) We have

Hi
w(Kp, κ)±,fs = 0 for i < `±(w),

Hi
w(Kp, κ, cusp)±,fs = 0 for i > `±(w),

and so in particular the interior cohomology H
i

w(Kp, κ)±,fs vanishes except
when i = `±(w).

The spectral sequence is simply the finite slope part of the spectral sequence of a
filtration on StorK,Σ defined using πHT and the Bruhat stratification of the flag variety.
We note that if Kp is Iwahori, then the “Up-type” operators [KptKp] for t ∈ T±
are already invertible in the Iwahori Hecke algebra Hp, and hence the classical
cohomology at Iwahori level is already “finite slope”, i.e. Hi(K,κ)±,fs = Hi(K,κ).
The “analytic continuation” result follows from a dynamical study of the Hecke
operators an their interactions with the support conditions. The vanishing theorem
is ultimately deduced from the affineness of the Hodge-Tate period map.

If the Shimura variety is compact, then the vanishing theorem implies that the
overconvergent cohomologies H?

w(Kp, κ)±,fs are concentrated in the single degree
`±(w), and so the spectral sequence takes the particularly simple form of a single
complex

H0
Id/wM0

(Kp, κ)±,fs → · · · →
⊕

w∈MW,`±(w)=i

Hi
w(Kp, κ)±,fs → · · · → Hd

wM0 /Id(K
p, κ)±,fs

whose cohomology is the classical cohomology Hi(K,κ). We call this the Cousin
complex of the Shimura variety, in analogy with the work of Kempf [Kem78] on the
cohomology of the flag variety.
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1.3. Slope bounds and classicality. The key input for proving the classicality
theorem is a lower bound for the slopes (i.e. p-adic valuations of eigenvalues) of the
Hecke operators acting on finite slope, overconvergent cohomology. More precisely
we prove the following (see theorems 5.9.6 and 6.10.1).

Theorem 1.3.1 (Slope bounds). For any t ∈ T± and any eigenvalue λ of [KptKp]

acting on H
i

w(Kp, κ)±,fs we have

v(λ) ≥ v((w−1w0,M (κ+ ρ) + ρ)(t)) in the + case
v(λ) ≥ v((w−1(κ+ ρ)− ρ)(t)) in the − case

Here ρ ∈ X?(T )Q is half the sum of the positive roots of G and, given an algebraic
character µ ∈ X?(T ), we may view it as a character µ : T (F ) → F×, so that it
makes sense to evaluate it on t ∈ T (Qp) and take the valuation. We remark that
an eigenclass is “ordinary” if the inequalities of the theorem are in fact equalities.

Actually we expect (conjecture 5.9.2) that the same bound holds for the full
overconvergent cohomologies Hi

w(Kp, κ)±,fs and Hi
w(Kp, κ, cusp)±,fs, but we were

only able to prove a slightly weaker bound (theorem 5.9.6). The improved bound
on interior cohomology above is proved by a bootstrapping trick using p-adic inter-
polation.

From the slope bound we can immediately deduce a classicality theorem in reg-
ular weight. The idea is that if we fix κ, the lower bounds vary with w ∈ MW ,
and so there will be a certain range of “small slopes” which can only occur for a
single w. Then by passing to the small slope part of the spectral sequence we will
obtain an isomorphism between the small slope parts of the w overconvergent and
classical cohomologies.

Theorem 1.3.2 (Classicality theorem). Let κ ∈ X?(T c)M,+ be a weight such
that κ + ρ is G-regular. Let w+ (resp. w−) be the unique w ∈ MW such that
−w−1w0,M (κ+ ρ) (resp. w−1(κ+ ρ)) is G-dominant.

Then we have a quasi-isomorphism:

RΓw±(Kp, κ)±,sss
M (κ) = RΓ(Kp, κ)±,sss

M (κ)

and similarly for cuspidal cohomology. Here the superscript is the “strongly small
slope part”, i.e. the part where the eigenvalues of the Hecke operators [KptKp] for
t ∈ T± satisfy certain upper bounds (see section 5.11 for the precise definition).

If the Shimura variety is compact, then “strongly small slope” can be replaced by
the weaker “small slope” condition ±, ssM (κ) (again see section 5.11). Even if the
Shimura variety is not compact it is still true that a small slope overconvergent cusp
form (i.e. an element of H0

1 (Kp, κ, cusp)+,ssM (κ)) is classical.

Remark 1.3.3. Many cases of this theorem for the degree 0 cohomology of PEL
Shimura varieties were already proven, see for example [Col96], [Kas06], [Pil11],
[BPS16], [TX16], [Bij17].

Remark 1.3.4. Even in cases of degree 0 cohomology where classicality theorems
were already known, this theorem often improves on the slope bound. For example
in the Siegel case, with the usual labelling of weights κ = (k1, · · · , kg) with k1 ≥
· · · ≥ kg, and for the usual “minuscule” Hecke operator Up, the theorem states that
any finite slope overconvergent cusp form of weight κ and Up-slope < kg − g is
classical. The bound previously proven in [Pil11] and [BPS16] was < kg − g(g+1)

2 .
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Holomorphic discrete series contribute to the H0 in weights with kg > g, while
holomorphic limits of discrete series contribute when kg = g. Thus we cannot
expect any “numerical” classicality results when kg = g, while the theorem is non-
vacuous for all kg > g.

Remark 1.3.5. We conjecture that the theorem should hold with “small slope” in-
stead of “strongly small slope” for all Shimura varieties. This would follow from the
conjectural improved slope bound 5.9.2. Moreover we believe that the “small slope”
condition is optimal. We remark that an “ordinary” cohomology class is small slope
in all weights, but it may only be strongly small slope under an additional regularity
condition.

Remark 1.3.6. We cannot expect to have any “numerical” classicality criteria when
κ + ρ is not G-regular. In this case, there are multiple w ∈ MW for which
−w−1w0,M (κ + ρ) (or w−1(κ + ρ)) are G-dominant, and the lower bound on the
slopes are the same for these w. Thus we can impose some small slope condition
to kill the contributions of the remaining w ∈ MW to the spectral sequence, but
there will still be further cancellation among those that remain.

Example 1.3.7. We explicate all the results so far in the case of the modular curve,
where everything was already done in [BP20]. Then MW = W = {1, w} has only
two elements, and the spectral sequence reduces to a four term exact sequence

0→ H0(K, k)→ H0
1(Kp, k)+,fs → H1

w(Kp, k)+,fs → H1(K, k)→ 0

relating the the classical coherent cohomology of the modular line bundle ωk, k ∈ Z,
to the two overconvergent cohomologies, and moreover H0

1 (K, k)+,fs is nothing but
the usual space of finite slope overconvergent modular forms of weight k.

Then the slope bound says that the “unnormalized Up operator” Unaivep has slopes
≥ 1 on H0

1(K, k)+,fs, and ≥ k on H1
w(K, k)+,fs. Motivated by this we renormalize

the Up operator by setting Up = p−min(1,k)Unaivep , and then from the four term
exact sequence above and the slope bounds, we immediately deduce Coleman’s
classicality theorem

H0
1(Kp, k)<k−1 = H0(K, k)<k−1

in weights k ≥ 2, as well as its “H1-analog”

H1
w(Kp, k)<1−k = H1(K, k)<1−k

in weights k ≤ 0. (Here the superscripts < ? mean we take the slope < ? part for
the normalized Up operator.)

Combining the slope bounds with the vanishing theorem for overconvergent co-
homology, we obtain vanishing theorems for the small slope part of classical co-
homology. For any κ ∈ X?(T

c)Mµ,+, there is a range [`min(κ), `max(κ)] ⊆ [0, d]
where cuspidal automorphic representations which are (limits of) discrete series at
∞ contribute. We recall a combinatorial description of this range: let C(κ)+ =
{w ∈ W,−w−1w0,M (κ + ρ) ∈ X?(T )+

Q} and then let `min(κ) = minw∈C(κ)+ `(w),
`max(κ) = maxw∈C(κ)+ `(w). We note that when κ + ρ is regular, then C(κ)+ =
{w+} where w+ is as in theorem 1.3.2 above, and so `min(κ) = `max(κ) = `(w+)
and hence the range is reduced to a single degree.

Then we have the following vanishing theorem for the small slope part of classical
cohomology (theorems 5.12.20 and 6.10.2).
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Theorem 1.3.8 (Vanishing for classical cohomology). For any κ ∈ X?(T
c)Mµ,+,

(1) H
i
(K,κ)ss

M (κ) is concentrated in the range [`min(κ), `max(κ)],
(2) Hi(K,κ, cusp)sss

M (κ) is concentrated in the range [0, `max(κ)],
(3) Hi(K,κ)sss

M (κ) is concentrated in the range [`min(κ), d].

Again we conjecture that strongly small slope can be replaced by small slope in
the second and third points, and this would follow from conjecture 5.9.2. We also
prove a similar result at deeper levels at p, and give a more representation theoretic
statement (see definition 5.12.17).

Remark 1.3.9. This result should be compared to vanishing theorems in [Lan16] or
[BHR94] where there is no small slope condition but instead a regularity condition
on the weight κ.

Using Faltings’s dual BGG spectral sequence, we can also deduce vanishing
theorems for de Rham and hence Betti cohomology. Let ν ∈ X?(T c)+ and let
Wν be the corresponding irreducible representation of G and W∨ν its contragre-
dient. We can attach to it a local system W∨ν on SK(C). We have the Betti
cohomology groups H?(SK(C),W∨ν ), H?

c(SK(C),W∨ν ) and the interior cohomology
H
?
(SK(C),W∨ν ) = Im(H?

c(SK(C),W∨ν )→ H?(SK(C),W∨ν )). We have the following
(Theorems 5.12.20 and 6.10.2):

Theorem 1.3.10 (Vanishing of Betti cohomology). For any ν ∈ X?(T
c)+,

(1) H
i
(K,W∨ν )ssb(ν) is concentrated in the middle degree d,

(2) Hi
c(K,W∨ν )sssb(ν) is concentrated in the range [0, d],

(3) Hi(K,W∨ν )sssb(ν) is concentrated in the range [d, 2d].

Remark 1.3.11. The conditions ssb(ν) and sssb(ν) are the union of all conditions
ssM (κ) and sssM (κ) respectively where κ ∈ X?(T

c)M,+ runs through the set
{−ww0(ν + ρ)− ρ, w ∈ MW}.

In [CS17] and [CS19], Caraiani and Scholze proved a similar concentration result
for the Betti cohomology of unitary Shimura varieties under a genericity condition
for the action of the spherical Hecke algebra at a prime number `. Their result is
much more powerful because it also applies to the cohomology with coefficients in
a p-torsion local system for a prime p 6= `. In this section we have seen three kinds
of conditions that can be used to kill cohomology outside of the expected range of
degrees: small slope at p, genericity at some prime `, and tempered at ∞. We give
the simplest example of a cohomology class outside of the expected degree, and
explain how all of these conditions fail.

Example 1.3.12. Consider a compact Shimura curve SK associated to a quaternion
algebra over Q split at ∞ and p. Consider the constant function 1 ∈ H0(SK ,OSK ),
which comes from the trivial automorphic representation. The degree 0 cohomology
is the “wrong” degree in this weight, in the sense that the interesting cohomology
of OSK = V0 sits in degree 1. We observe that the cohomology class 1 is:

(1) Non tempered at ∞, since Vol(PGL2(R)) =∞.
(2) Not small slope at p, because the Up eigenvalue of the trivial representation

is p, and v(p) = 1. The small slope condition in weight 0 is having Up-
eigenvalue of slope < 1.
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(3) Not generic at any prime `, because the semi-simple conjugacy class at-
tached to the trivial representation at ` via the local Langlands correspon-
dence is diag(`

1
2 , `−

1
2 ).

1.4. Locally analytic cohomology, interpolation, and the eigenvariety.
Our next results concern the p-adic interpolation of the overconvergent cohomolo-
gies over weight space, and the construction of the eigenvariety. In the classical
work [CM98] (revisited in [AIS14] and [Pil13]), the eigencurve was constructed
by interpolating the Hecke action on the spaces of overconvergent modular forms
H0

1(Kp, k)+,fs in the weight k. This approach of interpolating overconvergent mod-
ular forms was generalized to Siegel varieties in [AIP15] (see also [CHJ17], [Bra16],
[Her19], [Bra20], [BHW20] for further generalizations). In another direction, p-adic
interpolation of the Betti cohomologies Hi(SK(C),W∨ν ) was considered (and in this
setting, one considers general arithmetic quotients of locally symmetric space, not
only Shimura varieties). See for example [AS08], [Urb11], [Han17], [Eme06]. We
also mention the case of algebraic modular forms where the group G(R) is compact
modulo center, which has been studied intensively, and for which there is no dis-
tinction between Betti and coherent cohomology (see for example [Buz07], [Che04],
[Loe11]).

In this paper, we construct eigenvarieties by interpolating the local cohomologies
Hi
w(Kp, κ)±,fs. For the case of overconvergent modular forms H0

1(Kp, κ)+,fs, we
recover certain of the constructions recalled above. In this case, the improvement
is that we are not assuming that the group GQp is unramified or that there is a
nonempty ordinary locus.

Let Λ = Zp[[T c(Zp)]] be the Iwasawa algebra and let W = Spa(Λ,Λ)×Spa(Zp,Zp)

Spa(Qp,Zp) be the weight space of continuous characters of T c(Zp). In order to
construct families, we must first replace the finite slope, overconvergent cohomolo-
gies Hi

w(Kp, κ)±,fs, which are defined for algebraic weights κ ∈ X?(T c)+,Mµ , with
some finite slope, locally analytic overconvergent cohomologies Hi

w,an(Kp, ν)±,fs,
which are defined for any p-adic weight ν : T c(Zp)→ C×p .

To define these cohomologies, we use the same support conditions, but we replace
the automorphic vector bundles Vκ with certain Banach sheaves Vanν and Danν .
These Banach sheaves are defined on neighborhoods of (πtorHT,Kp)−1(w ·Kp), using a
reduction of the M c

µ-torsor which is used to define the sheaves Vκ. This reduction
is defined using the Hodge-Tate period map (see section 4.6). Locally, the sheaves
Vanν (resp. Danν ) are modeled on a locally analytic induction (resp. locally analytic
distributions) of a certain profinite subgroup ofMµ(F ) (actually with a fixed “radius
of analyticity” which we suppress from the notation, as it will not matter when we
pass to the finite slope part of cohomology). We define Hi

w,an(Kp, ν)+,fs using Vanν
and Hi

w,an(Kp, ν)−,fs using Danν . We must consider both of the sheaves Vanν and
Danν in order to have a duality theory, and we note that here we break the symmetry
between the + and − theories.

The finite slope, locally analytic overconvergent cohomologies Hi
w,an(Kp, ν)±,fs

carry a Hecke action of the monoid T± (see section 6.3.9 for the definition), where
one should think of the action of t ∈ T± as something like the “Up-type” Iwahori
Hecke operator [KptKp], except that one does not actually get an action of H±p ,
as the “diamond operators” t ∈ T (Zp) do not act trivially: in fact they act by
ν(t)±. The finite slope, locally analytic overconvergent cohomologies enjoy similar



12 G. BOXER AND V. PILLONI

properties to parts (2),(3),(4) of theorem 1.2.1 (see section 6.7 for duality and
theorems 6.6.1 and 6.7.3 for vanishing).

We now explain the relation between the two cohomologies. Fix w ∈ MW
and let κ ∈ X?(T c)Mµ,+ be an algebraic weight. We may associate a p-adic weight
ν : T (Zp)→ F×, as follows: we first consider νalg = −w−1w0,M (κ+ρ)−ρ ∈ X?(T c),
take the associated character T (F ) → F×, and define ν to be its restriction to
T (Zp). We emphasize that when G does not split over Qp, neither κ nor w need
be defined over Qp, and the (absolute) Weyl group W need not act on T c(Zp) nor
on W.

From the construction we have maps of sheaves in a neighborhood of π−1
HT,Kp

(w ·
Kp)

Vκ ↪→ Vanν and Danν � Vκ∨

which are locally modeled on the inclusion of an algebraic induction into a locally
analytic induction and its dual. Passing to cohomology with supports, we obtain
maps

Hi
w(Kp, κ)+,fs → Hi

w,an(Kp, ν)+,fs(−νalg)

Hi
w,an(Kp, ν)−,fs(νalg)→ Hi

w(Kp, κ∨)−,fs

where we have twisted the Hecke action of T± on the analytic cohomology in order
to make these maps Hecke equivariant (the twist of (−νalg) means that we multiply
the action of t ∈ T+ by νalg(t)−1. Note that with this twist, T (Zp) acts trivially.)

Then we can state our second classicality theorem (see corollary 6.8.4).

Theorem 1.4.1 (Classicality at the level of the sheaf). The two maps above be-
come isomorphisms after passing to the +, sssM,w(κ) part in the + case and the
−, sssM,w(κ∨) part in the − case. If the Shimura variety is compact, the same
statement is true with weaker conditions +, ssM,w(κ) and −, ssM,w(κ∨) (again see
section 5.11 for the precise definitions of these small slope conditions).

Remark 1.4.2. We try to clarify the switch from κ to ν, and why it is really ν
and not κ that is the natural weight parameter on the eigenvariety. The situation
will become much clearer if we start by fixing a G-dominant νalg ∈ X?(T c)+. Then
associated to each w ∈ MW we can consider κw = −w0,Mw(νalg+ρ)−ρ. Combining
the two classicality theorems we have an isomorphism

Hi
w,an(Kp, ν)+,sssw(νalg) = Hi(K,κw)+,sssw(νalg)

where the small slope condition +, sssw(νalg) is simply the combination of +, sssM (κw)
and +, sssM,w(κw) (if the Shimura variety is compact, we can use the condition
ss(νalg), which is independent of w and is the usual small slope condition in the
algebraic modular form setting).

Now a stable L-packet where the archimedean components are discrete series
with infinitesimal character νalg + ρ should give the same contribution to the coho-
mologies H`(w)(K,κw) for w ∈ MW . If the contributions to the H`(w)(K,κw)+,sssw(νalg)

are nonempty, then we will see eigenclasses with the same system of Hecke eigen-
values in all of the H

`(w)
w,an(Kp, ν)+,fs. These eigenclasses should all correspond to

the same point of the eigenvariety, and thus we should use ν, which is nothing but
a ρ shift of the dominant representative of the infinitesimal character, rather than
the κw, which vary with w ∈ MW .
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We finally turn to results about the eigenvariety π : E → W. The eigenvariety
comes with a map T (Qp)→ OE (compatible with the map T (Zp)→ Zp[[T c(Zp)]]

π?→
OE) and a map HS → OE where HS is the spherical Hecke algebra away from the
finite set of primes S which contains p and all primes ` whereK` is not hyperspecial.
Points of the eigenvariety are pairs (λp, λ

S) where λp is a character of T (Qp), and
λS is a system of eigenvalues for the prime to S spherical Hecke algebra. The
projection to W is given by λp 7→ ν = λp|T c(Zp). When ν is associated to an
algebraic weight νalg ∈ X?(T ), we let λsmp = λpν

−1
alg be the smooth part of λp (it is

trivial on T (Zp)). We have the following theorem on the existence and properties
of the eigenvariety (Theorems 6.9.3 and 6.9.6):

Theorem 1.4.3. The eigenvariety π : E → W is locally quasi-finite and partially
proper. It carries coherent sheaves

Hk
w,an(Kp, νun)±,fsZ , Hk

w,an(Kp, νun, cusp)±,fsZ

for all w ∈ MW and k ∈ Z and they satisfy the following properties:

(1) (Any classical, finite slope eigenclass gives a point of the eigen-
variety) For any κ ∈ X?(T c)M,+ and any system of Hecke eigenvalues
(λsmp , λS) occurring in Hi(K,κ)+,fs there is a w = wMw

M ∈ W with
wM ∈ WM , wM ∈ MW , so that if ν : T c(Zp) → F× is associated with
νalg = −w−1w0,M (κalg + ρ)− ρ, then (λsmp νalg, λ

S) is a point of the eigen-
variety E which lies in the support of Hk

wM ,an(Kp, νun)+,fs
Z for some k. The

analogous result hold for the cuspidal and − cohomologies.
(2) (Small slope points of the eigenvariety in regular, locally algebraic

weights are classical) Conversely if νalg ∈ X?(T c)+ is a G-dominant
weight and (λp, λ

S) is a point of E in weight ν and in the support of
Hk
w,an(Kp, νun)+,fs

Z for some w ∈ MW , and if λsmp satisfies +, sssw(ν)

then (λsmp , λS) occurs in Hi(K,κ)+,fs for κ = −w0,Mw(νalg + ρ) − ρ and
some i. The analogous result hold for the cuspidal and − cohomologies.

(3) (Serre duality interpolates over the eigenvariety) We have pairings:

Hk
w,an(Kp, νun)±,fsZ ⊗Hd−k

w,an(Kp, νun, cusp)∓,fsZ → π−1OW .

and these pairings are compatible with Serre duality under the classicality
theorem.

(4) (Interior cohomology classes deform over the weight space) Any
interior cohomology eigenclass c ∈ H

?
(K,κ)±,fs defines a point on a com-

ponent of the eigenvariety of dimension equal to the dimension of the weight
space.

Remark 1.4.4. It is plausible that the eigenvariety E coincides with an eigenvariety
constructed via Betti cohomology interpolation, as in [Han17]. One can also be-
lieve that there is a p-adic Eichler-Shimura theory relating both constructions. See
[AIS15], as well as some forthcoming work of Juan Esteban Rodriguez.

Remark 1.4.5. We can define certain π−1OW -torsion free sheaves H
`±(w)

w,an (Kp, νun)±,fsZ
over the eigenvariety. This sheaves interpolate the various modules of the interior
Cousin complex (which can be used to compute the interior cohomology). For all
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w ∈ MW , we let E !
w be the support of H

`±(w)

w,an (Kp, νun)±,fsZ , which is a union of irre-
ducible components of the eigenvariety of dimension equal to dim W. Any interior
cohomology class lifts to a point on ∪w∈MWE !

w.

Remark 1.4.6. For GSp4/L with L a totally real field, variants or special cases of
this theory are considered in [Pil20], [BCGP18], [LPSZ19].

Remark 1.4.7. The point (4) of the theorem is an advantage of the method we
use to construct the eigenvarieties. Such a result was only available in a limited
number of cases (e.g. Shimura sets and automorphic forms contributing to cuspidal
coherent H0).

Finally, using point (4) we can give a new construction of Galois representations
associated to certain automorphic representations realizing in the coherent coho-
mology of Shimura varieties, but not in the Betti cohomology. This construction is
via p-adic interpolation, and yields new results on local-global compatibility at p.
In [FP19], section 9, we defined a certain class of cuspidal automorphic represen-
tations for the group GLn/L where L is a totally real or CM number field. These
are called weakly regular, odd, algebraic, essentially (conjugate) self dual, cuspidal
automorphic representations. Informally, the weak regularity condition means that
we allow the weights of the infinitesimal character to repeat at most twice.

Theorem 1.4.8. Let π be a weakly regular, odd, algebraic, essentially (conjugate)
self dual, cuspidal automorphic representation of GLn/L with πc = π∨ ⊗ χ and
infinitesimal character λ = ((λ1,τ , . . . , λn,τ )τ∈Hom(L,C)) with λ1,τ ≥ · · · ≥ λn,τ .
Then for each isomorphism ι : Qp ' C there is a continuous Galois representation
ρπ,ι : GL → GLn(Qp) such that:

(1) ρcπ,ι ' ρ∨ ⊗ ε1−np ⊗ χι where χι is the p-adic realization of χ.
(2) ρπ,ι is unramified at all finite places v - p for which πv is unramified and

one has

ιWD(ρπ,ι|GLv )F−ss ' rec(πv ⊗ | det |
1−n

2
v ).

(3) ρπ,ι has generalized ι−1 ◦ τ -Hodge–Tate weights (−λn,τ + n−1
2 , · · · ,−λ1,τ +

n−1
2 ).

(4) Let v | p be a place of L and assume that πv is a regular principal series.
Then ρπ,ι|GLv is potentially crystalline and

ιWD(ρπ,ι|GLv )F−ss ' rec(πv ⊗ | det |
1−n

2
v ).

Here the hypothesis that πv is a regular principal series in part (4) is a “p-

distinguished” condition, which in particular implies that rec(πv ⊗ |det |
1−n

2
v ) is a

sum of n distinct characters, so that we can prove that ρπ,ι|GLv is potentially
crystalline by finding its periods one at a time.

When π is regular rather than just weakly regular and odd, then a stronger form
of the theorem holds according to results of Bellaiche, Caraiani, Chenevier, Clozel,
Harris, Kottwitz, Labesse, Shin, Taylor, etc. (see [CH13], [BLGGT14]) including
purity and local-global compatibility at all places. The above theorem is deduced
from these results by p-adic interpolation. Moreover even in the irregular case, the
Galois representations in the theorem have already been constructed by different
methods in [PS16] (and in special cases in [Box15], [GK19]). The novelty in the
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above theorem is the results towards local global compatibility at p in points (3)
and (4).

The theorem is proved by first descending π to a cuspidal automorphic represen-
tation on a quasi-split unitary group over L, which then contributes to the interior
coherent cohomology of the corresponding Shimura variety. Then we apply point
(4) of theorem 1.4.3 to get a point on the eigenvariety which is a limit of regular
weight classical points, and conclude using results of Kisin [Kis03] on the interpo-
lation of crystalline periods in analytic families, as in the work of Jorza and Mok
[Jor12], [Mok14].

Remark 1.4.9. As explained, our proof of this theorem makes use of the results
of [Mok15] to descend certain automorphic representations to quasi-split unitary
groups, and is therefore conditional on the results announced in [Art13].

1.5. A toy model: the cohomology of flag varieties and the Cousin com-
plex of Kempf. There is a strong analogy between the coherent cohomology of
Shimura varieties, and the much simpler coherent cohomology of flag varieties. In
[Kem78], Kempf introduced a local cohomology method for computing the coherent
cohomology of flag varieties, which may be viewed as a “toy model” for the methods
of this paper. We briefly review this computation and some of the analogies (see
section 3.2 for more details).

For this section of the introduction, which is independent of the rest of the paper,
we let G be a split reductive group over a field F and let T ⊂ B ⊂ G be a Borel
and maximal torus. Let FL = B\G be the flag variety for G and write π : G→ FL
for the projection. Let d be the dimension of FL. Let W be the Weyl group of
G with length function `, and let w0 ∈ W be the longest element. For any weight
κ ∈ X?(T ), we associate a G-equivariant line bundle Lκ over FL, whose sections
on an open U ↪→ FL are

Lκ(U) = {f : π−1(U)→ A1 | f(bg) = (w0κ)(b)f(g), ∀b ∈ B, g ∈ π−1(U)}.

The right action of G on FL induces a left action on the cohomology groups
Hi(FL,Lκ). If κ is dominant, then H0(FL,Lκ) contains a highest weight rep-
resentation of weight κ.

The classical Borel-Weil-Bott theorem describes the cohomology of the sheaves
Lκ over FL when the characteristic of F is 0:

Theorem 1.5.1 ([Jan03], 5.5, corollary). Assume that char(F ) = 0. Let κ ∈ X?(T )
then:

(1) If there exists no w ∈W such that w(κ+ ρ)− ρ is dominant (i.e. κ+ ρ is
irregular) then Hi(FL,Lκ) = 0 for all i.

(2) If there exists w ∈ W such that w(κ + ρ) − ρ is dominant, then there is a
unique such w, and Hi(FL,Lκ) = 0 if `(w) 6= i, while H`(w)(FL,Lκ) is the
highest weight w(κ+ ρ)− ρ representation.

Following section 12 of [Kem78], one can study the cohomology of the sheaves
Lκ over FL with the help of the Bruhat stratification FL = ∪w∈WB\BwB. Given
w ∈W , let Cw = B\BwB, and let Uw ⊆ FL be an open so that Cw ⊆ Uw is closed
(for example one can take Uw = B\Bw0Bw

−1
0 w). Then one can introduce the local

cohomology groups:
Hi
w(κ) := Hi

Cw(Uw,Lκ).
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Unlike the cohomology of the full flag variety, these local cohomologies do not carry
an action of G. However they do still carry an action of B, as well as of the Lie
algebra g of G.

Then we have the following results:
• (Vanishing) The local cohomologies Hi

w(κ) vanish unless i = d− `(w).
• (Cousin complex) For each weight κ ∈ X?(T ) there is a Grothendieck-

Cousin complex

H0
w0

(κ)→
⊕

w∈W,`(w)=d−1

H1
w(κ)→ · · · →

⊕
w∈W,`(w)=d−i

Hi
w(κ)→ · · · → Hd

1(κ)

computing the cohomology H?(FL,Lκ). This complex arises as the E1 page
of the spectral sequence of the following filtration of FL associated to the
Bruhat stratification:

Zi =
⋃

w∈W,`(w)≤d−i

Cw.

We also remark that this complex is closely related to the BGG reso-
lution. For example, if the characteristic of F is zero κ is dominant, then
this complex is exactly the dual of the BGG resolution of the irreducible
representation of highest weight −w0κ.

• (Weight bounds) The analog of the Hecke action of H±p on the finite
slope, overconvergent cohomologies is the action of the torus T on the local
cohomologies Hi

w(κ) (there is no analog of taking the “finite slope part”,
as we already have the action of a group). Then the analog of the slope
bound is the following “weight bound”: any weight λ ∈ X?(T ) occurring in
H
d−`(w)
w satisfies

λ ≤ w−1w0(κ+ ρ)− ρ
where we write λ ≤ λ′ if λ′ − λ =

∑
α∈∆ cαα with cα ≥ 0 where ∆ denotes

the simple roots of G associated to T ⊆ B. Actually this weight bound is
an immediate consequence of a much better result, which we lack an analog
of in the Shimura variety setting: the character of T acting on Hi

w(κ) equals
that of the Verma module of highest weight w−1w0(κ+ ρ)− ρ.

• (“Classicality” and vanishing for the “big weight” part) In analogy
with passing to the small slope part in the Shimura variety setting, we can
try to impose a “big weight” condition in order to kill most (ideally all but
one) of the terms in the Cousin complex.

We make some combinatorial definitions: let C(κ) = {w ∈W | w−1w0(κ+
ρ) ∈ X?(T )+

R } be the subset of W for which the weight bound is as big as
possible. We say that a weight λ ∈ X?(T )+ is a big weight (depending on
κ) if λ 6≤ w−1w0(κ + ρ) − ρ. The point of this definition is exactly that
by the weight bound, H

d−`(w)
w (κ) will not contain any big weights unless

w ∈ C(κ). Then from this and the Cousin complex we have the follow-
ing immediate consequences, which can be viewed as a weak form of the
Borel-Weil-Bott theorem (as well as toy models for theorems 1.3.2, 1.3.8):
– Hi(FL,Lκ)bw = 0 unless i ∈ [minw∈C(κ) d−`(w),maxw∈C(κ) d−`(w)].
– If κ + ρ is regular, so that C(κ) = {w} consists of a single element,

then we have the following “classicality theorem”:

Hi
w(κ)bw = Hi(FL,Lκ)bw
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and both sides vanish when i 6= d− `(w).
Although these results are not as strong as the Borel-Weil-Bott theorem,
we emphasize that we have not assumed that char(F ) = 0. Moreover, in
characteristic zero it is not too hard to deduce the full Borel-Weil-Bott
theorem using some basic properties of the BGG category O (see section
3.2).

• (Interpolation)We assume F has characteristic 0. Although the line bun-
dles Lκ and their cohomologies only exist for integral weights κ ∈ X?(T ),
the local cohomologies Hi

w(X,κ), together with their g action can be defined
for all κ ∈ X?(T )+ ⊗ F = t∨, where t is the Lie algebra of T . The families
of g-modules obtained in this way are called twisted Verma modules (see
[AL03]).
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2. Cohomological preliminaries

2.1. Cohomology with support in a closed subspace. We recall the notion
and the basic properties of the cohomology of an abelian sheaf on a topological
space, with support in a closed subspace. A reference for this material is [Gro05],
chapter I. Let X be a topological space. We let AbX be the category of abelian
sheaves over X. If X is a point, AbX is simply Ab the category of abelian groups.
We let D(AbX) be the derived category of AbX . Let i : Z ↪→ X be a closed
subspace. For an object F of AbX , we let ΓZ(X,F ) be the subgroup of H0(X,F )
of sections whose support is included in Z. We let RΓZ(X,−) : D(AbX)→ D(Ab)
be the right derived functor of ΓZ(X,−) (see [Sta13], Tag 079V, in particular for
the unbounded version). Let U = X \ Z and let F be an object of D(AbX). We
have an exact triangle in D(Ab) ([Gro05], I, corollaire 2.9):

RΓZ(X,F )→ RΓ(X,F )→ RΓ(U,F )
+1→

We have the classical pushforward functor i? : AbZ → AbX and it admits a right
adjoint i! : AbX → AbZ which can be described as follows: Let W ⊆ Z be an open
subset. Let W ′ ⊆ X be an open subset of X such that W = W ′ ∩ Z. For any
object F of AbX , we have i!F (W ) = ΓW (W ′,F |W ′). It follows that ΓZ(X,F ) =
H0(X, i?i

!F ). The functor i! has a right derived functor Ri! : D(AbX)→ D(AbZ).
Moreover RΓZ(X,F ) = RΓ(X, i?Ri

!F ).
Some properties of the cohomology with support are:
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(1) (corestriction)[[Gro05], I, Proposition 1.8] If Z ⊆ Z ′ ⊆ X are closed subsets,
there is a corestriction map RΓZ(X,F )→ RΓZ′(X,F ).

(2) (pull-back) If we have a continuous map f : X → X ′, closed subsets Z ⊂ X,
Z ′ ⊂ X ′ satisfying f−1(Z ′) ⊆ Z, and a sheaf F on X ′, then there is a map
RΓZ′(X

′,F )→ RΓZ(X, f−1F ).
(3) (Change of ambient space)[[Gro05], I, Proposition 2.2] If we have Z ⊂ U ⊂

X for some open U ofX, then the pull back map RΓZ(X,F )→ RΓZ(U,F )
is a quasi-isomorphism.

The above properties imply easily the following lemma:

Lemma 2.1.1. Let Z1, Z2 ⊆ X be two disjoint closed subsets. Then the natural
map given by pushforward:

RΓZ1(X,F )⊕ RΓZ2(X,F )→ RΓZ1∪Z2(X,F )

is a quasi-isomorphism.

Proof. For i ∈ {1, 2}, we let ii : Zi ↪→ X. We finally let i : Z1∪Z2 ↪→ X. The lemma
follows from the claim that for any F ∈ Ob(AbX), the natural map (i1)?i

!
1F ⊕

(i2)?i
!
2F → i?i

!F is an isomorphism of sheaves. This is a local computation. Since
X = Zc1 ∪ Zc2 and the claim holds true over any open subset of Zc1 or Zc2, we are
done. �

We now discuss the construction of the trace map in the context of schemes or
adic spaces and finite locally free morphisms ([Hub96], Sect. 1.4.4).

Lemma 2.1.2. Consider a commutative diagram of topological spaces:

Z //

��

X

f

��
Z ′ // X ′

with X and X ′ schemes (resp. adic spaces), f a finite locally free morphism of
schemes (resp. adic spaces), Z ′ → X ′ and Z → X closed subspaces. Let F be a
sheaf of OX′-modules. Then there is a map RΓZ(X, f?F )→ RΓZ′(X

′,F ).

Proof. We first recall that the category of sheaves of OT -modules on a ringed
space (T,OT ) has enough injectives ([Sta13], Tag 01DH). It follows that it is
enough to construct a functorial map ΓZ(X, f?F ) → ΓZ′(X

′,F ) for sheaves F
of OX -modules. If we let Z ′′ = f−1(Z ′), then we have a map ΓZ(X, f?F ) →
Γf−1(Z′)(X, f

?F ). Therefore, it suffices to consider the case where Z = f−1(Z ′).
We have a trace map Tr : f?OX → OX′ . Moreover, the natural morphism f?OX⊗OX′

F → f?f
?F is an isomorphism. We therefore have a trace map Tr : f?f

?F → F .
Let us complete the above diagram into:

Z //

��

X

f

��

U

g

��

oo

Z ′ // X ′ U ′
j′oo

where U ′ = X ′ \ Z ′ and U = X \ Z. We have a commutative diagram:
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f?f
?F //

Tr

��

j′?g?g
?(j′)?F

��
F // j′?(j

′)?F

We deduce that the trace map Γ(X, f?F ) → Γ(X ′,F ) induces a trace map
ΓZ(X, f?F )→ ΓZ′(X

′,F ). �

2.2. Cup products. Let (X,OX) be a ringed space. Let K = Γ(X,OX).

Proposition 2.2.1. Let Z1, Z2 ⊆ X be two closed subsets. Let F and G be two
flat sheaves of OX-modules. There is a natural map, functorial in F and G , as
well as the support Z1 and Z2:

RΓZ1(X,F )⊗LK RΓZ2(X,G )→ RΓZ1∩Z2(X,F ⊗LOX G ).

Proof. Let Z3 = Z1 ∩ Z2. For 1 ≤ j ≤ 3, we let ij : Zi ↪→ X be the inclusion.
For F and G sheaves of OX -modules we have a map (i1)?i

!
1F ⊗OX (i2)?i

!
2G →

(i3)?i
!
3(F ⊗ G ). We claim that there is a map in the derived category:

(i1)?Ri
!
1F ⊗LOX (i2)?Ri

!
2G → (i3)?Ri

!
3(F ⊗ G ).

Indeed, taking the Godement resolution ([Sta13], Tag 0FKR) gives quasi-isomorphisms
F → F • and G → G • where F • and G • are bounded below complexes of flasque
sheaves of OX -modules and for all x ∈ X, the maps Fx → F •x and Gx → G •x are
homotopy equivalences in the category of OX,x-modules. In particular, F • and G•
are K-flat (by [Sta13], Lemma 06YB and the property that Fx and Gx are flat
OX -modules). Since F • and G • are K-flat, the map F ⊗ G → Tot

(
F • ⊗ G •

)
is a quasi-isomorphism. We see that (i1)?Ri

!
1F is computed by (i1)?i

!
1F
• and

(i2)?Ri
!
2G is computed by (i2)?i

!
2G
•. Taking K-flat resolutions A• → (i1)?i

!
1F
•

and B• → (i2)?i
!
2G
•, we see that Tot(A• ⊗OX B

•) computes

(i1)?Ri
!
1F ⊗LOX (i2)?Ri

!
2G

and there is a composite map

Tot(A• ⊗OX B
•)→ Tot

(
(i1)?i

!
1F
• ⊗OX (i2)?i

!
2G
•)

→ (i3)?i
!
3(Tot

(
F • ⊗ G •

)
).

Taking a K-injective resolution Tot(F •⊗G •)→ C• we finally find that (i3)?i
!
3(C•)

computes (i3)?Ri
!
3(F ⊗ G ) and we have a morphism

(i3)?i
!
3(Tot

(
F • ⊗ G •

)
)→ (i3)?i

!
3(C•).

There is also a usual cup-product map by [Sta13], Tag 0FPJ:

RΓ(X, (i1)?Ri
!
1F )⊗LK RΓ(X, (i2)?Ri

!
2G )→ RΓ(X, (i1)?Ri

!
1F ⊗LOX (i2)?Ri

!
2G ).

Combining the two maps gives the map of the proposition. �
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2.3. The spectral sequence of a filtered topological space. Let X be a topo-
logical space, F a sheaf of abelian groups, and let W ⊆ Z be two closed subspaces
of X. We can define RΓZ/W (X,F ) = RΓZ\W (X \W,F ). If Z ⊆ Z ′ and W ⊆W ′
we have a map RΓZ/W (X,F )→ RΓZ′/W ′(X,F ).

If we have Z3 ⊆ Z2 ⊆ Z1, then there is an exact triangle ([Kem78], lemma 7.6):
RΓZ2/Z3

(X,F )→ RΓZ1/Z3
(X,F )→ RΓZ1/Z2

(X,F )
+1→

Assume that there is a filtration by closed subsets X = Z0 ⊇ Z1 ⊇ · · ·Zr = ∅.
Then there is a spectral sequence of filtered topological space ([Har66], p. 227):

Epq1 = Hp+q
Zp/Zp+1

(X,F )⇒ Hp+q(X,F )

which we can visualize as follows:
.
.
.

.

.

.
.
.
.

H1
Z0/Z1

(X,F) H2
Z1/Z2

(X,F) · · ·

H0
Z0/Z1

(X,F) H1
Z1/Z2

(X,F) · · ·

H0
Z1/Z2

(X,F) · · ·

The differential dp,q1 : Hp+q
Zp/Zp+1

(X,F ) → Hp+q+1
Zp+1/Zp+2

(X,F ) is the boundary
map in the long exact sequence associated with the triangle:

RΓZp+1/Zp+2
(X,F)→ RΓZp/Zp+2

(X,F)→ RΓZp/Zp+1
(X,F)

+1→ .

2.4. The category of projective Banach modules. In this work we will con-
sider cohomologies that will be naturally represented by complexes of Banach mod-
ules (or projective, inductive limits of such complexes). We therefore recall the
basics of this theory. Our discussion follows [Urb11], section 2. Let (A,A+) be a
complete Tate algebra over a non-archimedean field (F,OF ). We let $ ∈ OF be a
pseudo-uniformizer.

2.4.1. Modules. We let Mod(A) be the abelian category of A-modules, C(A) be
the category of complexes of A-modules, K(A) its homotopy category and D(A)
the derived category. We let Kperf (A) be the homotopy category of the category
of bounded complexes of finite projective A-modules. These are called perfect
complex. The category Kperf (A) is a full subcategory of the category D(A).

2.4.2. Banach modules. A Banach A-module M is a topological A-module whose
topology can be described as follows: Let A0 be an open and bounded subring
of A. Then M contains an open and bounded sub A0-module M0 which is $-
adically complete and separated (andM = M0[ 1

$ ]). We letBan(A) be the category
whose objects are Banach A-modules, and whose morphisms are continuous A-linear
morphisms. This is a quasi-abelian category in the sense of [Sch99], def. 1.1.3.
This means that Ban(A) is an additive category with kernels and cokernels, strict
epimorphisms are stable under pullback and strict monomorphisms are stable under
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pushout. Recall that strict morphisms f are those for which the natural morphism
coim(f)→ im(f) is an isomorphism in Ban(A).

2.4.3. The derived category. We let C(Ban(A)) be the category of complexes of
Banach modules, and K(Ban(A)) be its homotopy category. A complex M• in
C(Ban(A)) is strictly exact if each differential di : Mi → Mi+1 is strict and the
morphism Im(di) → ker(di+1) is an isomorphism. A morphism f : M• → N• in
C(Ban(A)) is a strict quasi-isomorphism if its cone is strictly exact. It is a general
property of quasi-abelian categories that if a morphism is strictly exact, so is any
other morphism in the same homotopy class. One can consider the derived cate-
gory D(Ban(A)) obtained by inverting in K(Ban(A)) the strict quasi-isomorphisms
([Sch99], def. 1.2.16, [Urb11], sect. 2.1.3). In the case of the category Ban(A) we
have the following lemma which helps recognize strict quasi-isomorphisms:

Lemma 2.4.4. Let M• be a complex in C(Ban(A)). Then M• is exact as a
complex of A-modules if and only if it is strictly exact. A morphism f : M• → N•

in C(Ban(A)) is a quasi-isomorphism of complexes in Mod(A) if and only if it is
a strict quasi-isomorphism.

Proof. It follows from the open mapping theorem that any epimorphism in Ban(A)
is open and therefore strict. The first claim follows. The second claim is deduced
by considering the cone of f . �

Because of this lemma, strict quasi-isomorphisms will simply be called quasi-
isomorphisms.

2.4.5. Projectives. Let I be a set. Denote by A(I) the submodule of AI of se-
quences of elements of A indexed by I converging to 0 according to the filter in I
of the complement of the finite subsets of I. This module can also be described as
follows. Let A0 be an open and bounded subring of A. Let A0(I) be the $-adic
completion of the free A0-module with basis I. Then A(I) = A0(I)[ 1

$ ]. We see
that A(I) is a Banach A-module. A Banach A-module M is orthonormalizable
if there exists a set I and an isomorphism M ' A(I). A Banach A-module is
called projective if it is a direct factor of an orthonormalizable Banach A-module.
We let Cproj(Ban(A)) be the category of bounded complexes of projective Banach
A-modules and Kproj(Ban(A)) be the homotopy category. There is a natural func-
tor Kproj(Ban(A)) → D(Ban(A)) and it is fully faithful ([Sch99], prop. 1.3.22,
[Urb11], lem. 2.1.8). In particular we deduce the following lemma which will be
used in this work:

Lemma 2.4.6. Let f : M• → N• be a quasi-isomorphism in Cproj(Ban(A)). Then
f admits and inverse g : N• →M• up to homotopy.

Recall that finite type A-modules are canonically Banach A-modules. Therefore
we can view Kperf (A) as a full subcategory of Kproj(Ban(A)).

2.4.7. Limits of Banach spaces. We let ProN(Ban(A)) be the category of count-
able projective systems of Ban(A). Its objects are contravariant functors N →
Ban(A). An object of this category will be denoted “ limi∈N ”Ki with Ki ∈
Ob(Ban(A)). We let IndN(Ban(A)) be the category of countable inductive systems
of Ban(A). Its objects are covariant functors N→ Ban(A). An object of this cate-
gory will be denoted “colimi∈N”Ki withKi ∈ Ob(Ban(A)). We have a limit functor
lim : ProN(Ban(A)) → Mod(A), and a colimit functor colim : IndN(Ban(A)) →
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Mod(A). Of course, these functors completely forget the topology. We could con-
sider instead limit and colimit functors in the category of locally convex A-modules
instead, but this turns out to be unnecessary to us. We extend lim and colim to
functors between the category of complexes: lim : C(ProN(Ban(A))) → C(A) and
colim : C(IndN(Ban(A)))→ C(A).

We let ProN(Kproj(Ban(A))) be the category whose objects are projective sys-
tems of complexes {Ki ∈ Ob(Kproj(Ban(A)))}i∈N and the Ki’s have non-zero co-
homology in a uniformly bounded range of degrees. We denote an object of this
category by “ limi∈N ”Ki (we are not evaluating the limit). Let “ limi∈N ”Ki ∈
Ob(ProN(Kproj(Ban(A)))). Then there exists an object (unique up to a non unique
isomorphism) limi∈NKi ∈ D(A) by [Sta13], Tag 08TB. And similarly, for any mor-
phism “ limi∈N ”Ki → “ limi∈N ”K ′i ∈ ProN(Kproj(Ban(A))), there is a morphism
limKi → limK ′i. If “ limi∈N ”Ki ∈ Ob(ProN(Kproj(Ban(A)))) can be represented
by an object in C(ProN(Ban(A))), then limKi is obtained by taking the degreewise
projective limit.

We also let IndN(Kproj(Ban(A))) be the category whose objects are inductive
systems of complexes {Ki ∈ Ob(Kproj(A))}i∈N and theKi’s have non-zero cohomol-
ogy in a uniformly bounded range of degrees. We denote an object of this category
by “colimi∈N”Ki (we are not evaluating the limit either).

Let “colimi∈N”Ki ∈ Ob(IndN(Kproj(Ban(A)))). Then there exists an object
(unique up to a non unique isomorphism) colimi∈NKi ∈ D(A) by [Sta13], Tag 0A5K.
And similarly, for any morphism “colimi∈N”Ki → “colimi∈N”K ′i ∈ IndN(Kproj(Ban(A))),
there is a morphism colimKi → colimK ′i. If “colimi∈N”Ki ∈ Ob(IndN(Kproj(Ban(A))))
can be represented by an object in C(IndN(Ban(A))), then colimKi is obtained by
taking the degreewise inductive limit.

2.4.8. Compact operators. Recall that a morphism T : M → N in Ban(A) is
called compact if it is a limit of finite rank operators (for the supremum norm of
operators, or equivalently the strong topology on HomBan(A)(M,N)). A morphism
T : M• → N• in C(Ban(A)) is called compact if it is compact in each degree.

Definition 2.4.9. A morphism T : M• → N• in Kproj(Ban(A)) is compact if it
has a compact representative in Cproj(Ban(A)).

We need to extend these definitions to the case of objects in ProN(Kproj(Ban(A)))
or IndN(Kproj(Ban(A))). Let T : “ limi ”M•i → “ limi ”N•i be a morphism in
ProN(Kproj(Ban(A))). We say that T is compact if there exists a compact opera-
tor T ′ : M• → N• ∈ Kproj(Ban(A)), and a commutative diagram:

M•
T ′ // N•

��
“ limi ”M•i

OO

T // “ limi ”N•i
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Lemma 2.4.10. Let “ limi ”M•i ∈ Ob(ProN(Kproj(Ban(A)))) and let T be a com-
pact endomorphism of “ limi ”M•i . Then T induces canonically a compact endo-
morphism Ti of M•i for i large enough and there are factorization diagrams:

M•i+1

��

Ti+1 // M•i+1

��
M•i

;;

Ti // M•i

Proof. By definition, the map “ limi ”M•i → M• factors into “ limi ”M•i → M•i →
M• for some i large enough. The map N• → “ limi ”M•i is given by a collection of
compatible maps N• →M•i . The lemma follows. �

Let T : “colimi”M
•
i → “colimi”N

•
i be a morphism in IndN(Kproj(Ban(A))).

We say that T is compact if there exists a compact operator T ′ : M• → N• ∈
Kproj(Ban(A)), and a commutative diagram:

M•
T ′ // N•

��
“colimi”M

•
i

OO

T // “colimi”N
•
i

Lemma 2.4.11. Let “colimi”M
•
i ∈ Ob(IndN(Kproj(Ban(A)))) and let T be a com-

pact endomorphism of “colimi”M
•
i . Then T induces canonically a compact endo-

morphism Ti of M•i for i large enough and there are factorization diagrams:

M•i+1

##

Ti+1 // M•i+1

M•i

OO

Ti // M•i

OO

Proof. By definition, the map N• → “colimi”M
•
i factors into N• → M•i →

“colimi”M
•
i for some i large enough. The map “colimi”M

•
i → M• is given by

a collection of compatible maps M•i →M•. The lemma follows. �

Definition 2.4.12. Let T : N• → M• be a map in D(A). We say that T is
compact if it can be represented by a compact map in ProN(Kproj(Ban(A))) or
IndN(Kproj(Ban(A))).

Definition 2.4.13. Let M• ∈ Ob(D(A)) and let T ∈ EndD(A)(M
•). We say that

T is potent compact if for some n ≥ 0, Tn is compact.

2.5. The cohomology of Banach sheaves. In this section we explain how we
can obtain complexes of Banach modules from the cohomology of rigid analytic
varieties. We use the theory of adic spaces described in [Hub96] and [Hub94] for
example.

2.5.1. Sheaves of Banach modules over adic spaces. In this section we recall some
material from [AIP15], appendix A. Let F be a non archimedean field with ring of
integers OF . Let $ ∈ F be a topologically nilpotent unit.

We recall that there is a good theory of coherent sheaves on finite type adic
spaces over Spa(F,OF ): If X = Spa(A,A+) is affinoid and F is a coherent sheaf
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on X , then Hi(X ,OX ) = 0 for i 6= 0, M = H0(X ,OX ) is an A-module of finite type
and the canonical map M ⊗A OX → F is an isomorphism ([Hub94], thm. 2.5).
Moreover, M is canonically a Banach A-module ([Hub94], lem. 2.4). It follows
that a coherent sheaf F over a finite type adic space X is a sheaf of topological
OX -modules. In this paper we will have to manipulate topological sheaves which
are not coherent.

Definition 2.5.2. Let X be a finite type adic space over Spa(F,OF ). A sheaf F
of topological OX -modules is called a Banach sheaf if:

(1) For any quasi-compact open U ↪→ X , F (U) is a Banach OX (U)-module,
(2) There is an affinoid covering X = ∪iUi, such that for any affinoid V ⊂
Ui, the continuous restriction map F (Ui) → F (V) induces a topological
isomorphism: OX (V)⊗̂OX (Ui)F (Ui)→ F (V),

A Banach sheaf F is called locally projective if there is a covering as in (2) such
that F (Ui) is a projective Banach OX (Ui)-module.

Any coherent sheaf on X is therefore a Banach sheaf and a coherent sheaf is a
locally projective Banach sheaf if and only if it is locally free. Banach sheaves over
X form a full subcategory of the category of topological OX -modules. We introduce
compact morphisms in this context.

Definition 2.5.3. Let X be an adic space of finite type over Spa(F,OF ). Let F
and G be two locally projective Banach sheaves. Let φ : F → G be a continuous
morphism of OX -modules. We say that the map φ is compact if there is a covering
X = ∪iUi satisfying the point (2) of definition 2.5.2 for both F and G , such that
the map φ : F (Ui)→ G (Ui) is a compact map of OX (Ui)-modules.

Remark 2.5.4. Note that if G is coherent, any morphism to G is compact.

2.5.5. Cohomological properties of Banach sheaves. We warn the reader that Ba-
nach sheaves which are not coherent sheaves are pathological in general. In particu-
lar it is not true that on an affinoid X , a Banach sheaf has trivial higher cohomology
groups, nor is it true that a Banach sheaf is the sheaf associated with its global sec-
tions. Here is nevertheless a simple situation where this holds. Let X = Spa(A,A+)
be an affinoid and let M be a projective Banach A-module. Let F = M⊗̂AOX be
the pre-sheaf whose value on an affinoid open U = Spa(B,B+) of X is M⊗̂AB.

Lemma 2.5.6. The pre-sheaf F is a sheaf and Hi(X ,F ) = 0 for all i > 0.

Proof. We reduce to the case that M is orthonormalizable, and everything follows
from the known properties of OX . �

We now introduce a certain class of Banach sheaves that have better cohomolog-
ical properties, following [AIP15], appendix A. These are Banach sheaves admitting
formal models which can be controlled in a certain sense. We thus begin by dis-
cussing formal Banach sheaves over formal schemes.

Definition 2.5.7. Let X→ Spf OF be a finite type formal scheme over Spf(OF ). A
sheaf F of OX-modules is called a formal Banach sheaf if F is flat as an OF -module,
Fn := F/$n is a quasi-coherent sheaf, and F = limn Fn.

A formal Banach sheaf is called flat if Fn is a flat OX/$
n-module for all n.

It is called locally projective if Fn is a locally projective OX/$
n-module for all
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n. A formal Banach sheaf is called small if there exists a coherent sheaf G over
X with the property that F1 is the inductive limit of coherent sub sheaves F1 =
colimj∈Z≥0

F1,j and F1,j/F1,j−1 is a direct summand of G for all j ≥ 0.
The relevance of the smallness assumption is given by the following theorem:

Theorem 2.5.8. Let X → Spf OF be a finite type formal scheme and let F be a
small formal Banach sheaf. Assume that X has an ample invertible sheaf, and that
the generic fiber X of X is affinoid. Then Hi(X,F)⊗OF F = 0 for all i > 0.

Proof. This is [AIP15], theorem A.1.2.2. In the reference, the formal scheme X is
assumed to be normal and quasi-projective, but the only property needed in the
proof is the existence of an ample sheaf on X. �

Let X → Spf OF be a finite type formal scheme, and let X → Spa(F,OF ) be
the generic fiber of X. Thus (X ,O+

X ) = limX′(X
′,OX′) where the limit runs over

all admissible blow-ups of X. Let F be a Banach sheaf over X. For any admissible
blow-up f : X′ → X, we let FX′ = limn f

?Fn. We let F = limX′ FX′ [1/$]. This is
a sheaf over X that we call the generic fiber of F.

Theorem 2.5.9. Let X → Spf OF be a finite type formal scheme, with generic
fiber X . We have the following properties:

(1) There is a “generic fiber” functor going from the category of flat formal
Banach sheaves over X to the category of Banach sheaves over X , described
by the procedure F 7→ F .

(2) If U ↪→ X is a quasi-compact open subset and U′ ↪→ X′ is a formal model
for the map U ↪→ X , F (U) = FX′(U

′)[1/$].
(3) The property (2) of definition 2.5.2 holds over the generic fiber of any affine

covering of X.
(4) The generic fiber functor sends locally projective formal Banach sheaves to

locally projective Banach sheaves.
(5) Let F be a Banach sheaf arising from a flat small formal Banach sheaf.

Then for any affinoid open subset U ↪→ X we have Hi(U ,F ) = 0 for all
i > 0.

Proof. The first three points are [AIP15], proposition A.2.2.3. For the fourth point,
let U be an open affine of X. Let Mn = H0(U,Fn), An = H0(U,OX/$

n), M =
limnMn, and A = limnAn. We claim that M is a direct factor of the completion
of a free A-module. Let us pick a surjection AI1 → M1 and for any n, we can
lift it successively to surjections AIn → Mn. We need to prove that we can find
a compatible system of sections sn : Mn → AIn. It suffices to show that the map
HomA(Mn, A

I
n) → HomA(Mn−1, A

I
n−1) is surjective. This follows from the short

exact sequence 0→ HomAn(Mn, A
I
1)→ HomAn(Mn, A

I
n)→ HomAn(Mn, A

I
n−1)→

0.
For the last point, let X be a formal model of X and F be a small flat formal

Banach sheaf over X. Let U be an affine formal model of U . Let ∪iUi = U be a finite
affinoid cover of U . Let U′ be an admissible blow-up of U with the property that
∪iUi = U is the generic fiber of a covering of U′ and there is a map U′ → X inducing
the map U → X . Note that U′ has an ample invertible sheaf, since it is a blow-up
of an affine formal scheme. We can apply theorem 2.5.8 to FU′ , the pull-back to
U′ of F, which is still small by flatness. This shows that the Čech cohomology of
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U with respect to the covering ∪iUi vanishes. Since this holds for any finite cover,
and U is quasi-compact, we deduce that Hi(U ,F ) = 0.

�

Definition 2.5.10. Let X be a finite type adic space over Spa(F,OF ). A Banach
sheaf F is called a small, locally projective Banach sheaf if it arises as the generic
fiber of a small, locally projective formal Banach sheaf.

Remark 2.5.11. A locally free coherent sheaf over X is a small, locally projective
Banach sheaf by the flattening techniques of [RG71].

Remark 2.5.12. We don’t know if, for X = Spa(A,A+) affinoid and F a small,
locally projective Banach sheaf on X , it is true that F (X ) is a projective Banach
A-module and the map F (X )⊗̂AOX → F is an isomorphism.

2.5.13. Acyclicity of quasi-Stein spaces. In our arguments, it will often be useful to
consider not only affinoid covers of adic spaces, but also some quasi-Stein covers.

Definition 2.5.14 ([Kie67], def. 2.3). We say that an adic space X → Spa(F,OF )
is quasi-Stein if X = ∪i∈Z≥0

Xi is a countable increasing union of finite type affinoid
adic spaces Xi → Spa(F,OF ) and OXi+1

→ OXi has dense image.

Example 2.5.15. Here are some examples of quasi-Stein adic spaces:
• An affinoid space, like the unit ball B(0, 1).
• A Stein space like the open unit ball: Bo(0, 1) = ∪nB(0, |p 1

n |).
• A “mixed” situation like Bo(0, 1)×Spa(F,OF ) B(0, 1).

We also recall the following classical acyclicity result:

Theorem 2.5.16 ([Kie67], Satz 2.4). Let X be a quasi-Stein adic space and let F
be a coherent sheaf over X . Then Hi(X ,F ) = 0 for all i > 0.

We also have:

Proposition 2.5.17. Let X = Spa(A,A+) be an affinoid finite type adic space,
let M be a projective Banach A-module, and let F = M⊗̂AOX . Let U ↪→ X be a
quasi-Stein open subset. Then Hi(U ,F ) = 0 for all i > 0.

Proof. We reduce to the case where M is orthonormalizable, and therefore to the
case of OX where we can apply theorem 2.5.16. �

2.5.18. Cohomology complexes. We now illustrate how one can obtain complexes of
Banach modules. We denote by D(F ) the derived category of the category of F -
vector spaces. We also let Ban(F ) be the category of Banach F -vector spaces. For
an adic space X over Spa(F,OF ), and a sheaf F of OX -module, the cohomology
groups RΓ(X ,F ) are objects of the category D(F ). Nevertheless, they often carry
more structure and can be represented by objects of the category C(Ban(F )) of
complexes of Banach modules. We formalize this in this section.

Remark 2.5.19. Our approach is rather elementary and we content ourselves with
statements saying that a given cohomology can be represented by certain complexes
of topological F -vector spaces. This is enough for our purposes. We simply point
out in this remark a more conceptual approach yielding stronger results. Let F
be a coherent sheaf over an adic space X of finite type over Spa(F,OF ). Since F
carries a canonical topology, we can view F as sheaf of locally convex F -vector
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spaces over X . Let LocF be the category of locally convex F -vector spaces. This
is a quasi-abelian category with enough injectives ([Pro00]). One can therefore
derive the functor H0(X ,F ) in this category and view RΓ(X ,F ) as an object of
D(LocF ).

Lemma 2.5.20. Let X be a separated finite type adic space over Spa(F,OF ). Let
F be a locally projective Banach sheaf over X . Let U ⊆ X be a quasi-compact open
subset. Let Z ⊆ X be a closed subset, with quasi-compact complement. Then one
can represent RΓZ∩U (U ,F ) by an object of Kproj(Ban(F )).

Proof. We have an exact triangle RΓZ∩U (U ,F ) → RΓ(U ,F ) → RΓ(U \ (Z ∩
U),F )

+1→ and therefore, we are reduced to prove the claim for RΓ(U ,F ) and
RΓ(U \ (Z ∩ U),F ). Finally, it suffices to prove that for a quasi-compact open
U ⊆ X , RΓ(U ,F ) ∈ Ob(Kproj(Ban(F ))). We can compute the cohomology by
considering an F -acyclic affinoid covering of U for F , and the associated Čech
complex by [Hub94], thm. 2.5. Then each of the terms of the Čech complex carries
a canonical structure of Banach F -algebra. �

Lemma 2.5.21. Let X be a separated finite type adic space over Spa(F,OF ). Let F
be a locally projective Banach sheaf over X . Let U ⊆ X be an open subset which is a
finite union of quasi-Stein spaces. Let Z ⊆ X be a closed subset, whose complement
is a finite union of quasi-Stein spaces. Then one can represent RΓZ∩U (U ,F ) by
an object of ProN(Kproj(Ban(F ))).

Proof. As in the proof of lemma 2.5.20, we are reduced to showing that for an open
U ⊆ X which is a finite union of quasi-Stein spaces, RΓ(U ,F ) ∈ Ob(C(ProN(Ban(F )))).
We let U = ∪kVk be a finite covering of U by F -acyclic quasi-Stein spaces Vk. We
let Vk = ∪i≥0Vk,i where Vk,i is affinoid. We let Ui = ∪kVk,i. We let RΓ(U ,F ) =
“ lim ”RΓ(Ui,F ). �

2.5.22. Compact morphisms in the cohomology of adic spaces. We give some ex-
amples of compact morphisms arising from maps between the cohomology of adic
spaces. First, let us fix a standard notation. Let T be a topological space and let S

be a subset of T . Then we denote by S the closure of S in T and by
◦
S the interior

of S in T .

Lemma 2.5.23. Let X → Spa(F,OF ) be a proper adic space and let F be a locally
free sheaf of finite rank over X . Let U ′ ⊆ U ⊆ X be quasi-compact open subsets.
Assume that U ′ ⊆ U . Then the map

RΓ(U ,F )→ RΓ(U ′,F )

is compact.

Proof. We claim that there exists a formal model X → Spf OF of X , and two
opens U and U′ of X with generic fibers U and U ′, such that U′ ⊆ U. Remark that
U′ → Spf OF is proper because X was assumed to be proper ([L9̈0], Th. 3.1).
We deduce that U ′ is relatively compact in U ([L9̈0], lem. 2.5). We prove the
claim. Recall that the ringed space (X ,O+

X ) is the inverse limit of the ringed spaces
(X,OX) where X runs over all the formal models of X . For a cofinal subset of X,
we have opens UX and U′X of X with generic fiber U and U ′. We let U ′X be the
generic fiber of U′X. Then U ′ = ∩XU ′X. The topological space X equipped with
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the constructible topology is compact (in fact this is a profinite set). We have that
(U)c = ∪X(U ′X)c ∩ (U)c. Since (U)c is compact, we deduce that there is a model X
such that U ′X ⊆ U , and therefore U′X ⊆ UX. This finishes the proof of the claim.

Let U ′ = ∪i∈IU ′i be a finite affinoid cover of U ′. By [L9̈0], thm. 5.1, for each
i, there exists an affinoid U ′i ⊆ Ui ⊆ U such that U ′i is relatively compact in Ui
(equivalently U ′i ⊆ Ui). Let U ′′ = ∪i∈IUi. We claim that the map

RΓ(U ′′,F )→ RΓ(U ′,F )

is compact. This will prove that the map of the lemma is compact because it factors
over a compact map. These last cohomologies can be represented by the Čech
complex with respect to ∪iUi and ∪iU ′i . We now prove that the maps F (∩J⊆IUi)→
F (∩J⊆IU ′i) are compact. We reproduce the argument of [KL05], prop. 2.4.1.
We have just seen that we can find a formal model V′ ↪→ V ↪→ X (with maps
being Zariski open immersions) for the maps ∩J⊆IU ′i → ∩J⊆IUi → X with the
property that the map V′ ↪→ V factors into V′ ↪→ V′ ↪→ V. We also let F be
a flat coherent sheaf over X with generic fiber F . Let Fn = F/$n. We have
that F (∩J⊆IUi) = F(V)[ 1

$ ], and the image of F(V) in F (∩J⊆IUi) is an open
and bounded submodule. This also applies to the ′ situation. We claim that
the image of F(V) in F(V′)/$n is a finite OF -module. This will prove that the
map F (∩J⊆IUi) → F (∩J⊆IU ′i) is compact. The image of F(V) in F(V′)/$n is
contained (inside Fn(V′)) in the image of Fn(V). But the map Fn(V) → Fn(V′)
factors over Fn(V)→ Fn(V′)→ Fn(V′). The OF -module Fn(V′) is finite since V′

is proper.
�

Lemma 2.5.24. Let X → Spa(F,OF ) be a proper adic space and let F be a locally
free sheaf of finite rank over X . Let U ′ ⊆ U be two quasi-compact open, and Z ⊆ Z ′
be two closed subspaces, with quasi-compact complements. Assume that U ′ ⊆ U and

Z ⊆
◦
Z ′. Then the map

RΓZ∩U (U ,F )→ RΓZ′∩U ′(U ′,F )

is compact.

Proof. It suffices to see that RΓ(U ,F ) → RΓ(U ′,F ) and RΓ(U \ (Z ∩ U),F ) →
RΓ(U ′ \ (Z ′ ∩ U ′),F ) are compact. This follows from the fact that U ′ ⊆ U and

U ′ \ (Z ′ ∩ U ′) ⊆ U ′ \ (
◦
Z ′ ∩ U ′) ⊆ U \ (Z ∩ U) and the previous lemma. �

We now give a stronger form of the lemma.

Lemma 2.5.25. Assume that X is proper. Let U ′ ⊆ U be two open subsets which
are finite unions of quasi-Stein spaces, and Z ⊆ Z ′ be two closed subspaces, whose
complements are finite unions of quasi-Stein spaces. Assume that there exists a
quasi-compact open U ′′ such that U ′ ∩ Z ′ ⊆ U ′′ with U ′′ ⊆ U , as well as two closed

subset Z ′′ ⊆ Z ′′′ with quasi-compact complement, such that Z ∩U ⊆ Z ′′ , Z ′′ ⊆
◦
Z ′′′

and Z ′′′ ⊆ Z ′. Then the map

RΓZ∩U (U ,F )→ RΓZ′∩U ′(U ′,F )

is compact.



HIGHER COLEMAN THEORY 29

Proof. We can write U = ∪nUn with Un quasi-compact. Since U ′′ ⊆ U and X
equipped with the constructible topology is compact, we deduce that U ′′ ⊆ Un
for n large enough. The map RΓZ′′∩Un(Un,F ) → RΓZ′′′∩U ′′(U ′′,F ) is com-
pact by lemma 2.5.24. There is a restriction-corestriction map RΓZ∩U (U ,F ) →
RΓZ′′∩Un(Un,F ).

We also have a restriction-corestriction map

RΓZ′′′∩U ′′(U ′′,F )→ RΓZ′∩U ′(U ′ ∩ U ′′,F ).

On the other hand, RΓZ′∩U ′(U ′,F ) = RΓZ′∩U ′(U ′ ∩ U ′′,F ). All together, we
deduce that the map

RΓZ∩U (U ,F )→ RΓZ′∩U ′(U ′,F )

factors through the compact map RΓZ′′∩Un(Un,F ) → RΓZ′′′∩U ′′(U ′′,F ) and is
compact. �

We finally conclude this section with a last lemma where we deal with Banach
sheaves which are not necessarily coherent.

Lemma 2.5.26. Let X , U , U ′, Z, Z ′ be as in lemma 2.5.25. Let F and G be two
locally projective Banach sheaves and let φ : F → G be a compact morphism. The
morphism

RΓZ∩U (U ,F )→ RΓZ′∩U ′(U ′,G )

is compact.

Proof. Easy and left to the reader. �

2.6. Integral structures on Banach sheaves. We now consider integral struc-
tures on Banach sheaves, but this time more in the spirit of analytic geometry. We
let X be a separated adic space locally of finite type over Spa(F,OF ). We let F be
a locally projective Banach sheaf over X . We can view F as a sheaf on the étale
site of X by [BG98].

Definition 2.6.1. An integral structure on F is a sheaf F+ of O+
X -modules on

the étale site of X, such that:

(1) F+ ↪→ F and F+ ⊗OF F = F ,
(2) There is an étale cover

∐
Ui → X by affinoid spaces such that F+(Ui) is the

completion of a free O+
X (Ui)-module, and the canonical map F+(Ui)⊗̂O+

X (Ui)
O+
Ui
→

F+|Ui is an isomorphism.

Remark 2.6.2. A stronger property would be to ask that the étale cover
∐
Ui → X

is in fact an analytic cover. In our applications, this stronger property will not
be satisfied. Indeed, we will produce sheaves arising from torsors under various
groups, and these torsors are usually only trivial locally for the étale topology.
However, we will not consider the étale cohomology Hi

et(X ,F+), but only the
analytic cohomology Hi

an(X ,F+).

Lemma 2.6.3. In the situation of definition 2.6.1, assume moreover that X is
reduced. Let U → X be an étale map. Then F+(U) is an open and bounded
submodule of F (U).
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Proof. Let I be a finite set and let
∐
i∈I Ui → U be an étale cover such each Ui is

affinoid and F+|Ui is the completion of a free sheaf of O+
Ui
-modules. By the sheaf

property we have an exact sequence:

0→ F (U)→
∏
i

F (Ui)→
∏
i,j

F (Ui ×U Uj)

and F (U) is a closed Banach subspace of
∏
i F (Ui). Since

∏
i F

+(Ui) is open and
bounded in

∏
i F (Ui) (using that O+

X (Ui) is bounded by the reducedness hypothe-
sis), F+(U) =

∏
i F

+(Ui) ∩F (U) is open and bounded in F+(U). �

We now will elaborate on a result of Bartenwerfer which we first recall.

Theorem 2.6.4 ([Bar78]). Let X be an affinoid smooth adic space over Spa(F,OF ).
There exists N ∈ Z≥0 such that Hi

an(X ,O+
X ) is annihilated by pN for all i > 0.

Proof. Bartenwerfer’s result is stated for Čech cohomology. By [Pil20] prop. 3.1.1,
this implies the claim for cohomology. �

Lemma 2.6.5. Let X be an affinoid smooth adic space over Spa(F,OF ). Let
F be a locally projective Banach sheaf which is assumed to be associated to its
global sections (i.e. satisfies point (2) in definition 2.5.2). Let F+ be an integral
structure on F . There exists N ∈ Z≥0 such that for all i > 0 the cohomology
groups Hi

an(X ,F+) are annihilated by pN .

Proof. Let X = Spa(A,A+). By assumption, F = M⊗̂AOX is associated to a
projective Banach A-module M . Let I be a set such that A(I) = M ⊕ N . Let
M+ = A+(I) ∩M and N+ = A+(I) ∩N . The injective map M+ ⊕N+ → A+(I)
has cokernel of bounded torsion. Moreover, if we letM+ be the image of A+(I) inM
under the projection orthogonal to N , then M+ ↪→ M+ has cokernel of bounded
torsion. We deduce that there exists an integer N such that the multiplication
pN : M+ →M+ factors through: M+ → A+(I)→M+ (where the first map is the
inclusion, the second map is the orthogonal projection with respect to N composed
with multiplication by pN and followed by the inclusion pNM+ ⊆M+). It follows
from theorem 2.6.4 that Hi(X ,O+

X ⊗̂A+A+(I)) is of bounded torsion for all i > 0.
We let M + be the subsheaf of O+

X ⊗̂A+A+(I) ∩F equal to the image of the sheaf
associated to the presheaf O+

X ⊗̂A+M+ (in other words, it is the subsheaf of F of
sections which can locally be written as tensors in O+

X ⊗̂A+M+).
We see that multiplication by pN : M + →M + factors through M + → O+

X ⊗̂A+A+(I)→
M +. We deduce that Hi(X ,M +) is of bounded torsion for all i > 0. After rescal-
ing, we may assume thatM+ ⊆ F+(X ), with cokernel of bounded torsion by lemma
2.6.3. We therefore get a morphism: M + → F+. We claim that this morphism
has cokernel of bounded torsion. Let ∪i∈IUi → X be an affinoid étale covering with
the property that F+|Ui is associated with its global sections. We may assume that
the set I is finite. It suffices to show that O+

X (Ui)⊗̂A+M+ → F+(Ui) has cokernel
of bounded torsion. This follows since the image of O+

X (Ui)⊗̂A+M+ is open. We
finally deduce that Hi

an(X ,F+) is of bounded torsion for all i > 0. �

2.7. Duality for analytic adic spaces. In this section we fix X a proper smooth
adic space over Spa(F,OF ) of pure dimension d. Let ΩdX/F be the canonical sheaf,
equal to ΛdΩ1

X/F . Let ι : Z ↪→ X be a closed subset, equal to the closure of
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a quasi-compact open subset U of X . One can consider the cohomology group
Hd
Z(X ,ΩdX/F ).

Theorem 2.7.1 ([GK00], [Bey97]). (1) There is a trace map trZ : Hd
Z(X ,ΩdX/F )→

F .
(2) If Z ⊆ Z ′, there is a factorization

trZ : Hd
Z(X ,ΩdX/K)→ Hd

Z′(X ,ΩdX/F )
trZ′→ F.

(3) For any coherent sheaf F defined on a neighborhood of Z the map trZ
induces a pairing:

Extiι−1OX (ι−1F , ι−1ΩdX/F )×Hd−i
Z (X ,F )→ F

(4) When Z = X the cohomology groups are finite dimensional F -vector spaces,
and the pairing is perfect.

(5) When U is affinoid and F is a locally free sheaf, Ext0
ι−1OX (ι−1F , ι−1ΩdX/F )

is a compact inductive limit of F -Banach spaces, Hd
Z(X ,F ) is a compact

projective limit of F -Banach spaces, and the pairing is a topological dual-
ity between locally convex topological F -vector spaces spaces identifying each
space with the strong dual of the other. Moreover, Extiι−1OX (ι−1F , ι−1ΩdX/F )

and Hd−i
Z (X ,F ) vanish for i 6= 0.

Remark 2.7.2. We give some translations to the language of [GK00]. Let U† be
the dagger space attached to U ↪→ X . Let F be a coherent sheaf defined on
a neighborhood of Z in X . Then Hi(U†,F ) = Hi(Z, ι−1F ) and Hi

c(U†,F ) =
Hi
Z(X ,F ).

3. Flag variety

3.1. Bruhat decomposition. Let F be a non archimedean local field of mixed
characteristic with residue field k of characteristic p and discrete valuation v nor-
malized so that v(p) = 1. Let G → OF be a split reductive group with maximal
torus T contained in a Borel B with unipotent radical U . Let B ⊆ P be a parabolic
with Levi M ⊆ P containing T .

Remark 3.1.1. In our application to Shimura varieties, the unipotent radical of P
will be abelian. Nevertheless, this assumption is not relevant for the moment.

We let Φ be the set of roots, ∆ and Φ+ the subsets of simple and positive roots
corresponding to our choice of B, and Φ− = −Φ+. We let Φ+

M be the subset of
positive roots which lie in the Lie algebra of M and Φ+,M = Φ+ \ Φ+

M . We let
Φ−M = −Φ+

M and Φ−,M = −Φ+,M .
We let W be the Weyl group of G. We denote by ` : W → Z≥0 the length

function. We denote by w0 the longest element of W . For each w ∈ W , we choose
a representative in N(T ) that we still denote w. The group W acts on the left
on the cocharacter group X?(T ) and on the character group X?(T ) on the left as
well via the formula wκ(t) = κ(w−1tw) for κ ∈ X?(T ) and w ∈ W . Let WM be
the Weyl group of M . The quotient WM\W has a set of coset representatives of
minimal length (the Kostant representatives) called MW . This is the subset of W
of elements w that satisfy Φ+

M ⊆ wΦ+.
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Let FL = P\G → Spec OF be the flag variety associated with P . We let
d = #Φ+,M be the (relative) dimension of FL. The group G acts on the right on
FL.

For any w ∈ MW , we let Cw = P\PwB be the Bruhat cell corresponding to w.
We have the decomposition into B-orbits FL =

∐
w∈MW Cw. We can also consider

the opposite Bruhat cell: Cw = P\PwB for the opposite Borel B.
We let Xw be the Schubert variety equal to the Zariski closure of Cw in FL. We

also let Xw be the opposite Schubert variety, equal to the Zariski closure of Cw
in FL. There is a partial order ≤ on MW for which Xw = ∪w′≤wCw′ and Xw =

∪w′≥wCw
′
. For the length function ` : MW → [0,dimFL], we have `(w) = dimCw

(here dimensions are relative dimensions over Spec OF ).
We also define Yw = ∪w′≥wCw for all w ∈ MW . This is an open subscheme of

FL containing Cw.

Lemma 3.1.2. We have an inclusion Xw ↪→ Yw.

Proof. By [BL03], I, lemma 1, we know that Xw ∩Xv 6= ∅ ⇔ v ≥ w. We deduce
that Xw ∩ Cv 6= ∅ ⇒ v ≥ w, so that Xw ⊆ ∪v≥wCv. �

The following lemma gives a description of the Bruhat cells. For all α ∈ Φ, we
let Uα be the one parameter subgroup corresponding to α.

Lemma 3.1.3. The product map (for any ordering of the factors)∏
α∈(w−1Φ−,M )∩Φ+

Uα → Cw

(xα) 7→ w
∏
α

xα

is an isomorphism of schemes.

Proof. We need to prove that the map
∏
α∈(w−1Φ−,M )∩Φ+ Uα → (B ∩ w−1Pw)\B

is an isomorphism. This follows easily from the following facts:

• B = T ×
∏
α∈Φ+ Uα (in any order),

• Φ+ = (w−1Φ−,M ) ∩ Φ+
∐

(w−1Φ+) ∩ Φ+
∐

(w−1Φ−M ) ∩ Φ+,
• B ∩ w−1Pw = T ×

∏
α∈(w−1Φ+)∩Φ+

∐
(w−1Φ−M )∩Φ+ Uα.

�

We also introduce the translated open cell Uw := Cw0
· w−1

0 w, so that by the
lemma we have an isomorphism (for any ordering of the roots):∏

α∈w−1Φ−,M

Uα → Uw

(xα) 7→ w
∏
α

xα.

We see that Uw contains the Bruhat cell Cw as a closed subset.
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3.2. Interlude: the cohomology of the flag variety. In this section, which is
independent of the rest of the paper, we discuss the coherent cohomology of the
flag variety following [Kem78], section 12. We assume here that P = B is a Borel
subgroup. We consider the stratification Z0 = FL ⊇ Z1 ⊇ · · · ⊇ Zd ⊇ Zd+1 = ∅
where d = dimFL and Zi =

⋃
w∈W,`(w)=d−iXw. Let κ ∈ X?(T ). We associate to κ

a G-equivariant line bundle Lκ on FL as follows: if π : G → FL is the projection
map, then for any open U ↪→ FL,

Lκ(U) = {f : π−1(U)→ A1 | f(bu) = (w0κ)(b)f(u), ∀(b, u) ∈ B × π−1(U)}.

We consider the spectral sequence associated to the filtration (section 2.3)

Ep,q1 = Hp+q
Zp/Zp+1

(FL,Lκ)⇒ Hp+q(FL,Lκ).

The abutment of this spectral sequence carries an action of G. The terms on the
left do not carry an action of G, but then do carry an action of B, as well as the
Lie algebra g (see [Kem78], lemma 12.8), and the spectral sequence is equivariant
for these actions.

In order to study this spectral sequence, we need the following basic result:

Lemma 3.2.1. Letm ≥ n. Let Am = Spec OF [x1, · · · , xm] and An = Spec OF [x1, · · · , xn].
Let An ↪→ Am be the closed immersion given by xn+1 = · · · = xm = 0. We have
Hi

An(Am) = 0 if i 6= m− n, and

Hm−n
An (Am) =

⊕
k1,··· ,kn≥0, kn+1,··· ,km<0

OF ·
m∏
i=1

xkii

Proof. One can use a Koszul complex. See [Gro05], exposé II, proposition 5. �

Let ρ = 1
2

∑
α∈Φ+ α. We define the dotted action of W on X?(T ) by w · κ =

w(κ+ ρ)− ρ. We also denote H?
w(FL,Lκ) = H?

Cw
(Uw,Lκ).

Lemma 3.2.2. We have a decomposition

Hp+q
Zp/Zp+1

(FL,Lκ) =
⊕

w∈W,`(w)=d−p

Hp+q
w (FL,Lκ)

and these groups vanish when q 6= 0. Moreover, T acts on H
d−`(w)
w (FL,Lκ) with

character:
[(w−1w0) · κ]∏
α∈Φ−([1]− [α])

Here the character is viewed as a function X?(T ) → Z and for λ ∈ X?(T ), we
write [λ] for the function which is 1 on λ and 0 otherwise. The multiplication is
convolution. We note that this says that the character of H

d−`(w)
w (FL,Lκ) is the

same as that of the Verma module with highest weight (w−1w0) · κ.

Proof. Since Zp \ Zp+1 =
∐
w∈W,`(w)=d−p Cw and Uw is a neighborhood of Cw in

FL, we deduce from lemma 2.1.1 that

Hp+q
Zp/Zp+1

(FL,Lκ) = ⊕w∈W,`(w)=d−pH
p+q
Cw

(Uw,Lκ).

By lemma 3.1.3, after choosing an ordering of the roots, we have Uw ' Ad with
coordinates xα for α ∈ w−1Φ−, and Cw ' A`(w) with coordinates xα for α ∈
w−1Φ− ∩ Φ+. Moreover the inclusion Cw ⊆ Uw is given by the vanishing of xα
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for α ∈ w−1Φ− ∩ Φ−. The torus T acts on Uw and Cw, and the action on the
coordinates is given by t · xα = (−α)(t)xα.

Over Uw, the line bundle Lκ has a non-vanishing section s given by the function
bw0uw

−1
0 w 7→ (w0κ)(b) on π−1(Uw) = Bw0Uw

−1
0 w. We compute that the action

of T on s is given by t · s = (w−1w0κ)(t)s.
We now deduce from lemma 3.2.1 that Hp+q

Cw
(Uw,Lκ) is concentrated in degree

p, and the cohomology is isomorphic to the free OF -module:⊕
kα≥0 ∀α∈w−1Φ−∩Φ+,kα<0 ∀α∈w−1Φ−∩Φ−

OF ·
∏

xkαα s

from which we can read off the character of the T -action:

ch
(
Hp
Cw

(Uw,Lκ)
)

=
∑

kα≥0 ∀α∈w−1Φ+∩Φ−,kα>0 ∀α∈w−1Φ−∩Φ−

[w−1w0κ+
∑

kαα]

= [w−1w0κ+
∑

α∈w−1Φ−∩Φ−

α]
1∏

α∈Φ− [1]− [α]

Finally we note

(w−1w0) ·κ = w−1w0(κ+ρ)−ρ = w−1w0κ−w−1ρ−ρ = w−1w0κ+
∑

α∈w−1Φ−∩Φ−

α.

�

It follows from the lemma that the complex E•,01 from the spectral sequence (the
Grothendieck-Cousin complex):

Cous(κ) : 0→ H0
Z0/Z1

(FL,Lκ)→ · · · → Hd
Zd/Zd+1

(FL,Lκ)→ 0

computes RΓ(FL,Lκ). Each group decomposes

Hp
Zp/Zp+1

(FL,Lκ) =
⊕

w∈W,`(w)=d−p

Hp
w(FL,Lκ)

and we have established a precise formula for the weights of T on each module.
There is a partial order on X?(T ) where λ ≥ 0 if and only if λ is a sum of

positive roots. Lemma 3.2.2 tells us that the weights occurring in H
d−`(w)
w (FL,Lκ)

are exactly those which are ≤ (w−1w0) · κ. In particular certain “big weights” will
occur in as few of the terms of the Cousin complex as possible. We begin with the
following lemma:

Lemma 3.2.3. Let ν ∈ X?(T ) be such that ν + ρ is dominant. Then the following
conditions on a weight λ ∈ X?(T ) are equivalent:

(1) λ 6≤ w · ν for all w ∈W with w · ν 6= ν.
(2) λ 6≤ sα · ν for all α ∈ ∆ with sα · ν 6= ν.

Moreover if we additionally assume that λ ≤ ν then we have the further equivalent
condition:

(3) λ = ν−
∑
α∈∆ nαα with nα < 〈α∨, ν〉+1 for all α ∈ ∆ with 〈α∨, ν〉+1 > 0.

Proof. Clearly the first condition implies the second. For the converse, writing w
as a reduced product of simple reflections, there must be at least one factor sα
with sα · ν 6= ν. Then w ≥ sα, and so w · ν ≤ sα · ν (see lemma 5.11.4) and hence
λ 6≤ sα · ν implies λ 6≤ w · ν.
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The equivalence of the second and third points follows from the formula sα · ν =
ν − (〈α∨, ν〉+ 1)α. �

We say that a weight λ satisfying the conditions of the proposition has big weight
(with respect to ν) and for a T -module M which is a direct sum of its weight
spaces we denote by M bw(ν) the direct sum of its weight spaces corresponding to
big weights. We note that if ν + ρ is regular the last condition may be expressed
as λ > ν −

∑
α∈∆〈(α∨, ν〉+ 1)α.

The set X?(T )+
Q − ρ is a fundamental domain for the dotted action of W on

X?(T )Q, and so there is a unique ν ∈ X?(T )+
Q − ρ with ν ∈ W · κ. We let

C(κ) = {w ∈ W | (w−1w0) · κ = ν}. This set is a right torsor under Wν = {w ∈
W | w · ν = ν}, and hence it is always nonempty and consists of a single element if
and only if κ+ ρ is regular. For example, if κ is dominant, C(κ) = {w0}.

Proposition 3.2.4. The cohomology complex RΓ(FL,Lκ)bw(ν) is a perfect complex
of OF -modules of amplitude [minw∈C(κ)(d− `(w)),maxw∈C(κ)(d− `(w))].

Proof. We will show that for w ∈ W \ C(κ), the big weight part of the term in
the Grothendieck-Cousin complex corresponding to w vanishes. Indeed, by lemma
3.2.2, all the weights of H

d−`(w)
w (FL,Lκ) are ≤ (w−1w0) · κ, but (w−1w0) · κ 6=

w′ · ν 6= ν and so H
d−`(w)
w (FL,Lκ)bw(ν) = 0.

�

Remark 3.2.5. In particular when κ + ρ is regular so that C(κ) = {w} consists of
a single element, we have that H?(FL,Lκ)bw(ν) = H?

w(FL,Lκ)bw(ν). We view this
statement as a sort of analog of Coleman’s classicality theorem, where the algebraic
local cohomology groups H?

w play the role of the overconvergent cohomology groups
introduced in this paper, and the big weight condition plays the role of the small
slope condition.

We emphasize that the vanishing of Proposition 3.2.4 is characteristic indepen-
dent. Of course in characteristic zero, the classical Borel-Weil-Bott theorem gives
a precise description of H?(FL,Lκ). For the sake of completeness, we explain how
the Borel-Weil-Bott theorem may be deduced from the computation of H?(FL,Lκ)
via the Cousin complex and basic properties of the BGG category O.

Theorem 3.2.6 ([Jan03], 5.5, corollary). Let κ ∈ X?(T ).
(1) If there exists no w ∈W such that w·κ is dominant then Hi(FL,Lκ)⊗F = 0

for all i.
(2) If there exists w ∈ W such that w · κ is dominant, then there is a unique

such w, and Hi(FL,Lκ)⊗F = 0 if `(w) 6= i, while H`(w)(FL,Lκ)⊗F is a
highest weight w · κ representation.

Proof. It suffices to prove the theorem after tensoring with F̄ , an algebraic closure
of F . For simplicity, we slightly change our notation and we assume that F is
algebraically closed for this proof. There is a famous sub-category of the category
of U(g)-modules, called the category O. See [Hum08], chapter 1 for the definition
and properties of the category O. We recall a number of basic results concerning
the category O that will be used in the argument. The category O is abelian,
Artinian and Noetherian. The simple objects are indexed by weights λ ∈ X?(T )⊗F
and denoted by Lλ. If the module Lλ is finite dimensional then λ ∈ X?(T )+ is
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dominant, and moreover Lλ arises from the highest weight λ representation of G.
For all λ ∈ X?(T )⊗F we also denote by Mλ = U(g)⊗U(b) F (λ) the Verma module
of weight λ. The simple module Lλ is the unique simple quotient of Mλ. The
Grothendieck group of O, denoted by K(O), is the free module on the [Lλ]. We
denote by M 7→ [M ] the semi-simplification map from O to K(O). In K(O) we
have [Mλ] = ⊕w·λ≤λa(w · λ, λ)[Lw·λ] with a(λ, λ) = 1. Since any element M ∈ O
has diagonalizable t-action, we can associate to M its formal character chM which
is an element of the group X of functions X?(T )⊗F → Z. The character is additive
on short exact sequence and we get a map K(O) → X , [M ] 7→ ch[M ]. Moreover,
this last map is a group injection. We denote by XO its image. Finally, any U(g)-
module with diagonalizable t-action, and whose formal character belongs to XO is
an object of O.

It follows from lemma 3.2.2 that ch(Hp
Zp/Zp+1

(FL,Lκ)⊗OFF ) = ⊕w,`(w)=pch(Mw·κ).
The Grothendieck-Cousin complex

0→ H0
Z0/Z1

(FL,Lκ)⊗ F → · · · → Hd
Zd/Zd+1

(FL,Lκ)⊗ F → 0

carries an action U(g) by [Kem78], lemma 12.8, and is therefore a complex in the
category O. At this stage, we see that if none of the elements in the set {w · κ} is
dominant, then none of the Hp

Zp/Zp+1
(FL,Lκ)⊗OF F contains a finite dimensional

subquotient. Otherwise there is a unique w such that w ·κ is dominant. We see that
for p = `(w), [Hp

Zp/Zp+1
(FL,Lκ)⊗OF F ] has a unique finite dimensional constituent

(with multiplicity one) equal to [Lw·κ]. On the other hand [Hi
Zi/Zi+1

(FL,Lκ)⊗OF
F ] has no finite dimensional constituent for i 6= `(w). The cohomology groups
Hi(FL,Lκ) ⊗OF F are finite dimensional because FL is proper. If none of the
elements in the set {w ·κ} is dominant, the cohomology is therefore trivial. If there
is a unique w such that w · κ is dominant, we see that Hi(FL,Lκ) ⊗OF F = 0 if
i 6= `(w), and H`(w)(FL,Lκ)⊗OF F = Lw·κ. �

3.3. Analytic geometry. If S → Spec OF is a finite type morphism of schemes,
we let S = S ×Spec OF Spa(F,OF ) be the associated analytic adic space and
Sk = S ×Spec OF Spec k be the special fiber. One can also consider San, the
analytification of the scheme S ×Spec OF Spec F , and there is a map S → San
which is an isomorphism when S is proper (see [Hub94], section 4). There is a
continuous specialization map spS : S → Sk and the preimage of a subset U ⊂ Sk
is denoted by sp−1

S (U). If U is a locally closed subset of Sk, we let ]U [S be the
interior of sp−1(U). This is an adic space, called the tube of U (see [Ber91]). The
difference between sp−1

S (U) and ]U [S consists only of certain higher rank points.
The tube ]U [S is the adic space associated to a “classical” rigid space, while sp−1

S (U)
is not in general.

3.3.1. The Iwahori decomposition. Let G be the quasi-compact adic space associ-
ated to G and let Iw =]Bk[G be the Iwahori subgroup of G.

For any root α ∈ Φ, we have an algebraic root space Uα → Spec OF . We let Uα
be the corresponding quasi-compact adic space (isomorphic to a unit ball) and we let
Uoα =]{1}[Uα be the tube of the identity element (isomorphic to an increasing union
of balls of radii r < 1). We also let Uanα be the analytification of Uα (isomorphic to
the affine line).

The following result gives a strong form of the Iwahori decomposition.
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Proposition 3.3.2. Let α1, · · · , αn be an enumeration of the roots in Φ. The
product map

T ×
∏
U?iαi → Iw

is an isomorphism of analytic adic spaces, where U?iαi = Uαi if αi ∈ Φ+ and U?iαi =
Uoαi if αi ∈ Φ−.

Remark 3.3.3. The existence of a product decomposition T (K) ×
∏
U?iαi(K) →

Iw(K) forK a discretely valued field is a consequence of Bruhat-Tits theory [Tit79],
sect. 3.1.1.

Proof. We let Iw be the formal group scheme obtained by completing the group G
along the closed subscheme Bk. For each root α, we let Uα = Spf(OF 〈T 〉) be the
formal completion of Uα along its special fiber, and we let Uoα = Spf(OF [[T ]]) be
the formal completion of Uα at the identity. We also let T be the formal completion
of T along its special fiber.

We consider the map of formal schemes: T×
∏

U?iαi → Iw which yields the map
of the proposition after passing to the generic fiber. We will show that this map
of formal schemes is an isomorphism. Passing to underlying reduced schemes, we
obtain the isomorphism Tk ×

∏
α∈Φ+ Uα,k → Bk. Hence it suffices to show that it

is formally étale.
We claim that this map is formally étale. Since it is an isomorphism on the

associated reduced schemes because Tk ×
∏
α∈Φ+ Uα,k → Bk is an isomorphism,

we deduce that the map is an isomorphism. The associated map on the generic
fiber (which is the map of the lemma) is an isomorphism. We are left to prove that
the map is formally étale. Let k′ be a finite field extension of k. Let (t, uαi) ∈
T×

∏
U?iαi(k

′). Note that uαi = 1 if αi ∈ Φ−. The map on Zariski tangent spaces
is given by:

(t(1 + εT ), uαi(1 + εUαi)1≤i≤n) 7→ t(1 + εT )
∏
i

uαi(1 + εUαi)

where (T, (Uαi)1≤i≤n) ∈ Lie(Tk)⊗k k′ ⊕i Lie(Uαi)⊗k k′, and there is an equality:

t(1+εT )
∏
i

uαi(1+εUαi) = t
∏
i

uαi(1+εAd((
∏
i

uαi)
−1)(T )+

n+1∑
i=2

Ad((
n∏
k=i

uαk)−1)Uαi−1
).

Therefore, if we identify the tangent space of T×
∏

U?iαi at (t, uαi) and the tangent
space of Iw at t

∏
uαi with

Lie(Gk)⊗ k′ = Lie(Tk)⊗k k′ ⊕i Lie(Uαi)⊗k k′,

the map on tangent spaces is given by the endomorphism:

(T, (Uαi)1≤i≤n) 7→ Ad((
∏
i

uαk)−1)(T ) +

n+1∑
i=2

Ad((

n∏
k=i

uαk)−1)(Uαi−1
).

Observe that (
∏n
k=i uαk)−1 ∈ U(k′) for all 1 ≤ i ≤ n. By Chevalley’s commutativ-

ity relations ([Ste16], chapter 6), we know that for any u ∈ U(k′), any α ∈ Φ ∪ {0}
and any v ∈ Lie(Gk)α ⊗ k′, Ad(u).v = v + w where w ∈

⊕
α′>α Lie(Gk)α′ ⊗ k′.

A simple inductive argument proves that the map on tangent spaces is an isomor-
phism. �
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3.3.4. Tubes of Bruhat cells. For any w ∈ MW , we now consider the tube of the
Bruhat cell ]Cw,k[FL= P\PwIw, as well as the tubes ]Xw,k[FL and ]Yw,k[FL. It
follows from lemma 3.1.2 that Xw ↪→]Yw,k[FL.

We can now give a very precise description of the tubes of Bruhat cells.

Corollary 3.3.5. For any w ∈ MW , and for any ordering of the roots in Φ, we
have an isomorphism of analytic spaces:∏

α∈(w−1Φ−,M )∩Φ+

Uα ×
∏

α∈(w−1Φ−,M )∩Φ−

Uoα → ]Cw,k[FL

(uα)α∈w−1Φ−,M 7→ w
∏
α

uα

where the product
∏
α uα is taken according to our fixed ordering.

Proof. This follows easily from proposition 3.3.2. �

3.3.6. Analytic subspaces of Uanw . We now consider Uanw , the analytification of Uw.
This open subset of FL contains ]Cw,k[FL, and we have an isomorphism of analytic
spaces (for any ordering of the roots):∏

α∈(w−1Φ−,M )

Uanα → Uanw

(uα)α∈w−1Φ−,M 7→ w
∏
α

uα

We now introduce certain quasi-Stein subspaces of Uanw as well as some partial
closures of them. In order to do this we introduce a little bit of language.

If T is a topological space and S ⊆ T is a subset, we let as usual S be the closure
of S in T . We will use repeatedly the property that in a spectral space, the closure
of a pro-constructible set is the set of all its specializations (see [Sch17], lemma 2.4).

Let X be an adic space. Using the Yoneda lemma, we identify X with a functor
on complete Huber pairs (A,A+). Let T be a subset of X . In general T is not an adic
space but using the Yoneda point of view, we can attach to T a subfunctor of X : we
let T ((A,A+)) be the subset of X ((A,A+)) of morphisms Spa(A,A+)→ X whose
image factors through T . We observe that this functor is completely determined
by its value on fields (K,K+). In general, we say that a subfunctor F of X is a
subset of X if it is the functor attached to a subset of X .

Example 3.3.7. Let B(0, 1) and Bo(0, 1) be respectively the quasi-compact unit ball
and the open unit ball of radius 1 over Spa(F,OF ). These are open subsets of
the affine line (A1)an. For any (F,OF )-complete Huber pair (A,A+), we have
(A1)an((A,A+)) = A, B(0, 1)((A,A+)) = A+, Bo(0, 1)((A,A+)) = {a ∈ A+, ∃n ∈
Z≥1, a

n ∈ pA+}. The closed subset B(0, 1) is the union of B(0, 1) together with a
rank two point whose maximal generalization is the Gauss point and which points
towards infinity. This is still an adic space equal to Spa(F 〈X〉,OF + mOFX +

mOFX
2 + · · · ). We have B(0, 1)((A,A+)) = {a ∈ A,∀n ∈ Z≥1, pa

n ∈ A+}. The
closed subset Bo(0, 1) is the union of Bo(0, 1) together with a rank two point whose
maximal generalization is the Gauss point and which points towards the center
of the disc. This is not adic space. We have Bo(0, 1)((K,K+)) = K++ = {a ∈
K, |a| < 1}.
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We identify each Uα with the unit ball of center 0 and coordinate uα with its
additive group law (the coordinate uα is well defined up to multiplication by a
unit). For all m ∈ Q∪{−∞} and all α ∈ Φ, we let Uα,m = {|.| ∈ Uanα , |uα| ≤ |pm|}
and Uoα,m = ∪m′>mUα,m′ . For all m,n ∈ Q∪ {−∞}, we let ]Cw,k[m,n be the image
of

w
∏

α∈(w−1Φ−,M )∩Φ−

Uoα,m ×
∏

α∈(w−1Φ−,M )∩Φ+

Uα,n → Uanw ,

For all m,n ∈ Q, we let ]Cw,k[m,n be the image of

w
∏

α∈(w−1Φ−,M )∩Φ−

Uoα,m ×
∏

α∈(w−1Φ−,M )∩Φ+

Uα,n → Uanw ,

we let ]Cw,k[m,n be the image of

w
∏

α∈(w−1Φ−,M )∩Φ−

Uoα,m ×
∏

α∈(w−1Φ−,M )∩Φ+

Uα,n → Uanw ,

and we let ]Cw,k[m,n be the image of

w
∏

α∈(w−1Φ−,M )∩Φ−

Uoα,m ×
∏

α∈(w−1Φ−,M )∩Φ+

Uα,n → Uanw .

Clearly, ]Cw,k[=]Cw,k[0,0, ]Cw,k[m,n⊆]Cw,k[ if m,n ≥ 0, and moreover then we
have ]Cw,k[m,n=]Cw,k[m,0∩]Cw,k[0,n, ]Cw,k[m,n=]Cw,k[m,0∩]Cw,k[0,n and ]Cw,k[m,n=
]Cw,k[m,0∩]Cw,k[0,n.

Remark 3.3.8. In the formulas defining the sets ]Cw,k[m,n and their partial closures,
the image is taken in the sheaf theoretic sense. If the spaces at hand are adic spaces,
this is also the images of the corresponding morphisms of adic spaces.

Remark 3.3.9. In the above formulas, we make the product for any ordering of the
roots in (w−1Φ−,M ) ∩Φ+ or (w−1Φ−,M ) ∩Φ−. See [Ste16], lemma 17 for a justifi-
cation that the order doesn’t matter. We also point out that in our applications to
Shimura varieties the unipotent radical of P is abelian so that the root groups Uα
for α ∈ w−1Φ−,M commute with each other.

3.3.10. Orbits of Cells. We can give a more group theoretic description of certain
of the above sets. We introduce some subgroups of G.

For m ∈ Q≥0 we let GB,m (resp. GU,m, GB,m, GU,m) for the affinoid subgroup
of G of elements reducing to B (resp. U , B, U) mod pm. We also define G◦B,m =
∪m′>mGB,m′ , G◦U,m = ∪m′>mGU,m′ .

Then for all m,n ∈ Q≥0 we let Gm,n = G◦B,m ∩ GB,n. In particular we note that
G0,0 = Iw. We also let G1

m,n = G◦U,m ∩ GU,n.
We would also like to introduce some “partial closures” of these groups. In general

these won’t be adic spaces, but simply certain subsets of Gan. For all m,n ∈ Q≥0

we let Gm,n = G◦B,m ∩ GB,n and G1
m,n = G◦U,m ∩ GU,n, where the closures are taken

inside G. We note that G0,0 = sp−1(Bk), the closure of Iw in G. For all m,n ∈ Q≥0,
we let Gm,n and G1

m,n be set of all specializations of Gm,n and G1
m,n respectively in

Gan. For all m,n ∈ Q≥0 with n > 0 we also observe that Gm,n = G◦B,m ∩ GB,n and
G1
m,n = G◦U,m ∩ GU,n where the closures are taken inside G.

Lemma 3.3.11. The subsets Gm,n, Gm,n and Gm,n, G1
m,n, G1

m,n and G1
m,n of Gan

are subgroups (in the sense that their functor of points is a subgroup of Gan).
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Proof. It is clear that GB,m, GU,m, GB,n, GU,n are groups. Therefore, the Gm,n
are groups. We deduce that the Gm,n are groups. Indeed, Gm,n((K,K+)) =
Gm,n(K,K0) for any field (where K0 is the ring of power bounded elements in
K). We also check that Gm,0 are groups. Indeed, Gm,0((K,K+)) = {g ∈ G(K+), g
mod pmK++ ∈ B(K+/pmK++)}. We finally deduce that Gm,n is a subgroup. �

Note that the groups Gm,n, Gm,n, and Gm,n all have the same rank 1 points.
Moreover they all have Iwahori decompositions:

Proposition 3.3.12. Let w ∈ W . Then for m,n ∈ Q≥0 and for G′ one of G?m,n,
G?m,n, G?m,n with ? ∈ {∅, 1} the product map

T ∩ G′ ×
∏

αi∈w−1Φ+

U?iαi
∏

αi∈w−1Φ−

U?iαi → G
′

is an isomorphism, where if αi ∈ Φ+ then U?iαi is Uαi,n (resp. Uαi,n) if G′ =

G?m,n,G?m,n (resp. G′ = G?m,n) while if αi ∈ Φ− then U?iαi is Uoαi,m (resp. Uoαi,m) if
G′ = G?m,n,G?m,n. (resp. G′ = G?m,n.)

Proof. We first give the argument for G0,0. Since G0,0 = sp−1(Bk), and Bk ↪→
w−1BkBkw, it follows that G0,0 ↪→ T ×

∏
α∈w−1Φ− Uα

∏
α∈w−1Φ+ Uα = sp−1(w−1BkBkw).

We now let g ∈ G0,0(K,K+) for a field K and valuation ring K+ ⊆ K. Let
K++ be the maximal ideal of K+. By definition, g ∈ G(K+) and its image g
in G(K+/K++) lies in B. Let g = t

∏
α∈w−1Φ+ uα

∏
α∈w−1 uα. We have g =

t
∏
α∈w−1Φ+ uα

∏
α∈w−1 uα and we find that uα = 1 if α ∈ Φ− by unicity of the

decomposition. The case of G0,0 has already been treated in proposition 3.3.2. The
case of G0,0 follows. The general case is left to the reader. �

Remark 3.3.13. For the group G0,0 = Iw, the decomposition holds for any ordering
of the roots α ∈ Φ by proposition 3.3.2. We don’t know if this property holds for
G0,0 for example.

Corollary 3.3.14. We have that for all m,n ∈ Q≥0, ]Cw,k[m,n= P\PwGm,n =
P\PwG1

m,n, ]Cw,k[m,n= P\PwGm,n = P\PwG1
m,n and , ]Cw,k[m,n= P\PwGm,n =

P\PwG1
m,n.

Proof. We only prove the identity ]Cw,k[m,n= P\PwGm,n, the other identities are
proved similarly. By proposition 3.3.12, we have that

P\PwGm,n = w.w−1Pw ∩ Gm,n\Gm,n
= w.

∏
αi∈w−1Φ−M

U?iαi
∏

αi∈w−1Φ+

U?iαi\
∏

αi∈w−1Φ+

U?iαi
∏

αi∈w−1Φ−

U?iαi

= w
∏

α∈w−1Φ−,M

U?iαi

where if αi ∈ Φ+ then U?iαi is Uαi,n and if αi ∈ Φ− then U?iαi is U
o
αi,m. �

Lemma 3.3.15. For all m ∈ Z≥0 and k ∈ Z≥0, the groups G1
m+k,k, G1

m+k,k
and

G1
m+k,k

are normalized by Gm,0.

Proof. The case k = 0 is trivial. We assume that k ≥ 1. We can find a closed
embedding G ↪→ GLr and a Borel BGLr

of GLr with the property that B = G ∩
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BGLn . Indeed, first consider a faithful representation of G into GLr, then consider
the action of B on the flag variety of Borels of GLr. This action of a solvable
group on a proper scheme must have a fixed point BGLr , and then B ⊆ G∩BGLr .
But then we must have B = G ∩ BGLr as the later is a solvable subgroup of G
containing B. Therefore, the problem is reduced to the case of the group GLr.
We now consider certain sub-algebras of the algebra of r × r matrices Man

r . For
all s ∈ Q, we let B(0, s) the (quasi-compact) ball of center 0 and radius s, and
Bo(0, s) = ∪s′<sB(0, s′) be the “open” ball of radius s (which is a Stein space). For
any m ≥ 0, we let:

Liem,0(S, S+) =

{(ai,j) ∈Man
r (S, S+), ai,j ∈ Bo(0, |pm|)(S, S+) if i ≥ j, ai,j ∈ B(0, 1)(S, S+) if i ≤ j},

Liem,0(S, S+) =

{(ai,j) ∈Man
r (S, S+), ai,j ∈ Bo(0, |pm|)(S, S+) if i ≥ j, ai,j ∈ B(0, 1)(S, S+) if i ≤ j},

Liem,0(S, S+) =

{(ai,j) ∈Man
r (S, S+), ai,j ∈ Bo(0, |pm|)(S, S+) if i ≥ j ai,j ∈ B(0, 1)(S, S+) if i ≤ j}.

We claim that these algebras are stable under the adjoint action of Gm,0. Since
Liem,0 is the Lie algebra of G1

m,0, and Gm,0 normalizes G1
m,0, this case follows easily.

The other cases are elementary to check by hand. A typical element of G1
m+k,k

(resp. G1
m+k,k

, resp. G1
m+k,k

) writes (1 + pkg) where g ∈ Liem,0 (resp. Liem,0, resp.
Liem,0). For h ∈ Gm,0, we have h(1 + pkg)h−1 = 1 + pkAd(h).g. �

Lemma 3.3.16. Let w ∈ MW . Let m ≥ 0, and let Kp ⊂ Gm,0 be a profinite
subgroup. For all k ≥ 0, the sets

]Cw,k[m+k,kKp, ]Cw,k[m+k,kKp and ]Cw,k[m+k,kKp

are a finite disjoint union of translates of the form

]Cw,k[m+k,kh, ]Cw,k[m+k,kh, and respectively ]Cw,k[m+k,kh for h ∈ Kp.

Proof. We prove the first statement, the others are identical. For h ∈ Kp we
have ]Cw,k[m+k,kh = P\PwG1

m+k,kh = P\PwhG1
m+k,k by Lemma 3.3.15. This

proves that if for h, h′ ∈ Kp, ]Cw,k[m+k,kh∩]Cw,k[m+k,kh
′ 6= ∅, then ]Cw,k[m+k,kh =

]Cw,k[m+k,kh
′. Therefore, ]Cw,k[m+k,kKp is a disjoint union of translates. This

disjoint union is finite because Gm+k,k ∩Kp is of finite index in Kp. �

We now consider certain intersections.

Lemma 3.3.17. Let w ∈ MW . Let m,n ∈ Z≥0 and let Kp be a subgroup of Gm,0.
Then we have:

]Cw,k[m,0Kp∩]Cw,k[0,nKp = ]Cw,k[m,nKp,

]Cw,k[m,0Kp∩]Cw,k[0,nKp = ]Cw,k[m,nKp,

]Cw,k[m,0Kp∩]Cw,k[0,nKp = ]Cw,k[m,nKp.

Proof. We only check the first statement as the others are identical. As Kp ⊂ Gm,0,
]Cw,k[m,0Kp =]Cw,k[m,0. Let x ∈]Cw,k[m,0Kp∩]Cw,k[0,nKp. Then, there exists
h ∈ Kp, xh ∈]Cw,k[m,0∩]Cw,k[0,n=]Cw,k[m,n. The reverse inclusion is trivial. �
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3.3.18. Intersections and unions of cells. We prove a few more results concerning
the intersections and unions of various subsets of FL we have introduced so far.

Lemma 3.3.19. For any integer r, we have:

FL = ] ∪w,`(w)≥r Cw,k[
∐

] ∪w,`(w)≤r−1 Cw,k[

= ] ∪w,`(w)≥r Cw,k[
∐

] ∪w,`(w)≤r−1 Cw,k[

Proof. The first equality is obtained by applying sp−1 to the decomposition of the
special fiber:

FLk = ∪w,`(w)≥rCw,k
∐
∪w,`(w)≤r−1Cw,k

For the second equality, first observe that both ] ∪w,`(w)≥r Cw,k[ and ] ∪w,`(w)≤r−1 Cw,k[
are stable under specialization and generalization. Since the disjoint union contains
all rank one points of FL, it contains all of them. Since the intersection contains
no rank one points, it is empty. �

Lemma 3.3.20. Let w,w′ ∈ MW . Assume that `(w) ≤ `(w′) and w 6= w′. Then:
(1) ]Xw,k[∩]Yw′,k[= ∅,
(2) ]Xw,k[∩]Yw′,k[ = ∅.

Proof. We prove the first point. Note that ]Xw,k[ = sp−1(Xw,k) and ]Yw′,k[=
sp−1(Yw′,k). Thus the first point follows from the fact that Xw,k ∩ Yw′,k = ∅. We
prove the second point. Since ]Yw′,k[ is quasi-compact open, ]Yw′,k[ is the set of all its
specializations. Therefore, both ]Yw′,k[ and ]Xw,k[ are stable under generalization.
But they have no common rank one point, again as Xw,k ∩ Yw′,k = ∅. �

Lemma 3.3.21. (1) For all m,n ∈ Q, we have ]Cw,k[m,n =]Cw,k[m,n⊆ Uanw ,
(2) We have ]Cw,k[0,−∞⊆]Xw,k[.
(3) We have ]Cw,k[−∞,0⊆]Yw,k[.

(4) We have ]Yw,k[∩]Xw,k[=]Cw,k[0,0⊆ ]Cw,k[.
(5) We have ]Yw,k[ ∩ ]Xw,k[ =]Cw,k[0,0⊆ ]Cw,k[.

Proof. We begin with the first point. Let Z = FL\Uw, a closed subscheme. We let
Z be the associated analytic space which is proper. We have FL = Uanw

∐
Z. Since

Z is proper, we deduce that Uanw is stable under specializations. Let us consider
]Cw,k[m,n. We claim that ]Cw,k[m,n ⊆ Uanw . To prove this, we can first find a
quasi-compact open U such that ]Cw,k[m,n⊆ U ⊆ Uanw and we see that U is the
set of all its specializations and is therefore included in Uanw . Now it is clear that
]Cw,k[m,n =]Cw,k[m,n.

We now prove the second point. We observe that w
∏
α∈w−1Φ−,M∩Φ+ Uanα =

Canw ⊆ Xw ⊆]Xw,k[ and since ]Xw,k[ is invariant under multiplication by the Iwahori
subgroup,

w
∏

α∈(w−1Φ−,M )∩Φ+

Uanα ×
∏

α∈(w−1Φ−,M )∩Φ−

Uoα ⊆]Xw,k[.

We check the third point. We observe that w
∏
α∈w−1Φ−,M∩Φ− Uanα = Cw,an ⊆

Xw ⊆]Yw,k[ and again the conclusion follows because ]Yw,k[ is invariant under mul-
tiplication by the Iwahori subgroup.

We prove the fourth point. Since ]Yw,k[ is quasi-compact, it is constructible, and
therefore ]Yw,k[ is the set of all specializations of ]Yw,k[ in FL. Let x ∈ ]Yw,k[∩]Xw,k[
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and let y be the maximal generalization of x in FL. Then y ∈]Yw,k[∩]Xw,k[=

]Cw,k[. The subset of ]Cw,k[ consisting of points whose maximal generalization is in
]Cw,k[ is exactly w

∏
α∈(w−1Φ−,M )∩Φ+ Uα ×

∏
α∈(w−1Φ−,M )∩Φ− Uoα. This proves that

]Yw,k[∩]Xw,k[ is included in that set. The converse inclusion follows easily from
the second and third points. We prove the last point. Since ]Xw,k[ = sp−1(Xw,k)

and ]Yw,k[= sp−1(Yw,k), we deduce that ]Yw,k[ ∩ ]Xw,k[ = sp−1(Cw,k) ⊆ ]Cw,k[ has
exactly the announced description. �

Lemma 3.3.22. (1) We have ]Xw,k[=]Cw,k[0,0
∐
∪w′<w]Xw′,k[.

(2) We have ]Yw,k[=]Cw,k[0,0
∐
∪w′>w]Yw′,k[.

(3) We have ]Xw,k[ =]Cw,k[0,0
∐
∪w′<w]Xw′,k[.

(4) We have ]Yw,k[ =]Cw,k[0,0
∐
∪w′>w]Yw′,k[.

Proof. We prove the first point and the direct inclusion. We first observe that since
Xw′,k is closed, ]Xw′,k[ is a finite union of Stein spaces. Therefore Xw′,k is stable
under specialization. Let x ∈]Xw,k[. If its maximal generalization is in ]Xw′,k[ for
some w′ < w, then actually x ∈]Xw′,k[. Otherwise, x ∈ ]Cw,k[∩]Xw,k[=]Cw,k[0,0
by lemma 3.3.21. The converse inclusion follows from the same lemma. The union
is disjoint by lemma 3.3.20. We prove the second point. We note that ]Yw,k[=
sp−1(Yw,k) and therefore,

]Yw,k[= sp−1(Cw,k)∩]Yw,k[
⋃
∪w′>w]Yw′,k[.

By lemma 3.3.21 sp−1(Cw,k)∩]Yw,k[⊂]Cw,k[0,0. The reverse inclusion follows also
from the lemma. The union is disjoint by lemma 3.3.20. We prove the third point.
We have Xw,k = Cw,k

∐
∪w′<wXw′,k. Taking sp−1 gives the identity. We prove

the last point. All three spaces ]Yw,k[, ]Cw,k[0,0= ]Yw,k[ ∩ ]Xw,k[ and ∪w′>w]Yw′,k[
are stable under specialization and generalization. It suffices therefore to prove the
identity on rank one points, and it is clear. �

3.4. Dynamics. Let v : F → R ∪ {+∞} be the p-adic valuation normalized by
v(p) = 1. We consider certain sub-semigroups of T (F ). We let T+(F ) = {t ∈
T (F ), v(α(t)) ≥ 0, ∀α ∈ Φ+}, T++(F ) = {t ∈ T (F ), v(α(t)) > 0, ∀α ∈ Φ+},
T−(F ) = {t ∈ T (F ), v(α(t)) ≤ 0, ∀α ∈ Φ+}, T−−(F ) = {t ∈ T (F ), v(α(t)) <
0, ∀α ∈ Φ+}.

Lemma 3.4.1. (1) If t ∈ T+(F ), ]Xw,k[.t ⊆]Xw,k[ for all w ∈ MW .
(2) If t ∈ T−(F ), ]Yw,k[.t ⊆]Yw,k[ for all w ∈ MW .

Proof. By [Hub93], corollary 4.2, we reduce to check the inclusions on rank 1 points.
For the first point, it suffices therefore to prove that ]Cw,k[.t ⊆]Xw,k[. Let wbu ∈
]Cw,k[ with b ∈ B and u ∈

∏
α∈Φ− Uoα. We find that wbut = wt−1btt−1ut. Now,

Ad(t−1)u ∈
∏
α∈Φ− Uoα, while Ad(t−1)b ∈ Ban. In particular wAd(t−1)b ∈ Xw ⊆

]Xw,k[FL. Therefore wAd(t−1)bAd(t−1)u ∈]Xw,k[. For the second point, it suffices
to prove that ]Cw,k[.t ⊆]Yw,k[. Let wub ∈]Cw,k[ with b ∈ B and u ∈ Uo. We find that
wubt = wt−1utt−1bt. Now, Ad(t−1)b ∈ B, while Ad(t−1)u ∈ Ban. In particular,
wAd(t−1)u ∈ Xw ⊆]Yw,k[FL. Therefore wAd(t−1)uAd(t−1)b ∈]Yw,k[. �

For t ∈ T++(F ), we define min(t) = minα∈Φ+ v(α(t)) and max(t) = maxα∈Φ+ v(α(t)).
For t ∈ T−−(F ), we let min(t) = minα∈Φ− v(α(t)) and max(t) = maxα∈Φ− v(α(t)).



44 G. BOXER AND V. PILLONI

We note that min(t) > 0 and that min(t) = min(t−1) and max(t) = max(t−1) for
t ∈ T++(F ).

Lemma 3.4.2. (1) Let t ∈ T++(F ). For all w ∈ MW , m,n ∈ Q, we have

]Cw,k[m+max(t),n−min(t) ⊆ ]Cw,k[m,n.t ⊆]Cw,k[m+min(t),n−max(t)

]Cw,k[
m+max(t),n−min(t)

⊆ ]Cw,k[m,n.t ⊆]Cw,k[
m+min(t),n−max(t)

,

]Cw,k[
m+max(t),n−min(t)

⊆ ]Cw,k[m,n.t ⊆]Cw,k[
m+min(t),n−max(t)

.

(2) Let t ∈ T−−(F ). For all w ∈ MW and m,n ∈ Q, we have

]Cw,k[m−min(t),n+max(t) ⊆ ]Cw,k[m,n.t ⊆]Cw,k[m−max(t),n+min(t)

]Cw,k[
m−min(t),n+max(t)

⊆ ]Cw,k[m,n.t ⊆]Cw,k[
m−max(t),n+min(t)

,

]Cw,k[
m−min(t),n+max(t)

⊆ ]Cw,k[m,n.t ⊆]Cw,k[
m−max(t),n+min(t)

.

Proof. Easy and left to the reader. �

3.5. Dynamics of correspondences.

3.5.1. Certain compact open subgroups. We now assume that the group GF =
G ×Spec OF Spec F is defined and quasi-split over Qp. Therefore, we have a re-
ductive group GQp with Borel BQp and moreover the group GQp splits over the
extension F of Qp. We have a reductive model G of GF over Spec OF . The Borel
BQp base changes to a Borel BF of GF which extends to a Borel B of G. Similarly,
we have a maximal torus TQp ⊆ BQp of GQp , and its base change TF extends to a
maximal (split) torus of G. We will often drop the subscripts Qp or F when the
context is clear.

Remark 3.5.2. Starting from the next section, we will consider a Shimura datum
(G,X), where G is a reductive group over Q. The group GQp that we consider here
will be the base change to Qp of the group G which is part of the Shimura datum.
We apologize for this slightly inconsistent notation.

We let T (Zp) be the maximal compact subgroup of T (Qp). Note that T (Zp) =

T (OF ) ∩ T (Qp). We have an exact sequence 0 → O×F → F×
v→ Q and tensoring

with X?(T ) and taking Galois invariants, we obtain the sequence: 0 → T (Zp) →
T (Qp)

v→ X?(T
d) ⊗ Q where T d stands for the maximal split torus inside T and

X?(T
d) for its cocharacter group. The image of T (Qp) in X?(T

d)⊗Q is easily seen
to be a Z-lattice.

We let T+ = T (Qp) ∩ T+(F ), T++ = T (Qp) ∩ T++(F ), T− = T (Qp) ∩ T−(F ),
and T−− = T (Qp)∩T−−(F ). These are semigroups in T (Qp) and one proves easily
that they generate T (Qp) (since there are regular elements in the maximal split
torus T d).

We will now consider certain compact open subgroups of G(OF ). For all m ∈
Z≥0, we let K̃p,m ⊆ G(OF ) be the preimage of B(OF /pm) under the map G(OF )→
G(OF /pm). We observe that K̃p,0 = G(OF ) and K̃p,1 is the Iwahori subgroup of
G(OF ) with respect to the Borel B(OF ). For b ∈ Z≥0 we let K̃p,b,b ⊆ G(OF ) be the
preimage of U(OF /pb) under the map G(OF )→ G(OF /pb). Finally for m ≥ b ≥ 0

we let K̃p,m,b = K̃p,m ∩ K̃p,b,b. In other words K̃p,m,b is the subgroup of G(OF ) of
elements whose reduction mod pm lies in B, and whose reduction mod pb lies in U .
We note that we have K̃p,m,b ⊂ Gm−1,0.
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For m ≥ b ≥ 0 and m > 0, the groups K̃p,m,b have an Iwahori decomposition, in
the sense that the product map

Ũm × T̃b × U(OF )→ Kp,m,b

is a bijection, where T̃b = ker(T (OF ) → T (OF /pb)) and Ũm = ker(U(OF ) →
U(OF /pm)).

We now letKp,m,b = G(Qp)∩K̃p,m,b. This is a compact open subgroup of G(Qp).
For m ≥ b ≥ 0 and m > 0, the groups Kp,m,b have an Iwahori decomposition, in

the sense that the product map

Um × Tb × U(Zp)→ Kp,m,b

is a bijection, where Tb = T̃b ∩ T (Qp) and Um = Ũm ∩ U(Qp), U(Zp) = U(OF ) ∩
U(Qp).

Remark 3.5.3. We note that the groups Kp,m,b depend (even up to conjugation in
general), on the choice of the reductive model G over OF .

Remark 3.5.4. If the group GQp is unramified, then we can choose a reductive
model GZp of GQp with Borel and maximal torus BZp and TZp . In this case, if
we take GOF = GZp ×Zp SpecOF , then we have that Kp,m is the preimage of
B(Zp/pm) under G(Zp) → G(Zp/pm), and Kp,b,b is the preimage of U(Zp/pb)
under G(Zp)→ G(Zp/pb). In particular, Kp,1,0 is an Iwahori subgroup, and Kp,1,1

is a pro-p Iwahori subgroup.
In the ramified case, there is still a notion of an Iwahori subgroup of G(Qp)

defined using Bruhat-Tits theory. However, our subgroup Kp,1,0 will usually not be
an Iwahori subgroup. In the general case, we found it convenient to work with the
groups Kp,m,b constructed as above, and it makes no difference for the purposes of
this paper whether Kp,1,0 is an Iwahori.

3.5.5. Change of group. In this paragraph we make a short digression that will be
useful when we deal with abelian type Shimura varieties. Assume that we have
an epimorphism of reductive groups GQp → G′Qp with central kernel. This implies
that G and G′ have the same adjoint group Gad. We assume that these group
split over F and we fix models over OF , that we denote G and G′ together with a
map G → G′ over Spec OF , extending the map GF → G′F . We also assume that
GQp and G′Qp are quasi-split and pick Borels B and B′ defined over Qp such that
B → B′. We can therefore define compact open subgroups Kp,m,b ⊆ G(Qp) and
K ′p,m,b ⊆ G′(Qp) as in section 3.5.1.

Lemma 3.5.6. The groups Kp,m,b and K ′p,m,b have the same image in Gad(Qp).

Proof. This follows from the Iwahori decomposition of these groups. Since GQp →
G′Qp is an epimorphism with central kernel, the induced map on root groups are
isomorphisms. �

3.5.7. Hecke algebras. We letHp,m,b be the Hecke algebras Z[Kp,m,b\G(Qp)/Kp,m,b].
We denote byH+

p,m,b the sub-algebra generated by the double cosets [Kp,m,btKp,m,b]

with t ∈ T+ and by H++
p,m,b the ideal generated by [Kp,m,btKp,m,b] with t ∈ T++.

We define similarly H−p,m,b and H
−−
p,m,b.
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Lemma 3.5.8. For all m ≥ b ≥ 0 with m > 0, the map t 7→ [Kp,m,btKp,m,b]
induces isomorphisms Z[T+/Tb]→ H+

p,m,b and Z[T−/Tb]→ H−p,m,b.

Proof. This is [Cas], lem. 4.1.5. (Alternatively it can be deduced from lemma
4.2.13 below.) �

3.5.9. Action of correspondences on the flag variety. Let Kp ⊆ G0(Qp) be a com-
pact open subgroup.

We consider the quotient space FL/Kp. This space carries an action by corre-
spondences of double cosets KpgKp for g ∈ G0(Qp). Namely, given xKp ∈ FL/Kp,
we let xKp.KpgKp = {xũgKp, u ∈ Kp/(gKpg

−1 ∩Kp), ũ ∈ Kp lifts u}.
We now consider a compact open Kp = Kp,m′,b for m′ ≥ b ≥ 0 and m′ > 0.

Lemma 3.5.10. Let w ∈ MW .
(1) Let t ∈ T+. The sequence {]Xw,k[.(KptKp)

m}m≥0 is nested.
(2) Let t ∈ T−. The sequence {]Yw,k[.(KptKp)

n}n≥0 is nested.
(3) Let t ∈ T++ and m ≥ 0. We have

]Cw,k[
mmax(t),−mmin(t)

.Kp ⊆

]Xw,k[.(KptKp)
m ⊆]Cw,k[

mmin(t),−mmax(t)
.Kp

⋃
∪w′<w]Xw′,k[.

(4) Let t ∈ T−− and n ≥ 0. We have

]Cw,k[−nmin(t),nmax(t)
.Kp ⊆

]Yw,k[.(KptKp)
n ⊆]Cw,k[−nmax(t),nmin(t)

.Kp

⋃
∪w′>w]Yw′,k[.

(5) Let t ∈ T++. For all m,n ∈ Z≥0,

]Xw,k[.(KptKp)
m ∩ ]Yw,k[.(Kpt

−1Kp)
n ⊆]Cw,k[mmin(t),0Kp∩]Cw,k[

0,nmin(t)
Kp.

(6) Let t ∈ T−−. For all m,n ∈ Z≥0,

]Xw,k[.(Kpt
−1Kp)

m ∩ ]Yw,k[.(KptKp)
n ⊆]Cw,k[

mmin(t),0
Kp∩]Cw,k[0,nmin(t)Kp.

(7) Let t ∈ T−−. For all n ≥ d, ]Yw,k[.(KptKp)
n ⊆]Yw,k[.

Proof. We observe that ]Xw,k[.(KptKp)
m =]Xw,k[tmKp and ]Yw,k[.(KptKp)

m =
]Yw,k[tmKp, using the very definition of the action, and also noting that (KptKp)

m =
Kpt

mKp by lemma 3.5.8. Therefore, the first and second points follow from lemma
3.4.1.

We note that ]Xw,k[=]Cw,k[0,0
⋃
∪w′<w]Xw′,k[ and ]Yw,k[=]Cw,k[0,0

⋃
∪w′>w]Yw′,k[

by lemma 3.3.22. The third and fourth point follow from this, the first two points,
and lemma 3.4.2.

We know that ]Xw,k[∩]Yw,k[ =]Cw,k[0,0 by lemma 3.3.21. Moreover, ]Cw,k[0,0∩]Xw′,k[=

∅ if w′ 6= w and ]Cw,k[0,0∩]Yw′,k[= ∅ if w′ 6= w (because ]Cw,k[0,0, ]Xw′,k[ and ]Yw,k[

are all stable under generalization and they have no common rank one point).
Therefore,

]Xw,k[.(KptKp)
m ∩ ]Yw,k[.(Kpt

−1Kp)
n ⊆

]Cw,k[0,0∩]Cw,k[
mmin(t),−mmax(t)

Kp∩]Cw,k[−nmax(t−1),nmin(t−1)
.Kp ⊆

]Cw,k[mmin(t),0Kp∩]Cw,k[
0,nmin(t)

Kp.
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The proof of the sixth point is similar. We pass to the last point. By tak-
ing closures, we find that ]Yw,k[.(KptKp) ⊆]Cw,k[−max(t),min(t)

.Kp

⋃
∪w′>w]Yw′,k[.

Since ]Cw,k[−max(t),min(t)
.Kp ⊆]Yw,k[, we deduce that for any x ∈ ]Yw,k[, and any

y ∈ x.KptKp, then either y ∈]Yw,k[ or y ∈ ]Yw′,k[ for some w′ > w. We conclude
by induction on d− `(w).

�

4. Shimura varieties

Let (G,X) be a Shimura datum. Thus X is a G(R)-conjugacy class of homo-
morphism h : ResC/RGm → GR satisfying a list of familiar axioms ([Del79], section
2.1):

(1) For all h ∈ X, the Hodge structure on gR has weight (1,−1), (0, 0) and
(−1, 1).

(2) The involution Ad(h(i)) is a Cartan involution on GadR .
(3) The group Gad has no simple Q-factor whose real points are compact.

Remark 4.0.1. The condition (3) is mostly irrelevant for this paper. This axiom
is used in order to apply the strong approximation theorem, which is important
for the description of connected components of Shimura varieties, and therefore
the theory of canonical models over the reflex field. This is important for certain
rationality questions, but will not play much of a role in this paper. Groups G
whose real points are compact modulo the center give Shimura sets. Automorphic
forms on these groups are called algebraic automorphic forms, and all our results
are well known for Shimura sets: all the vanishing theorems are trivial, whereas
the theory of overconvergent modular forms has been extensively developed in this
setting ([Buz07], [Che04], [Loe11]). We keep this third axiom for convenience, as it
is used in many references, but believe all our results hold without this assumption,
with minor modifications of the proofs.

Via base change to C, we have (ResC/RGm)C = Gm ×Gm (given by z 7→ (z, z̄))
and via projection to the first factor, X induces a conjugacy class of cocharacters
Gm → GC. We fix one such cocharacter µ. Associated to µ we have two opposite
parabolic subgroups P stdµ = {g ∈ GC, limt→∞Ad(µ(t))g exists} and Pµ = {g ∈
GC, limt→0 Ad(µ(t))g exists}. We also let Mµ be the Levi quotient of Pµ and P stdµ .
We let FLstdG,µ = GC/P

std
µ and FLG,µ = Pµ\GC be the Flag varieties. Let E be the

reflex field, which is the field of definition of the conjugacy class of µ. The two flag
varieties are defined over Spec E.

Let K ⊂ G(Af ) be a neat compact open subgroup, and let SK → Spec E
be the canonical model of the corresponding Shimura variety [Mil90]. We have
SK(C) = G(Q)\X × G(Af )/K. In the rest of this paper, all the compact open
subgroups K ⊂ G(Af ) are assumed to be neat, so we do not always repeat this
assumption.

The most fundamental Shimura data are the Siegel data (GSp2g,Hg) for all
g ∈ Z≥1, where Hg is the Siegel (upper and lower) half space of matrices M ∈
Mg(C) such that tM = M and Im(M) is definite. The corresponding Shimura
varieties parametrize abelian varieties of dimension g, with a polarization and level
structure prescribed by K. A Shimura datum (G,X) is of Hodge type if it admits
an embedding in a Siegel datum. All PEL Shimura data are of Hodge type. A
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Shimura datum (G,X) is of abelian type if there exists a datum (G1, X1) of Hodge
type and a central isogeny Gder1 → Gder which induces an isomorphism of connected
Shimura data (Gad, X+) = (Gad1 , X+

1 ) where X+ is a connected component of X
(and similarly X+

1 is a connected component of X1).

Example 4.0.2. Let L be a totally real number field. The datum (ResL/QGSp2g,H
[L:Q]
g )

is of abelian type. We call it a symplectic datum. In the case g = 1, the corre-
sponding Shimura varieties are the Hilbert modular varieties.

We let S?K → Spec E be the minimal compactification of SK . Depending on the
auxiliary choice of a projective cone decomposition Σ, we let StorK,Σ → Spec E be
the toroidal compactification of SK corresponding to Σ. The (reduced) boundary
DK,Σ = StorK,Σ \ SK is a Cartier divisor. The cone decompositions Σ are partially
ordered by inclusion, and any two cone decompositions admit a common refinement.
The cone decompositions Σ which are such that StorK,Σ → Spec E is smooth and
projective are cofinal among all cone decompositions, and we usually choose them
this way. We refer to [Pin90] for the construction of these compactifications.

4.1. Automorphic vector bundles and their cohomology.

4.1.1. Automorphic vector bundles. We choose a field extension F of E which splits
G and we work over F in this section. In most of this paper, F will be a finite
extension of Qp, but this is not necessary for the moment. We can choose µ so that
it is defined over F , and choose a maximal split torus T with µ(Gm) ⊆ T ⊆Mµ.

We let Zs(G) be the largest subtorus of the center Z(G) which is R-split but
contains no Q-split subtorus. We let Gc = G/Zs(G), and define M c

µ, T c, P cµ, and
P c,stdµ similarly.

Remark 4.1.2. In the Hodge type case, Zs(G) = {1}. For the symplectic datum
(ResL/QGSp2g,H

[L:Q]
g ), Zs(G) is the kernel of the norm ResL/QGm → Gm.

Let Rep(M c
µ) be the category of finite dimensional algebraic representations of

the reductive group M c
µ on F -vector spaces.

By [Mil90], thm. 5.1 and [Har89], thm. 4.2 we have a right M c
µ-torsor MdR over

StorK,Σ, and it corresponds to a functor:

Rep(M c
µ) → V B(StorK,Σ)

V 7→ VK,Σ
where V B(StorK,Σ) is the category of locally free sheaves of finite rank over StorK,Σ.
This functor is compatible in a natural way with change of level K and of cone
decompositions Σ. The locally free sheaves in the essential image of this functor are
called (totally decomposed) automorphic vector bundles. They carry an equivariant
action of G(Af ).

Remark 4.1.3. We recall the description ofMdR×StorK,Σ SK(C) as a complex analytic
space. First, we have the Borel embedding β : X ↪→ FLstdG,µ(C) = Gc(C)/P c,stdµ (C)
which sends h ∈ X to the parabolic stabilizing the Hodge filtration. The Borel
embedding is equivariant for the left action of G(R). We have the canonical map
Gc(C) → FLstdG,µ(C). This map is a right P c,stdµ (C)-torsor and is G(C)-equivariant
for the left action. Similarly, the canonical map Gc(C)/UP c,stdµ

(C) → FLstdG,µ(C) is



HIGHER COLEMAN THEORY 49

a right M c
µ(C)-torsor (where UP c,stdµ

is the unipotent radical of P c,stdµ ). Then we
have:

MdR ×StorK,Σ SK(C) = G(Q)\β−1(Gc(C)/UP c,stdµ
(C))×G(Af )/K.

Remark 4.1.4. We give a description ofMdR for the Siegel Shimura datum (GSp2g,Hg).
Let us first work over SK . Let ωA be the conormal sheaf of the universal abelian
scheme A→ SK along its unit section and let Lie(A) be its dual. The torsor MdR

parametrizes trivializations ψ1⊕ψ2 : Og
SK
⊕Og

SK
→ Lie(A)⊕ωAt , such that under

the isomorphism Lie(A)∨ = ωAt given by the polarization, we have ψ1 = c(ψ−1
2 )t

for a unit c ∈ O×SK . The extension of MdR over StorK,Σ has a similar description.
Indeed, A can be extended to a semi-abelian scheme AΣ over StorK,Σ, and we can let
MdR be the torsor of trivializations of Lie(AΣ) ⊕ ωAtΣ , compatible, up to a unit,
with the polarization.

We now make the construction of automorphic vector bundles explicit, and label
them using weights. We begin by making a choice of positive roots of T : we first
choose a set of compact positive roots Φ+

c which lie in mµ the Lie algebra of Mµ.
We then choose the non-compact positive roots Φ+

nc to lie in g/pstdµ where pstdµ is
the Lie algebra of P stdµ . We let Φ+ = Φ+

c

∐
Φ+
nc.

Remark 4.1.5. This choice implies that the Borel corresponding to Φ+ is included
in Pµ, or equivalently that the cocharacter µ of the Shimura datum is dominant. In
section 3 we fixed a parabolic P of G containing a Borel B. In the applications to
Shimura varieties, P will be Pµ. Therefore our convention is also compatible with
the choice made in section 3.

We let X?(T )Mµ,+ be the cone of characters of T which are dominant for
Φ+
c . We label irreducible representations of Mµ by their highest weight κ ∈

X?(T )Mµ,+. An explicit construction of the highest weight κ representation Vκ
is as follows. Let w0,M be the longest element of the Weyl group of Mµ. For any
κ ∈ X?(T )Mµ,+ we consider the space Vκ of functions f : Mµ → A1 such that
f(mb) = (w0,Mκ)(b−1)f(m) for all m ∈Mµ and b ∈ B ∩Mµ. The action of Mµ on
itself via left translation induces a left action on Vκ, i.e. (m′ · f)(m) = f(m′

−1
m).

The irreducible representations of M c
µ are the irreducible representations of Mµ

labelled by dominant characters κ of T c. We let X?(T c)Mµ,+ be the cone of these
characters.

We denote by Vκ,K,Σ the locally free sheaf associated to the irreducible rep-
resentation of highest weight κ of M c

µ. Concretely, we consider the right torsor
g : MdR → StorK,Σ and we let Vκ,K,Σ be the subsheaf of g?OMdR

of sections f(m)

such that f(mb) = (w0,Mκ)(b−1)f(m) for all b ∈ B ∩Mµ. We will often abbreviate
Vκ,K,Σ to Vκ.

We also introduce the cuspidal subsheaf Vκ,K,Σ(−DK,Σ) of sections vanishing
on the boundary divisor DK,Σ ↪→ StorK,Σ. Again, we often abbreviate this sheaf to
Vκ(−D).

4.1.6. The cohomology of automorphic vector bundles. We let πK,Σ : StorK,Σ → S?K
be the projection from the toroidal to the minimal compactification.

Theorem 4.1.7. We have Ri(πK,Σ)?Vκ,K,Σ(−nDK,Σ) = 0 for all i > 0 and all
n ≥ 1.
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Proof. In the PEL case (and for n = 1), this is [Lan17], thm. 8.6. We give
an argument which follows closely [AIP15] and which is also similar to loc. cit.
Let x ∈ S?K . We write ŜtorK,Σ

x

for the formal completion of StorK,Σ along π−1
K,Σ(x).

By the theorem on formal functions ([Sta13], Tag 02O7) it suffices to prove that
Hi(ŜtorK,Σ

x

,Vκ,K,Σ(−nDK,Σ)) = 0 for all i > 0 and n ≥ 1.

We may now use the description of ŜtorK,Σ
x

in terms of the local charts, following
the notations of [MP19]. The argument is mostly about torus embedding, so we do
not need to explain in detail the structure of the toroidal compactification, but just
recall what is strictly necessary. Suppose that x belongs to a boundary component
indexed by a cusp label representative Φ. There is a tower of spaces:

SKΦ
(QΦ, DΦ)

g→ SKΦ
(QΦ, DΦ)→ SKΦ

(GΦ,h, DΦ,h)

where SKΦ
(QΦ, DΦ) → SKΦ

(QΦ, DΦ) is a torsor under a torus EK(Φ). There is
a locally free sheaf Vκ,K over SKΦ

(QΦ, DΦ). There is a twisted torus embedding
SKΦ

(QΦ, DΦ) → SKΦ
(QΦ, DΦ,Σ(Φ)) which depends on the choice of Σ. There

is an arithmetic group ∆K(Φ) acting on X?(EK(Φ)) and on SKΦ
(QΦ, DΦ) ↪→

SKΦ(QΦ, DΦ,Σ(Φ)). Let g : SKΦ(QΦ, DΦ,Σ(Φ)) → SKΦ(QΦ, DΦ). The arith-
metic group also acts on g?Vκ,K . We have a ∆K(Φ)-invariant closed subscheme
ZKΦ

(QΦ, DΦ,Σ(Φ)) ↪→ SKΦ
(QΦ, DΦ,Σ(Φ)). There is a finite morphism SKΦ

(GΦ,h, DΦ,h)→
S?K whose image contains x. There is a series of morphisms:

ZKΦ(QΦ, DΦ,Σ(Φ))→ SKΦ(QΦ, DΦ)→ SKΦ(GΦ,h, DΦ,h).

We let ZKΦ
(QΦ, DΦ,Σ(Φ))x be the closed subspace equal to the inverse image of

x. The main result on the description of toroidal compactifications states that:

ŜtorK,Σ
x

' ∆K(Φ)\
( ̂SKΦ(QΦ, DΦ,Σ(Φ))

ZKΦ
(QΦ,DΦ,Σ(Φ))x)

Moreover, the sheaf g?Vκ,K on SKΦ(QΦ, DΦ,Σ(Φ)) descends to

∆K(Φ)\
( ̂SKΦ(QΦ, DΦ,Σ(Φ))

ZKΦ
(QΦ,DΦ,Σ(Φ))x)

and identifies with Vκ,K,Σ|ŜtorK,Σ
x . We let D be the boundary divisor StorK,Σ \SK . Un-

der the isomorphism above, it corresponds to the divisorD0 = SKΦ(QΦ, DΦ,Σ(Φ))\
SKΦ

(QΦ, DΦ).
There is a divisor D′ on StorK,Σ which has exactly the same support as D and

such that OStorK,Σ(−D′) is ample relatively to the minimal compactification. It cor-
responds to a divisor D′0 on SKΦ(QΦ, DΦ,Σ(Φ)).

We will prove the following statement: for any C ∈ Z≥0, there exists s ≥ C and
a finite morphism

ψ : ŜtorK,Σ
x

→ ŜtorK,Σ
x

such that ψ?Vκ,K,Σ = Vκ,K,Σ and O(−nD)→ ψ?O(−sD′) is a split injection. This

implies the theorem, as we deduce that for all i ≥ 0, Hi(ŜtorK,Σ
x

,Vκ,K,Σ(−nD)) is a

direct factor of Hi(ŜtorK,Σ
x

,Vκ,K,Σ(−sD′)). Taking C large enough, this last group
vanishes for i > 0.

We now prove the claim about the existence of ψ. Our proof follows [AIP15],
p. 679. We will construct everything on SKΦ

(QΦ, DΦ,Σ(Φ)). For any integer
`, the multiplication by `-map on the torus EK(Φ) induces a finite morphism
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ψ` : SKΦ
(QΦ, DΦ,Σ(Φ)) → SKΦ

(QΦ, DΦ,Σ(Φ)) which is ∆K(Φ) equivariant and
for which ψ?` g

?Vκ,K = g?Vκ,K . The morphisms ψ` induces a finite morphism

ŜtorK,Σ
x

→ ŜtorK,Σ
x

. We have D′0 =
∑
σ∈Σ(Φ)(1) aρDρ where Σ(Φ)(1) is the set of one

dimensional faces in Σ(Φ) andD0 =
∑
σ∈Σ(Φ)(1)Dρ. SinceD′0 is ∆K(Φ)-equivariant

and Σ(Φ)(1)/∆K(Φ) is finite, we deduce that for any s ≥ 1, there exists ` such that
0 < saρ ≤ `. It follows that the round-down of the Q-divisor −`−1D′0 is −D0. We
deduce from [CLS11], lem. 9.3.4 that O(−D0) ↪→ (ψ`)?O(−sD′0) is a split injection.
Pulling back this morphism by ψn, we deduce that O(−nD0) ↪→ (ψ`)?O(−snD′0)
is a split injection. �

We let πK,K′,Σ,Σ′ : StorK,Σ → StorK′,Σ′ be the map associated to a change of level
(for K ⊆ K ′) and cone decomposition.

Theorem 4.1.8. We have Ri(πK,K′,Σ,Σ′)?Vκ,K,Σ = 0 and Ri(πK,K′,Σ,Σ′)?Vκ,K,Σ(−DK,Σ) =
0 for all i > 0. Moreover if K ⊆ K ′ is normal then we have

((πK,K′,Σ,Σ′)?Vκ,K,Σ)K
′/K = Vκ,K′,Σ′

and
((πK,K′,Σ,Σ′)?Vκ,K,Σ(−DK,Σ))K

′/K = Vκ,K′,Σ′(−DK′,Σ′).

Proof. This is easily extracted from [Har90b], section 2 (look in particular at propo-
sition 2.4 and proposition 2.6 and their proofs). In the PEL case, this is explicitly
[Lan17], prop. 7.5. �

In particular from the case that K = K ′ we deduce that the cohomologies
RΓ(StorK,Σ,Vκ,K,Σ) and RΓ(StorK,Σ,Vκ,K,Σ(−DK,Σ)) do not depend on Σ.

We also recall that the maps πK,K′,Σ,Σ′ have fundamental classes in the sense
of [FP19] section 2.3. Namely we have maps OStorK,Σ → π!

K,K′,Σ,Σ′OStorK′,Σ′
and

OStorK,Σ(−DK,Σ)→ π!
K,K′,Σ,ΣOStor

K′,Σ′
(−DK′,Σ′) or equivalently, by adjunction, trace

maps R(πK,K′,Σ,Σ′)?OStorK,Σ = (πK,K′,Σ,Σ′)?OStorK,Σ → OStor
K′,Σ′

and R(πK,K′,Σ,Σ′)?(OStorK,Σ(−DK,Σ)) =

(πK,K′,Σ,Σ′)?(OStorK,Σ(−DK,Σ))→ OStor
K′,Σ′

(−DK′,Σ′), both of which extend the trace
map for the finite étale morphism πK,K′ : SK → SK′ .

4.2. Action of the Hecke algebra.

4.2.1. Action of Hecke correspondences on cohomology. Let K1,K2 ⊆ G(Af ) be
open compact subgroups, and let g ∈ G(Af ). To this data we associate a Hecke
correspondence

SK1∩gK2g−1

p1

%%

p2

yy
SK2 SK1

where p1 is the forgetful map corresponding to the inclusion K1 ∩ gK2g
−1 ⊆ K1,

and p2 is the composition of the action map [g] : SK1∩gK2g−1 → Sg−1K1g∩K2
and

the forgetful map corresponding to the inclusion g−1K1g ∩K2 ⊆ K2.
For any weight κ ∈ X?(T c)Mµ,+ we have a cohomological correspondence (p1)?p

?
2Vκ,K2

→
Vκ,K1

. This is obtained by combining the trace map trp1
: (p1)?OSK1∩gK2g

−1 →
OSK1

for the finite étale map p1 with the isomorphism p?2Vκ,K2
' p?1Vκ,K1

, which
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is itself composed of the isomorphism p?1Vκ,K1
' Vκ,K1∩gK2g−1 and the similar iso-

morphism for the forgetful map Sg−1K1g∩K2
→ SK2 , as well as the action map

[g]?Vκ,g−1K1g∩K2
' Vκ,K1∩gK2g−1 .

One readily verifies that the cohomological correspondence ((SK1∩gK2g−1 , p1, p2), (p1)?p
?
2Vκ,K2

→
Vκ,K1

) only depends on the double coset K1gK2, up to canonical isomorphism.
Now for suitable choices of cone decomposition we have a diagram

StorK1∩gK2g−1,Σ′′

p1

&&

p2

xx
StorK2,Σ′

StorK1,Σ

and we claim that our cohomological correspondence on the interior extends to a co-
homological correspondence R(p1)?p

?
2Vκ,K2,Σ′ = (p1)?p

?
2Vκ,K2,Σ′ → Vκ,K1,Σ′′ as well

as a cuspidal version R(p1)?p
?
2Vκ,K2,Σ′(−DK2,Σ′) = (p1)?p

?
2Vκ,K2,Σ′(−DK2,Σ′) →

Vκ,K1,Σ′′(−DK1,Σ). We have already discussed the extensions of the trace map in
the previous section. As for the action map, it also induces an isomorphism of
canonical extensions p?2Vκ,K2,Σ → p?1Vκ,K1,Σ as well as a morphism of subsheaves
p?2(Vκ,K2,Σ(−DK2,Σ′))→ (p?1Vκ,K1,Σ)(−DK1∩gK2g−1,Σ′′).

Finally these cohomological correspondences induces maps on cohomology in the
usual way, namely we denote by [K1gK2] the composition

RΓ(StorK2,Σ′ ,Vκ,K2,Σ′)→ RΓ(StorK1∩gK2g−1,Σ′′ , p
∗
2Vκ,K2,Σ′) =

RΓ(StorK1,Σ,R(p1)∗p
∗
2Vκ,K2,Σ′)→ Γ(StorK1,Σ,Vκ,K1,Σ)

where the first map is p∗2 and the last map uses the cohomological correspondence.
We have a similar definition for cuspidal cohomology.

4.2.2. Composition of Hecke correspondences. Let us briefly explain the point of
this section. We have defined an action of individual Hecke operators on coherent
cohomology, and we would like to show that this actually gives an action of the
Hecke algebra. The standard proof (see [Har90b, Prop. 2.6]) is to pass to a limit
over all K to obtain a representation of G(Af ), and then use the purely group
theoretic fact that Hecke algebras act on its invariants. However in this paper we
will also study coherent cohomology with support conditions which are not G(Qp)
invariant, and so we no longer expect an action of the full Hecke algebra, but
only of certain Hecke operators which preserve the support conditions in a suitable
sense. We would still like to know that these Hecke operators compose according
to relations in the abstract Hecke algebra.

For this reason we develop a different approach to composition of Hecke oper-
ators, by directly studying the geometric composition of Hecke correspondences.
This material is presumably well known but we lack a reference (see [FC90, VII §3]
for a closely related discussion.)

We recall the formalism of double coset multiplication. Fix a Haar measure on
G(Af ) and let C∞c (G(Af ),R) be the Hecke algebra with its convolution product.
For K1,K2 ⊂ G(Af ) we consider the free group Z[K1\G(Af )/K2] and we write the
basis elements as [K1gK2]. We have an embedding iK1,K2 : Z[K1\G(Af )/K2] →
C∞c (G(Af ),R) which sends [K1gK2] to 1√

vol(K1)vol(K2)
1K1gK2

, where 1K1gK2
de-

notes the characteristic function of the double coset K1gK2.
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For K1,K2,K3 ⊂ G(Af ) open compact, there is a product map

Z[K1\G(Af )/K2]× Z[K1\G(Af )/K2]→ Z[K1\G(Af )/K3]

which can be defined by

iK1,K3([K1gK2][K2hK3]) = iK1,K2([K1gK2]) ? iK2,K3([K2hK3])

To see that the right hand side is in the image of iK1,K3
note that

(1K1gK2
? 1K2hK3

)(x) = vol(K1gK2 ∩ xK3h
−1K2)

is an integer multiple of vol(K2). We also note that this definition is independent
of the choice of Haar measure.

It follows from the definition that double coset multiplication is associative and
satisfies

([K1gK2][K2hK3])t = [K2hK3]t[K1gK2]t

where the transpose map (−)t : Z[K1\G(Af )/K2]→ Z[K2\G(Af )/K1] is defined by
[K1gK2]t = [K2g

−1K1]. This corresponds to transposes of Hecke correspondences.
We now give a formula for double coset multiplication which is closely related

to geometric composition of Hecke correspondences.

Proposition 4.2.3. Let k1, . . . , kn ∈ K2 be a set of representatives for the double
cosets (K2 ∩ g−1K1g)\K2/(K2 ∩ hK3h

−1). Then we have

[K1gK2][K2hK3] =

n∑
i=1

c(ki)[K1gkihK3]

where c(ki) = [g−1K1g ∩ (kih)K3(kih)−1 : g−1K1g ∩K2 ∩ (kih)K3(kih)−1]

Proof. We first note that for x, y ∈ G(Af ) we have 1K1x ? 1yK3 = vol(x−1K1x ∩
yK3y

−1)1K1xyK3
. Decomposing K1gK2 into right K1 cosets and K2hK3 into left

K3 cosets we have

1K1gK2 ? 1K2hK3 =
∑

x∈K1\K1gK2

y∈K2hK3/K3

vol(x−1K1x ∩ yK3y
−1)1K1xyK3 .

Now note that the terms of this sum are constant in K2 orbits, for the action
k · (K1x, yK3) = (K1xk

−1, kyK3). We have a bijection

(K2 ∩ g−1K1g)\K2/(K2 ∩ hK3h
−1)→ K2\((K1\K1gK2)× (K2hK3/K3))

sending the double coset of k to the orbit of (K1g, khK3). Moreover the stabilizer
of this orbit is K2 ∩ g−1K1g ∩ (kh)K3(kh)−1. It follows that

1K1gK2 ? 1K2hK3 =

n∑
i=1

vol(K2)vol(g−1K1g ∩ (kih)K3(kih)−1)

vol(K2 ∩ g−1K1g ∩ (kih)K3(kih)−1)
1K1gkihK3

.

which translated back into double coset multiplication gives the proposition. �
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Suppose we have K1,K2,K3 ⊂ G(Af ) open compact subgroups and g, h ∈
G(Af ). We have a diagram of correspondences

C

r1

%%

r2

yy
SK2∩hK3h−1

q1

%%

q2

yy

SK1∩gK2g−1

p1

%%

p2

yy
SK3 SK2 SK1

where the middle diamond is cartesian. We denote s1 = p1r1, s2 = q2r2.
It is not true in general that the correspondence (C, s1, s2) is isomorphic to a

disjoint union of Hecke correspondences. However this is almost the case in a way
we now explain.

We first construct another correspondence (C ′, s′1, s
′
2) between SK1

and SK3
. Let

k1, . . . , kn be as in proposition 4.2.3. Now let C ′ =
∐
i SK1∩gK2g−1∩(gkih)K3(gkih)−1 ,

let s′1 : C ′ → SK1
be the forgetful map on each component, and let s′2 : C ′ → SK3

be the action map [gkih] followed by the forgetful map. Then we note that while
the components of C ′ are not necessarily Hecke correspondences themselves, we
nonetheless have commutative diagrams

SK1∩gK2g−1∩(gkih)K3(gkih)−1

��

|| ""

SK1∩(gkih)K3(gkih)−1

uu ))
SK3

SK1

where the vertical arrow and rightward arrows are forgetful maps and the leftward
arrows are the action maps for [gkih] followed by forgetful maps. In particular the
bottom correspondence is exactly the Hecke correspondence corresponding to the
double coset K1gkihK3.

Proposition 4.2.4. There is an isomorphism of correspondences (C, s1, s2) '
(C ′, s′1, s

′
2).

We will use the following group theoretic lemma.

Lemma 4.2.5. Let K be a group and H1, H2 ⊆ K subgroups. Let X be a right
K-torsor. Then there is a bijection∐

H1gH2∈H1\K/H2

X/gH1g
−1 ∩H2 → X/H1 ×X/H2

x(gH1g
−1 ∩H2) 7→ (xgH1, xH2)

Proof of proposition 4.2.4. We recall that a point of the Shimura variety SK over
a connected locally Noetherian base is some data which is independent of K (an
isogeny class of abelian varieties with Hodge tensors) to which one associates a
right G(Af )-torsor, and a K level structure is just a K orbit in this G(Af )-torsor.
Moreover for any K ′ ⊂ K the forgetful map SK′ → SK at the level of points sends
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the K ′-orbit to the K-orbit generated by it, and the action map [g] : SK → Sg−1Kg

is given by right multiplication by g.
With this observation the proof of the proposition proceeds formally. We can

consider a slightly expanded diagram.

C ′′

%%yy

C
[g]oo

''
SK2∩hK3h−1

%%yy

Sg−1K1g∩K2

yy

SK1∩gK2g−1

��

[g]oo

SK3 SK2 SK1

Here all three quadrilaterals are Cartesian. We can compute C ′′ using lemma 4.2.5.
Indeed giving a point of C ′′ lying over a point of SK2

is the same as giving a pair
of an H1 = K2 ∩ hK3h

−1 and H2 = g−1K1g ∩K2 orbit inside a K = K2-torsor X.
We deduce from lemma 4.2.5 an isomorphism

C ′′ '
n∐
i=1

Sg−1K1g∩K2∩(kih)K3(kih)−1

where on each factor, the map to Sg−1K1g∩K2
is the forgetful map, while the map

to SK2∩hK3h−1 is the action map [ki] followed by the forgetful map. Then the
isomorphism C ' C ′ is obtained as the composition

C
[g]→ C ′′ →

n∐
i=1

Sg−1K1g∩K2∩(kih)K3(kih)−1

[g]−1

→ C ′.

Moreover from the descriptions of the maps out of C ′′ above one immediately
deduces the compatibility between s1, s

′
1 and s2, s

′
2. �

The following proposition is readily deduced from [Har90b, Prop. 2.6], but we
give an alternative proof which will also work for cohomology with support.

Proposition 4.2.6. We have [K1gK2] ◦ [K2hK3] = [K1gK2][K2hK3] as maps

RΓ(StorK3,Σ′′ ,Vκ,K3,Σ′′)→ RΓ(StorK1,Σ,Vκ,K1,Σ).

Proof. We can choose toroidal compactifications of all the Shimura varieties occur-
ring in this section: SKi , i = 1, 2, 3, SK1∩gK2g−1 ,SK2∩hK3h−1 , SK1∩(gkih)K3(gkih)−1 ,
SK1∩gK2g−1∩(gkih)K3(gkih)−1 so that all the diagrams appearing above extend to
the compactifications (we will not be particularly consistent or careful with our
labelling of the various cone decompositions in this argument, and they will be
denoted by Σ∗ where ∗ is an index). In particular we obtain a compactification
Ctor of the correspondence C which is isomorphic to a disjoint union of toroidal
compactifications of Shimura varieties. Moreover using this description, we can
construct cohomological correspondences over Ctor as in section 4.2.1 using the ac-
tion maps for gkih. We first claim that this cohomological correspondence acts on
cohomology by the linear combination of Hecke operators on the right hand side of
the formula in proposition 4.2.3.
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Consider a commutative diagram

StorK1∩gK2g−1∩(gkih)K3(gkih)−1,Σ1

c

��
q′

{{

p′

##

StorK1∩(gkih)K3(gkih)−1,Σ2

q

uu

p

))
StorK3,Σ3

StorK1,Σ4

We claim that the following diagram commutes (where the vertical map is in-
duced by the adjunction Id⇒ c?c

?, the other maps are given by the cohomological
correspondence, and c(ki) is the generic degree of the generically finite flat map c):

Rp′?(q
′)?Vκ,K3,Σ3

trp′ // Vκ,K1,Σ1

Rp?(q)
?Vκ,K3,Σ3

c(ki)trp
77OO

These are maps of locally free sheaves by theorem 4.1.8, and the commutativity
of the diagram follows from its commutativity away from the boundary which is
clear.

Hence to prove the proposition, we need to see that the action of the cohomo-
logical correspondence Ctor is equal to [K1gK2] ◦ [K2hK3].

Consider the diamond from the proof of proposition 4.2.4

C ′′
tor

q′

&&

p′

xx
StorK2∩hK3h−1,Σa

q

&&

Storg−1K1g∩K2,Σb

p

xx
StorK2,Σ′

which is cartesian away from the boundary. We would like to know that

RΓ(C′′tor, (q′)?V
κ,g−1K1g∩K2,Σb

)

tr
q′

++
RΓ(Stor

K2∩hK3h
−1,Σa

,V
κ,K2∩hK3h

−1,Σa
)

trq

++

(p′)?
33

RΓ(Stor
g−1K1g∩K2,Σb

,V
κ,g−1K1g∩K2,Σb

)

RΓ(Stor
K2,Σ

′ ,Vκ,K2,Σ
′ )

p?
33

commutes, and similarly for cuspidal cohomology. Note that here what we write
as (p′)? is really the composition

RΓ(StorK2∩hK3h−1,Σa
,Vκ,K2∩hK3h−1,Σa)→ RΓ(C ′′

tor
, (p′)?Vκ,K2∩hK3h−1,Σa)→
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RΓ(C ′′
tor
, (q′)?Vκ,g−1K1g∩K2,Σb)

where the first map is literally (p′)? and the second map is described on each
component of C ′′tor as the action map [ki] (see the description of p′,q′ given in the
proof of Proposition 4.2.4.)

We claim that the following diagram commutes:

R(q′)?(p
′)?q?Vκ,K2∩hK3h−1,Σa = R(q′)?(q

′)?p?Vκ,K2∩hK3h−1,Σa
// p?Vκ,g−1K1g∩K2,Σb

p?Rq?q
?VκK2∩hK3h−1,Σa

22OO

This is a diagram of locally free sheaves by theorem 4.1.8, and therefore the
commutativity can be checked away from the boundary, where this is clear. �

Remark 4.2.7. We remark that for K ′ ⊆ K ⊂ G(Af ) open compact subgroups,
the Hecke operator [K ′1K] and [K1K ′] are the pullback and trace for the forgetful
map SK′,Σ′ → SK,Σ. Moreover if g ∈ G(Af ) then [Kg(g−1Kg)] is simply the action
map [g]?. Finally for K1,K2 ⊂ G(Af ) open compact subgroups and g ∈ G(Af ), we
have a factorization

[K1gK2] = [K11(K1∩gK2g
−1)][(K1∩gK2g

−1)g(g−1K1g∩K2)][(g−1K1g∩K2)1K2]

of [K1gK2] into a pullback map, an action map, and a trace, which is essentially
the definition of [K1gK2].

4.2.8. Serre duality. The dualizing sheaf of SK,Σ is V−2ρnc,K,Σ(−DK,Σ) where ρnc
is half the sum of the non-compact positive roots. Indeed, recall our choice of non-
compact positive roots being in g/pstdµ and that g/pstdµ is the tangent space at the
identity of FLstdG,µ and then apply [Har90b], proposition 2.2.6.

The Serre dual of the automorphic sheaf Vκ,K,Σ is therefore V−2ρnc−w0,Mκ,K,Σ(−DK,Σ)
where w0,M is the longest element of the Weyl group of Mµ. Serre duality is:

Proposition 4.2.9. There is a Serre duality isomorphism

DF (RΓ(StorK,Σ,Vκ,K,Σ))[−d] ' RΓ(StorK,Σ,V−2ρnc−w0,Mµκ,K,Σ
(−DK,Σ))

where DF (−) = RHomF (−, F ) is the dualizing functor for F -vector spaces and d
is the dimension of SK . Moreover this isomorphism, is compatible with the Hecke
action in the sense the action of [KgK] on the left matches the action of [KgK]t =
[Kg−1K] on the right.

Proof. For the existence of the duality pairing we refer to [Har66]. We simply prove
the formula for the adjoint. We denote by

DK′(−) = RHom(−,V−2ρnc,K′,Σ′′′(−DK′,Σ′′′))

the dualizing functor on StorK′,Σ′′′ for any compact open K ′ (and cone decomposition
Σ′′′). Let f = [KgK] be a characteristic function to which we associate a Hecke
correspondence StorK,Σ

p1← StorK∩gKg−1,Σ′′
p2→ StorK,Σ′ . The action of f on the cohomology

arises from a cohomological correspondence (see section 4.2.1):

f : p?2Vκ,K,Σ
fκ→ p?1Vκ,K,Σ

Id⊗trp1→ p!
1Vκ,K,Σ.

We find (since duality switches ? and !) that

DK∩gKg−1(f) : p?1DK(Vκ,K,Σ)
Id⊗trp1→ p!

1DK(Vκ,K,Σ)→ p!
2DK(Vκ,K,Σ).
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Remark that

p!
1DK(Vκ,K,Σ) = p?1V∨κ,K,Σ ⊗ p!

1V−2ρnc,K,Σ(−DK,Σ)

p!
2DK(Vκ,K,Σ′) = p?2V∨κ,K,Σ′ ⊗ p!

2V−2ρnc,K,Σ(−DK,Σ′)

We have a canonical isomorphism

Id : p!
1V−2ρnc,Σ(−DK,Σ) = p!

2V−2ρnc,K,Σ′(−DK,Σ′),

as both sheaves identify with the canonical sheaf of StorK∩gKg−1,Σ′′ . The map p!
1DK(Vκ,K,Σ)→

p!
2DK(Vκ,K,Σ) therefore writes f∨κ ⊗ Id. Let f t = [Kg−1K]. We observe that
f∨κ = (f t)−w0,Mκ by definition (this identity boils down to At = ((A−1)−1)t for a
matrix in GLn). We now claim that we have a commutative diagram:

p?1DK(Vκ,K,Σ)
Id⊗trp1// p!

1DK(Vκ,K,Σ)
f∨κ⊗Id // p!

2DK(Vκ,K,Σ)

p?1DK(Vκ,K,Σ) //

Id

OO

p?1DK(Vκ,K,Σ)

Id⊗trp1

OO

ft−w0,Mκ−2ρnc // p?2DK(Vκ,K,Σ)

Id⊗trp2

OO

This implies that DK∩gKg−1(f) = f t. The commutativity of the diagram now boils
down to the commutativity of:

p!
1V−2ρnc,K,Σ(−DK,Σ)

Id // p!
2V−2ρnc,K,Σ(−DK,Σ)

p?1V−2ρnc,K,Σ(−DK,Σ)
ft−2ρnc //

trp1

OO

p?2V−2ρnc,K,Σ(−DK,Σ)

trp2

OO

It is sufficient to prove the commutativity outside of the boundary. For any level
K, the identification of the canonical sheaf of SK with V−2ρnc,K is functorial in
the tower of Shimura varieties. Therefore, for the action map [g] : SK∩gKg−1 →
SK∩g−1Kg, we find that the map [g]?V−2ρnc,K∩g−1Kg → V−2ρnc,K∩gKg−1 is the
canonical isomorphism between canonical sheaves. We finally deduce that the map
(f t)−2ρnc : p?1V−2ρnc,K → p?2V−2ρnc,K decomposes as:

p?1V−2ρnc,K → V−2ρnc,K∩gKg−1 → g?V−2ρnc,K∩g−1Kg → p?2V−2ρnc,K

where the first map is induced by trp1
, the second map is the canonical isomorphism,

and the last map is induced by g?(trp′2)−1 where p′2 : SK∩g−1Kg → SK . This is
telling us that the diagram commutes. �

Remark 4.2.10. One proves more generally that the adjoint of an Hecke operator
[K1gK2] for two (not necessarily equal) compact open subgroup K1 and K2 is
[K1gK2]t = [K2g

−1K1]. Details are left to the reader.

4.2.11. The finite slope part of classical cohomology. We now assume that GQp is
quasi-split. We assume thatK = Kp×Kp whereKp = Kp,m,b form ≥ b ≥ 0,m > 0
is one of the subgroups with an Iwahori decomposition introduced in section 3.5.1.
We recall that for a choice of + or − we have commutative sub-algebras H±p,m,b of
Z[Kp,m,b\G(Qp)/Kp,m,b]. The subalgebra H±p,m,b is generated by the double cosets
[Kp,m,btKp,m,b] with t ∈ T±. We have isomorphisms H±p,m,b = Z[T±/Tb]. We
also have the ideals H±±p,m,b generated by the double cosets [Kp,m,btKp,m,b] with
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t ∈ T±±. The anti-involution of Z[Kp,m,b\G(Qp)/Kp,m,b] defined by inversion
exchanges H+

p,m,b with H
−
p,m,b and H

++
p,m,b with H

−−
p,m,b.

We let
RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)±,fs =

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)⊗LQ[T±/Tb]

Q[T (Qp)/Tb]

be the finite slope direct factor of RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ) for the operators

in [Kp,m,btKp,m,b] for t ∈ T±. We have a similar definition for cuspidal cohomology.
We note that the monoids T± have the property that for any t ∈ T±± and s ∈ T±
there is an s′ ∈ T± and an n > 0 such that ss′ = tn. It follows that the finite
slope part can also be described as the finite slope part fo the single operator
[Kp,m,btKp,m,b] for any t ∈ T±±.

We note that the Serre duality pairing of Proposition 4.2.9 restricts to a duality

DF (RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)±,fs)[−d] ' RΓ(StorKpKp,m,b,Σ

,V−2ρnc−w0,Mκ,KpKp,m,b,Σ(−D)∓,fs)

on finite slope parts.

Remark 4.2.12. Assume that the group GQp is unramified. Then, as explained in
remark 3.5.4 we can arrange so that the compact Kp,1,0 is an Iwahori, and the
compact Kp,1,1 is a pro-p Iwahori. Let Kp = Kp,1,1 or Kp,1,0. All the Hecke
operators [KptKp] for t ∈ T+ or t ∈ T− are already invertible in Q[Kp\G(Qp)/Kp]
(see [Vig05, Cor. 1])and so

RΓ(StorKpKp,Σ,Vκ,KpKp,Σ)±,fs = RΓ(StorKpKp,Σ,Vκ,KpKp,Σ)

and similarly for cuspidal cohomology.

Next we recall how the finite slope part behaves under certain changes of level.
We first recall some classical relations in these Hecke algebras.

Lemma 4.2.13. Let K1,K2,K3 ⊆ G(Qp) be open compact subgroups with Iwahori
decompositions Ki = K−i K

0
iK

+
i . Let t1, t2 ∈ T (Qp). Suppose that t−1

1 K−1 t1 ∩
t2K

−
3 t
−1
2 ⊆ K−2 ⊆ t−1

1 K−1 t1, t
−1
1 K+

1 t1 ∩ t2K
+
3 t
−1
2 K+

2 ⊆ t2K
+
3 t3 and K0

1 ∩ K0
3 ⊆

K0
2 ⊆ K0

1K
0
3 . Then [K1t1K2][K2t2K3] = [K1t1t2K3]

Proof. This is an immediate consequence of proposition 4.2.3 upon noting that our
hypotheses imply K2 = (K2 ∩ t−1

1 K1t1)(K2 ∩ t2K3t
−1
2 ) and t−1

1 K1t1 ∩ t2K3t
−1
2 ⊆

K2. �

Lemma 4.2.14. Let m′ ≥ b′ ≥ 0 and m ≥ b ≥ 0 satisfy m′ ≥ m > 0 and b′ ≥ b.
(1) For all t ∈ T+ we have

[Kp,m′,b′tKp,m′,b′ ][Kp,m′,b′1Kp,m,b] = [Kp,m′,b′1Kp,m,b][Kp,m,btKp,m,b].

(2) For all t ∈ T− we have

[Kp,m,btKp,m,b][Kp,m,b1Kp,m′,b′ ] = [Kp,m,b1Kp,m′,b′ ][Kp,m′,b′tKp,m′,b′ ].

(3) For all t ∈ T++ with min(t) ≥ 1 (see 3.4) we have factorizations:

[Kp,m,btKp,m,b] = [Kp,m,btKp,m+1,b][Kp,m+1,b1Kp,m,b]

and

[Kp,m+1,btKp,m+1,b] = [Kp,m+1,b1Kp,m,b][Kp,m,btKp,m+1,b].
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(4) For all t ∈ T−− with min(t) ≥ 1 we have factorizations:

[Kp,m,btKp,m,b] = [Kp,m,b1Kp,m+1,b][Kp,m+1,btKp,m,b]

and

[Kp,m+1,btKp,m+1,b] = [Kp,m+1,btKp,m,b][Kp,m,b1Kp,m+1,b].

Proof. We note that the second and fourth points are just the transposes of the
first and third. The first and third points are immediate consequences of lemma
4.2.13. �

Here are the consequences on cohomology:

Corollary 4.2.15. Let m′ ≥ b′ ≥ 0 and m ≥ b ≥ 0 satisfy m′ ≥ m > 0 and b′ ≥ b.
(1) For all t ∈ T+, the following diagram commutes:

RΓ(StorKpKp,m′,b′ ,Σ
,Vκ,KpKp,m′,b′ ,Σ)

[Kp,m′,b′ tKp,m′,b′ ]// RΓ(StorKpKp,m′,b′ ,Σ
,Vκ,KpKp,m′,b′ ,Σ)

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)

[Kp,m,btKp,m,b] //

OO

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)

OO

(2) For all m′ ≥ m and t ∈ T−, the following diagram commutes:

RΓ(StorKpKp,m′,b′ ,Σ
,Vκ,KpKp,m′,b′ ,Σ)

[Kp,m′,b′ tKp,m′,b′ ]//

tr

��

RΓ(StorKpKp,m′,b′ ,Σ
,Vκ,KpKp,m′,b′ ,Σ)

tr

��
RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)
[Kp,m,btKp,m,b] // RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)

(3) For all m and t ∈ T++ with min(t) ≥ 1, there is a factorization:

RΓ(StorKpKp,m+1,b,Σ
,Vκ,KpKp,m+1,b,Σ)

,,

[Kp,m+1,btKp,m+1,b]// RΓ(StorKpKp,m+1,b,Σ
,Vκ,KpKp,m+1,b,Σ)

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)

[Kp,m,btKp,m,b] //

OO

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)

OO

(4) For all m and t ∈ T−− with min(t) ≥ 1, there is a factorization:

RΓ(StorKpKp,m+1,b,Σ
,Vκ,KpKp,m+1,b,Σ)

[Kp,m+1,btKp,m+1,b]//

tr

��

RΓ(StorKpKp,m+1,b,Σ
,Vκ,KpKp,m+1,b,Σ)

tr

��
RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)
[Kp,m,btKp,m,b] //

22

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)

(5) We have the same results for cuspidal cohomology.

We deduce the following classical corollary

Corollary 4.2.16. (1) For all m′ ≥ m ≥ b with m > 0, the pullback map

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)+,fs → RΓ(StorKpKp,m′,b,Σ

,Vκ,KpKp,m′,b,Σ)+,fs
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and the trace map

RΓ(StorKpKp,m′,b,Σ
,Vκ,KpKp,m′,b,Σ)−,fs → RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)−,fs

are quasi-isomorphisms, compatible with the action of Q[T (Qp)/Tb], and
the same statements are true for cuspidal cohomology. Moreover these iso-
morphisms are compatible with Serre duality.

(2) For all m ≥ b′ ≥ b with m > 0, the pullback map

RΓ(StorKpKp,m,b,Σ
,Vκ,KpKp,m,b,Σ)+,fs → (RΓ(StorKpKp,m,b′ ,Σ

,Vκ,KpKp,m,b′ ,Σ)+,fs)Tb/Tb′

and the trace map

(RΓ(StorKpKp,m,b′ ,Σ
,Vκ,KpKp,m,b′ ,Σ)−,fs)Tb/Tb′ → RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)−,fs

are quasi-isomorphisms, compatible with the action of Q[T (Qp)/Tb], and
the same statements are true for cuspidal cohomology. Moreover these iso-
morphisms are compatible with Serre duality.

Proof. Immediate from corollary 4.2.15 and theorem 4.1.8. �

Now let χ : T (Zp) → F
×

be a finite order character. For all m ≥ b ≥
cond(χ) with m > 0, the spaces RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)+,fs[χ] are canon-
ically isomorphic. We denote this space by RΓ(Kp, κ, χ)+,fs. We define in the
same way RΓ(Kp, κ, χ)−,fs, and the cuspidal versions RΓ(Kp, κ, χ, cusp)+,fs and
RΓ(Kp, κ, χ, cusp)−,fs

These are the classical finite slope cohomologies, for the tame level Kp, Mµ-
dominant algebraic weight κ, and nebentypus χ. They satisfy a Serre duality:

DF (RΓ(Kp, κ, χ)±,fs)[−d] ' RΓ(Kp,−2ρnc − w0,Mµ
κ, χ−1, cusp)∓,fs.

Remark 4.2.17. We explain some constraints on the possible nebentypus χ for
which we have non trivial cohomology in the case that the subgroup Zs(G) of
the center Z(G) of G is non-trivial (a case that may only occur for non Hodge
type Shimura datum). For simplicity we put Z = Z(G) and Zs = Zs(G). Re-
call that SK(C) = G(Q)\X × G(Af )/K. Passing to the limit over K, we find
that S(C) = limK SK(C) = G(Q)\X × G(Af )/Z(Q) where Z(Q) is the closure
of Z(Q) in G(Af ) (see [Del79], sect. 2.19). Let K ′ ⊆ K be two compact open
subgroups, with K ′ normal in K. The map SK′(C) → SK(C) is a covering
with Galois group K/(K ′.Z(Q) ∩ K). If K is neat, Z(Q) ∩ K is a subgroup of
Zs(Q). In the case that Zs = {1}, we deduce that SK′(C) → SK(C) is a Ga-
lois covering with group K/K ′. In general, it follows that the action of T (Zp)
on RΓ(StorKpKp,m,b,Σ

,Vκ,KpKp,m,b,Σ)+,fs factors through an action of T (Zp)/Z ′(Kp),
where Z ′(Kp) = Im((Zs(Q)∩KpKp,m,0)→ T (Zp)). We deduce that when Zs 6= 1,
if χ does not factor through T (Zp)/Z ′(Kp), then RΓ(Kp, κ, χ)±,fs = 0 for all κ.
To avoid this situation, we will often impose that χ factors through a character of
T c(Zp).

4.3. Jacquet Modules. In this section we translate the finite slope condition into
more representation theoretic terms. We keep assuming that GQp is quasi-split with
Borel B. We let U be the unipotent radical of B. Let π be a smooth admissible
representation of G(Qp) with coefficient in a field of characteristic 0. We let π(U) ⊆
π be the submodule generated by the elements n · v − v for n ∈ U(Qp) and v ∈ π.
We let πU = π/π(U) be the Jacquet module of π (with respect to U). This is
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a smooth admissible representation of T (Qp) by [Cas], thm. 3.3.1. Moreover, the
functor π 7→ πU is an exact functor by [Cas], prop. 3.3.2. We can define similarly the
Jacquet module πU with respect to U . Note that conjugation by the longest element
w0 of the Weyl group realizes an isomorphism from πU to πU . Let ψ : T (Qp)→ C×
be a continuous character. We let ιGB(ψ) = {f : G(Qp) → C, smooth, f(bg) =
ψ(b)f(g)}, equipped with the left action induced by right translation of G(Qp) on
itself. We define similarly ιG

B
(ψ).

The adjunction formula of [Cas], thm. 3.2.4 states that

HomG(Qp)(π, ι
G
B(ψ)) = HomT (Qp)(πU , ψ)

and
HomG(Qp)(π, ι

G
B

(ψ)) = HomT (Qp)(πU , ψ).

Let K = Kp,m,b. The algebra H±p,m,b = Z[T±/Tb] (by lemma 3.5.8) acts on
πKp,m,b , and we can define πKp,m,b,±,fs ⊆ πKp,m,b as the sub-vector space where the
operators [Kp,m,btKp,m,b] for t ∈ T± act invertibly.

Proposition 4.3.1. The natural map πKp,m,b,+,fs → πTbU is an isomorphism which
is T+/Tb equivariant, and the natural map πKp,m,b,−,fs → πTb

U
is an isomorphism

which is T−/Tb equivariant.

Proof. See [Cas], Lemma 4.1.1 and proposition 4.1.4. �

Proposition 4.3.2. For a smooth irreducible representation π of G(Qp), the fol-
lowing properties are equivalent:

(1) There exists m ≥ b ≥ 0 such that πKp,m,b,+,fs 6= 0,
(2) There exists m ≥ b ≥ 0 such that πKp,m,b,−,fs 6= 0,
(3) There exists a character ψ of T (Qp) such that π ↪→ ιGBψ,
(4) There exists a character ψ′ of T (Qp) such that π ↪→ ιG

B
ψ′.

Proof. The points (1) and (2) are equivalent because the non-vanishing of πKp,m,b,±,fs

is equivalent to the non-vanishing of πTbU and πTb
U

respectively by proposition 4.3.1.
But conjugation by w0 realizes an isomorphism between these spaces. Similarly (3)
is equivalent to (4). If we assume (3), the adjunction formula shows that πU 6= 0,
hence there exists b such that πTbU 6= 0 and πKp,m,b,+,fs 6= 0 for any m ≥ b by
proposition 4.3.1. Conversely, if πKp,m,b,+,fs 6= 0, then πTbU 6= 0 and by adjunction,
there is a non zero map: π → ιGBψ for a character ψ. Since π is irreducible, this
map is injective. �

If one of the equivalent properties of the proposition is satisfied, we say that an
irreducible smooth representation π is a finite slope representation.

Let π be an admissible representation of G(Qp). By adjunction, we have a
morphism π → ιGBπU and we let πfs be the image of this morphism. We call πfs
the finite slope part of π.

Proposition 4.3.3. The following properties are satisfied:
(1) The G(Qp)-representations πfs is a direct summand of π.
(2) Any irreducible factor of πfs is a finite slope representation.
(3) Any irreducible factor of π which is a finite slope representation lies in πfs.
(4) πfs is the sub-representation of π generated by the πKp,m,b,±,fs for all m ≥

b ≥ 0.
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Proof. By the Bernstein decomposition of the category of smooth representations
([Ren10], VI.7.2) we find that π = π′ ⊕ π′′ where π′ satisfies the properties (1),
(2) and (3) of the representation πfs of the proposition. We have that π′′U = 0
because the Jacquet functor is exact and π′′ has no finite slope irreducible sub-
quotient. We deduce that πU = π′U . Moreover the morphism π → ιGBπU factors
into π′ → ιGBπU and it follows again from the exactness of the Jacquet functor
that the map π′ → ιGBπU is injective. Therefore π′ = πfs. Let π′′′ be the sub-
representation of π generated by πKp,m,b,±,fs for all m ≥ b ≥ 0. We see that
π′′′ ⊆ πfs. But it follows from proposition 4.3.1 that π′′′U = πfsU . Therefore πfs/π′′′
has trivial Jacquet module, hence contains no finite slope sub-quotient and has to
be trivial. �

Let us denote by

Hi(Kp, κ) = colimKpHi(StorKpKp,Σ,Vκ,KpKp,Σ),

Hi(Kp, κ, cusp) = colimKpHi(StorKpKp,Σ,Vκ,KpKp,Σ(−DKpKp,Σ))

and
H
i
(Kp, κ) = Im(Hi(Kp, κ, cusp)→ Hi(Kp, κ)).

These are smooth admissible G(Qp)-representations. We can consider their fi-
nite slope parts Hi(Kp, κ)fs, Hi(Kp, κ, cusp)fs and H

i
(Kp, κ)fs. These are direct

summands of Hi(Kp, κ), Hi(Kp, κ, cusp) and H
i
(Kp, κ) respectively, and are gen-

erated respectively as G(Qp)-representations by the vector spaces Hi(Kp, κ, χ)±,fs,
Hi(Kp, κ, χ, cusp)±,fs and H

i
(Kp, κ, χ)±,fs = Im(Hi(Kp, κ, χ, cusp)±,fs → Hi(Kp, κ, χ)±,fs)

for all characters χ : T (Zp)→ F
×
.

4.4. The Hodge-Tate period morphism. In this section we recall a number
of results concerning the Hodge-Tate period morphism and infinite level Shimura
varieties. We now assume (unless explicitly mentioned) that F is a finite extension
of Qp such that we have an embedding E ↪→ F and such that G splits over F . In this
paper, the rationality questions with respect to E are not very important. We will
frequently allow ourselves to enlarge F if necessary. Let SanK = (SK × Spec F )an,
S?K = (S?K × Spec F )an, StorK,Σ = (StorK,Σ× Spec F )an, FLG,µ = (FLG,µ× Spec F )an

(see section 3.3 for the meaning of the superscript an). The first of these spaces
is not quasi-compact if the Shimura variety is not proper, the other three spaces
are quasi-compact. We will also consider the groups Gan = (G × Spec Qp)an,
Panµ = (Pµ × Spec F )an,Man

µ = (Mµ × Spec F )an.

4.4.1. Inverse limit of adic spaces. We start by a definition following [SW13], sect.
2.4. Our definition is slightly more restrictive but fits in our setting.

Definition 4.4.2. Let {Xi}i∈I be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F,OF ), with finite transition maps. Let X be a perfectoid
space with compatible maps X → Xi.

We say that X ∼ limi∈I Xi if:
(1) The maps X → Xi induces an homeomorphism of topological spaces |X | =

limi |Xi|.
(2) There is a covering of X by open affinoids U = Spa(A,A+) such that U is

the preimage of an affinoid Ui = Spa(Ai, A
+
i ) ⊆ Xi for a cofinal subset of

I and the map colimiAi → A has dense image.
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If X ∼ limi∈I Xi, then the diamond limi X♦
i is representable by the perfectoid

space X by [SW13], prop. 2.4.5. In particular, X is unique up to a unique isomor-
phism.

In the notation of point (2), we see that A0 is a ring of definition of A (because
A is uniform) and A0 is the completion of colimiA

0
i with respect to the p-adic

topology.

Definition 4.4.3. Let {Xi}i∈I be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F,OF ) with finite transition maps. Let X be a perfectoid space
and assume that X ∼ limi Xi. We say that an open affinoid subset U ↪→ X is good
if it satisfies the second property of definition 4.4.2. We say that an open affinoid
Ui ↪→ Xi is pregood if the open subset X ×Xi Ui of X is good.

Remark 4.4.4. We remark that a rational subset of a good open affinoid is also
good by [Sch13b], proposition 2.22.

Remark 4.4.5. It is conjectured in [Sch13b], conjecture 2.24 and proposition 2.26
that any open affinoid in Xi is pregood.

We end this paragraph with two useful lemmas.

Lemma 4.4.6. Let {Xi}i∈I be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F,OF ) with finite transition maps. For each i let Πi be the set
of connected components of Xi which we assume to be finite. Let Π = limi Πi. For
any e ∈ Π we get a cofiltered inverse system {Xi,e}. If there is a perfectoid space X
such that X ∼ limi Xi then for all e ∈ Π, there is a perfectoid space Xe ∼ limi Xi,e.

Proof. We reduce to the affine case. Let Xi = Spa(Ai, A
+
i ). For each e ∈ Πi, we

have Xi,e = Spa(Ai,e, A
+
i,e) and Ai =

∏
e∈Πi

Ai,e. We may assume that all rings
Ai are reduced (by taking the reduction). In particular A0

i is open and bounded.
This does not affect the ∼-limit because perfectoid spaces are reduced. We may
also assume that all maps Ai → Aj are injective for i, j ∈ I and j 7→ i (replacing
Ai by its image in Aj).

We assume that there is a perfectoid space X = Spa(A,A+) ∼ limi Xi. Then A0

is the p-adic completion of colimiA
0
i and A0 is a perfectoid OF -algebra: there is

$ ∈ A0 with $p | p and the Frobenius morphism φ : A0/$p → A0/$p is surjective.
Moreover, A = A0[1/p] and A+ is the closure of colimA+

i in A. By approximation,
we may assume that $ ∈ A0

i and by projection we get an element $ ∈ Ai,e.
We need to see that the map φ : colimiA

0
i,e/$

p → colimiA
0
i,e/$

p is surjective.
Let xi,e ∈ Ai,e/$

p. Since A0 is perfectoid, we see that there exists j 7→ i and
yj,e ∈ Aj,e/$p such that ypj,e = xi,e. �

Lemma 4.4.7. Let {Xi}i∈I be a cofiltered inverse system of locally of finite type
separated adic spaces over a perfectoid field Spa(F,OF ) with finite transition maps.
Let G be a finite group acting on the inverse system via Spa(F,OF )-morphisms.
Let X be a perfectoid space such that X ∼ limi Xi. Assume that for some index
i, we have a G-invariant covering of Xi by pregood affinoids. Then the categorical
quotient Yi = Xi/G is representable by an adic space for a cofinal subset of I, the
categorial quotient Y = X/G is representable by a perfectoid space, and Y ∼ limi Yi.

Proof. The quotient Xi/G exist by [Han19], thm. 1.3. We may reduce to the
affine case with X = Spa(A,A+) and Xi = Spa(Ai, A

+
i ). By [Han19], thm 1.4, AG
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is perfectoid. It is clear that colimAGi is dense in AG since we have a projector
A→ AG, a 7→ 1

|G|
∑
g∈G g.a. �

4.4.8. Siegel Shimura varieties. We assume in this paragraph that (G,X) is the
Siegel Shimura datum (GSp2g,Hg). Let K = KpKp ⊆ G(Af ) be a compact open
subgroup. The reflex field is Q and the Shimura variety SK is a moduli space of
abelian varieties A, with a level structure and polarization (prescribed by K).

The Shimura variety SK carries a right pro-étale G(Qp)-torsor. Namely, equip
Q2g
p with the standard symplectic form and consider the torsor of isomorphisms

Q2g
p → H1(A,Qp), respecting the symplectic forms up to a similitude factor, where

A is the universal abelian scheme (defined up to isogeny) and H1(A,Qp) = Vp(A) is
the rational Tate module of A. After choosing a geometric point x→ SK , this torsor
corresponds to a representation of the algebraic fundamental group π1(SK , x) →
G(Qp). The image of this morphism lies in the compact open subgroupKp ⊂ G(Qp)
and the corresponding Kp-torsor is realized geometrically by the tower of Shimura
varieties limK′p⊆Kp SKpK′p

. By pullback to the adic space SanK , we get a pro-étale
G(Qp)-torsor Ganpet,p. If Kp ⊆ G(Zp), this torsor has a G(Zp)-reduction of group
structure that we denote by Gpet,p.

The (relative) Hodge-Tate filtration is the exact sequence of pro-étale sheaves
over SanK :

0→ Lie(A)⊗OSan
K

ÔSanK → H1(A,Qp)⊗Qp ÔSK → ωAt ⊗OSan
K

ÔSanK → 0

The groups Panµ , Gan andMan
µ are naturally sheaves over the étale site of SanK .

We extend them to sheaves on the pro-étale site of SanK as follows: if H is any of
these groups, and if U → SanK is an object of the pro-étale site, we let

H(U) = H(ÔSanK (U), Ô+
SanK

(U)).

Remark 4.4.9. There is also an extension to the pro-étale site of Panµ , Gan andMan
µ

where one takes sections with values in the uncompleted structure sheaf, but we
will not need to consider this extension.

The Hodge-Tate filtration gives a Panµ -reduction of structure group PanHT of the
Gan-torsor Ganpet,p×G

an(Qp)Gan. Namely, we consider trivializations of H1(A,Qp)⊗Qp
ÔSK which respect the filtration. This is a right Panµ -torsor.

We can consider the pushout PanHT ×P
an
µ Man

µ :=Man
HT . This pro-étale torsor ac-

tually identifies canonically with (the pull back to the pro-étale site of) the analytic
torsorMan

dR, which is the analytification of MdR (see section 4.1.1).
The pro-étale Kp-torsor limK′p⊆Kp SKpK′p

over SK extends to a pro-Kummer
étale Kp-torsor limK′p⊆Kp S

tor
KpK′p,Σ

over StorK,Σ. We can pull it back to the analytic
space StorK,Σ (see [DLLZ19] for the definition of the pro-Kummer étale site). By
pushout along Kp → G(Qp), we get a pro-Kummer étale G(Qp)-torsor over StorK,Σ
extending Ganpet,p, which we also denote by Ganpet,p. If Kp ⊆ G(Zp) we also have the
pro-Kummer étale G(Zp)-torsor Gpet,p over StorK,Σ.

Let AΣ be the semi-abelian scheme over StorK,Σ. The Hodge-Tate exact sequence
extends to a sequence over the pro-Kummer étale site

0→ Lie(AΣ)⊗OStor
K,Σ

ÔStorK,Σ → H1(AΣ,Qp)⊗Qp ÔStorK,Σ → ωAtΣ ⊗OStor
K,Σ

ÔSanK → 0
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Therefore, the torsors PanHT andMan
HT extend over StorK,Σ, and as usual, we con-

tinue to use the same notation for the extensions. Moreover, again by construction,
the torsorsMan

HT andMan
dR are canonically identified.

4.4.10. Perfectoid Siegel Shimura varieties. By [Sch15], thm. III.3.17 there is a
perfectoid space S?Kp ∼ limKp S?KpKp

.
By [Sch15], we have a G(Qp)-equivariant map πHT : S?Kp → FLG,µ. Moreover,

there exists an affinoid covering FLG,µ = ∪iVi such that for each i, π−1
HT (Vi) is a

good affinoid perfectoid open subset of S?Kp (see definition 4.4.3).
The construction of the map πHT : S?Kp → FLG,µ is delicate at the boundary,

but over the complement of the boundary SanKp ∼ limKp SanKpKp
it has a simple

description which is given below.
By [PS16], thm. 0.4, for any cone decomposition Σ, there is also a perfectoid

space StorKp,Σ ∼ limKp StorKpKp,Σ
(it is important that the cone decomposition does

not depend on Kp for the limit to be perfectoid) and we have a map StorKp,Σ → S?Kp

of perfectoid spaces induced by the maps at finite level Kp.
The torsor Ganpet,p becomes trivial over StorKp,Σ and we therefore get a Hodge-Tate

period map πtorHT : StorKp,Σ → FLG,µ. Let us explain very concretely how this map
is defined. Let Spa(R,R+) be a perfectoid affinoid open subset of StorKp,Σ. We can
evaluate the sequence

0→ Lie(AΣ)⊗OStor
K,Σ

ÔStorK,Σ → H1(AΣ,Qp)⊗Qp ÔStorK,Σ → ωAtΣ ⊗OStor
K,Σ

ÔSanK → 0

on (R,R+) (viewed as an object of the pro-Kummer-étale site of StorK,Σ) and use the
trivialization Q2g

p ' H1(AΣ,Qp) to get an exact sequence:

0→ Lie(AΣ)⊗R→ R2g → ωAtΣ ⊗R→ 0

After localizing, we may even assume that Lie(AΣ) ⊗ R and ωAtΣ ⊗ R are free
R-modules. Now let 0 → Rg → R2g → Rg → 0 be the (polarized) chain with
automorphism group Pµ(R). We have that PanHT (R,R+) =

Isomsymp(0→ Rg → R2g → Rg → 0, 0→ Lie(AΣ)⊗R→ R2g → ωAtΣ ⊗R→ 0)

and PanHT (R,R+) ⊆ Isomsymp(R2g) = GSp2g(R). This is a right Pµ(R)-torsor and
there is an element x ∈ G(R) such that PanHT (R,R+) = xPµ(R). The automorphism
group of 0 → Lie(AΣ) ⊗ R → R2g → ωAtΣ ⊗ R → 0 is xPµ(R)x−1. Finally we let
πtorHT (Spa(R,R+)) = x−1 ∈ FLG,µ(R).

Remark 4.4.11. We are forced to use x−1 above because FLG,µ = Pµ\G. Note that
taking the quotient by the left action of Pµ is natural because right translation on G
defines a right G-action of FLG,µ and the map πHT : S?Kp → FLG,µ is equivariant
for the right G(Qp)-action. We chose to define PanHT as a right Panµ -torsor, because
we want to identify the torsorsMan

HT andMan
dR. But in the classical theory, MdR

is a right torsor. It means that in our convention, the torsor PanHT is pulled back
via πtorHT from the torsor Gan → FLG,µ, x 7→ x−1.
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The maps πtorHT and πHT coincide by construction on the open subset SanKp . We
deduce that we have a commutative diagram:

StorKp,Σ

πtorHT

$$��
S?Kp

πHT // FLG,µ

The key properties of this diagram that we will use are:

• The pull back of the torsor Gan/UPanµ → FLG,µ via πtorHT isMan
HT and this

is canonically identified with the pull back via StorKp,Σ → StorKpKp,Σ
ofMan

dR.
• The map πHT is affine.

4.4.12. Formal models of perfectoid Siegel Shimura varieties. We need to consider
formal models of the perfectoid Siegel Shimura varieties in order to be able to use
the vanishing result below (theorem 4.4.23). We first recall a number of statements
from [PS16]. Let K = KpKp. For Kp = GSp2g(Zp), we have natural models
over Spec Zp for SKpKp , S?KpKp

, and StorKpKp,Σ
that we denote SKpKp , S?KpKp

, and
StorKpKp,Σ

. We can also consider the corresponding p-adic formal schemes SKpKp ,
S?
KpKp

, and Stor
KpKp,Σ

. We denote by A the semi-abelian scheme over Stor
KpKp,Σ

(it is defined up to prime-to-p isogeny by our choice of level structure). By the
construction of the minimal compactification, the line bundle detωA on SKpKp

extends to a line bundle that we also denote by detωA on S?
KpKp

, and whose
pullback to Stor

KpKp,Σ
agrees with the extension defined by the semi-abelian scheme

A.
Now let Kp ⊆ GSp2g(Zp) be an open subgroup. We can define SKpKp , S?

KpKp
,

andStor
KpKp,Σ

as the normalizations ofSKpGSp2g(Zp),S?
KpGSp2g(Zp), andStor

KpGSp2g(Zp),Σ

in SKpKp , S?KpKp
, and StorKpKp,Σ

respectively.
Let us denote by Kp,n = {M ∈ GSp2g(Zp), M = 1 mod pn}. This is the prin-

cipal level pn subgroup. Consider the module Z2g with canonical basis e1, · · · , e2g,
equipped with the standard symplectic form 〈, 〉 given by 〈ei, e2g−i+1〉 = 1 for
1 ≤ i ≤ g, and 〈ei, ej〉 = 0 if i + j 6= 2g + 1. Over SKpKp,n we have a symplectic
isomorphism (Z/pnZ)2g → A[pn] (up to a similitude factor), and it extends to a
morphism of group schemes overSKpKp,n , (Z/pnZ)2g → A[pn]. We have the Hodge-
Tate morphism HTn : A[pn]→ ωAt/p

n. Using the prime-to-p polarization, we can
identify ωAt and ωA. We therefore have sections HTn(ei) ∈ H0(SKpKp,n , ωA/p

n).
We also have a map ΛgHTn : Λg(Z/pnZ)2g → detωA/p

n. Let r =
(
g
2g

)
. Let

f1, · · · , fr be a basis of ΛgZ2g obtained by taking exterior products of e1, · · · , e2g.
We get sections ΛgHTn(fi) ∈ H0(SKpKp,n ,detωA/p

n).
By [PS16], proposition 1.7 and corollary 1.7, the sections HTn(ei) extend to

sections HTn(ei) ∈ H0(Stor
KpKp,n,Σ

, ωA/p
n) and the sections ΛgHTn(fi) extend to

sections ΛgHTn(fi) ∈ H0(S?
KpKp,n

,detωA/p
n).

It follows that over S?
KpKp,n

we have a morphism ΛgHTn : Λg(Z/pnZ)2g →
detωA/p

n. These morphisms satisfy the natural compatibilities as n varies. The
cokernel of this morphism is killed by p

g
p−1 (resp. 4g if p = 2) by [Far10], theorem
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7. We let detωmod,nA be the subsheaf of detωA which is the inverse image of

Im(ΛgHTn(Λg(Z/pnZ)2g)⊗ OS?
Kp,nK

p
→ detωA/p

n)

in detωA. We have p
g
p−1 detωA ⊆ detωmod,nA ⊆ detωA (resp. 4g detωA ⊆ detωmod,nA ⊆

detωA if p = 2) .
Let f : S?

KpKp,n+1
→ S?

KpKp,n
be the projection. We clearly have a map

detωmod,n+1
A → Im(f? detωmod,nA → detωA). This map is an isomorphism if

n ≥ g
p−1 (resp. n ≥ 2g if p = 2). We now assume that n is larger than n0 = g

p−1

(resp. n0 = 2g if p = 2). We simply denote detωmod,nA by detωmodA , this is a
subsheaf of detωA. The sheaf detωmodA is not locally free. We can perform a blow
up to make it locally free. Let us start with a definition:

Definition 4.4.13. Let X be a p-adic formal scheme, locally of finite type over
Spf Zp, and let I be a coherent sheaf of ideals such that p ∈

√
I. We let BLI(X) be

the p-adic formal scheme obtained by taking the admissible blow-up of X at I. We
let NBLI(X) be the normalization of BLI(X), this is the normalized blow-up.

Remark 4.4.14. The normalization of a formal scheme is well defined in our context
by [Con99], coro. 1.2.3.

Let In be the sheaf of ideals of OS?
KpKp,n

given by In = {a ∈ OS?
KpKp,n

, adetωA ⊆
detωmodA }. We let S?,mod

KpKp,n
= NBLIn(S?

KpKp,n
). Over S?,mod

KpKp,n
, the sheaf detωmodA

is locally free and moreover the map

ΛgHTn : Λg(Z/pnZ)2g → detωA/p
n

induces a surjective map

ΛgHT′n : Λg(Z/pnZ)2g → detωmodA /pn−
g
p−1

(resp. ΛgHT′n : Λg(Z/pnZ)2g → detωmodA /pn−2g if p = 2).

Lemma 4.4.15. Let n ≥ n0. We have a commutative diagram

S?,mod
KpKp,n+1

//

h

��

S?
KpKp,n+1

f

��
S?,mod
KpKp,n

// S?
KpKp,n

where the vertical maps are finite. Moreover, h? detωmodA = detωmodA and h?ΛgHT′n(fi) =

ΛgHT′n+1(fi) ∈ H0(S?,mod
KpKp,n+1

,detωmodA /pn−
g
p−1 ) (resp. ∈ H0(S?,mod

KpKp,n+1
,detωmodA /pn−2g)

if p = 2).

Proof. We first observe that Im(f?In → OS?
KpKp,n+1

) = In+1. It follows that we
have maps BLInS

?
KpKp,n

×S?,mod
KpKp,n

S?
KpKp,n+1

→ BLIn+1
S?
KpKp,n+1

→ BLInS
?
KpKp,n

.

The map BLIn+1
S?
KpKp,n+1

→ BLInS
?
KpKp,n

is therefore finite, and so is the map
h : S?,mod

KpKp,n+1
→ S?,mod

KpKp,n
. We have a surjective map h? detωmodA → detωmodA of in-

vertible sheaves. This map is therefore an isomorphism. The last compatibility fol-
lows from the property that f?ΛgHTn(fi) = ΛgHTn+1(fi) ∈ H0(S?

KpKp,n+1
,detωA/p

n).
�
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We can similarly define S?,mod
KpKp

for any open Kp ⊆ Kp,n0
. The ideal In0

pulls
back to an ideal IKp ofS?

KpKp
and we letS?,mod

KpKp
= NBLIKp (S?

KpKp
). IfKp = Kp,n

for n ≥ n0, we recover the previous definition.
We finally let S?,mod

Kp = limnS
?,mod
KpKp,n

where the inverse limit is taken in the
category of p-adic formal schemes. This inverse limit exists because the transition
morphisms are affine. In the limit we have a map ΛgHT : ΛgZ2g

p → detωmodA whose
linearization is surjective. It follows that we have a morphism πHT : S?,mod

Kp →
Pr−1. Let X1, · · · , Xr be the homogeneous coordinates on Pr−1. For all 1 ≤ i ≤ r,
let Ui be the formal open subscheme defined by the condition Xi 6= 0. Let Ui be
its generic fiber.

Proposition 4.4.16. (1) The formal scheme S?,mod
Kp is integral perfectoid and

its generic fiber is the perfectoid space S?Kp .
(2) The Hodge-Tate map factors through a map πHT : S?,mod

Kp → FLG,µ and it
induces the Hodge-Tate period map πHT : S?Kp → FLG,µ of section 4.4.10
on the generic fiber.

(3) For all 1 ≤ i ≤ r, we have that π−1
HT (Ui) is a good open affinoid subset of

S?Kp .

Proof. See [PS16], thm 1.18. This relies on the main theorems of [Sch15]. �

Remark 4.4.17. For n large enough, the open subsets π−1
HT (Ui) come from open

subsets π−1
HT (Ui)Kp,n ↪→ S?KpKp,n

. One can define ([Sch15], p. 72) a formal model
S?−HT
KpKp,n

by gluing the formal schemes Spf H0(π−1
HT (Ui)Kp,n ,O+

SKpKp,n
). We will

not use this formal model.

We can perform similar constructions with the toroidal compactification at level
Kp ⊆ Kp,n0 . Namely, the ideal IKp pulls back to an ideal JKp of Stor

KpKp,Σ
. We de-

note by Stor,mod
KpKp,Σ

= NBLJKp (Stor
KpKp,Σ

). We have natural morphisms Stor,mod
KpKp,Σ

→
S?,mod
KpKp

.

Remark 4.4.18. The space Stor,mod
KpKp,Σ

is not exactly the space considered in [PS16].
Namely, in that reference, we considered further blow ups in order to make the
sheaf denoted ωmodA in loc. cit. (the subsheaf of ωA generated by the image of the
Hodge-Tate period map) locally free.

We letStor,mod
Kp,Σ = limnS

tor,mod
KpKp,n,Σ

where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Proposition 4.4.19. The formal scheme Stor,mod
Kp,Σ is integral perfectoid and its

generic fiber is StorKp,Σ.

Proof. This follows from almost verbatim from [PS16], section A.12, taking into
account remark 4.4.18. �

We now let U ↪→ FLG,µ be a quasi-compact open subset. Our goal is to define
formal models for π−1

HT (U) and (πtorHT )−1(U).
We first need a formal model for U . By [L9̈0], thm. 1.6, there exists an ideal I

of OFLG,µ and an open subscheme U of NBLI(FLG,µ) such that the generic fiber of
U is U .
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We can define Stor,mod
Kp,Σ,U → S?,mod

Kp,U which is a formal model for (πtorHT )−1(U) →
π−1
HT (U) as follows. The ideal I pulls back to ideals I1 and I2 of Stor,mod

Kp,Σ and
S?,mod
Kp respectively. We now wish to consider the normalized blow up of Stor,mod

Kp,Σ

and S?,mod
Kp at I1 and I2 respectively. We actually show that the ideals come from

finite level, perform the normalized blow-up at a finite level, and then pass to the
limit.

Lemma 4.4.20. The ideal I1 and I2 are pull backs of ideals I1,Kp and I2,Kp of
Stor,mod
KpKp,Σ

and S?,mod
KpKp,n

for Kp small enough.

Proof. It suffices to prove the claim for I2. We need to prove that I2 is locally
generated byKp,n-invariant sections for n large enough. First observe that the ideal
I contains ps for some integer s. Over each standard affine Ui, we have I(Ui) =
(s1,i, · · · , sk,i). We can find sections s′1,i, · · · , s′k,i ∈ H0(π−1

HT (Ui),O+
S?
Kp

) such that
s′j,i = sj,i mod ps, and s′j,i comes from some finite levelKp,n by proposition 4.4.16,
(3). Thus, the s′j,i and ps generate I2 over the image of π−1

HT (Ui) in S?KpKp,n
. �

We can therefore consider

NBLI1,Kp
(Stor,mod

KpKp,Σ
)

and
NBLI2,Kp

(S?,mod
KpKp

)

for Kp small enough.
We let NBLI1

(Stor,mod
Kp,Σ ) = limKp NBLI1,Kp

(Stor,mod
KpKp,Σ

) and NBLI2
(S?,mod

Kp,Σ ) =

limKp NBLI2,Kp
(S?,mod

KpKp,Σ
) (the limits are taken in the category of p-adic formal

schemes).
We have maps

NBLI1
(Stor,mod

Kp,Σ )→ NBLI2
(S?,mod

Kp )→ NBLI(FLG,µ).

We let Stor,mod
Kp,Σ,U and S?,mod

Kp,U be the preimages of U. These open formal subschemes
come from open formal subschemesStor,mod

KpKp,Σ,U
andS?,mod

KpKp,U
of NBLI1,Kp

(Stor,mod
KpKp,Σ

)

and NBLI2,Kp
(S?,mod

KpKp
) for large enough Kp (the equations defining U are defined

at finite level).

The following theorem shows that the spaces Stor
KpKp,Σ

, Stor,mod
KpKp,Σ

and Stor,mod
KpKp,Σ,U

admit the usual description at the boundary in terms of certain formal charts. The
case of Stor

KpKp,Σ
is available in the literature. The other cases are deduced from the

case of Stor
KpKp,Σ

, by tracing down what happens with the various normalized blow
ups at the level of formal charts. This is possible because the Hodge-Tate period
map behaves nicely for degenerations of abelian varieties, since the Hodge-Tate
period morphism for étale and multiplicative p-divisible group is trivial.

Theorem 4.4.21. (1) Let K = KpKp with Kp ⊆ GSp2g(Zp). We have a de-
composition Stor

KpKp,Σ
=
∐

Φ ZK(Φ) into locally closed formal subschemes,
indexed by certain cusp label representatives Φ.

(2) The formal completion ̂Stor
KpKp,Σ

ZK(Φ)

admits the following canonical de-
scription:
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• There is a tower of p-adic formal schemes:

SKΦ(QΦ, DΦ)→ SKΦ(QΦ, DΦ)→ SKΦ(GΦ,h, DΦ,h)

where SKΦ(QΦ, DΦ)→ SKΦ(QΦ, DΦ) is a torsor under a torus EK(Φ),
and SKΦ(GΦ,h, DΦ,h) is an integral model of a lower dimensional Siegel
variety.
In the situation that K is the principal level N congruence subgroup,
SKΦ

(GΦ,h, DΦ,h) carries a full level N structure, and SKΦ
(QΦ, DΦ)→

SKΦ
(GΦ,h, DΦ,h) is an abelian scheme torsor. It parametrizes semi-

abelian schemes 0 → T → G → A → 0 (together with certain level
structure) where A is the universal abelian scheme over SKΦ(GΦ,h, DΦ,h)
and T is a split torus of rank g − dimA.
• There is a twisted torus embedding SKΦ

(QΦ, DΦ)→ SKΦ
(QΦ, DΦ,Σ(Φ))

depending on Σ.
• There is an arithmetic group ∆K(Φ) acting on X?(EK(Φ)) and on
SKΦ(QΦ, DΦ) ↪→ SKΦ(QΦ, DΦ,Σ(Φ)).
• We have a ∆K(Φ)-invariant closed subscheme ZKΦ(QΦ, DΦ,Σ(Φ)) ↪→
SKΦ

(QΦ, DΦ,Σ(Φ)).
• There is a finite morphism SKΦ

(GΦ,h, DΦ,h)→ S?
K .

• There is a series of morphisms:

ZKΦ(QΦ, DΦ,Σ(Φ))→ SKΦ(QΦ, DΦ)→ SKΦ
(GΦ,h, DΦ,h).

• We have a canonical isomorphism ZK(Φ) = ∆K(Φ)\ZKΦ(QΦ, DΦ,Σ(Φ)).
• We have a canonical isomorphism

Ŝtor
K,Σ

ZK(Φ)

' ∆K(Φ)\
( ̂SKΦ

(QΦ, DΦ,Σ(Φ))
ZKΦ

(QΦ,DΦ,Σ(Φ)))
.

(3) For small enough Kp:

• The ideal JKp restricted to Ŝtor
K,Σ

ZK(Φ)

is the pull back of an ideal
JKp,Φ of SKΦ

(GΦ,h, DΦ,h).
• Let ZmodKΦ

(QΦ, DΦ,Σ(Φ)) = NBLJKp,ΦZKΦ
(QΦ, DΦ,Σ(Φ)) and ZmodK (Φ) =

∆K(Φ)\ZmodKΦ
(QΦ, DΦ,Σ(Φ)). We have a decomposition Stor,mod

KpKp,Σ
=∐

Φ Z
mod
K (Φ).

• Let SmodKΦ
(GΦ,h, DΦ,h) = NBLJKp,Φ(SKΦ(GΦ,h, DΦ,h)). We have a fi-

nite morphism SmodKΦ
(GΦ,h, DΦ,h)→ S?,mod

KpKp
.

• Let SmodKΦ
(QΦ, DΦ,Σ(Φ)) = NBLJKp,ΦSKΦ(QΦ, DΦ,Σ(Φ)). We have a

canonical isomorphism

Ŝtor,mod
K,Σ

ZmodK (Φ)

' ∆K(Φ)\
( ̂SmodKΦ

(QΦ, DΦ,Σ(Φ))
ZmodKΦ

(QΦ,DΦ,Σ(Φ)))
.

(4) For all small enough Kp:

• The ideal I1,Kp restricted to Ŝtor,mod
K,Σ

ZmodK (Φ)

is the pull back of an
ideal I1,Kp,Φ of SmodKΦ

(GΦ,h, DΦ,h).
• We have a decomposition Stor,mod

KpKp,Σ,U
=
∐

Φ Z
mod
K (Φ)U where ZmodK (Φ)U

is an open subset of NBLI1,Kp
(ZmodK (Φ)).

• There is an open subset SmodKΦ
(GΦ,h, DΦ,h)U of NBLI1,Kp,Φ

(SmodKΦ
(GΦ,h, DΦ,h))

such that we have a finite morphism SmodKΦ
(GΦ,h, DΦ,h)U → S?,mod

KpKp,U
.
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• There exists an open subset SmodKΦ
(QΦ, DΦ,Σ(Φ))U of NBLI1,Kp,Φ

(SmodKΦ
(QΦ, DΦ,Σ(Φ)))

and an open subset ZmodKΦ
(QΦ, DΦ,Σ(Φ))U of NBLI1,Kp,Φ

(ZmodKΦ
(QΦ, DΦ,Σ(Φ)))

such that we have a canonical isomorphism

Ŝtor,mod
K,Σ,U

ZmodK (Φ)U

' ∆K(Φ)\
( ̂SmodKΦ

(QΦ, DΦ,Σ(Φ))U
ZmodKΦ

(QΦ,DΦ,Σ(Φ))U)
.

Remark 4.4.22. The main observation needed to prove this theorem is the property
that the ideals JKp and I1,Kp come from ideals JKp,Φ and I1,Kp,Φ on each formal
chart (first item in (3) and (4)). This is reminiscent of the concept of well positioned
subset or subscheme of [LS18], def. 2.2.1.

Proof. The first two items follow from [Lan17], [MP19] or [PS16] (for principal level
structures). The point (3), follows from [PS16], section A.12. It remains to check

the point (4). The key property is that the ideal I1,Kp restricted to Ŝtor,mod
K,Σ

ZmodK (Φ)

is the pull back of an ideal I1,Kp,Φ of SmodKΦ
(GΦ,h, DΦ,h). The rest follows easily.

We argue as follows. Let Φ be a cusp label at some finite level KpKp. For all
n large enough such that Kp,n ⊆ Kp, we let {Φn}n be a compatible sequence of
cusp label of level KpKp,n mapping to Φ. We let ZmodKp (Φ∞) = limn Z

mod
KpKp,n

(Φn).
We can consider the completion of Stor,mod

Kp,Σ at ZmodKp (Φ∞). Then we have a map

Ŝtor,mod
Kp,Σ

ZmodKp (Φ∞)

→ Smod
Kp

Φ∞
(GΦ,h, DΦ,h) where Smod

Kp
Φ∞

(GΦ,h, DΦ,h) is a perfectoid
formal scheme attached to a Siegel Shimura datum of lower dimension. Moreover,
we have a factorization of the Hodge-Tate period map as follows (compare with
[CS19], coro. 4.2.2):

Ŝtor,mod
Kp,Σ

ZmodKp (Φ∞) πtorHT //

��

FLG,µ

Smod
Kp

Φ∞
(GΦ,h, DΦ,h)

πHT // FLGΦ,h,µGΦ,h

OO

The sheaf of ideals I of FL restricts to a sheaf of ideals IΦ of FLGΦ,h,µGΦ,h
. We

deduce that at infinite level, the sheaf I1 restricted to Ŝtor,mod
Kp,Σ

ZmodKp (Φ∞)

is the pull
back of a sheaf of ideals I1,Φ on Smod

Kp
Φ∞

(GΦ,h, DΦ,h). We can then prove that I1,Φ

comes from finite level Kp as in lemma 4.4.20. �

Theorem 4.4.23. Consider the map π : Stor,mod
KpKp,Σ,U

→ S?,mod
KpKp,U

. Then we have
that Riπ?OStor,mod

KpKp,Σ,U
(−nD) = 0 for all i > 0 and n ≥ 1.

Proof. The proof of theorem 4.1.7 transposes verbatim, given theorem 4.4.21. �

4.4.24. The Hodge type case. We fix an embedding (G,X) ↪→ (GSp2g,H±g ) of a
Hodge type Shimura datum into a Siegel Shimura datum. Let V be a 2g-dimensional
vector space over Q, equipped with a symplectic pairing so that G ↪→ GSp2g ↪→
GL(V ). We can view G ↪→ GL(V ) as the group stabilizing a finite number of
tensors {sα} ∈ V ⊗ (where V ⊗ = ⊕m,n∈Z≥0

V ⊗m ⊗ (V ∨)⊗n). The group GSp2g will



HIGHER COLEMAN THEORY 73

be denoted by G̃ in this section. All the objects corresponding to this group will
carry a ∼.

Over SKpKp we have a pro-étale Kp-torsor represented by the tower of Shimura
varieties limK′p⊆Kp SKpK′p

. By pushout along the map Kp → G(Qp) we get a
G(Qp)-torsor.

One can give a more “modular” description of this torsor using the closed embed-
ding SK ↪→ S̃K̃ , where S̃K̃ is a Siegel Shimura variety (over E) and the embedding
is the one induced by (G,X) ↪→ (GSp2g,H±g ) for a suitable compact open subgroup
K̃. The tensors {sα} can be used to produce sections {sα,p ∈ H0(SK ,H1(A,Qp)⊗)}.
More precisely, one first produces tensors {sα,B ∈ H0(SK(C),H1(A,Q)⊗)} using the
complex uniformization of SK(C). They give tensors {sα,p ∈ H0(SK(C),H1(A,Qp)⊗)}.
Lemma 2.3.2 of [CS17] proves that these tensors are defined over E. Therefore, we
can consider the torsor of isomorphisms V ⊗Q Qp → H1(A,Qp), preserving all the
tensors sα,p.

There is also the Mµ-torsor MdR over SK . We recall its description. The ten-
sors {sα} can be used to produce sections {sα,dR ∈ H0(SK ,H1,dR(A)⊗)}. One first
define the P stdµ -torsor PdR, to be the the torsor of isomorphisms V ⊗Q OSK →
H1,dR(A) matching the filtration on V corresponding to P stdµ with the Hodge fil-
tration, and preserving the tensors sα,dR. By pushout along P stdµ → Mµ, we have
MdR = PdR ×P

std
µ Mµ.

Remark 4.4.25. The closed immersion SK ↪→ S̃K̃ extends to a closed immersion
MdR ↪→ M̃dR where M̃dR is the Mµ̃- “de Rham” torsor over S̃K̃ .

By pull back to the analytic space SanK we get a pro-étale G(Qp)-torsor Ganpet,p,
as well as aMan

µ -torsorMan
dR.

In section 2.3 of [CS17] the authors define two other pro-étale torsors over SanK :
PanHT and Man

HT , under the groups Panµ and Man
µ . These definitions extend those

given in the Siegel case (see section 4.4.8) and use the tensors sα,p. Moreover,
PanHT ×P

an
µ Gan = Ganet,p ×G(Qp) Gan andMan

HT = PanHT ×P
an
µ Man

µ . By [CS17], prop.
2.3.9, there is a canonical identification of torsorsMan

dR andMan
HT

4.4.26. Perfectoid Hodge type Shimura varieties. By [Sch15], there is a perfectoid
space SanKp ∼ limKp SanKpKp

. Since the torsor Ganpet,p becomes trivial over SanKp , we
obtain a Hodge-Tate period map ([CS17], thm 2.1.3): πHT : SanKp → FLG,µ which
is G(Qp)-equivariant.

A key property is that the pull back of theMan
µ - torsor Gan/UPanµ → FLG,µ via

πHT isMan
HT and this is canonically identified with the pull back via SanKp → SanKpKp

ofMan
dR.

Moreover, the relation with the Siegel datum is expressed by the following dia-
gram, where the horizontal maps are closed immersions:

SanKp
//

��

S̃an
K̃p

��
FLG,µ // FLG̃,µ̃
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4.4.27. Compactifications in the Hodge case. For any compact openK ⊂ G(Af ), we
have the minimal compactification S?K and there is a finite surjective map S?K → S?K
where S?

K
is defined before [Sch15], thm. IV. 1.1. This is the schematic image of

the morphism S?K → S̃?K̃ where S̃?
K̃

is the minimal compactification of the Shimura
variety for G̃, and K̃ is a small enough compact open subgroup of G̃(Af ) such that
K̃ ∩ G(Af ) = K. By [Sch15], thm. IV. 1.1 there is a perfectoid space S?

Kp ∼
limKp S?KpKp

and there is a map πHT : S?
Kp → FLG,µ. Strictly speaking the map

constructed in [Sch15], took values in FLG̃,µ̃. Since FLG,µ ↪→ FLG̃,µ̃ is Zariski
closed and the map is known to factors through FLG,µ over the Zariski dense open
subset SanKp by [CS17], thm 2.1.3, we deduce that we have a map πHT : S?

Kp →
FLG,µ.

Since the tower {S?
KpKp

}Kp carries a G(Qp)-action, the space S?
Kp inherits a

G(Qp)-action, and the map πHT is G(Qp)-equivariant. Moreover, the map πHT is
affinoid in the sense that there exists an affinoid covering FLG,µ = ∪iVi such each
π−1
HT (Vi) is a good affinoid perfectoid open subset of S?

Kp (see definition 4.4.3).
We also know that there is a perfectoid space S?Kp = limKp S

?,♦
KpKp

(this last
inverse limit is taken in the category of diamonds) by [BS19], thm. 1.16. We
therefore have a G(Qp)-equivariant map S?Kp → S?

Kp . It is not known whether
S?Kp ∼ limS?KpKp

in general.
By [Lan20], for a cofinal subset of cone decompositions Σ, we have a perfectoid

space StorKp,Σ ∼ limStorKpKp,Σ
. More precisely, for each such cone decomposition Σ,

there exists a cone decomposition Σ̃ and a closed immersion of perfectoid spaces
StorKp,Σ ↪→ Stor

K̃p,Σ̃
. Let us call these cone decompositions perfect cone decompositions

because they give rise to perfectoid toroidal compactifications.

Remark 4.4.28. We did not prove that there is a perfectoid space StorKp,Σ ∼ limStorKpKp,Σ

for any cone decomposition Σ. It seems likely that one could reproduce the argu-
ment of [PS16] in the Hodge case, using the explicit description of the boundary of
the integral toroidal compactifications given in [MP19].

For a perfect cone decomposition Σ, we have a series of maps StorKp,Σ → S?Kp →
S?
Kp and we therefore get a map πtorHT : StorKp,Σ → FLG,µ.
The relation to the Siegel Shimura varieties is given by the following diagram

where all horizontal maps are closed immersions:

StorKp,Σ
//

��

S̃tor
K̃p,Σ̃

��

S?Kp

��
S?
Kp

//

��

S̃?
K̃p

��
FLG,µ // FLG̃,µ̃
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Using the map πtorHT we can define a canonical extension of the torsors PanHT and
Man

HT to StorKp,Σ, by simply by pulling back the universal Panµ -torsor over FLG,µ and
pushing out along the map Panµ →Man

µ . There is also the torsorMan
dR over StorK,Σ

which is pulled back from the map StorKp,Σ → StorKpKp,Σ
. The following proposition is

corollary 5.2 of [EH19].

Proposition 4.4.29 ([EH19]). The torsors Man
HT and Man

dR ×StorKpKp,Σ S
tor
Kp,Σ are

canonically isomorphic.

Proof. Let us denote by M̃ the restriction to StorKp,Σ of the torsor M̃an
dR = M̃an

HT

defined over the Siegel perfectoid Shimura variety S̃K̃p,Σ̃. By construction, M̃ is a
Man

µ̃ -torsor. The two torsors Man
HT and Man

dR are Man
µ -reductions of this torsor.

They coincide over SanKp by [CS17], prop. 2.3.9. ButMan
HT (resp. Man

dR) is equal to
the Zariski closure of Man

HT |SanKp (resp. Man
dR|SanKp ) in M̃ . Therefore, these torsors

have to coincide everywhere. �

Remark 4.4.30. The isomorphism of torsors is Hecke equivariant.

4.4.31. Integral models in the Hodge case. We need to consider formal models. This
section is entirely parallel to section 4.4.12. Let K = KpKp with K = K̃ ∩G(Af ).
Suppose that K̃p ⊆ G̃(Zp). We can define SKpKp , S?

KpKp
, and Stor

KpKp,Σ
as the

normalizations of S̃K̃ , S̃?
K̃
, and S̃tor

K̃,Σ̃
in SKpKp , S?KpKp

, and StorKpKp,Σ
respectively.

Similarly, forKp small enough, we define S?,mod
KpKp

, Stor,mod
KpKp,Σ

as the normalizations
of S̃?,mod

K̃
and S̃tor,mod

K̃,Σ
in S?KpKp

and StorKpKp,Σ
respectively. Alternatively, these

can also be constructed as normalized blow ups of S?
KpKp

and Stor
KpKp,Σ

for the
ideals IKp and JKp which are the pull back of the ideals IK̃p and JK̃p from S̃?

K̃

and S̃tor
K̃,Σ

.

We let S?,mod
Kp = limKp S

?,mod
KpKp

, where the inverse limit is taken in the category of
p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine. In the limit we have a map S?,mod

Kp → S̃?,mod

K̃p
and therefore a map

πHT : S?,mod
Kp → FLG̃,µ̃.

Proposition 4.4.32. The Hodge-Tate map factors through a map πHT : S?,mod
Kp →

FLG,µ.

Proof. One first checks that the space Smod
Kp (the complement of the boundary

in S?,mod
Kp ) is integral perfectoid and its generic fiber is the quasi-compact open

perfectoid Shimura variety SKp . This follows from the Siegel case, using that
SKp ↪→ S̃K̃p is a Zariski closed immersion. Therefore the factorization of the
period morphism through FLG,µ holds over the Zariski dense subspace Smod

Kp , and
thus everywhere. �

Remark 4.4.33. We do not know if S?,mod
Kp is integral perfectoid.

We letStor,mod
Kp,Σ = limKp S

tor,mod
KpKp,Σ

where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Proposition 4.4.34. Assume that Σ is perfect. The formal scheme Stor,mod
Kp,Σ is

integral perfectoid and its generic fiber is StorKp,Σ.
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Proof. This follows from the Siegel case. �

Remark 4.4.35. We do not know if Stor,mod
Kp,Σ is integral perfectoid for all Σ.

We now let U ↪→ FLG,µ be a quasi-compact open subset. It is induced by a
quasi-compact open subset Ũ of FLG̃,µ̃. Our goal is to define formal models for
π−1
HT (U) and (πtorHT )−1(U).
There exists an ideal Ĩ of OFLG̃,µ̃

and an open subscheme Ũ of NBLĨ(FLG̃,µG̃
)

such that the generic fiber of Ũ is Ũ .
For Kp small enough, we define S?,mod

KpKp,U
, Stor,mod

KpKp,Σ,U
as the normalizations of

S̃?,mod

K̃,Ũ
and S̃tor,mod

K̃,Σ̃,Ũ
in π−1

HT (U) and (πtorHT )−1(U) respectively. Alternatively, these

can also be constructed as suitable opens in normalized blow ups of S?,mod
KpKp

and
Stor,mod
KpKp,Σ

at the ideals I1,Kp and I2,Kp which are the pull back of the ideals I1,K̃p

and I2,K̃p
from S̃?,mod

K̃
and S̃tor,mod

K̃,Σ̃
.

Theorem 4.4.36. (1) Let K = KpKp with Kp ⊆ G̃(Zp). We have a decompo-
sition Stor

KpKp,Σ
=
∐

Φ ZK(Φ) into locally closed formal subschemes, indexed
by certain cusp label representatives Φ.

(2) The formal completion ̂Stor
KpKp,Σ

ZK(Φ)

admits the following canonical de-
scription:
• There is a tower of p-adic formal schemes:

SKΦ(QΦ, DΦ)→ SKΦ(QΦ, DΦ)→ SKΦ
(GΦ,h, DΦ,h)

where SKΦ(QΦ, DΦ)→ SKΦ(QΦ, DΦ) is a torsor under a torus EK(Φ),
and SKΦ(GΦ,h, DΦ,h) is an integral model of a lower dimensional Shimura
variety.
• There is a twisted torus embedding SKΦ

(QΦ, DΦ)→ SKΦ
(QΦ, DΦ,Σ(Φ))

depending on Σ.
• There is an arithmetic group ∆K(Φ) acting on X?(EK(Φ)) and on
SKΦ(QΦ, DΦ) ↪→ SKΦ(QΦ, DΦ,Σ(Φ)).
• We have a ∆K(Φ)-invariant closed subscheme ZKΦ

(QΦ, DΦ,Σ(Φ)) ↪→
SKΦ

(QΦ, DΦ,Σ(Φ)).
• There is a finite morphism SKΦ

(GΦ,h, DΦ,h)→ S?
K .

• There is a series of morphisms:

ZKΦ
(QΦ, DΦ,Σ(Φ))→ SKΦ

(QΦ, DΦ)→ SKΦ
(GΦ,h, DΦ,h).

• We have a canonical isomorphism ZK(Φ) = ∆K(Φ)\ZKΦ
(QΦ, DΦ,Σ(Φ)).

• We have a canonical isomorphism

Ŝtor
K,Σ

ZK(Φ)

' ∆K(Φ)\
( ̂SKΦ

(QΦ, DΦ,Σ(Φ))
ZKΦ

(QΦ,DΦ,Σ(Φ)))
.

(3) For small enough Kp:

• The ideal JKp restricted to Ŝtor
K,Σ

ZK(Φ)

is the pull back of an ideal
JKp,Φ of SKΦ

(GΦ,h, DΦ,h).
• Let ZmodKΦ

(QΦ, DΦ,Σ(Φ)) = NBLJKp,ΦZKΦ(QΦ, DΦ,Σ(Φ)) and ZmodK (Φ) =

∆K(Φ)\ZmodKΦ
(QΦ, DΦ,Σ(Φ)). We have a decomposition Stor,mod

KpKp,Σ
=∐

Φ Z
mod
K (Φ).
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• Let SmodKΦ
(GΦ,h, DΦ,h) = NBLJKp,Φ(SKΦ

(GΦ,h, DΦ,h)). We have a fi-
nite morphism SmodKΦ

(GΦ,h, DΦ,h)→ S?,mod
KpKp

.
• Let SmodKΦ

(QΦ, DΦ,Σ(Φ)) = NBLJKp,ΦSKΦ(QΦ, DΦ,Σ(Φ)). We have a
canonical isomorphism

Ŝtor,mod
K,Σ

ZmodK (Φ)

' ∆K(Φ)\
( ̂SmodKΦ

(QΦ, DΦ,Σ(Φ))
ZmodKΦ

(QΦ,DΦ,Σ(Φ)))
.

(4) For all small enough Kp,

• The ideal I1,Kp restricted to Ŝtor,mod
K,Σ

ZmodK (Φ)

is the pull back of an
ideal I1,Kp,Φ of SmodKΦ

(GΦ,h, DΦ,h).
• We have a decomposition Stor,mod

KpKp,Σ,U
=
∐

Φ Z
mod
K (Φ)U where ZmodK (Φ)U

is an open subset of NBLI1,Kp
(ZmodK (Φ)).

• There is an open subset SmodKΦ
(GΦ,h, DΦ,h)U of NBLI1,Kp,Φ

(SmodKΦ
(GΦ,h, DΦ,h))

such that we have a finite morphism SmodKΦ
(GΦ,h, DΦ,h)U → S?,mod

KpKp,U
.

• There exists an open subset SmodKΦ
(QΦ, DΦ,Σ(Φ))U of NBLI1,Kp,Φ

(SmodKΦ
(QΦ, DΦ,Σ(Φ)))

and an open subset ZmodKΦ
(QΦ, DΦ,Σ(Φ))U of NBLI1,Kp,Φ

(ZmodKΦ
(QΦ, DΦ,Σ(Φ)))

such that we have a canonical isomorphism

Ŝtor,mod
K,Σ,U

ZmodK (Φ)U

' ∆K(Φ)\
( ̂SmodKΦ

(QΦ, DΦ,Σ(Φ))U
ZmodKΦ

(QΦ,DΦ,Σ(Φ))U)
.

Proof. The first two items follow from [MP19]. The point (3) and the point (4)
follow from the analogous statement in theorem 4.4.21. �

Theorem 4.4.37. Consider the map π : Stor,mod
KpKp,Σ,U

→ S?,mod
KpKp,U

. Then we have
that Riπ?OStor,mod

KpKp,Σ,U
(−nD) = 0 for all i > 0 and n ≥ 1.

Proof. The proof of theorem 4.1.7 transposes verbatim, given theorem 4.4.36. �

4.4.38. General Shimura varieties. We now extend part of the preceding to general
Shimura varieties. For the moment, let (G,X) be an arbitrary Shimura datum
and let K = KpKp ⊆ G(Af ) be a compact open subgroup. We consider the
compactified Shimura variety StorK,Σ. For any algebraic representation W of Gc, we
have a local system on the pro-kummer-étale site Wp as well as a filtered vector
bundle with integrable log-connection WdR. We need some period sheaves relative
to StorK,Σ (see [Sch13a], sect. 6 and [DLLZ19], sect. 2): B+

dR, BdR, OB+
dR,log and

OBdR,log. The following property is a consequence of [DLLZ19], thm. 5.3.1. The
local system Wp and the filtered vector bundle with integrable log-connection WdR

are associated ([Sch13a], def 7.5) in the sense that there is a canonical isomorphism
compatible with filtrations, connection and Hecke action:

Wp ⊗Qp OBdR,log =WdR ⊗OStor
K,Σ

OBdR,log

Remark 4.4.39. This identity is a consequence of the comparison theorems for
(semi)-abelian varieties in the Siegel case. In the Hodge case and outside of the
boundary, it is proved in [CS17] section 2.2 and 2.3, as a consequence of the com-
parison theorems for abelian varieties, together with results on Hodge tensors under
comparison isomorphisms due to [Bla94].
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Using this canonical isomorphism, we define the Hodge-Tate filtration on Wp ⊗
ÔStorK,Σ as follows. Let M =Wp ⊗Qp B

+
dR,log and M0 = (WdR ⊗OStor

K,Σ

OB+
dR,log)

∇=0.

These are two B+
dR-local systems and are lattices inside M⊗B+

dR
BdR = M0 ⊗B+

dR

BdR. There are therefore two filtrations on this BdR-local system FiliM and FiliM0.
One defines an ascending filtration by:

Fil−jWp ⊗Qp ÔStorK,Σ = (M ∩ FiljM0)/(Fil1M ∩ FiljM0).

and we have the relation

GrjWp ⊗Qp ÔStorK,Σ = GrjWdR ⊗OStor
K,Σ

ÔStorK,Σ .

This construction is functorial with respect to the Hecke action and compatible
with the Tannakian formalism. One can therefore derive consequences at the level
of torsors. Over StorK,Σ, we have a pro-kummer-étale Gc(Qp)-torsor Ganpet,p as well
as a principal Gc,an-torsor GandR (defined over the étale site). The torsor GandR has a
reduction of structure group to a Pstd,c,anµ -torsor (corresponding to the filtration
on WdR) that we denote by PandR, and we have

Man
dR = PandR ×P

std,c,an
µ Mc,an

µ .

On the other hand, the torsor Ganpet,p ×G
c(Qp) Gc,an has a reduction of structure

group to a Pc,anµ -torsor (corresponding to the filtration on Wp ⊗Qp ÔStorK,Σ) that we
denote by PanHT , and we define

Man
HT = PanHT ×P

c,an
µ Mc,an

µ .

We have the identification of torsors on the pro-étale siteMan
HT =Man

dR, compatible
with the Hecke action. This implies thatMan

HT is already defined on the étale site.
We can consider the inverse limit in the category of diamonds Stor,♦Kp,Σ = limKp S

tor,♦
KpKp,Σ

.
To summarize the situation, we have the following theorem, which is really a

consequence of [DLLZ19], thm. 5.3.1.

Theorem 4.4.40. The torsor Ganpet,p is trivial over Stor,♦Kp,Σ, and we therefore obtain
a morphism:

πtorHT : Stor,♦Kp,Σ → FLG,µ.

Moreover, the pull back of the torsor Gc,an/UPanµ → FLG,µ via πtorHT : Stor,♦Kp,Σ →
FLG,µ is Man

HT , and this is also the pull back of Man
dR via the map Stor,♦Kp,Σ →

StorKpKp,Σ
.

We have thus extended the picture to the case of general Shimura varieties at the
expense of working with diamonds. This is unfortunately not enough information
for our purposes. In particular, we need to address the question of affineness of the
Hodge-Tate period map. For this reason, we restrict to abelian type Shimura data
and work out the connection between abelian and Hodge type Shimura varieties in
the next section.

4.4.41. Abelian type Shimura varieties. We now consider an abelian type Shimura
datum (G,X). This means that there is a Hodge type Shimura datum (G1, X1)
such that there is a central isogeny Gder1 → Gder inducing an isomorphism of the as-
sociated connected Shimura data (Gad, X+) and (Gad1 , X+

1 ) (see [Mil05], definition
4.4).
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We recall a nice way to connect the Shimura data (G,X) and (G1, X1) from
[Lov17], section 4.6. Let E be the composite of the reflex fields of both Shimura
data. One can construct a diagram of Shimura data

(B1, XB1
) //

��

(B,XB)

��
(G1, X1) (G,X)

where B1 → G1 and B → G induce isomorphisms Bder1 ' Gder1 and Bder ' Gder,
and the map B1 → B is a central isogeny.

Actually B1 = G1×Gab1
ResE/QGm for a suitable map ResE/QGm → Gab1 induced

by the cocharacter µG1
. We let T = ResE/QGm.

Since we are going to deal with several Shimura varieties at the same time in this
section, we change our notation, and denote by S(G,X)K the Shimura variety at-
tached to a datum (G,X) and compact open K. We will similarly writeMdR(G,X)
rather than MdR, etc. We also adopt the standard notation that for H/Q a reduc-
tive group, Had(Q)+ is the intersection of Had(Q) with the identity component of
Had(R), while H(Q)+ is the preimage of Had(Q)+ under H(Q)→ Had(Q).

Let us first recall some classical results. We choose connected components
X+
B1

, X+
B , X

+
1 and X+ compatibly with our morphisms of Shimura data. This

allows us to identify the set of geometric connected component of a Shimura va-
riety S(H,XH)K with H(Q)+\H(Af )/K. We let S0(H,XH)K be the connected
component corresponding to the class of 1 (we allow ourselves to extend the base
field). We have S0(H,XH)K(C) = ΓK\X+

H where ΓK = H(Q)+ ∩ K. We adopt
the same notation of adding a supscript 0 for the connected components of minimal
and toroidal compactifications.

We recall a functoriality between Shimura data and compactifications. Let g :
(H,XH) → (S,XS) be a morphism of Shimura data. We assume that g induces
an isomorphism Had = Sad. Let K ′ ⊆ H(Af ) and K ⊂ S(Af ) be compact open
subgroups such that g(K ′) ⊆ K. Let Σ be a cone decomposition for S.

Proposition 4.4.42. The following point are satisfied.

(1) The morphism S(H,XH)K′ → S(S,XS)K is finite étale.
(2) The cone decomposition Σ for S induces a cone decomposition for H and

the morphism Stor(H,XH)K′,Σ → Stor(S,XS)K,Σ is finite.
(3) If g(K ′) is normal inside K, the morphism S0(H,XH)K′ → S0(S,XS)K

is Galois with finite group ∆(K,K ′). The action of ∆(K,K ′) extends to
an action on Stor,0(H,XH)K′,Σ, and Stor,0(S,XS)K,Σ is the quotient of
Stor,0(H,XH)K′ by the action of ∆(K,K ′).

Proof. For the first point we reduce to check this on connected components over the
complex numbers. We have X+

H = X+
S = X+. We have S0(H,XH)K′ = X+/ΓK′

and S0(S,XS)K = X+/ΓK . The images of ΓK and Γ′K in Had(Q)+, denoted
respectively ΓadK and ΓadK′ , are arithmetic subgroups by [Mil05], prop. 3.2. We
deduce that ΓadK′ has finite index in ΓadK . We next claim that Σ also induces a cone
decomposition for H. By our assumption, the map P 7→ g−1(P ) induces a bijection
between the rational parabolics of S and H and this is basically all we need. See
[Har89], sect. 2.5. The finiteness of the map follows from the description of the
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local charts. For the last point, the group ∆(K,K ′) is ΓadK /Γ
ad
K′ . By normality, the

action of ∆(K,K ′) extends and the last point follows. �

We also recall a construction of fiber products of torsors. Let S be a scheme and
letH1, H2, H3 be three group schemes with morphismsH1 → H2 andH3 → H2. We
assume that we have Hi-torsors Pi over S and isomorphisms θ1 : PH1

×H1H2 ' PH2

and θ3 : PH3
×H3 H2 ' PH2

. Then one can form PH1×H2
H3

= PH1
×PH2

PH1
which

is an H1 ×H2
H3 torsor.

Theorem 4.4.43. The following points are satisfied:
(1) The towers of connected components of the Shimura varieties limK⊆B1(Af ) S

0(B1, XB1
)K

and limK⊆G1(Af ) S
0(G1, X1)K are canonically isomorphic. The same holds

for the minimal and toroidal compactifications.
(2) Let Kp ⊆ B1(Apf ) be compact open. There exists a compact open subgroup

(Kp)′ ⊆ G1(Apf ) such that we have a finite étale Galois morphism:

lim
K′p⊆G1(Qp)

S0(G1, X1)(Kp)′K′p
→ lim

Kp⊆B1(Qp)
S0(B1, XB1

)KpKp .

(3) Let K ⊆ B1(Af ) be a compact open subgroup and Σ be a cone decomposition
for G1. There are compact open subgroups K1 ⊆ G1(Af ), K2 ⊆ T (Af ),
K3 ⊆ Gab1 (Af ),

Stor(B1, XB1)K,Σ
π1 //

π2

��

Stor(G1, X1
)K1,Σ

��
S(T,XT )K2

// S(Gab1 , XGab1
)K3

Denote by π3 : Stor(B1, XB1
)K,Σ → S(Gab1 , XGab1

)K3
. The torsorMdR(B1, XB1

)

over Stor(B1, XB1)KpKp,Σ is canonically isomorphic to the fiber product

π?1MdR(G1, X1)×π?3MdR(Gab1 ,X
Gab1

) π
?
2MdR(T,XT ).

(4) Let g : B1 → G. Let K ⊆ G(Af ) be neat open compact. There exists a
compact open subgroup K ′ ⊆ B1(Af ) such that g(K ′) ⊆ K and the mor-
phism S0(B1, XB1)K′ → S0(G,X)K is finite étale and Galois with group
∆(K,K ′).

(5) Let Σ be a cone decomposition for G. The torsorMdR(G,X) over Stor,0(G,X)K,Σ
is the quotient by ∆(K,K ′) of the torsor

MdR(B1, X1)×M
c
µB1 M c

µG

over Stor,0(B1, XB1
)K′,Σ.

(6) Let Kp ⊆ G(Apf ). There exists a compact open subgroup (K ′)p ⊆ B1(Apf )

such that g((K ′)p) ⊆ Kp and the morphism

lim
K′p⊆B1(Qp)

S0(B1, XB1
)(K′)pK′p

→ lim
Kp⊆G(Qp)

S0(G,X)KpKp

is finite étale and Galois.

Proof. We recall that for a reductive group H defined over Q, the topologies on
Had(Q)+ defined by the images of congruence subgroups of H(Q)+ and Hder(Q)+

are the same. This implies that the connected components of the tower of Shimura
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varieties is determined by the connected Shimura datum. By construction, the
datum (Gder1 , X+

1 ) and (Bder1 , X+
B1

) are the same.
We now check the second point. Let us fix a decreasing sequence of compact

open subgroups Kp,n ⊆ B1(Qp) with ∩nKp,n = {1} and Kp,n normal inside Kp,1.
Let Kad

p,n be the image of Kp,n in Bad1 (Qp). Let Γn = B1(Q)+ ∩ KpKp,n and let
Γadn the image of Γn in Bad1 (Q)+.

By the first point, there exists a compact open subgroup (Kp)′K ′p,1 ⊆ G1(Af )

such that Γ′1 = G1(Q)+ ∩ (Kp)′K ′p,1 has the property that its image in Bad1 (Q)+ is
a finite index normal subgroup of Γad1 . Actually, we may also choose Γ′1 such that
Γ′1 ⊆ Gder1 (Q)+ (this follows from the fact that G1 is of Hodge type, hence Gab1 (Q)
is discrete in Gab1 (Af )).

We may also assume that the map Gder1 (Q)+ → Bad1 (Q)+ induces an isomor-
phism from Γ′1 to its image (indeed, the kernel of this map is finite). Let us denote
by Γ′n = Γadn ∩Γ′1. Let ∆n = Γadn /Γ

′
n. Clearly ∆n → ∆n−1 is injective and therefore

∆ = limn ∆n is a finite group.
Since the map Gder1 (Qp) → Bad1 (Qp) is a local homeomorphism, there is for n

large enough a subgroup Kder
p,n ⊆ Gder1 (Qp) which maps isomorphically to Kad

p,n,
the image of Kp,n in Bad1 (Qp). We deduce that Γ′n = Γ′1 ∩Kder

p,n . Finally, we can
find a decreasing sequence of compact open subgroups {K ′p,n ⊆ G1(Qp)} such that
∩nK ′p,n = {1} andK ′p,n∩Gder1 (Qp) = Kder

p,n . We deduce that limK′p,n
S0(G1, XB1

)(Kp)′K′p,n
→

limKp,n S
0(B1, XB1

)KpKp,n is finite étale with group ∆. For the third point, using
the various functorialities of Shimura varieties (see for instance [Lov17], lemma
3.1.6), we see that we have a map of torsors

MdR(B1, XB1)→ π?1MdR(G1, X1)×π?3MdR(Gab1 ,X
Gab1

) π
?
2MdR(T,XT ).

and a map of torsors is an isomorphism. We check the fourth point. We can
find a normal compact open subgroup K ′ ⊆ g−1(K) and we apply proposition
4.4.42. The fifth point follows again from the functorialities between Shimura va-
rieties. We now check the last point. Let us fix a decreasing sequence of compact
open subrgoups {Kp,n ⊆ G(Qp)} with ∩nKp,n = {1} and Kp,n is normal inside
Kp,1. Let us define Γn = G(Q)+ ∩KpKp,n. Let us fix a compact open subgroup
(K ′)pK ′p,1 ⊆ B1(Af ) with g((K ′)pK ′p,1) ⊆ KpKp,n. Let K ′p,n = g−1(Kp,n) ∩K ′p,1.
Let Kder

p,n = K ′p,n ∩ Bder1 (Qp). Let Γ′n = B1(Q)+ ∩ (Kp)′K ′p,n. Let Γdern =

Γn ∩ B1(Q)der+ . For any of Γn,Γ
′
n,Γn, we add a subscript ad to mean their im-

age in Gad(Q)+. We see that (Γdern )ad ⊆ (Γ′n)ad ⊆ Γadn are all arithmetic sub-
groups. Let ∆n = Γadn /(Γ

der
n )ad. We see that ∆n → ∆n−1 is injective and therefore

∆ = limn ∆n is a finite group. We observe that ∩nKder
p,n = Ker(Bder1 (Qp)→ G(Qp))

is a finite group. Let us fix a compact open subgroup Lp ⊆ Bder1 (Qp) such that
Lp ∩ Ker(Bder1 (Qp) → G(Qp)) = {1}. We let Γder,

′

n = Γdern ∩ Lp. The morphism
limn Γder,

′

n \X+ → limn Γn\X+ is finite étale and Galois. Since this map factors
the map limK′p⊆B1(Qp) S

0(B1, XB1
)(K′)pK′p

(C) → limKp⊆G(Qp) S
0(G,X)KpKp(C),

we conclude.
�

In this paper, we will be able to reduce a number of statements (and in particular
vanishing theorems) on abelian type Shimura varieties to the Hodge type case using
the following principle:
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Principle 4.4.44. (1) We can extend a construction (eg. of a torsor) from the
Shimura variety for (G1, X1) to the Shimura variety for (B1, XB1) by per-
forming a (trivial) construction on the Shimura variety attached to T and
using the identity M c

µB1
= M c

µG1
×Mab,c

µG1

T c.

(2) The torsors we construct on a connected component of a Shimura variety for
(G,X) is obtained from a torsor on a connected component of the Shimura
variety for (B1, XB1

) by pushing out along the map Bc1 → Gc and taking
the quotient by a finite group.

We work until the end of this paragraph over the algebraically closed field C ' Cp
(this means that all Shimura varieties are base changed to Cp). This simplifies our
treatment of connected components of Shimura varieties. We also recall that the
rationality questions with respect to the reflex field are irrelevant for us.

The principle 4.4.44 is based on the following theorem:

Theorem 4.4.45. There is a commutative diagram

S?(B1, XB1
)

ww

��

''
S?(G1, X1)

''

S?(G,X)

ww
FLG,µ

where S?(B1, XB1
), S?(G1, X1), and S?(G,X) are perfectoid spaces represent-

ing (in the category of diamonds) limK S?(B1, XB1
)K , limK S?(G1, XG1

)K , and
limK S?(G,X)K . The maps are equivariant for the respective actions of B1(Af ),
G1(Af ), and G(Af ). The three maps to the flag variety FLG,µ = FLG1,µG1

=

FLB1,µB1
are Hodge-Tate period maps, and the composite map Stor,♦(G,X)Σ =

limK Stor,♦(G,X)K,Σ → S?(G,X)→ FLG,µ is the map πtorHT of theorem 4.4.40.

Remark 4.4.46. In the course of the proof, we also introduce spaces S?(G,X) =
limK S?(G,X)K which depend on the embedding of (G1, X1) in a Siegel datum.
We have finite maps S?(G,X)K → S?(G,X)K which are isomorphisms away from
the boundary. We prove that S?(G,X) ∼ limK S?(G,X)K and that the map πHT
factors through an affinoid map πHT : S?(G,X)→ FLG,µ. See proposition 4.4.53.

Remark 4.4.47. Perfectoid (minimal compactifications of) abelian type Shimura
varieties have been constructed for the first time in [HJ20]. Since we also need to
construct the Hodge-Tate period map and prove several compatibilities, we give a
complete argument. The argument is very similar to [HJ20] in the sense that this
is a reduction to the Hodge type case.

4.4.48. Proof of theorem 4.4.45. We first briefly recall how to reconstruct a Shimura
variety from its connected Shimura variety following [Del79], section 2.1. Let (G,X)
be a Shimura datum. The center Z(G) of G is simply denoted by Z unless some
confusion may arise.

The inverse system S(G,X) = limK S(G,X)K has a right action of the group
A(G) = G(Af )/Z(Q) ∗G(Q)+

Gad(Q)+. Here Z(Q) is the closure of Z(Q) in G(Af ).
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Remark 4.4.49. If Zs = {1}, then Z(Q) = Z(Q). If the morphism G(Q)→ Gad(Q)

is surjective (for example, if Z(G) is a split torus), then A(G) = G(Af )/Z(Q).

There is a canonical bijection π0(S(G,X)) → G(Q)+\G(Af ) of right A(G)-
profinite sets where G(Q)+ is the closure of G(Q)+ in G(Af ). This is also the
completion of G(Q)+ for the topology where a basis of open neighborhoods of the
identity is given by the congruence subgroups of G(Q)+.

Let us pick 1 ∈ G(Q)+\G(Af ) and let S0(G,X) ↪→ S(G,X) be the connected
component corresponding to 1. This is the tower of connected Shimura varieties.
The stabilizer of S0(G,X) for the action of A(G) is A0(G) = G(Q)+/Z(Q) ∗G(Q)+

Gad(Q)+ and we have the formula:

S(G,X) = [S0(G,X)×A(G)]/A0(G)

for the action (s, g).h = (sh, h−1g). One important observation is that S0(G,X)
depends only on the connected Shimura datum (Gder, X+) and the group A0(G) de-
pends also only on Gder. More precisely, we have that A0(G) = Gder(Q)+ ∗Gder(Q)+

Gad(Q)+, and A0(G) is therefore the completion of Gad(Q)+ with respect to the
topology where a basis of open neighborhoods of 1 is the images of congruence
subgroups of Gder(Q)+. We have that S0(G,X) = limK S

0(G,X)/K where the
limit runs over the compact open subgroups of Gder(Q)+, and (S0(G,X)/K)(C) =
ΓK\X+ where ΓK = Gder(Q)+ ∩K.

Of course, there is also a simpler formula: S(G,X) = [S0(G,X)×G(Af )]/G(Q)+,
but the disadvantage of this formula is that G(Q)+ depends on G!

All of this extends to the minimal compactification since a Shimura variety and
its minimal compactification have the same connected components, and group ac-
tions extend by normality of minimal compactifications.

We now go back to our Hodge type datum (G1, X1), and we fix an embedding
in a Siegel datum (G̃, X̃). Attached to this fixed embedding, for any compact
open K we have the minimal compactification S?(G1, X1)K together with a fi-
nite surjective map to S?(G1, X1)K , where S?(G1, X1)K is the schematic image of
S?(G1, X1)K → S?(G̃, X̃)K̃ for all small enough K̃ with K̃ ∩ G(Af ) = K. Let
us denote S

?
(G1, X1) = limK S

?(G1, X1)K . For the Siegel datum (G̃, X̃), we have
that A(G̃) = G̃(Af )/Z(G̃)(Q). We deduce that the closed subgroup A(G1) of
A(G̃) acts on S

?
(G1, X1) and S?(G1, X1) in a compatible way. We also deduce

that the Hodge-Tate period map S?(G1, X1)→ S?(G1, X1)→ FLG1,µG1
is A(G1)-

equivariant (by reduction to the Siegel case). We remark that the A(G1)-action on
FLG1,µG1

factors through the map A(G1)→ Gad1 (Af )→ Gad1 (Qp).
We are now ready to extend things to (B1, XB1

). First, we have that S?(B1, XB1
) =

[S?,0(G1, X1)×A(B1)]/A0(B1). We may also define S
?
(B1, XB1) = [S

?,0
(G1, X1)×

A(B1)]/A0(B1). By takingK-invariants, we define S?(B1, XB1)K = S
?
(B1, XB1)/K.

Our first lemma is:

Lemma 4.4.50. There is a perfectoid space S?(B1, XB1
)Kp ∼ limKp S?(B1, XB1

)KpKp

and a perfectoid space S?(B1, XB1
)Kp = limKp S?,♦(B1, XB1

)KpKp .

Proof. We prove the first statement. Fix a compact open subgroup Kp ⊆ B1(Qp).
It acts on the scheme S?(B1, XB1

)Kp , and it acts on the connected components
with finitely many orbits. We choose representatives for the orbits, which are all of
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the form S?,0(B1, XB1
)
kiKpk−1

i

for suitable elements ki ∈ B1(Apf ). Let S(ki) be the

stabilizer of the connected component S?,0(B1, XB1
)
kiKpk−1

i

in Kp. This is a closed

subgroup of Kp. We deduce that S?(B1, XB1
)Kp =

∐
i[S

?,0(B1, XB1
)
kiKpk−1

i

×
Kp]/S(ki).

By theorem 4.4.43 (2), we can find compact open subgroups (Kp
i )′ ⊆ G1(Apf )

such that we have finite morphisms S?,0(G1, X1)
(Kp

i )′
→ S?,0(B1, XB1

)
kiKpk−1

i

,

identifying S?,0(B1, XB1
)
kiKpk−1

i

as the quotient of S?,0(G1, X1)
(Kp

i )′
by a finite

group.
Now we pass to analytic geometry. It follows from lemma 4.4.6 and the results

of 4.4.27 that the S?,0(G1, X1)
(Kp

i )′
are perfectoid. We deduce from lemma 4.4.7

that the S?,0(B1, XB1
)
kiKpk−1

i

are perfectoid spaces.

We now want to define S?(B1, XB1)Kp =
∐
i[S?,0(B1, XB1

)
kiKpk−1

i

×Kp]/S(ki).

The product S?,0(B1, XB1)
kiKpk−1

i

× (Kp/S(ki)) is a perfectoid space, being the
product of a perfectoid space with a profinite set. Checking that S?(B1, XB1)Kp ∼
limKp S?(B1, XB1

)KpKp
is now an easy exercise, again using 4.4.27. We deduce

that S?(B1, XB1
)Kp = limKp S?,♦(B1, XB1

)KpKp by [BS19], thm. 1.16. �

We can now construct the Hodge-Tate period map.

Lemma 4.4.51. We have a Hodge-Tate period map

πHT : S?(B1, XB1
)Kp → S?(B1, XB1

)Kp → FLB1,µB1

which agrees on connected components with Hodge-Tate period map for G1. The
Hodge-Tate period map is B1(Qp)-equivariant and Hecke equivariant away from
p. The map S?(B1, XB1

)Kp → FLB1,µB1
is affinoid in the sense that FLB1,µB1

has a cover by affinoid opens whose preimages in S?(B1, XB1
)Kp are good affinoid

perfectoid opens.

Proof. We may pass to the limit over Kp and consider the map S?(B1, XB1
) =

[S?,0(G1, X1)×A(B1)]/A0(B1)→ FLB1,µB1
sending (x, a) ∈ S?,0(G1, X1)×A(B1)

to a.πHT (x) where πHT (x) ∈ FLB1,µB1
= FLG1,µG1

and A(B1) acts via its

quotient Bad1 (Qp) on FLB1,µB1
. Since the map S?,0(G1, X1) → FLB1,µB1

is
A0(G1)-equivariant, we deduce that we have a well-defined A(B1)-equivariant map
S?(B1, XB1

)→ FLB1,µB1
. The affine property follows from the Hodge case. �

We now consider the descent from (B1, XB1) to (G,X). We have a map f :
B1 → G inducing an isogeny Bder1 → Gder.

Lemma 4.4.52. (1) We have a continuous surjective map A0(B1) → A0(G)
with kernel a pro-finite group ∆.

(2) We have a pro-finite étale morphism S0(B1, XB1
) → S0(G,X) which is

Galois with group ∆.

Proof. Let Cong(B1) be the set of congruence subgroups of Bder1 (Q)+, and let
Cong(G) be the set of congruence subgroups of Gder(Q)+. We claim that the map
f : Bder1 (Q)+ → Gder(Q)+ induces a map f−1 : Cong(G) → Cong(B1). Indeed,
let K ⊆ Gder(Af ) be a compact open subgroup, then f−1(K) is compact open
in Bder1 (Af ) and f−1(Gder(Q)+ ∩ K) = Bder1 (Q)+ ∩ f−1(K). If Γ ∈ Cong(B1),
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then f(Γ) is an arithmetic subgroup of Gder(Q)+ but not necessarily a congruence
subgroup!

We consider the index set I of compact open subgroups (K,K ′) ∈ Bder1 (Af ) ×
Gder(Af ) such that f(K) ⊆ K ′.

Let ΓK = Bder1 (Q)+ ∩K and ΓK′ = Gder(Q)+ ∩K ′. Let ∆(K,K ′) = ΓK\ΓK′ .
We observe that for any sufficiently small Γ ∈ Cong(B1) or Γ ∈ Cong(G), the

map f ◦ g : Γ → Gad(Q)+ or f : Γ → Gad(Q)+ is injective. Indeed, remark that
the kernel of Gder(Q)+ → Gad(Q)+ is a finite group.

The groups g ◦ f(Cong(B1)) and f(Cong(G)) are the basis of open neigh-
borhoods of 1 for two topologies τ(B1) and τ(G) on Gad(Q)+. We know that
A0(B1) and A0(G) are the completion of Gad(Q)+ for the topologies τ(B1) and
τ(G) respectively. Therefore, A0(B1) = limΓ∈Cong(B1)G

ad(Q)+/Γ and A0(G) =

limΓ∈Cong(G)G
ad(Q)+/Γ. By the Mittag-Leffler criterion the sequence

1→ lim
(K,K′)∈I

∆(K,K ′)→ lim
I
Gad(Q)+/(ΓK)→ lim

I
Gad(Q)+/ΓK′ → 1

is exact and equals 1→ ∆→ A0(B1)→ A0(G)→ 1. �

We are now ready to descend everything from (B1, XB1
) to (G,X). First, we

have that S?,0(G,X) = S?,0(B1, XB1)/∆ and we may also define S
?,0

(G,X) =

S
?,0

(B1, XB1)/∆. We have S?(G,X) = [S?,0(G,X)×A(G)]/A0(G). We may also
define S

?
(G,X) = [S

?,0
(G,X)×A(G)]/A0(G). By taking K-invariants, we define

S
?
(G,X)/K = S?(G,X)K .

Proposition 4.4.53. Let (G,X) be an abelian type Shimura datum as above.
(1) There is a perfectoid space S?(G,X)Kp ∼ limKp S?(G,X)KpKp

and a per-
fectoid space S?(G,X)Kp = limKp S?,♦(G,X)KpKp .

(2) We have a Hodge-Tate period map πHT : S?(G,X)Kp → S?(G,X)Kp →
FLG,µ which is G(Qp)-equivariant and Hecke equivariant. The map S?(G,X)Kp →
FLG,µ is affinoid in the sense that FLG,µ has a cover by affinoid opens
whose preimages in S?(G,X)Kp are good affinoid perfectoid opens.

Proof. For the first point, we observe that the group ∆ acts trivially on the flag
variety. Since πHT was affinoid for (B1, XB1), we can use theorem 4.4.43 (6), and
apply lemma 4.4.6 and lemma 4.4.7 to deduce that S?,0(G,X)Kp is perfectoid. We
may now extend the result from S?,0(G,X)Kp to S?(G,X)Kp as in the proof of
lemma 4.4.50.

Passing to the limit overKp, we have a Hodge-Tate period map S?,0(B1, XB1)/∆ =

S?,0(G,X) → FLG,µ = FLB1,µB1
which is A0(G)-equivariant. We deduce that

there is a A(G)-equivariant Hodge-Tate period map S?(G,X) → FLG,µ. The
representability of limKp S?,♦(G,X)KpKp follows from [BS19], thm. 1.16.

�

4.5. The truncated Hodge-Tate period map. In most of this paper, we work
on finite level Shimura varieties rather than perfectoid Shimura varieties. For this
reason we introduce some truncated Hodge-Tate period map.

Let (G,X) be an abelian type Shimura datum. Let K = KpKp ⊆ G(Af ) be
a compact open subgroup. The group Kp acts on FLG,µ. We form the quotient
space FLG,µ/Kp, equipped with the quotient topology from the surjective map
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πKp : FLG,µ → FLG,µ/Kp. We merely view FLG,µ/Kp as a topological space. We
adopt some definitions. We say that an open U ⊆ FLG,µ/Kp is affinoid if π−1

Kp
(U)

is affinoid. If V ⊆ U ⊆ FLG,µ/Kp are open we say that V is a rational subset
of U if π−1

Kp
(V ) is a rational subset of π−1

Kp
(U). We let the residue field of a point

x ∈ FLG,µ/Kp be the residue field of any lift of this point to FLG,µ. To illustrate
all these definitions, we have the following lemma:

Lemma 4.5.1. Any point x ∈ FLG,µ/Kp with finite residue field over Qp (i.e. a
classical point in the sense of rigid analytic geometry) has a basis of neighborhoods
consisting of affinoids {Un}n≥1 with the property that Un+1 ⊆ Un is a rational
subset.

Proof. The group G admits a filtration by open affinoid normal subgroups Gn which
form a basis of neighborhoods of the identity (take Gn the subgroup of elements
which reduce to 1 modulo pn). Let y ∈ FLG,µ be a lift of x. Then yGn ↪→ FLG,µ
is an affinoid for any n ≥ 1 (this is a closed tube centered at the point y, this is
also where we use that x has finite residue field over Qp). We now consider the
group GnKp ⊂ G. The connected component of the identity of this group is Gn, and
the quotient GnKp/Gn is a finite group. Then we find that yGnKp =

∐
i∈I ykiGn

for a finite set I and elements ki ∈ Kp, and is therefore an affinoid which is Kp-
invariant. The {yGnKp/Kp}n≥1 form a basis of open neighborhoods of x. Moreover,
yGnKp ⊆ yGn−1Kp is a rational subset because ykiGn ⊆ ykiGn−1 is a rational
subset. �

The main result of this section is the following:

Theorem 4.5.2. There is a continuous map:

πHT,Kp : S?K → FLG,µ/Kp

which is equivariant for the action of the Hecke algebra C∞c (K\G(Af )/K,Z) by
correspondences.

Moreover, any point x ∈ FLG,µ/Kp with finite residue field over Qp (i.e. a
classical point in the sense of rigid analytic geometry) has an affinoid neighborhood
U such that for any rational subset V ⊆ U , (πHT,Kp)−1(V ) is affinoid.

By proposition 4.4.53 there is a map πHT : S?
Kp → FLG,µ which is equivariant for

the action of the G(Qp). For any point x ∈ FLG,µ, there is an affinoid neighborhood
U of x such that π−1

HT (U) is affinoid, and moreover, π−1
HT (U) = limKp π

−1
HT (U)Kp

where for Kp small enough, π−1
HT (U)Kp ↪→ S?

KpKp
is affinoid. We call an open

affinoid in FLG,µ with these properties a very good affinoid. Clearly, a rational
subset of a very good affinoid is a very good affinoid.

We can define truncated Hodge-Tate period maps:

πHT,Kp : S?KpKp → S
?
KpKp

→ FLG,µ/Kp.

Lemma 4.5.3. The map πHT,Kp is continuous.

Proof. We have a continuous map (of topological spaces) limK′p
S?KpK′p

→ S?
Kp →

FLG,µ. For all normal subgroup K ′p ⊆ Kp, the map S?KpK′p
→ S?KpKp

is surjective
and the target carries the quotient topology ([Han19], theorem 1.1). The continuity
of the map of the lemma follows. �
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Lemma 4.5.4. Let V ⊆ FLG,µ be a very good affinoid invariant under a compact
open subgroup Kp. Let V be its image in FLG,µ/Kp. Then π−1

HT,Kp
(V ) ⊆ S?KpKp

is affinoid.

Proof. It is part of the definition that π−1
HT (V ) is the pullback of an affinoid π−1

HT (V )K′p ⊂
S?
KpK′p

for some K ′p ⊆ Kp, a normal compact open subgroup. We can further pull

back π−1
HT (V )K′p to an affinoid Ũ ⊆ S?KpK′p

. The space S?KpKp
is the categorical

quotient of S?KpK′p
by Kp/K

′
p, and the image of Ũ in S?KpKp

is indeed affinoid. �

Proof of Theorem 4.5.2. The continuity of the map is lemma 4.5.3. Let x ∈ FLG,µ/Kp

with finite residue field over Qp. Let y be a lift of x in FLG,µ. For n large
enough, xGn ↪→ FLG,µ is a very good affinoid (where Gn is the subgroup of ele-
ments which reduce to 1 modulo pn as in lemma 4.5.1). We form the group GnKp.
Then yGnKp =

∐
i∈I xkiGn for a finite set I and elements ki ∈ Kp. Moreover,

ykiGn = yGnki is a very good affinoid (because the property of being a very good
affinoid is preserved under G(Qp)-action). A finite disjoint union of very good affi-
noids is a very good affinoid. We can apply lemma 4.5.4, to yGnKp. The image of
yGnKp in FLG,µ/Kp provides the open neighborhood U of x as in the theorem. Fi-
nally, since any rational subset of a very good affinoid is again a very good affinoid,
a second application of lemma 4.5.4 proves the last point. �

We also adopt the notation πtorHT,Kp : StorKpKp,Σ
→ S?KpKp

πHT,Kp→ FLG,µ/Kp.

4.6. Reductions of the torsor Man
dR. The group G of the Shimura datum is

defined over Q. We recall that we have fixed a finite extension F of Qp which splits
G. We have also fixed a representative of the cocharacter µ over F and let Pµ
and Mµ be the corresponding parabolic and Levi subgroups of G. We will soon
assume that G is quasi-split over Qp. When this is the case we assume that Pµ
contains a Borel B defined over Qp. We take a reductive model for GF defined over
Spec OF . By abuse of notation, we also denote this model by G. We also then
have models for Pµ and Mµ over Spec OF . On the analytic side, we have the (non-
quasi-compact) groups Gan, Panµ , and Man

µ , all considered over Spa(F,OF ), and
there is an embedding G(Qp) ↪→ Gan. Because we have fixed an integral model for
G, we also have the quasi-compact groups G ↪→ Gan, Pµ ↪→ Panµ , andMµ ↪→Man

µ .
The goal of this section is to use the Hodge-Tate period morphism to produce

some finer structure on the torsorMan
dR. These result generalize those obtained in

[AIP15], prop. 4.3.1 for example. These refined structure will allow us to p-adically
interpolate automorphic vector bundles.

4.6.1. Preparations. We start by giving a detailed description of the torsor pulled
back from the map πtorHT : StorKp,Σ → FLG,µ.

If (G,X) is Hodge type Shimura datum, and Σ is a perfect cone decomposition,
then StorKp,Σ is a perfectoid space. In the general abelian case, it is only known to
be a diamond.

Let S → StorKp,Σ be a map from a perfectoid space S. By composing with πtorHT ,
we get a map S → FLG,µ which can be described as follows. Over S, we have a
map PanHT ↪→ Gc,an×S, from the Pc,anµ -torsor PanHT to the trivial Gc,an-torsor, which
is equivariant for the natural morphism of groups Pc,anµ → Gc,an.
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There is an étale cover S̃ → S such that the torsor PanHT ×S S̃ becomes trivial
and aquires a section gS̃ ∈ Gc,an(S̃), unique up to left multiplication by elements
of Pc,anµ (S̃), so that we get a commutative diagram of torsors:

PanHT ×S S̃ //

∼
��

Gc,an × S̃

Id

��
(Pc,anµ × S̃) · gS̃ // Gc,an × S̃

Over S̃×S S̃, there is a section hS̃×S S̃ ∈ P
c,an
µ (S̃×S S̃) such that hS̃×S S̃ ·p

?
1gS̃ =

p?2gS̃ . The section hS̃×S S̃ is a 1-cocycle which describes the original torsor PanHT .
Changing gS̃ by left multiplication by an element of Pc,anµ (S̃) will change hS̃×S S̃ by
a coboundary.

The image of gS̃ ∈ FLG,µ(S̃) descends to give a point in FLG,µ(S): the mor-
phism S → FLG,µ we started with.

The group Gan acts on the right on FLG,µ. Concretely this action sends gS̃ to
gS̃ .g. This action does not affect the construction of the torsor PanHT which is indeed
Gan-equivariant.

4.6.2. Integral structure. Recall that Mc
µ is a (quasi-compact) open subgroup of

Mc,an
µ . The following proposition can be interpreted as the existence of an integral

structure on the torsorsMan
dR orMan

HT .

Proposition 4.6.3. Let Kp ⊂ G(Qp)∩G(OF ). The étale torsorMan
dR =Man

HT over
StorKpKp,Σ

has a reduction of structure group to an étaleMc
µ-torsorMdR =MHT .

Remark 4.6.4. In the Siegel case, the torsorMan
dR is (ignoring the center) the torsor

of trivializations of the vector bundle ωA, the conormal sheaf of the universal semi-
abelian scheme over StorKpKp,Σ

(well defined up to prime to p-isogeny by our choice
of level structure). A possible integral structure is obtained by declaring that an
invariant differential form is integral if it extends to an invariant differential form
on an integral model of the universal semi-abelian scheme. However, the integral
structure we consider here is different. Namely, we declare that a differential form
is integral if it is in the span of the image of the integral Tate module for the
Hodge-Tate period map. By [Far11], Theorem 2, section 5.3.2. we can explicitly
bound the difference between both integral structures.

Proof. We work over StorKp,Σ. Let S → StorKp,Σ be a map from a perfectoid space. We
first explain how to define the torsorMHT over S (in a functorial way).

The map S → FLG,µ is described by an element gS̃ ∈ Gc,an(S̃) for some étale
cover S̃ → S. We are free to change gS̃ by left multiplication by an element of
Pc,anµ (S̃). Thus, up to passing to some further cover of S̃, we may actually assume
that gS̃ ∈ Gc(S̃) (because FLG,µ = Pcµ\Gc = Pc,anµ \Gc,an), and this new element
is well defined up to multiplication by an element of Pcµ(S̃). The torsor PanHT is
defined by the cocycle hS̃×S S̃ = p?2gS̃ · (p?1gS̃)−1 ∈ Pcµ(S̃ ×S S̃) ⊂ Pc,anµ (S̃ ×S S̃).
We therefore have produced a reduction of the torsor PanHT to a torsor PHT under
the group Pcµ. We can take the pushout under the map Pcµ →Mc

µ (which amounts
to projecting hS̃×S S̃ inMc

µ(S̃ ×S S̃)) to get the desired torsorMHT .
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We now proceed to descend from StorKp,Σ to StorKpKp,Σ
. We have an étale torsor

Man
HT → StorKpKp,Σ

, and we have defined an open subset MHT ⊂ Man
HT ×StorKpKp,Σ

StorKp,Σ. We claim that this open descends to an open subset of Man
HT . The map

Man
HT ×StorKpKp,Σ S

tor
Kp,Σ → Man

HT identifies the topological space |Man
HT | with the

quotient of |Man
HT ×StorKpKp,Σ S

tor
Kp,Σ| by the action of Kp. We have an identification

between Kp-invariant open subsets ofMan
HT×StorK,ΣS

tor
Kp,Σ and open subsets ofMan

HT .
The only thing to check is therefore thatMHT is indeed invariant under the action
of Kp. We go back to considering a map S → StorKp,Σ, described by an element gS̃ ∈
Gc(S̃). Under right multiplication by k ∈ Kp, we get a new element gS̃k ∈ Gc(S̃)
(it is crucial here that k ∈ Kp ⊆ G(OF )) and the corresponding reduction of the
torsor described by the element p?2gS̃k.(p

?
1gS̃ .k)−1 = p?2gS̃ .(p

?
1gS̃)−1 doesn’t depend

on k.
We need to prove that the action mapMan

µ ×Man
HT →Man

HT ×Man
HT (which is

an isomorphism), induces an isomorphismMµ×MHT →MHT ×MHT . In other
words, we need to prove that the two open subsetsMµ×MHT andMHT ×MHT

identify via the action map. This can be checked after pull back to StorKp,Σ and this is
true. Finally, the morphismMHT → StorK,Σ is smooth, and surjective on geometric
points. Therefore, there are sections étale-locally andMHT is an étale torsor. �

Remark 4.6.5. The above argument uses crucially that we know thatMan
HT descends

from StorKp,Σ to StorKpKp,Σ
, because pro-étale descent is not effective in general.

Remark 4.6.6. We briefly explain how the construction in the abelian case connects
with the construction in the Hodge case, in order to illustrate principle 4.4.44. We
consider a diagram of Shimura datum with (G,X) of abelian type and (G1, X1) of
Hodge type as in section 4.4.41:

(B1, XB1) //

��

(B,XB)

��
(G1, X1) (G,X)

We may assume that the various morphisms between the groups G1, B1, B,G over
Q extend to morphisms over OF . We assume that we have a diagram for suit-
able compacts K ′,K1,K2,K3 with K ′p ⊆ B1(OF ) and K1,p ⊆ G1(OF ), and cone
decomposition for G1:

Stor(B1, XB1)K′,Σ
π1 //

π2

��

π

))

Stor(G1, X1)K1,Σ

��
S(T,XT )K2

// S(Gab1 , XGab1
)K3

We have the first formula:

MHT (B1, XB1
) = π?1MHT (G1, X1)×π?MHT (Gab1 ,X

Gab1
) π

?
2MHT (T,XT )

Secondly, we have a finite map: Stor,0(B1, XB1)K′,Σ → Stor,0(G,X)K,Σ, generi-
cally finite étale with group ∆(K,K ′) (possibly after refining Σ). and the second
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formula

(MHT (B1, XB1
)×M

c
µB1 Mc

µG)/∆(K,K ′) =MHT (G,XG)

(valid for the restrictions of the torsor to the connected component).

For κ ∈ X?(T c)Mµ,+, the sheaf Vκ is modeled on the representation Vκ of
Man

µ defined over F . Recall that Vκ is defined as the module of sections f(m) ∈
H0(Man

µ ,OMan
µ

) such that f(mb) = −w0,Mκ(b)f(m) for b ∈ Ban ∩Man
µ . Using

that
Man

µ /(Ban ∩Man
µ ) =Mµ/(B ∩Mµ)

we find that this is also the module of sections f(m) ∈ H0(Mµ,OMµ) such that
f(mb) = −w0,Mκ(b)f(m) for b ∈ B ∩Mµ.

We can define an OF -submodule V +
κ ⊂ Vκ by considering sections f(m) ∈

H0(Mµ,O
+
Mµ

) such that f(mb) = −w0,Mµ
κ(b)f(m). Since H0(Mµ,O

+
Mµ

) is open
and bounded in H0(Mµ,OMµ), we deduce that V +

κ is a lattice in Vκ, stable under
the action ofMµ.

Corollary 4.6.7. Assume that Kp ⊆ G(OF ). For all κ ∈ X?(T c)Mµ,+, the locally
free sheaf Vκ over StorK,Σ has an integral structure V+

κ in the sense of definition 2.6.1.

Proof. We consider the map g : MdR → StorK,Σ. We let V+
κ be the subsheaf of

g?O
+
MdR

of sections f(m) which satisfy f(mb) = −w0,Mκ(b)f(m). �

4.6.8. Further reductions of the group structure. We assume that Kp = Kp,m′,b′ for
m′ ≥ b′ ∈ Z≥0 and m′ > 0 (see section 3.5.1). This is a compact open subgroup of
G(Qp) with an Iwahori decomposition. For any w ∈ MW , we let Kp,w,Mµ be the
projection of wKpw

−1 ∩ Pµ toMµ.
We will describe this group. We can define Np,w,Mµ = Kp,w,Mµ ∩ UMµ and

Np,w,Mµ
= Kp,w,Mµ

∩UMµ
, where we let BMµ

be the Borel subgroup of Mµ which
is the image of B in Mµ, BMµ

the opposite Borel, and UMµ
(resp. UMµ

) be the
unipotent radical of BMµ (resp. BMµ). We also recall that Tb′ = Ker(T (OF ) →
T (OF /pb

′
)) ∩ T (Qp) = T ∩Kp.

Proposition 4.6.9. For any w ∈ MW , the group Kp,w,Mµ
is a subgroup of the Iwa-

hori subgroup of Mµ(OF ). Moreover, it admits an Iwahori decomposition. Namely,
the product map:

Np,w,Mµ
× wTb′w−1 ×Np,w,Mµ → Kp,w,Mµ

is an isomorphism.
When G is unramified, Mµ is defined over Qp, w is Gal(F/Qp)-invariant, and

Kp = Kp,1,0 is the Iwahori subgroup of G(Zp), then Kp,w,Mµ
is the Iwahori subgroup

of Mµ(Zp).

Proof. Let U and U be respectively the unipotent radicals of B and B. We have the
Iwahori decompositionKp = Np×Tb′(Zp)×Np whereNp = Kp∩U is U(Qp)∩U(OF )

and Np = Kp ∩ U ⊆ U(Qp) is the subgroup of elements reducing to 1 modulo pm
′

It is useful to give a more precise version of this decomposition. We let Φ be the
set of roots (defined over F ). We have Φ = Φ+

M

∐
Φ−M

∐
Φ+,M

∐
Φ−,M , where

ΦM = Φ+
M

∐
Φ−M is the set of roots inM . We also let Φ0 = Φ/Gal(F/Qp) and have

Φ0 = Φ+
0

∐
Φ−0 (because G is quasi-split).
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For all α0 ∈ Φ0, we let Uα0
↪→ G be the corresponding unipotent group. For

all α ∈ Φ we also denote by Uα ↪→ GOF the one parameter subgroup. We have
Uα0 ×Spec Qp Spec F =

∏
α∈Φ,α7→α0

Uα ×Spec OF Spec F . We consider the product
map (in any order of the factors):∏

α0

Uα0
(Qp)× T (Qp)→ G(Qp).

This maps induces a bijection between Kp and the set of elements ((nα0)α0∈Φ0 , t)

which satisfy: nα0 , t ∈ G(OF ), nα0 = 1 mod pm
′
if α0 ∈ Φ−0 , and t = 1 mod pb

′
.

We get that wKpw
−1∩Pµ identifies (via the product map) with the set of elements

((wnα0
w−1)α0∈Φ0

∈ wUα0
(Qp)w−1, wtw−1 ∈ wT (Qp)w−1) such that:

• nα0
, t ∈ G(OF ),

• nα0
= 1 mod pm

′
if α0 ∈ Φ−0 ,

• t = 1 mod pb
′
,

• nα0 ∈ U ′α0
= Ker

(
Uα0(Qp) ∩G(OF )→

∏
α∈w−1Φ−,M ,α 7→α0

Uα(OF )
)
.

We let U ′′α0
= Im

(
U ′α0
→
∏
α∈w−1ΦM ,α 7→α0

Uα(OF )
)
. We deduce that Kp,w,Mµ

is
in bijection (via the product map) with the elements ((wnα0w

−1)α0∈Φ0 ∈ wU ′′α0
w−1, wtw−1 ∈

wTb′w
−1) such that nα0

= 1 mod pm
′
if α0 ∈ Φ−0 . The fact that any element of

Kp,w,Mµ can be written in this way follows from the previous discussion. The
injectivity of the product map is a general fact.

We now observe that w ∈ MW and therefore Φ+
M ⊂ w(Φ+) and Φ−M ⊂ w(Φ−).

We deduce that w−1ΦM ∩ Φ− = w−1Φ−M and w−1ΦM ∩ Φ+ = w−1Φ+
M .

It follows that if α0 ∈ Φ+
0 , wU

′′
α0
w−1 ⊂ UMµ

(OF ) and if α0 ∈ Φ−0 , wU
′′
α0
w−1 ⊂

UMµ
(OF ). Therefore, we deduce that Kp,w,Mµ

= Np,w,Mµ
× wTb′w−1 × Np,w,Mµ

.
By the condition that nα0

= 1 mod pm
′
if α0 ∈ Φ−0 , we deduce that Kp,w,Mµ

is a
subgroup of the Iwahori of Mµ(OF ).

Finally, if G is unramified, and Mµ is defined over Qp, the partition Φ =

Φ+
M

∐
Φ−M

∐
Φ+,M

∐
Φ−,M descends to a partition Φ0 = Φ+

0,M

∐
Φ−0,M

∐
Φ+,M

0

∐
Φ−,M0 .

If w is rational, then it acts on Φ0. Assume that Kp = Kp,1,0. The description of
Kp,w,Mµ

simplifies and we find that U ′′α0
= {1} if α0 /∈ w−1Φ0,M , U ′′α0

= Uα0
(Zp) if

α0 ∈ w−1Φ0,M . It follows that Kp,w,Mµ
is the Iwahori of Mµ(Zp).

�

Example 4.6.10. The group Kp,w,Mµ
may be a little strange. Let us consider the

following example. We assume that GQp is ResQp2/QpGL2, with standard diagonal
torus TQp and upper triangular borel BQp . We let Kp = Kp,1,0. We identify
GQp2 = GL2 × GL2. We assume that µ is defined over Qp2 and is given by the
cocharacter t 7→ diag(t, 1)× diag(1, 1) of TQp2 . We deduce that Pµ is BQp2 ×GL2,
and thatMµ is TQp2 ×GL2. We finally observe that Kp∩Pµ is B(Zp) and therefore
Kp,1,µ is the image of B(Zp) in T (Qp2)×GL2(Qp2).

For all m,n ∈ Q≥0, we let G1
m,n be the subgroup of G of elements which reduce

to U modulo pm+ε for all ε > 0 and to U modulo pn (see section 3.3.10). We let
M1

µ,m,n ⊆Mµ be the group of elements which reduce to UMµ modulo pm+ε for all
ε > 0 and to UMµ

modulo pn.
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Lemma 4.6.11. Let w ∈ MW and let Kp = Kp,m′,b′ with m′ ∈ Z>0 and b′ ∈ Z≥0.
Let m,n ≥ 0 and assume that 0 ≤ m − n ≤ m′ − 1. Then Kp,w,Mµ normalizes
M1

µ,m,n.

Proof. Observe that Kp ⊆ Gm−n,0. By lemma 3.3.15, Kp normalizes G1
m,n. More-

over, Im(wG1
m,nw

−1 ∩ Pµ →Mµ) =M1
µ,m,n.

�

It follows from this lemma that Kp,w,Mµ
M1

µ,m,n is a subgroup ofMµ.

Proposition 4.6.12. Let w ∈ MW and let Kp = Kp,m′,b′ with m′ ∈ Z>0 and m′ ≥
b′. Letm,n ≥ 0 and assume that 0 ≤ m−n ≤ m′−1. Over (πtorHT,Kp)−1(]Cw,k[m,nKp) ⊆
StorKpKp,Σ

, the torsor MHT has a reduction to an étale torsor MHT,m,n,Kp under
the group Kc

p,w,Mµ
M1,c

µ,m,n.

Proof. The proof is very similar to the proof of proposition 4.6.3. We observe that
]Cw,k[m,nKp = Panµ \Panµ wG1

m,nKp. Since Kp normalizes G1
m,n, G1

m,nKp = KpG1
m,n

is a group. It follows that

]Cw,k[m,nKp = (Panµ ∩ wKpG1
m,nw

−1)\wKpG1
m,nw

−1.w

Observe that we have the following Kp-equivariant Kc
p,w,Mµ

M1,c
µ,m,n-torsor:

(Uan,cµ ∩wKc
pG1,c

m,nw
−1)\wKc

pG1,c
m,nw

−1.w → (Panµ ∩wKpG1
m,nw

−1)\wKpG1
m,nw

−1.w

and we proceed to pull back and descend this torsor.
We first construct the torsorMHT,m,n,Kp as an open subset of

MHT ×StorK,Σ (πtorHT )−1(]Cw,k[m,nKp),

and prove it is Kp-invariant to descend it to an open subset of

MHT ×StorK,Σ (πtorHT,Kp)−1(]Cw,k[m,nKp).

Let S → (πtorHT )−1(]Cw,k[m,nKp) be a map from a perfectoid space S. The
torsor PHT is described as follows: there is a cover S̃ → S and an element
gS̃ ∈ G(S̃) such that hS̃×S S̃ = p?2gS̃ .(p

?
1gS̃)−1 ∈ Pµ(S̃ ×S S̃) is a 1-cocycle de-

scribing the torsor. By assumption, we may assume gS̃ ∈ wG1
m,nKp, so that

hS̃×S S̃ ∈ Pµ(S̃ ×S S̃) ∩ wG1
m,nKpw

−1 and its image in Mµ describes a reduction
MHT,m,n,Kp of MHT ×StorK,Σ (πtorHT )−1(]Cw,k[m,nKp) to a Kp,w,Mµ

M1
µ,m,n-torsor.

One checks easily that this torsor is Kp-invariant and therefore descends to a torsor
over (πtorHT,Kp)−1(]Cw,k[m,nKp).

�

Remark 4.6.13. The connection between the abelian case and Hodge case can be
described similarly as in remark 4.6.6. We may use section 3.5.5 to make sure that
the subset ]Cw,k[m,nKp of the flag variety doesn’t change when we consider the
different groups G1, B1, G.

Proposition 4.6.14. Let w ∈ MW and let Kp = Kp,m′,b′ with m′ ∈ Z>0 and
m′ ≥ b′. Let K ′p = Kp,m′′,b′′ with m′′ ≥ m′ and m′′ ≥ b′′ ≥ b′. Let m,n ≥ 0
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and assume that 0 ≤ m − n ≤ m′ − 1. Let r, s ≥ 0 with r ≥ m, s ≥ m and
0 ≤ r − s ≤ m′′ − 1. There is a commutative diagram:

MHT,r,s,K′p
//

��

MHT,m,n,Kp

��
(πtorHT,K′p)−1(]Cw,k[r,sK

′
p) // (πtorHT,Kp)−1(]Cw,k[m,nKp)

The top horizontal map is equivariant for the map K ′p,w,Mµ
M1

µ,r,s → Kp,w,MµM1
µ,m,n.

Proof. This follows from the construction of the torsors. �

We have a mapM1
µ,n,n →Mµ,n whereMµ,n is the sub-group ofMµ of elements

reducing to 1 modulo pn. Let Kp = Kp,m′,b′ with m′ > 0, m′ ≥ b′ and let m,n ≥ 0
be such that 0 ≤ m − n ≤ m′ − 1. Over (πtorHT,Kp)−1(]Cw,k[n,nKp), we define the
pushout:

MHT,n,Kp =MHT,n,n,Kp ×
Kc
p,w,Mµ

M1,c
µ,n,n Kc

p,w,Mµ
Mc

µ,n.

It is sometimes more convenient to work with this torsor because the groupMc
µ,n

is affinoid.

Proposition 4.6.15. Assume that (G,X) is a Hodge-type Shimura datum and Σ a
perfect cone decomposition. Let Kp = Kp,m′,b. For any affinoid open Spa(R,R+)→
(πtorHT,Kp)−1(]Cw,k[n,nKp) which we assume to be pregood (see definition 4.4.3), there
exists K ′p ⊆ Kp such that over Spa(R,R+)×Stor

KpKp,Σ
StorKpK′p,Σ

the torsorMHT,n,Kp

is trivial.

Remark 4.6.16. It will be important for certain vanishing theorems that we are
able to prove the triviality of the torsor after a finite flat cover for pregood affinoid
opens.

Proof. Let us consider a decreasing sequence of compacts Kp,k with Kp,0 = Kp

and ∩kKp,k = {1}. Let Spa(Rk, R
+
k ) = Spa(R,R+) ×Stor

KpKp,Σ
StorKpKp,k,Σ

. Let

Spa(R∞, R
+
∞) = lim Spa(Rk, R

+
k ) be an affinoid open of StorKp,Σ. We first observe

that the torsorMan
HT |Spa(R,R+) is a Stein space, which can be written as an increas-

ing union of quasi-compact affinoid subsets:

Man
HT |Spa(R,R+) = ∪i≥0(Man

HT )i.

Over Spa(R∞, R
+
∞) we observe that the the torsor MHT,n,Kp is trivial. Indeed,

this torsor is pulled back from the following torsor (over the flag variety):

(UPµ ∩ wKpGnw−1)\wKpGnw−1 → (Pµ ∩ wKpGnw−1)\wKpGnw−1

which is trivial because of the Iwahori decomposition of the group wKpGnw−1. It
follows thatMHT,n,Kp × Spa(R∞, R

+
∞) is affinoid, and is a rational open subset of

(Man
HT )i × Spa(R∞, R

+
∞) for i large enough.

We deduce that MHT,n,Kp × Spa(Rk, R
+
k ) is a rational subset of (Man

HT )i ×
Spa(Rk, R

+
k ) for k large enough (by approximating the equations definingMHT,n,Kp×

Spa(R∞, R
+
∞) ). Therefore,MHT,n,Kp ×Spa(Rk, R

+
k ) = Spa(T, T+) where (T, T+)

is an (Rk, R
+
k ) algebra topologically of finite type. Moreover, there is a section
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T+⊗̂R+
k
R+
∞ → R+

∞. We now prove that this section can be approximated to a sec-
tion T+⊗̂R+

k
R+
k′ → R+

k′ for k
′ large enough. By [Elk73], theorem 7, there is a finite

type R+
k -algebra A, such that A[1/p] is smooth over R+

k [1/p], and whose p-adic com-
pletion is isomorphic to T+. By [Elk73], theorem 2, there exists integers n0, r ≥ 0
with the property that for any n ≥ n0, for any map of R+

k -algebras f : A→ R+
k′/p

n

there is a map f̃ : A → R+
k′ with the property that f mod pn−r = f̃ mod pn−r

(the ideal denoted HB of the reference contains ph for a large enough integer h,
because A[1/p] is smooth over R+

k [1/p]). Let n = n0 + r. We consider the section
s : A→ R+

∞. Its reduction mod pn factors through s mod pn : A→ R+
k′/p

n for k′

large enough and therefore we find a lift to a section s̃ : A→ R+
k′ . �

Remark 4.6.17. We ask the following question: let S be an affinoid adic space and
let H be an affinoid group over S. Let T → S be a H-torsor for the étale topology.
Is T affinoid over S? It follows from proposition 4.6.15 that the torsorMHT,n,Kp

is affinoid over any pregood affinoid open.

4.6.18. Maps between torsors. We consider for the moment the following abstract
situation. We assume that we have two analytic groups K ↪→ G. For i ∈ {1, 2},
we let Ki be K-torsors over an adic space X . We let Gi be their push-out via
the map K ↪→ G. Let α : G1 → G2 be a map of G-torsors over X . Over any cover
U → X which trivializes both K1 and K2, we can represent the map α by an element
g ∈ G(U), well defined up to right and left multiplication by K(U). We shall say
that the map α is locally represented (over U) by KgK. When K is clear from the
context, we also say for simplicity that the map is locally represented by g.

Let (G,X) be an abelian Shimura datum. Let t ∈ G(Qp). LetKpKp ⊂ G(Af ) be
a compact open subgroup. For suitable choices of polyhedral cone decomposition,
we have a correspondence:

StorKp(Kp∩tKpt−1),Σ′′

p1

''

p2

ww
StorKpKp,Σ

StorKpKp,Σ′

We get an associated map of pro-Kummer-étale right torsors:

p?1Ganpet // p?2Ganpet

p?1Gpet

OO

p?2Gpet

OO

which by definition is locally represented by t. We also deduce a map of étale right
torsors:

p?1Man
HT

// p?2Man
HT

p?1MHT

OO

p?2MHT

OO
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Let w ∈ MW and let Kp = Kp,m′,b′ with m′ > 0 and b′ ≥ 0. Let m,n ≥ 0

and assume that 0 ≤ m − n ≤ m′ − 1. Over p−1
2

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
∩

p−1
1

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
, we have a map of étale right torsors:

p?1Man
HT

// p?2Man
HT

p?1MHT

OO

p?2MHT

OO

p?1MHT,m,n,Kp

OO

p?2MHT,m,n,Kp

OO

Proposition 4.6.19. Let w ∈ MW . Let t ∈ T (Qp). The map p?1Man
HT → p?2Man

HT

restricted to

p−1
2

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
∩ p−1

1

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
is locally represented by

Kc
p,w,Mµ

M1,c
µ,m,nwtw

−1Kc
p,w,Mµ

M1,c
µ,m,n.

Proof. By definition of the Hecke correspondence, the map p?1Ganpet → p?2Ganpet is
locally represented by t. This means that locally for the pro-Kummer-étale topology
we have sections x2 ∈ p?2Gpet and x1 ∈ p?1Gpet and there is an isomorphism

p?1Ganpet // p?2Ganpet

x1G(Qp)

OO

t // x2G(Qp)

OO

where the bottom map is x1g 7→ x2g = x1tg. We now get by pushforward to Gan a
diagram:

p?1Ganpet ×G(Qp) Gan // p?2Ganpet ×G(Qp) Gan

x1Gan

OO

t // x2Gan

OO

The torsors p?1Ganpet and p?2Ganpet arise by pushforward from torsors p?1PanHT and
p?2PanHT and we have a diagram:

p?1Ganpet // p?2Ganpet

p?1PanHT

OO

// p?2PanHT

OO

We pick w ∈ MW and we work locally over

p−1
2

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
∩p−1

1

(
(πtorHT,Kp)−1(]Cw,k[m,nKp)

)
⊆ StorKp(Kp∩tKpt−1),Σ′′ .

Concretely, this means that we can find trivializations x′1 and x′2 of p?1PanHT and
p?2PanHT of the form x2 = x′2wh2 and x1 = x′1wh1 for hi ∈ G1,c

m,nK
c
p.
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We deduce that
x′2 = x′1wh1th

−1
2 w−1

This forces wh1th
−1
2 w−1 ∈ Pan,cµ .

By pushforward toMan
HT we get:

p?1Man
HT

// p?2Man
HT

x′1Man
µ

OO

// x′2Man
µ

OO

where x′2 and x′1 are now viewed as sections of p?2MHT,m,n,Kp and p?1MHT,m,n,Kp

and the bottom map is given by

x′2m = x′1(wh1th
−1
2 w−1)m

where (wh1th
−1
2 w−1) is the image of (wh1th

−1
2 w−1) via the map Panµ →Man

µ . By
lemma 4.6.20, (wh1th

−1
2 w−1) ∈ Kc

p,w,Mµ
M1,c

µ,m,nwtw
−1Kc

p,w,Mµ
M1,c

µ,m,n.
�

Lemma 4.6.20. For any t ∈ T (Qp), we have that

Im(wKpG1
m,ntKpG1

m,nw
−1∩Panµ →Man

µ ) = Kp,w,Mµ
M1

µ,m,nwtw
−1Kp,w,Mµ

M1
µ,m,n.

Proof. We will prove that (wKpG1
m,ntKpG1

m,nw
−1) ∩ Panµ =

((wKpG1
m,nw

−1) ∩ Panµ )wtw−1((wKpG1
m,nw

−1) ∩ Panµ ).

Any element in k ∈ wKpG1
m,nw

−1 writes uniquely
∏
α∈Φ kα (for any fixed ordering

of the roots). Let

kwtw−1k′ ∈ (wKpG1
m,nw

−1wtw−1wKpG1
m,nw

−1) ∩ Panµ

with k =
∏
α∈Φ+∪Φ−M

kα
∏
α∈Φ−,M kα and k′ =

∏
α∈Φ−,M k′α

∏
α∈Φ+∪Φ−M

k′α. A nec-
essary and sufficient condition that kwtw−1k′ ∈ Panµ is that k′′wtw−1k′′′ ∈ Panµ
where k′′ =

∏
α∈Φ−M

kα and k′′′ =
∏
α∈Φ−M

k′′′α . But k′′wtw−1k′′′ ∈ UPanµ o T an and
necessarily, k′′ = k′′′ = 1. �

5. Overconvergent cohomologies and the spectral sequence

Our goal in this section is to introduce a spectral sequence which computes
classical finite slope cohomology in terms of the finite slope parts of certain over-
convergent cohomologies indexed by w ∈ MW . Moreover we will prove a classicality
theorem comparing the small slope part of classical cohomology in regular weight
with the small slope part of a single overconvergent cohomology for a w determined
by the weight. We will also prove a vanishing theorem for the classical cohomology
in all weights, including non regular ones.

5.1. The finite slope part. We briefly recall the spectral theory of compact op-
erators over a non-archimedean field.
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5.1.1. Slope decomposition. Let F be a non archimedean field extension of Qp. The
valuation v on F is normalized by v(p) = 1. A polynomial Q ∈ F [X] has a Newton
polygon. The slopes of the newton polygon are the inverse of the valuations of
the roots of Q (in an algebraic closure of F ). We let Q? = XdegQQ(1/X) be the
reciprocal polynomial. Let h ∈ Q. A polynomial Q is said to have slope ≤ h if
the slopes of its Newton polygon are ≤ h (equivalently, the roots of Q?(X) have
valuation less or equal to h). Let M be a vector space over F and let T be an
endomorphism of the vector space M . Let h ∈ Q. Following [AS08], def. 4.6.3,
an h-slope decomposition of M with respect to T is a direct sum decomposition of
F -vector spaces M = M≤h ⊕M>h such that:

(1) M≤h and M>h are stable under the action of T .
(2) M≤h is finite dimensional over F .
(3) All the eigenvalues (in an algebraic closure of F ) of T acting on M≤h are

of valuation less or equal to h.
(4) For any polynomial Q with slope ≤ h, the restriction of Q∗(T ) to M>h is

an invertible endomorphism.
By [Urb11], coro. 2.3.3, if such a slope decomposition exists, it is unique. If
M has an h-slope decomposition for all h ∈ Q, we simply say that M has slope
decomposition. In this situation we can obviously define submodules M=h and
M<h of M for all h ∈ Q. We let Mfs = limhM

≤h be the projective limit of all the
slope ≤ h factors of M and we call it the finite slope part of M with respect to T .
There is a projection M → Mfs. The kernel of this projection is the space M∞s
of infinite slope vectors.

Lemma 5.1.2. Let u : M → N be a map of F -vector spaces. Let TM and TN
be endomorphisms of M and N respectively, such that TN ◦ u = u ◦ TM . Assume
that M and N have h-slope decompositions for TM and TN . Then u(M≤h) ⊆
N≤h and u(M>h) ⊆ N>h. Moreover, ker(u), Im(u) and coker(u) have h-slope
decompositions.

Proof. The inclusions u(M≤h) ⊆ N≤h and u(M>h) ⊆ N>h are evident from the
property that u is equivariant. It follows that ker(u) = ker(u) ∩M≤h ⊕ ker(u) ∩
M>h and this is an h-slope decomposition. The remaining points are left to the
reader. �

5.1.3. Compact operators. Let F be a non archimedean field extension of Qp. Let
M ∈ Ob(Ban(F )), and let T be a compact endomorphism of M . Then by [Ser62],
M has a slope decomposition with respect to T . We can generalize this slightly.

Proposition 5.1.4. Let M• ∈ D(F ) and let T ∈ EndD(F )(M
•) be a compact op-

erator (in the sense of definition 2.4.12). Then for any h ∈ Q, we have a direct
sum decomposition in D(F ), M• = M•,≤h ⊕ M•,>h characterized by the prop-
erty that the cohomology groups Hi(M•) have h-slope decompositions for T , and
Hi(M•)≤h = Hi(M•,≤h).

Proof. We first check that if we have such a decomposition, then it is unique.
Indeed, let M• = M•,≤h ⊕M•,>h = N•,≤h ⊕N•,>h be two decompositions. Then
we see that the map M•,≤h → N•,≤h obtained by composing the inclusion into M•
and the projection orthogonal to N•,>h induces a quasi-isomorphism. We deduce
similarly that the mapM•,>h → N•,>h is a quasi-isomorphism. On the other hand,
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the map M•,≤h → N•,>h and M•,>h → N•,≤h are the zero map on cohomology,
and they are therefore the zero map (since F is a field).

Now check the existence. First assume that T is represented by a compact
morphism in Kproj(Ban(F )). Then, by applying the spectral theory to each term
of the complex, we get a direct sum decomposition M• = M•,≤h ⊕M•,>h, where
for each i, M i = M i,≤h ⊕M i,>h is the h-slope decomposition of M i. Moreover,
one deduces from lemma 5.1.2 that Hi(M•) has an h-slope decomposition with
Hi(M•)≤h = Hi(M•,≤h), Hi(M•)>h = Hi(M•,>h).

Now assume that M• is represented by “ limi ”M•i ∈ Ob(ProN(Kproj(Ban(F ))))
and T by a compact operator of “ limi ”M•i ∈ Ob(ProN(Kproj(Ban(F )))). By
lemma 2.4.10, T induces canonically a compact endomorphism Ti of M•i for i large
enough and there are factorization diagrams:

M•i+1

��

Ti+1 // M•i+1

��
M•i

;;

Ti // M•i

For any h ∈ Q, we deduce that M•,≤hi+1 → M•,≤hi is a quasi-isomorphism. We
also deduce that M•,≤hi+1 → M•,>hi and M•,>hi+1 → M•,≤hi are the zero map on
cohomology. Using that we are over a field, we deduce that these are the zero map.
We therefore deduce that “ limi ”M•i = “ limi ”M•,≤hi ⊕ “ limi ”M•,>hi . By taking
the limit, we deduce that there is a decomposition M• = M•,≤h ⊕M•,>h. We
now immediately check that this gives an h-slope decomposition on cohomology.
The case where M• is represented by “colimi”M

•
i ∈ Ob(IndN(Kproj(Ban(F )))) is

similar and left to the reader.
�

We have natural projections M•,≤h
′ → M•,≤h for any h′ > h ∈ Q. We let

M•,fs = limh≥0M
•,≤h be the finite slope part ofM•. There is a mapM• →M•,fs.

5.1.5. Action of an algebra. Let T+ be a commutative monoid (with neutral el-
ement) and T++ ⊆ T+ be a sub-semigroup (possibly without neutral element),
such that T+.T++ ⊆ T++. We also assume that for any t, t′ ∈ T++, there exists
n ∈ N, t′′ ∈ T+ such that tn = t′t′′. Let M ∈ Ban(F ). We assume that we have
an algebra action Z[T+] → EndF (M), such that the ideal Z[T++] acts by potent
compact operators.

Lemma 5.1.6. For any t, t′ ∈ T++ acting compactly on M , and any h ∈ Q, there
exists h′ ∈ Q such that M≤th ⊆M≤t′h′ , where M≤th and M≤t′h

′
are the slope ≤ h

part for t and ≤ h′ part for t′ respectively.
Proof. We see that M≤th is stable under T+. In particular it is stable under the
action of t′. Moreover, t′ is invertible since there exists n ∈ N, t′′ ∈ T+ such that
tn = t′t′′. It follows thatM≤th ⊆M≤t′h′ where h′ is the maximum of the valuation
of the eigenvalues of t′ on M≤th. �

Let M• ∈ Ob(D(F )). We assume that we have an algebra action Z[T+] →
EndD(F )(M

•), such that the ideal Z[T++] acts by potent compact operators.

Lemma 5.1.7. For any t, t′ ∈ T++ acting compactly on M•, the corresponding
finite slope parts M•,t−fs and M•,t

′−fs are quasi-isomorphic.
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Proof. We deduce from lemma 5.1.6, that for any h ∈ Q, the projection M• →
M•,≤th factors through M• → M•,≤t′h

′
for some h′ ∈ Q. Passing to the limit

over h and h′ we deduce that we have a map M•,t−fs → M•,t
′−fs. This map is a

quasi-isomorphism. �

In view of this lemma, we use the notation M•,fs to mean M•,t−fs for any
compact operator t ∈ T++.

5.2. Correspondences and cohomology with support. We now discuss the
action of a cohomological correspondence on the cohomology with support of a
sheaf. Let (F,OF ) be a non-archimedean local field and let X be an adic space of
finite type over Spa(F,OF ). Let

C
p1

��

p2

��
X X

be a correspondence, where C is of finite type and p1 and p2 are morphisms of adic
spaces.

5.2.1. Action of the correspondences on subsets of X . Let P(X ) be the set of subsets
of X . Let us denote by T : P(X ) → P(X ) the map which takes B ∈ P(X ) to
p2(p−1

1 (B)) and T t : P(X )→ P(X ) the map which takes B ∈ P(X ) to p1(p−1
2 (B)).

Lemma 5.2.2. If p1 is proper (see [Hub96], section 1.3), the map T t preserves
closed subsets and closed subsets with quasi-compact complements. If p1 is flat, the
map T t preserves open subsets and quasi-compact open subsets.

Proof. Let Z be a closed subset of X . Then p−1
2 (Z) is a closed subset of C, and

T t(Z) is closed by properness. Moreover if Z has quasi-compact complement, then
p−1

2 (Z) has quasi-compact complement. We can find a formal model for the pro-
jection p1, p1 : C→ X, which is proper and with the property that the complement
of p−1

2 Z is the generic fiber of an open subset of C ([L9̈0], thm. 1.6, thm. 3.1).
Therefore p−1

2 (Z) = sp−1(Zk) for some closed subset Zk of the special fiber of C.
Since p1 is proper, p1(Zk) is closed, and T t(Z) = sp−1(p1(Zk)) has quasi-compact
complement. Let U ⊆ X be an open subset. Then p−1

2 (U) is open in C and T t(U)
is open since flat morphisms are open ([Hub96], lemma 1.7.9). If we assume that U
is quasi-compact, then p−1

2 (U) and hence T t(U) are as well. �

5.2.3. Action of the correspondence on cohomology. Let F be a sheaf of OX -modules.
Let U ⊆ X be an open subset of X and let Z ⊆ X be a closed subset. We assume
that T (U) is open and that p1 is finite flat. We also assume that we have a map
T : p?2F → p?1F . We can define a map

T : RΓZ∩T (U)(T (U),F )→ RΓT t(Z)∩U (U ,F )

as the following composite:

RΓZ∩T (U)(T (U),F )
a→ RΓp−1

2 (Z∩T (U))(p
−1
2 (T (U)), p?2F )

b→ RΓp−1
2 (Z)∩p−1

1 (U)(p
−1
1 (U), p?2F )

c→ RΓp−1
2 (Z)∩p−1

1 (U)(p
−1
1 (U), p?1F )

d→ RΓT t(Z)∩U (U ,F ),

where:
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• a is a pull back map along p−1
2 (T (U))→ T (U),

• b is a pull back map along p−1
1 (U) → p−1

2 (T (U)). Notice that p−1
2 (Z ∩

T (U)) ∩ p−1
1 (U) = p−1

2 (Z) ∩ p−1
1 (U),

• c is given by the map T : p?2F → p?1F ,
• d is given by the trace map of lemma 2.1.2. Notice that p1(p−1

2 (Z) ∩
p−1

1 (U)) ⊂ T t(Z) ∩ U .

Remark 5.2.4. We observe that in the definition of the correspondence, the map
p?2F → p?1F is only used in a neighborhood of

p−1
2 (Z) ∩ p−1

1 (U).

Indeed, let V be a neighborhood of p−1
2 (Z) ∩ p−1

1 (U) in p−1
1 (U), then we have

RΓp−1
2 (Z)∩p−1

1 (U)(p
−1
1 (U), p?iF ) = RΓp−1

2 (Z)∩p−1
1 (U)(V, p

?
iF )

for i = 1, 2.

5.2.5. Representing the correspondence by a map of complexes. In this section, we
prove under some mild assumptions that the map T of the last section can be
represented by a morphism of complexes of Banach spaces. We assume that F is
a locally projective Banach sheaf.

Lemma 5.2.6. Assume that U and T (U) are quasi-compact open subsets, and that
Z and T t(Z) have quasi-compact complements. Then the map T : RΓZ∩T (U)(T (U),F )→
RΓT t(Z)∩U (U ,F ) is represented by a morphism in Kproj(Ban(F )).

Proof. We consider finite affinoid F -acyclic coverings T (U) = ∪i∈IUi and U =
∪i∈I′U ′i . We also let Z = ∩j∈JZj , T t(Z) = ∩j∈J′Z ′j where Zcj and (Z ′j)

c are
affinoid and F -acyclic and J , J ′ are finite. We see that RΓZ∩T (U)(T (U),F ) is
represented by a cone of a map of Čech complexes

Cone
(
Č({Ui}i∈I ,F )→ Č({Ui ∩ Zcj}(i,j)∈I×J ,F )

)
[−1],

and similarly RΓT t(Z)∩U (U ,F ) is represented by

Cone
(
Č({U ′i}i∈I′ ,F )→ Č({U ′i ∩ (Z ′j)

c}(i,j)∈I′×J′ ,F )
)
[−1].

We now proceed to represent the map T . We first have a map (pullback under p2):

A : Cone
(
Č({Ui}i∈I ,F )→ Č({Ui ∩ Zcj}(i,j)∈I×J ,F )

)
[−1]→

Cone
(
Č({p−1

2 (Ui)}i∈I , p?2F )→ Č({p−1
2 (Ui ∩ Zcj )}(i,j)∈I×J , p?2F )

)
[−1]

We then have a restriction map, composed with the map p?2F → p?1F :

B : Cone
(
Č({p−1

2 (Ui)}i∈I , p?2F )→ Č({p−1
2 (Ui ∩ Zcj )}(i,j)∈I×J , p?2F )

)
[−1]→

Cone
(
Č({p−1

2 (Ui)∩p−1
1 (U)}i∈I , p?1F )→ Č({p−1

2 (Ui∩Zcj )∩p−1
1 (U∩T t(Z)c)}(i,j)∈I×J , p?1F )

)
[−1].

We now observe that {p−1
2 (Ui)∩p−1

1 (U)}i∈I is a covering of p−1
1 (U) since p−1

1 (U) ⊆
p−1

2 (T (U)). We also observe that {p−1
2 (Ui ∩ Zcj ) ∩ p

−1
1 (U ∩ T t(Z)c)}(i,j)∈I×J is a

covering of p−1
1 (U ∩ T t(Z)c) since p−1

2 (Z) ⊆ p−1
1 (T t(Z)).

We now pick an F -acyclic finite affinoid covering p−1
1 (U) = ∪i∈I′′U ′′i which

refines both {p−1
2 Ui ∩ p−1

1 (U)}i∈I and {p−1
1 U ′i}i∈I′ . We also let p−1

1 (Z) = ∩j∈J′′Z ′′j
where (Z ′′j )c is affinoid and F -acyclic, J ′′ is finite, and the covering ∪j∈J′′(Z ′′j )c
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of p−1
1 (Z)c refines both {p−1

1 (Z ′j)
c}j∈J′ and {p−1

2 (Zj)
c ∩ p−1

1 (Z)c}j∈J . We deduce
that there are refinement maps:

C : Cone
(
Č({p−1

2 (Ui)∩p−1
1 (U)}i∈I , p?1F )→ Č({p−1

2 (Ui∩Zcj )∩p−1
1 (U∩T t(Z)c)}(i,j)∈I×J , p?1F )

)
[−1]→

Cone
(
Č({U ′′i }i∈I′′ , p?1F )→ Č({U ′′i ∩ (Z ′′j )c}(i,j)∈I′′×J′′ , p?1F )

)
[−1]

and

D : Cone
(
Č({p−1

1 (U ′i)}i∈I′ , p?1F )→ Č({p−1
1 (U ′i ∩ (Z ′j)

c)}(i,j)∈I′×J′ , p?1F )
)
[−1]→

Cone
(
Č({U ′′i }i∈I′′ , p?1F )→ Č({U ′′i ∩ (Z ′′j )c}(i,j)∈I′′×J′′ , p?1F )

)
[−1].

But since p1 is finite, p−1
1 sends F -acyclic affinoids to p?1F -acyclic affinoids. Hence

D is actually a quasi-isomorphism, and we can pick an inverse D−1 for D up to
homotopy by lemma 2.4.6.

We finally have a trace map:

E : Cone
(
Č({p−1

1 (U ′i)}i∈I′ , p?1F )→ Č({p−1
1 (U ′i ∩ (Z ′j)

c)}(i,j)∈I′×J′ , p?1F )
)
[−1]→

Cone
(
Č({U ′i}i∈I′ ,F )→ Č({U ′i ∩ (Z ′j)

c}(i,j)∈I′×J′ ,F )
)
[−1]

Then E ◦D−1 ◦ C ◦B ◦A represents T . �

Corollary 5.2.7. Assume that U = ∪nUn is a countable union of quasi-compact
open subsets. Let Z = ∩nZn be a countable intersection of closed subsets with
quasi-compact complement. Assume that T (Un) is quasi-compact and T t(Zn) is the
complement of a quasi-compact space. Assume also that U , T (U) are a finite union
of quasi-Stein spaces and that the complements of Z and T t(Z) are finite union of
quasi-Stein spaces. Then the map T : RΓZ∩T (U)(T (U),F ) → RΓT t(Z)∩U (U ,F ) is
represented in ProN(Kproj(Ban(F ))).

Proof. We can assume that Un ⊆ Un+1 and Zn ⊆ Zn−1. By lemma 5.2.6, the
maps: RΓZn∩T (Un)(T (Un),F ) → RΓT t(Zn)∩Un(Un,F ) are representable by maps
in Kproj(Ban(F )). We then pass to the limit over n. See also lemma 2.5.21. �

Remark 5.2.8. We note that the assumptions of lemma 5.2.6 and corollary 5.2.7 are
satisfied if p1 and p2 are finite flat by lemma 5.2.2. In our applications to Shimura
varieties, the maps of the (toroidal compactifications of the) correspondences are
only finite flat for suitable choices of cone decompositions. However, we will only
consider cohomology with support of certain subsets which are “well positioned”
with respect to the boundary which will have the consequence that the cohomologies
we consider can be defined for any choice of cone decomposition and are further
independent of this choice.

5.3. A formal analytic continuation result. In this section we prove a result
which will identify the finite slope part of different cohomologies. This can be seen
as an (abstract) generalization of [Buz03], thm. 5.2. Let X be an adic space of
finite type over Spa(F,OF ), and let p1, p2 : C → X be a correspondence. We
assume that p1 is finite flat. We also let F be a locally projective Banach sheaf
(see definition 2.5.2), and we assume that the map T : p?2F → p?1F is compact (see
definition 2.5.3). We recall that when F is a locally free coherent sheaf, any map
p?2F → p?1F is compact.
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5.3.1. The diamond of a correspondence. We now make the further assumption that
T t(Z) ⊆ Z and T (U) ⊆ U . We can build the following diamond shaped diagram:

RΓZ∩U (U ,F )

res
tt

RΓZ∩T (U)(T (U),F )
T // RΓT t(Z)∩U (U ,F )

cores

jj

res
tt

RΓT t(Z)∩T (U)(T (U),F )

cores

jj

where the composition of the top and lower triangle res ◦ cores and cores ◦ res are
equal. We can define an endomorphism of each of the four cohomologies occurring
in this diagram by suitably composing T with restriction and corestriction maps.
By abuse of notation we also call these endomorphisms T . One checks immediately
that all the maps in the diamond are equivariant for these endomorphisms.

Proposition 5.3.2. Assume that all the complexes appearing are objects of ProN(Kproj(Ban(F )))
and that the endomorphisms T are potent compact. After taking finite slope parts,
all the maps in the resulting diamond

RΓZ∩U (U ,F )fs

res
tt

RΓZ∩T (U)(T (U),F )fs
T // RΓT t(Z)∩U (U ,F )fs

cores

jj

res
tt

RΓT t(Z)∩T (U)(T (U),F )fs

cores

jj

are quasi-isomorphisms.

Proof. For each map f in the diagram, there is another map g (the composition
of two other arrows in the diagram) so that gf and fg are the endomorphism T
on the source and target of f . As T becomes invertible on the finite slope part, so
does f . �

Remark 5.3.3. Under the assumptions of corollary 5.2.7, the operator T is potent
compact if the map “restriction-corestriction” obtained by composing the top or
bottom arrows of the diamond RΓT t(Z)∩U (U ,F )→ RΓZ∩T (U)(T (U),F ) is compact
(see lemma 2.5.25 for a criterium).

As a corollary, we note the following fact:

Corollary 5.3.4. Under the hypothesis of proposition 5.3.2, let U ′ and Z ′ be open
and closed subsets, such that T (U) ∩ Z ⊆ U ′ ⊆ U and U ∩ T t(Z) ⊆ Z ′ ∩ U ′ ⊆ Z.
Assume also that RΓZ′∩U ′(U ,F ) is an object of ProN(Kproj(Ban(F ))). Then the
operator T is well defined and potent compact on RΓZ′∩U ′(U ′,F ) and the finite
slope part of RΓZ′∩U ′(U ′,F ) is canonically quasi-isomorphic to the finite slope
part of RΓZ∩U (U ,F ).
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Proof. Under our assumptions, we have restriction-corestriction maps:

RΓZ′∩U ′(U ′)→ RΓZ′∩U ′∩T (U)(U ′∩T (U))→ RΓZ∩T (U)(T (U)∩U ′,F ) = RΓZ∩T (U)(T (U),F )

and

RΓT t(Z)∩U (U ,F )→ RΓT t(Z)∩U ′(U ′,F )→ RΓZ′∩U ′(U ′,F ).

We can build the following diagram:

RΓZ′∩U ′(U ′,F )

uu
RΓZ∩T (U)(T (U),F )

T // RΓT t(Z)∩U (U ,F )

ii

and T is therefore well defined and potent compact on RΓZ′∩U ′(U ′,F ). We deduce
that RΓZ′∩U ′(U ′,F )fs is quasi-isomorphic to RΓZ∩T (U)(T (U),F )fs which is in
turn quasi-isomorphic to RΓZ∩U (U ,F )fs. �

5.3.5. The infinite diamond. It is interesting to iterate the operator T . We now
work under the stronger assumption that p1 and p2 are finite flat. These assump-
tions imply that for any n ≥ 0, the n-th iterate C(n) of the correspondence C comes
with two finite flat projections p1,n and p2,n.

Remark 5.3.6. Later we will apply this material to toroidal compactifications of
Shimura varieties. We therefore have to work under slightly more general assump-
tions. Namely, it is not possible in general to find cone decompositions such that all
the maps between compactifications of Hecke correspondences are finite flat. Nev-
ertheless, by allowing suitable changes of the cone decompositions, we can always
assume that a given map is finite flat. Moreover, the composition of compactified
Hecke correspondences and their action on the cohomology has been explained in
detail in section 4.2.2. Therefore, for the clarity of the exposition, we will keep the
assumption that p1 and p2 are finite flat here.

We let Um = Tm(U) and Zn = (T t)n(Z). We assume that T (U) ⊆ U and
T t(Z) ⊆ Z. The sequences {Um}m≥0 and {Zn}n≥0 are therefore decreasing.

We can then construct diamonds as above for all n,m ≥ 0:

RΓZn∩Um(Um,F )

res
tt

RΓZn∩Um+1(Um+1,F )
T // RΓZn+1∩Um(Um,F )

cores

jj

res
tt

RΓZn+1∩Um+1(Um+1,F )

cores

jj

and we can add them to get an infinite diamond diagram looking like:
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RΓZ∩U (U,F)

res

{{
RΓZ∩U1

(U1,F)

res

||

T // RΓZ1∩U (U,F)

cores

bb

res

||
RΓZ∩U2

(U2,F)
T // RΓZ1∩U1

(U1,F)

cores

bb

T // RΓZ2∩U (U,F)

cores

bb

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(1)

We assume that all the objects of the above diagram belong to ProN(Kproj(Ban(F ))).
We now make the further assumption that there exists (m0, n0) such that one mor-
phism “restriction-corestriction” obtained by composing the top or low arrows of a
diamond RΓZn0+1∩Um0

(Um0
,F )→ RΓZn0∩Um0+1

(Um0+1,F ) is compact.
For any m,n with m,n ≥ 0 and (m,n) 6= (0, 0), we can define an endomorphism

Tm,n : RΓZn∩Um(Um,F )→ RΓZn∩Um(Um,F ) by composing T , res and cores in a
suitable order. We abuse notation and denote this operator by T . The operator T is
potent compact because some power of it will factor over the compact “restriction-
corestriction” map above. In any case, we can speak of the finite slope direct factor
of RΓZn∩Um(Um,F ) for T .

Theorem 5.3.7. On the finite slope part, all the morphisms of the infinite diamond
are quasi-isomorphisms.

Proof. This follows from proposition 5.3.2. �

Corollary 5.3.8. Under the hypothesis of theorem 5.3.7, assume that there is
m,n, s ∈ Z≥0 such that (T t)n+s(Z)∩Tm(U) ⊆ Z ′∩U ′ ⊆ (T t)n(Z) is a closed subset
and Tm+s(U) ∩ (T t)n(Z) ⊆ U ′ ⊆ Tm(U). Assume moreover that RΓZ′∩U ′(U ′,F )
is an object of ProN(Kproj(Ban(F ))). Then the operator T s is well defined and
potent compact on RΓZ′∩U ′(U ′,F ) and the finite slope part of RΓZ′∩U ′(U ′,F ) is
canonically quasi-isomorphic to the finite slope part of RΓZ∩U (U ,F ).

Proof. This follows from corollary 5.3.4. �

5.4. Overconvergent cohomologies. Let (G,X) be an abelian type Shimura
datum such that GQp is quasi split. Let w ∈ MW . For a choice of + or − and a
weight κ ∈ X?(T c)Mµ,+ we want to define finite slope overconvergent cohomologies
RΓw(Kp, κ)±,fs and their cuspidal counterparts RΓw(Kp, κ, cusp)±,fs by taking
cohomologies with suitable support conditions of neighborhoods of the inverse image
under the Hodge-Tate period map of Pµ\PµwKp, and by taking finite slope parts
for a suitable Hecke operator. We will also define variants RΓw(Kp, κ, χ)±,fs and
RΓw(Kp, κ, χ, cusp)±,fs where χ : T (Zp)→ F

×
is a finite order character.
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5.4.1. First definition. For a level Kp = Kp,m′,b with m′ ≥ b ≥ 0 and m′ > 0 and
a weight κ ∈ X?(T c)Mµ,+, we define:

RΓw(KpKp, κ)+,fs := RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp)−1(]Xw,k[),Vκ)+,fs.

Implicit in this definition is that this cohomology is an object of ProN(Kproj(Ban(F )))
and that H+

p,m′,b acts on it in a way that H++
p,m′,b acts by potent compact operators

(this will be proved below in Theorem 5.4.3).
Similarly for a weight κ ∈ X?(T c)Mµ,+, we define:

RΓw(KpKp, κ)−,fs := RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp)−1(]Yw,k[),Vκ)−,fs.

Again implicit in this definition is that this cohomology is an object of ProN(Kproj(Ban(F )))
and that H−p,m′,b acts on it in a way that H−−p,m′,b acts by potent compact operators
(this will also be proved below in Theorem 5.4.3).

We have similar definitions for cuspidal cohomology.

5.4.2. Existence of finite slope cohomology.

Theorem 5.4.3. Let Kp = Kp,m,b for some m ≥ b ≥ 0 with m > 0, and fix
w ∈ MW and κ ∈ X?(T c)Mµ,+.

(1) There is an action of H+
p,m,b on RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π

tor
HT,Kp

)−1(]Xw,k[),Vκ)

for which H++
p,m,b acts via potent compact operators. The same statement

holds for RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp

)−1(]Xw,k[),Vκ(−D)).

(2) There is an action of H−p,m,b on RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp

)−1(]Yw,k[),Vκ)

for which H−−p,m,b acts via potent compact operators. The same statement
holds for RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π

tor
HT,Kp

)−1(]Yw,k[),Vκ(−D)).

Proof. We only prove point 1 for non cuspidal cohomology. The rest of the argument
is very similar and left to the reader.

Let U = (πtorHT,Kp)−1(]Xw,k[) and Z = (πtorHT,Kp)−1(]Yw,k[). By lemma 3.3.21 we
have

RΓU∩Z(U,Vκ) = RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp)−1(]Xw,k[),Vκ).

Now if T is the Hecke operator [KptKp] for any t ∈ T+, we have T (U) ⊆ U and
T t(Z) ⊆ Z by lemma 3.5.10 and hence there is an action ofH+

p,m,b on RΓU∩Z(U,Vκ)
via the construction explained at the beginning of Section 5.3. That this action
defines an action of the Hecke algebra H+

p,m,b follows from the discussion of section
4.2.2.

Now suppose that T is associated to t ∈ T++. In order to simplify notations, we
choose t such that min(t) = infα∈Φ+ v(α(t)) ≥ 1. In order to show the action of T
is potent compact, it suffices to show that the “restriction-corestriction” map

RΓU∩T t(Z)(U,Vκ)→ RΓT (U)∩Z(T (U),Vκ)

is compact. We need to check the assumptions of lemma 2.5.25.
We will be done if we can find a quasi-compact open subset U ′ such that T (U)∩

Z ⊆ U ′ and U ′ ⊆ U , and closed subset Z1, Z2, with quasi-compact complement,

such that U ∩ T t(Z) ⊆ Z1, Z1 ⊆
◦
Z2 and Z2 ⊆ Z. By lemma 3.5.10, we have:

U ∩ T t(Z) ⊆ (πtorHT,Kp)−1
(
]Cw,k[0,1Kp

)
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and
T (U) ∩ Z ⊆ (πtorHT,Kp)−1

(
]Cw,k[1,0Kp

)
We first find U ′. By lemma 3.3.21,

(πtorHT,Kp)−1
(
]Cw,k[0,−∞Kp

)
⊆ U.

We may now take U1 a quasi-compact open of FL with the property that ]Cw,k[1,0⊆
U1 ⊆]Cw,k[ 1

2 ,−1 and let U ′ = (πtorHT,Kp)−1(U1Kp). Observe that U1Kp is a finite
union of translates of U1. It follows easily from lemma 3.3.21, (1) that U ′ has the
required property.

We now proceed to find Z1 and Z2. By lemma 3.3.21,

(πtorHT,Kp,m,b)
−1
(
]Cw,k[−∞,0

)
⊆ (πtorHT,Kp,m,b)

−1(]Yw,k[).

We can find ]Cw,k[0,1⊆ W1 ⊆ W2 ⊆]Cw,k[−∞,0 with W1, W2 closed with quasi-

compact complements and W1 ⊆
◦
W 2. We deduce that ]Cw,k[0,1Kp ⊆ W1Kp ⊆

W2Kp ⊆]Yw,k[ and that W1Kp ⊆
◦

W2Kp =
◦
W2Kp since W1Kp and W2Kp are a

finite union of translates of W1 and W2. We let Z1 = (πtorHT,Kp)−1(W1Kp) and
Z2 = (πtorHT,Kp)−1(W2Kp). We let Z1 = (πtorHT,Kp,m,b)

−1(∪s< 1
2
]Cw,k[0,sKp,m,b). We

now find Z2. We first observe that ∪s< 1
2
]Cw,k[0,s ⊆]Cwk [⊆]Xw

k [, and that ]Xw
k [ =

sp−1(Xw
k ) ⊆]Yw,k[. Since ]Xw

k [Kp,m,b is a finite union of translates of ]Xw
k [, we can

take
Z2 = (πtorHT,Kp,m,b)

−1(]Xw
k [Kp,m,b).

We observe that Zc1 ∩ (πtorHT,Kp,m,0)−1(]Yw,k[) is a non-empty quasi-compact open,
call it W . We can find a non-empty quasi-compact open W ′ with the property that
W ⊂W . We let

Z ′ =]Cw,k[0,0

and Z = (πtorHT,Kp,m,0)−1(Z ′).
�

5.4.4. The finite slope cohomology and the cohomology of dagger spaces. We con-
struct two exact triangles which give an interpretation of finite slope cohomology
for a given w ∈ MW as being quasi-isomorphic to the cone of a map between finite
slope cohomology of certain dagger spaces, or the cone of a map between cohomol-
ogy with compact support of dagger spaces. This will be useful for duality and
vanishing.

Proposition 5.4.5. Let Kp = Kp,m,b for some m ≥ b ≥ 0 with m > 0, and fix
w ∈ MW and κ ∈ X?(T c)Mµ,+.

(1) The Hecke algebra H−p,m,b acts on RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ) and RΓ((πtorHT,Kp)−1(]∪w′>w
Yw′,k[),Vκ) and the ideal H−−p,m,b acts by potent compact operators. We have
an exact triangle:

RΓw(KpKp, κ)−,fs → RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)−,fs

→ RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)−,fs
+1→
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(2) The Hecke algebra H+
p,m,b acts on RΓ

(πtorHT,Kp )−1(]Yw,k[)
(StorKpKp,Σ

,Vκ) and

RΓ
(πtorHT,Kp )−1(]∪w′>wYw′,k[)

(StorKpKp,Σ
,Vκ) and the ideal H++

p,m,b acts by potent

compact operators. We have an exact triangle:

RΓ
(πtorHT,Kp )−1(]∪w′>wYw′,k[)

(StorKpKp,Σ,Vκ)+,fs → RΓ
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ,Vκ)+,fs

→ RΓw(KpKp, κ)+,fs +1→

Proof. We have an exact triangle:

RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp)−1(]Yw,k[),Vκ)→ RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)

→ RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)
+1→

since ]Yw,k[=] ∪w′>w Yw,k[
∐

]Cw,k[0,0 by lemma 3.3.22. We also have an exact
triangle

RΓ
(πtorHT,Kp )−1(]∪w′>wYw′,k[)

(StorKpKp,Σ,Vκ)→ RΓ
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ,Vκ)

→ RΓ(πtorHT,Kp )−1(]Cw,k[0,0)((π
tor
HT,Kp)−1(]Xw,k[),Vκ)

+1→

since ]Yw,k[ = ] ∪w′>w Yw,k[
∐

]Cw,k[0,0 by lemma 3.3.22, and ]Xw,k[ is an open
neighborhood of ]Cw,k[0,0 in FL \ ] ∪w′>w Yw,k[. It therefore remains to prove that
the relevant Hecke algebras act in an equivariant way on the triangle and to take the
finite slope part. We observe that the cohomologies RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ) and
RΓ((πtorHT,Kp)−1(]∪w′>wYw′,k[),Vκ) are represented by complexes inKproj(Ban(F )).
It follows from lemma 3.5.10, (2) and (7) that H−p,m′,b is acting and that H−−p,m′,b is
acting via potent compact operators. We observe that the cohomologies RΓ

(πtorHT,Kp )−1(]∪w′>wYw′,k[)
(StorKpKp,Σ

,Vκ)

and RΓ
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ
,Vκ) are represented by complexes in ProN(Kproj(Ban(F )))

and it follows form lemma 3.5.10 (2) and (7) that H+
p,m′,b is acting and that H++

p,m′,b

is acting via potent compact operators. �

Remark 5.4.6. One could also consider two other triangles: one for the − theory,
using cohomology with support in the closed subsets (πtorHT,Kp)−1(] ∪w′<w Xw′,k[)

and (πtorHT,Kp)−1(]Xw,k[), and one for the + theory using cohomology of the open
subsets (πtorHT,Kp)−1(] ∪w′<w Xw′,k[) and (πtorHT,Kp)−1(]Xw,k[).

By remark 2.7.2, the cohomologies

RΓ
(πtorHT,Kp )−1(]∪w′>wYw′,k[)

(StorKpKp,Σ,Vκ), and RΓ
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ,Vκ)

are the cohomologies with compact support of the dagger spaces

(πtorHT,Kp)−1(] ∪w′>w Yw′,k[)† and (πtorHT,Kp)−1(]Yw,k[)†.

Similarly,

RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ), and RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)

are the cohomologies of the dagger spaces

(πtorHT,Kp)−1(] ∪w′>w Yw′,k[)† and (πtorHT,Kp)−1(]Yw,k[)†.
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Proposition 5.4.7. The Hecke algebra H−p,m,b acts on RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)

and RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ) and the ideal H−−p,m,b acts by potent compact
operators. Moreover, the morphisms:

RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ) → RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)

RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ) → RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)

induce isomorphisms on the finite slope part:

RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)−,fs
∼→ RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)−,fs

RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)−,fs
∼→ RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)−,fs

Proof. The cohomologies RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ) and RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)

are represented by complexes in IndN(Kproj(Ban(F ))). The Hecke algebra H−p,m′,b
acts and the operators are potent compact as a consequence of lemma 3.5.10 (2)
and (7). The same lemma shows the quasi-isomorphism on the finite slope part. �

Corollary 5.4.8. We have an exact triangle:

RΓw(KpKp, κ)−,fs → RΓ((πtorHT,Kp)−1(]Yw,k[),Vκ)−,fs

→ RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),Vκ)−,fs
+1→

Proof. This is a consequence of propositions 5.4.5 and 5.4.7. �

5.4.9. Change of support condition. It is important to us that the cohomology
RΓw(KpKp, κ)±,fs can actually be realized as the finite slope part of cohomol-
ogy groups with different support conditions. The following definition is motivated
by Lemma 2.5.21 and the discussion of Section 5.3, especially Corollary 5.3.8. We
start by fixing an element t ∈ T++ such that min(t) ≥ 1. We let C = max(t).

Definition 5.4.10. Let m′ ≥ b ≥ 0 with m′ > 0. A (+, w,Kp,m′,b)-allowed support
is a pair (U ,Z) where:

(1) U is an open subset of StorKpKp,m′,b,Σ
which is a finite union of quasi-Stein

open subsets.
(2) Z is a closed subset of StorKpKp,m′,b,Σ

whose complement is a finite union of
quasi-Stein open subsets.

(3) There exists m,n, s ∈ Z≥0 such that:

(πtorHT,Kp,m′,b)
−1(]Cw,k[m,0Kp,m′,b∩]Cw,k[0,n+sKp,m′,b) ⊆ Z∩U ⊆ (πtorHT,Kp,m′,b)

−1(]Cw,k[0,CnKp,m′,b),

(πtorHT,Kp,m′,b)
−1(]Cw,k[m+s,0Kp,m′,b∩]Cw,k[0,nKp,m′,b) ⊆ U ⊆ (πtorHT,Kp,m′,b)

−1(]Cw,k[Cm,−1Kp,m′,b).

Let m′ ≥ b ≥ 0 with m′ > 0. A (−, w,Kp,m′,b)-allowed support is a pair (U ,Z)
where:

(1) U is an open subset of StorKpKp,m′,b,Σ
which is a finite union of quasi-Stein

open subsets.
(2) Z is a closed subset of StorKpKp,m′,b,Σ

whose complement is a finite union of
quasi-Stein open subsets.

(3) There exists m,n, s ∈ Z≥0 such that:

(πtorHT,Kp,m′,b)
−1(]Cw,k[m+s,0Kp,m′,b∩]Cw,k[0,nKp,m′,b) ⊆ Z∩U ⊆ (πtorHT,Kp,m′,b)

−1(]Cw,k[Cm,0Kp,m′,b),

(πtorHT,Kp,m′,b)
−1(]Cw,k[m,0Kp,m′,b∩]Cw,k[0,n+sKp,m′,b) ⊆ U ⊆ (πtorHT,Kp,m′,b)

−1(]Cw,k[−1,CnKp,m′,b).
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Example 5.4.11. For any m′ ≥ b ≥ 0 with m′ > 0 and any s ≥ 0, the pair

U = (πtorHT,Kp,m′,b)
−1(]Cw,k[s,−1Kp,m′,b), Z = (πtorHT,Kp,m′,b)

−1(]Cw,k[0,sKp,m′,b)

is a (+, w,Kp,m′,b)-allowed support (since ]Cw,k[s,−1Kp,m′,b∩]Cw,k[0,sKp,m′,b ⊆]Xw,k[∩]Yw,k[ =

]Cw,k[0,0). Similarly, the pair

U = (πtorHT,Kp,m′,b)
−1(]Cw,k[−1,sKp,m′,b), Z = (πtorHT,Kp,m′,b)

−1(]Cw,k[s,0Kp,m′,b)

is a (−, w,Kp,m′,b)-allowed support.

Theorem 5.4.12. Let m′ ≥ b ≥ 0 with m′ > 0, and fix w ∈ MW and κ ∈
X?(T c)Mµ,+.

(1) Let (U ,Z) be a (+, w,Kp,m′,b)-allowed support condition. Then RΓZ∩U (U ,Vκ)
and RΓZ∩U (U ,Vκ(−D)) are objects of ProN(Kproj(Ban(F ))) and carry a
canonically defined, potent compact action of T s where T = [Kp,m′,btKp,m′,b]
be the corresponding Hecke operator. . Moreover there are canonical iso-
morphisms

RΓw(KpKp,m′,b, κ)+,fs ' RΓZ∩U (U ,Vκ)T
s−fs

and

RΓw(KpKp,m′,b, κ, cusp)
+,fs ' RΓZ∩U (U ,Vκ(−D))T

s−fs.

(2) Let (U ,Z) be a (−, w,Kp,m′,b)-allowed support condition. Then RΓZ∩U (U ,Vκ)
and RΓZ∩U (U ,Vκ(−D)) are objects of ProN(Kproj(Ban(F ))) and carry a
canonically defined, potent compact action of T s where T = [Kp,m′,btKp,m′,b].
Moreover there are canonical isomorphisms

RΓw(KpKp,m′,b, κ)−,fs ' RΓZ∩U (U ,Vκ)T
s−fs

and

RΓw(KpKp,m′,b, κ, cusp)
−,fs ' RΓZ∩U (U ,Vκ(−D))T

s−fs.

Proof. We will only prove the first point for non cuspidal cohomology. It follows
from lemma 2.5.21 that RΓZ∩U (U ,Vκ) is an object of ProN(Kproj(Ban(F ))).

For the rest of the statement we will use the infinite diamond construction of sec-
tion 5.3.5 and corollary 5.3.8. Form,n ∈ Z≥0 we let Um = (πtorHT,Kp,m′,b)

−1(Tm(]Xw,k[))

and Zn = (πtorHT,Kp,m′,b)
−1((T t)n(]Yw,k[)). Since we have already checked in the

proof of theorem 5.4.3 that the “restriction-corestriction” map

RΓU0∩Z1
(U0,Vκ)→ RΓU1∩Z0

(U1,Vκ)

is compact, it follows that the conclusion of corollary 5.3.8 hold.
By lemma 3.5.10 we have:

Um ∩ Zn+s ⊆ (πtorHT,Kp,m′,b)
−1(]Cw,k[m,0Kp,m′,b∩]Cw,k[0,n+sKp,m′,b)

Um+s ∩ Zn ⊆ (πtorHT,Kp,m′,b)
−1(]Cw,k[m+s,0Kp,m′,b∩]Cw,k[0,nKp,m′,b)

(πtorHT,Kp,m′,b)
−1(]Cw,k[mC,−1Kp,m′,b) ⊆ Um

(πtorHT,Kp,m′,b)
−1(]Cw,k[0,nCKp,m′,b) ⊆ Zn.
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It follows from corollary 5.3.8 that if (U ,Z) is a (+, w,Kp,m′,b)-allowed support
condition, then RΓU∩Z(U ,Vκ) carries a canonical action of T s and we have canonical
quasi-isomorphisms

RΓU∩Z(U ,Vκ)T
s−fs ' RΓU∩Z(U,Vκ)T−fs ' RΓw(KpKp,m′,b, κ)+,fs.

�

5.4.13. Change of level. Now we investigate how the finite slope cohomologies RΓw(KpKp, κ)±,fs

and RΓw(KpKp, κ, cusp)
±,fs vary with the level Kp.

Theorem 5.4.14. (1) For all w ∈ MW and all m′ ≥ m ≥ b ≥ 0 with m > 0,
the pullback map

RΓw(KpKp,m,b, κ)+,fs → RΓw(KpKp,m′,b, κ)+,fs

and the trace map

RΓw(KpKp,m′,b, κ)−,fs → RΓw(KpKp,m,b, κ)−,fs

are quasi-isomorphisms, compatible with the action of Q[T (Qp)/Tb], and
the same statements are true for cuspidal cohomology.

(2) For all w ∈ MW and all m ≥ b′ ≥ b ≥ 0 with m > 0, the pullback map

RΓw(KpKp,m,b, κ)+,fs → (RΓw(KpKp,m,b′ , κ)+,fs)Tb/Tb′

and the trace map

(RΓw(KpKp,m,b′ , κ)−,fs)Tb/Tb′ → RΓw(KpKp,m,b, κ)−,fs

are quasi-isomorphisms, compatible with the action of Q[T (Qp)/Tb], and
the same statements are true for cuspidal cohomology.

Proof. This follows from lemma 4.2.14. �

As a result of the theorem, we can let RΓw(Kp, κ, χ)±,fs and RΓw(Kp, κ, χ, cusp)±,fs

denote RΓw(KpKp,m,b, κ)±,fs[χ] and RΓw(KpKp,m,b, κ, cusp)
±,fs[χ] for any m ≥

b ≥ cond(χ) with m > 0, as these spaces have been canonically identified.

5.5. The spectral sequence associated with the Bruhat stratification. Re-
call that there is a length function ` : MW → [0, d] where d = dimFL = dimSK
with the property that `(w) = dimCw. We let `+(w) = `(w) and `−(w) = d−`(w).

The main result of this section is the following theorem:

Theorem 5.5.1. Let κ ∈ X?(T c)Mµ,+ be a weight and let χ : T (Zp) → F
×

be
a finite order character. For a choice of + or −, there is a H±p,m,b-equivariant
spectral sequence Ep,q(Kp, κ, χ)± converging to classical finite slope cohomology
Hp+q(Kp, κ, χ)±,fs, such that

Ep,q1 (Kp, κ, χ)± = ⊕w∈MW,`±(w)=pH
p+q
w (Kp, κ, χ)±,fs.

There are also spectral sequences Ep,q(Kp, κ, χ, cusp)± converging to Hp+q(Kp, κ, χ, cusp)±,fs

such that

Ep,q1 (Kp, κ, χ, cusp)± = ⊕w∈MW,`±(w)=pH
p+q
w (Kp, κ, χ, cusp)±,fs.
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5.5.2. Construction of a filtration. We consider the following two stratifications of
the special fiber of the flag variety FLk, the first one is by open subsets:

{FL≥rk = ∪`(w)≥rCw,k}0≤r≤d
and the second one is by closed subsets:

{FL≤d−rk = ∪`(w)≤d−rCw,k}0≤r≤d.

We then define Z+
r = ]FL≥rk [ and Z−r = ]FL≤d−rk [. This gives two filtrations

FL = Z±0 ⊃ Z
±
1 ⊃ · · · ⊃ Z

±
d ⊃ Z

±
d+1 = ∅

by closed subspaces invariant under the Iwahori Iw.
Now let Kp = Kp,m,b for some m ≥ b ≥ 0 with m > 0. We can consider the

pullback of these filtrations by πtorHT,Kp to get two filtrations StorK,Σ = Z±0 ⊃ Z
±
1 ⊃

· · · ⊃ Z±d ⊃ Z
±
d+1 = ∅ by closed subspaces.

For any weight κ, we can consider the associated spectral sequence (see section
2.3):

Hp+q

Z±p /Z±p+1

(StorK,Σ,Vκ)⇒ Hp+q(StorK,Σ,Vκ).

By definition and lemma 3.3.19,

H?
Z+
p /Z+

p+1

(StorKpKp ,Vκ) =

H?
(πtorHT,Kp )−1(]∪`(w)≥pCw[∩]∪`(w)≤pCw[)

((πtorHT,Kp)−1(] ∪`(w)≤p Cw[),Vκ).

and
H?
Z−p /Z−p+1

(StorKpKp ,Vκ) =

H?
(πtorHT,Kp )−1(]∪`(w)≤d−pCw[∩]∪`(w)≥d−pCw[)

((πtorHT,Kp)−1(] ∪`(w)≥d−p Cw[),Vκ).

We also have a cuspidal version

Hp+q

Z±p /Z±p+1

(StorK,Σ,Vκ(−D))⇒ Hp+q(StorK,Σ,Vκ(−D)).

We relate the E1 pages of these spectral sequences to the overconvergent coho-
mologies considered in the previous section.

Lemma 5.5.3. For all p,

RΓZ+
p /Z+

p+1
(StorKpKp,Σ,Vκ) =

⊕w∈MW, `(w)=pRΓ
(πtorHT,Kp )−1(]Xw,k[∩]Yw,k[)

((πtorHT,Kp)−1(]Xw,k[),Vκ)

RΓZ−p /Z−p+1
(StorKpKp,Σ,Vκ) =

⊕w∈MW, `(w)=d−pRΓ
(πtorHT,Kp )−1(]Yw,k[∩]Xw,k[)

((πtorHT,Kp)−1(]Yw,k[),Vκ)

We have similar results for cuspidal cohomology.

Proof. We have

] ∪`(w)≥p Cw[ ∩ ] ∪`(w)≤p Cw[ = ∪w,`(w)=p]Yw,k[∩]Xw,k[

and
] ∪`(w)≤d−p Cw[ ∩ ] ∪`(w)≥d−p Cw[ = ∪w,`(w)=d−p]Yw,k[ ∩ ]Xw,k[

by lemma 3.3.20. The conclusion follows from lemma 2.1.1. �



112 G. BOXER AND V. PILLONI

Lemma 5.5.4. For a choice of + or −, H±p,m,b acts on RΓZ±p /Z±p+1
(StorKpKp,Σ

,Vκ),
and the spectral sequence

Hp+q

Z±p /Z±p+1

(StorK,Σ,Vκ)⇒ Hp+q(StorK,Σ,Vκ)

is H±p,m,b-equivariant. The same result holds for cuspidal cohomology.

Proof. Easy and left to the reader. �

5.5.5. Proof of Theorem 5.5.1. For a choice of ±, we have constructed a spectral
sequence

Hp+q

Z±p /Z±p+1

(StorK,Σ,Vκ)⇒ Hp+q(StorK,Σ,Vκ).

The Hecke algebra H±p,m,b acts on this spectral sequence and it makes sense to take
the finite slope part by lemma 5.5.4. Applying the finite slope projector, we obtain
the spectral sequence of the theorem.

5.5.6. Cousin complexes. We now extract from the spectral sequence certain com-
plexes that play a prominent role, in particular in view of corollaries 5.7.7 and 5.8.1.
We let Cous(Kp, κ, χ)± be the complex E•,01 (Kp, κ, χ)± (wM0 is the longest element
of MW ):

H0
Id/wM0

(Kp, κ, χ)±,fs → ⊕w∈MW,`±(w)=1H1
w(Kp, κ, χ)±,fs →

⊕w∈MW,`±(w)=2H2
w(Kp, κ, χ)±,fs → · · · → Hd

wM0 /Id(K
p, κ, χ)±,fs

and we let Cous(Kp, κ, χ, cusp)± be the complex E•,01 (Kp, κ, χ, cusp)±:

H0
Id/wM0

(Kp, κ, χ, cusp)±,fs → ⊕w∈MW,`±(w)=1H1
w(Kp, κ, χ, cusp)±,fs →

⊕w∈MW,`±(w)=2H2
w(Kp, κ, χ, cusp)±,fs → · · · → Hd

wM0 /Id(K
p, κ, χ, cusp)±,fs

5.6. Cohomological vanishing. The following vanishing theorem is crucial in
order to study the spectral sequence.

Theorem 5.6.1. The cohomology complex RΓw(Kp, κ, χ, cusp)±,fs has amplitude
[0, `±(w)].

Proof. We only give the argument for the + case, as the − case follows with minor
modifications. Let b be the conductor of χ. We can realize RΓw(Kp, κ, cusp)+,fs

as the χ-isotypic part of the finite slope part of

RΓ(πtorHT,K
p,m′,b

)−1(]Cw,k[s,−1Kp,m′,b∩Cw,k[0,sKp,m′,b)
((πtorHT,Kp,m′,b)

−1(]Cw,k[s,−1Kp,m′,b),Vκ(−D))

for any s ≥ 0 and m′ ≥ b, m′ > 0 by example 5.4.11 and theorem 5.4.12.
We fix s large enough so that π−1

HT,Kp,m′,b
(]Cw,k[s,s−1) is quasi-Stein in the

minimal compactification. We also fix m′ = s. To simplify notations, we let
Kp = Kp,m′,b.

We observe that under these assumptions, ]Cw,k[s,−1Kp∩]Cw,k[0,sKp =]Cw,k[s,sKp

by lemma 3.3.17, and therefore the above cohomology writes

RΓ(πtorHT,Kp )−1(]Cw,k[s,sKp)((π
tor
HT,Kp)−1(]Cw,k[s,s−1Kp),Vκ(−D)).

We shall prove that

RΓ(πtorHT,Kp )−1(]Cw,k[s,sKp)((π
tor
HT,Kp)−1(]Cw,k[s,s−1Kp),Vκ(−D))

has cohomological amplitude [0, `+(w)].
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Projecting via πKpKp,Σ : StorKpKp,Σ
→ S?KpKp

and using theorem 4.1.7, this coho-
mology is quasi-isomorphic to

RΓ(πHT,Kp )−1(]Cw,k[s,sKp)((πHT,Kp)−1(]Cw,k[s,s−1Kp), (πKpKp,Σ)?Vκ(−D))

Le K ′p be the principal level m′ congruence subgroup and let πK′p,Kp : S?KpK′p
→

S?KpKp
. Since

RΓ(πHT,Kp )−1(]Cw,k[s,sKp)((π
tor
HT,Kp)−1(]Cw,k[s,s−1Kp), (πKpKp,Σ)?Vκ(−D)) =

RΓ
(
Kp/K

′
p,RΓ(πHT,K′p

)−1(]Cw,k[s,sKp)((πHT,K′p)−1(]Cw,k[s,s−1Kp), π
?
K′p,Kp

(πKpKp,Σ)?Vκ(−D))
)

It will suffice to prove that

RΓ(πHT,K′p
)−1(]Cw,k[s,sKp)((πHT,K′p)−1(]Cw,k[s,s−1Kp), π

?
K′p,Kp

(πKpKp,Σ)?Vκ(−D))

has cohomological amplitude in [0, `+(w)].
Since ]Cw,k[s,sKp is a finite disjoint union of translates of {]Cw,k[s,ski} for ele-

ments k1, · · · , kn by lemma 3.3.16, we are left to prove that

RΓ(πHT,K′p
)−1(]Cw,k[s,ski)((πHT,K′p)−1(]Cw,k[s,s−1ki), π

?
K′p,Kp

(πKpKp,Σ)?Vκ(−D))

for 1 ≤ i ≤ n has cohomological amplitude in [0, `+(w)]. Also, using the action
of Kp it suffices to treat the case ki = 1. The cohomology fits in a distinguished
triangle:

RΓ(πHT,K′p
)−1(]Cw,k[s,s)((πHT,K′p)−1(]Cw,k[s,s−1), π?K′p,Kp(πKpKp,Σ)?Vκ(−D))→

RΓ((πHT,K′p)−1(]Cw,k[s,s−1), π?K′p,Kp(πKpKp,Σ)?Vκ(−D))→

RΓ((πHT,K′p)−1(]Cw,k[s,s−1 \ ]Cw,k[s,s), π
?
K′p,Kp

(πKpKp,Σ)?Vκ(−D))
+1→

Since π−1
HT,K′p

(]Cw,k[s,s−1) is quasi-Stein in the minimal compactification S?KpK′p

we have that

RΓ((πHT,K′p)−1(]Cw,k[s,s−1), π?K′p,Kp(πKpKp,Σ)?Vκ(−D))

is concentrated in degree 0.
We will now prove that π−1

HT,K′p
(]Cw,k[s,s−1\]Cw,k[s,s) admits a covering by `+(w)

acyclic spaces. This will show that

RΓ((πtorHT,K′p)−1(]Cw,k[s,s−1 \ ]Cw,k[s,s), π
?
K′p,Kp

(πKpKp,Σ)?Vκ(−D))

has only cohomology in degree 0 to `+(w)− 1 and the theorem will follow.
We recall from corollary 3.3.5 the isomorphism:

∏
α∈(w−1Φ−,M )∩Φ+

Uα ×
∏

α∈(w−1Φ−,M )∩Φ−

Uoα → ]Cw,k[FL

(uα)α∈w−1Φ−,M 7→ w
∏
α

uα

Let us fix coordinates 1 + uα on each of the one parameter groups. For these
coordinates, the equation of ]Cw,k[s,s−1\]Cw,k[s,s is:

• ∀α ∈ (w−1Φ−,M ) ∩ Φ+, |uα| ≤ |ps−1|,
• ∀α ∈ (w−1Φ−,M ) ∩ Φ−, ∃ε > 0, |uα| ≤ |ps+ε|,
• ∃α ∈ (w−1Φ−,M ) ∩ Φ+, ∃ν > 0, |uα| ≥ |ps−ν |.
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Since ](w−1Φ−,M ) ∩ Φ+ = `(w) = `+(w), we deduce that ]Cw,k[s,s−1 \ ]Cw,k[s,s
is indeed covered by `(w) acyclic spaces and the same holds for its pre-image by
πHT,K′p . �

Proposition 5.6.2. For the spectral sequence Ep,q(Kp, κ, χ, cusp)± converging to
Hp+q(Kp, κ, χ, cusp)±,fs we have Ep,q1 (Kp, κ, χ, cusp)± = 0 if q > 0. In particular
Ep,q∞ (Kp, κ, χ, cusp)± = Grp(Hp+q(Kp, κ, χ, cusp)±,fs) = 0 if p < p+ q.

Proof. This follows from theorem 5.6.1. The picture of the first page of the spectral
sequence is as follows (wM0 is the longest element of MW ):

H0

Id/wM0

(Kp, κ, χ, cusp)±,fs ⊕
w∈MW,`±(w)=1

H1
w(Kp, κ, χ, cusp)±,fs ⊕

w∈MW,`±(w)=2
H2
w(Kp, κ, χ, cusp)±,fs · · ·

⊕
w∈MW,`±(w)=1

H0
w(Kp, κ, χ, cusp)±,fs ⊕

w∈MW,`±(w)=2
H1
w(Kp, κ, χ, cusp)±,fs · · ·

⊕
w∈MW,`±(w)=2

H0
w(Kp, κ, χ, cusp)±,fs · · ·

�

5.7. Duality. In this section we investigate Serre duality on overconvergent coho-
mologies.

Theorem 5.7.1. For all w ∈ MW , there is a pairing:

〈, 〉 : Hi
w(Kp, κ, χ, cusp)±,fs ×Hd−i

w (Kp,−2ρnc − w0,Mκ, χ
−1)∓,fs → F

such that for t ∈ T± we have 〈t−,−〉 = 〈−, t−1−〉. This pairing induces a pairing
between the spectral sequences:

〈, 〉p,q,r : Ep,qr (Kp, κ, χ, cusp)± ×Ed−p,−qr (Kp,−2ρnc − w0,Mκ, χ
−1)∓ → F

On the abutment of the spectral sequence the pairing 〈, 〉p,q,∞ is induced by the
perfect Serre duality pairing:

Hp+q(Kp, κ, χ, cusp)±,fs ×Hd−p−q(Kp,−2ρnc − w0,Mκ, χ
−1)∓,fs → F .

Proof. We construct the pairing

〈, 〉 : Hi
w(Kp, κ, χ, cusp)+,fs ×Hd−i

w (Kp,−2ρnc − w0,Mκ, χ
−1)−,fs → F .

Choose b so that χ is trivial on Tb. We can realize RΓw(Kp, κ, χ, cusp)+,fs as the
χ-isotypic part of the finite slope part of

RΓ(πtorHT,K
p,m′,b

)−1(]Cw,k[s,sKp,m′,b)
((πtorHT,Kp,m′,b)

−1(]Cw,k[s,−1Kp,m′,b),Vκ(−D))

for any s > 0 and m′ ≥ b, m′ > s. by example 5.4.11 and theorem 5.4.12.
We can realize RΓw(Kp,−2ρnc−w0,Mκ, χ

−1)−,fs as the χ−1-isotypic part of the
finite slope part of

RΓ(πtorHT,K
p,m′,b

)−1(]Cw,k[s+1,s−1Kp,m′,b)
((πtorHT,Kp,m′,b)

−1(]Cw,k[−1,s−1Kp,m′,b),V−2ρnc−w0,Mκ).

We have a cup-product by proposition 2.2.1:

Hi
(πtorHT,K

p,m′,b
)−1(]Cw,k[s,sKp,m′,b)

((πtorHT,Kp,m′,b)
−1(]Cw,k[s,−1Kp,m′,b),Vκ(−D))×
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Hd−i
(πtorHT,K

p,m′,b
)−1(]Cw,k[s+1,s−1Kp,m′,b)

((πtorHT,Kp,m′,b)
−1(]Cw,k[−1,s−1Kp,m′,b),V−2ρnc−w0,Mκ)

→ Hd
(πtorHT,K

p,m′,b
)−1(]Cw,k[s+1,sKp,m′,b)

((πtorHT,Kp,m′,b)
−1(]Cw,k[s,s−1Kp,m′,b,V−2ρnc(−D))

and there is a trace map (by theorem 2.7.1):

Hd
(πtorHT,K

p,m′,b
)−1(]Cw,k[s+1,sKp,m′,b)

((πtorHT,Kp,m′,b)
−1(]Cw,k[s,s−1Kp,m′,b),V−2ρnc(−D))→ F.

This pairing intertwines the actions of H+
p,m′,b and H

−
p,m′,b. It is straightforward

(but painful) to check that the induced pairing

〈, 〉 : Hi
w(Kp, κ, χ, cusp)+,fs ×Hd−i

w (Kp,−2ρnc − w0,Mκ, χ
−1)−,fs → F

is independent of choices.
The rest of the theorem follows from the functoriality of the trace map.

�

We now prove the following theorem:

Theorem 5.7.2. The pairing

〈, 〉 : Hi
w(Kp, κ, χ, cusp)±,fs ×Hd−i

w (Kp,−2ρnc − w0,Mκ, χ
−1)∓,fs → F

is non degenerate. (Equivalently it induces perfect pairings between the finite di-
mensional generalized eigenspaces for T±).

Proof. We consider the pairing 〈, 〉 : Hi
w(Kp, κ, χ, cusp)+,fs × Hd−i

w (Kp,−2ρnc −
w0,Mκ, χ

−1)−,fs → F . The other case is similar. Recall from propositions 5.4.5
and corollary 5.4.8, the exact triangles:

RΓw(KpKp,−2ρnc − w0,Mκ)−,fs → RΓ((πtorHT,Kp)−1(]Yw,k[),V−2ρnc−w0,Mκ)−,fs

→ RΓ((πtorHT,Kp)−1(] ∪w′>w Yw′,k[),V−2ρnc−w0,Mκ)−,fs
+1→

and

RΓ
(πtorHT,Kp )−1(]∪w′>wYw′,k[)

(StorKpKp,Σ,Vκ(−D))+,fs → RΓ
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ,Vκ(−D))+,fs

→ RΓw(KpKp, κ, cusp)
+,fs +1→

Using the naturality of the duality pairing, it is sufficient to show that the pair-
ings:

Hi((πtorHT,Kp)−1(]Yw,k[),V−2ρnc−w0,Mκ)−,fs×Hd−i
(πtorHT,Kp )−1(]Yw,k[)

(StorKpKp,Σ,Vκ(−D))+,fs → F

and

Hi((πtorHT,Kp)−1(] ∪w′>w Yw,k[),V−2ρnc−w0,Mκ)−,fs×Hd−i
(πtorHT,Kp )−1(]∪w′>wYw,k[)

(StorKpKp,Σ,Vκ(−D))+,fs → F

are non degenerate. We only explain how to show that the first pairing is non-
degenerate. The proof for the second pairing is identical. We take a finite affinoid
covering (πtorHT,Kp)−1(]Yw,k[) = ∪i∈IUi.

We deduce that RΓ((πtorHT,Kp)−1(]Yw,k[),V−2ρnc−w0,Mκ), which is the cohomology
of the dagger space (πtorHT,Kp)−1(]Yw,k[)†, is represented by the Čech complex:

M• :
∏
i

H0(U†i ,V−2ρnc−w0,Mκ)→
∏
i,j

H0((Ui ∩ Uj)†,V−2ρnc−w0,Mκ)→ · · ·
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We deduce that RΓ
(πtorHT,Kp )−1(]∪w′>wYw,k[)

(StorKpKp,Σ
,Vκ) (which is the cohomol-

ogy with compact support of the dagger space (πtorHT,Kp)−1(]Yw,k[)†) is represented
by the Čech complex:

N• : · · · →
∏
i,j

Hd
c((Ui ∩ Uj)†,Vκ(−D))→

∏
i

Hd
c(U

†
i ,Vκ(−D))

Using the duality for affinoid dagger spaces (see theorem 2.7.1), we see that M•
is a complex of inductive limit of Banach spaces, N• is a complex of projective limit
of Banach spaces and these complexes are strict dual of each other. More precisely,
the Serre pairing is induced by the perfect duality on each of the modules (which
identifies each module as the strong dual of the other):

Hd
c((UJ)†,Vκ(−D))×H0((UJ)†,V−2ρnc−w0,Mκ)→ F,

where J ⊆ I and UJ = ∩j∈JUj . In general, this does not induce a perfect duality
between the cohomology ofM• and N•. However, we will prove that this is the case
on the finite slope part. Now, let t ∈ T−− be an operator acting compactly. We
claim that we can represent it by an endomorphism of M•. Indeed, for all i we can
find an affinoid Vi with U i ⊆ Vi (by [L9̈0], thm. 5.1). Let V = ∪Vi. By shrinking
the Vi’s, we may assume by lemma 3.5.10, 7), that t(V ) ⊆ (πtorHT,Kp)−1(]Yw,k[) ⊆ V .
Let us finally take an affinoid covering U ′i refining t(V )∩Ui. By lemma 5.2.6, there
is a map

t : Č({U ′i},V−2ρnc−w0,Mκ)→ Č({Vi},V−2ρnc−w0,Mκ).

There are restriction maps A : Č({U†i },V−2ρnc−w0,Mκ) → Č({U ′i},V−2ρnc−w0,Mκ)

and B : Č({Vi},V−2ρnc−w0,Mκ)→ Č({U†i },V−2ρnc−w0,Mκ). We deduce that B◦t◦A
represents t acting on M• (and is compact since A and B are easily seen to be
compact). We easily deduce that the adjoint of t represents t−1 acting on N•.
Passing to the slope ≤ h part on both M• and N•, we obtain a perfect pairing
between complexes of finite dimensional vector spaces. It induces a perfect pairing
on slope ≤ h cohomology groups. �

Using duality, we can prove vanishing theorems for non-cuspidal cohomology:

Theorem 5.7.3. The cohomology complex RΓw(Kp, κ, χ)±,fs has amplitude [`±(w), d].

Proof. This follows by combining theorem 5.7.2 and theorem 5.6.1. �

Proposition 5.7.4. For the spectral sequence Ep,q(Kp, κ, χ)± converging to Hp+q(Kp, κ, χ)±,fs

we have Ep,q1 (Kp, κ, χ)± = 0 if q < 0. In particular Ep,q∞ (Kp, κ, χ)± = Grp(Hp+q(Kp, κ, χ)±,fs) =
0 if p > p+ q.

Proof. This follows from theorem 5.7.3. �

Corollary 5.7.5. If the Shimura variety is compact, RΓw(Kp, κ, χ)±,fs is concen-
trated in degree `±(w).

Proof. This is a combination of theorems 5.6.1 and 5.7.3. �

Remark 5.7.6. Even if the Shimura variety is not compact, it can still happen that
for certain w ∈ MW , the locally closed on which RΓw(Kp, κ, χ)±,fs is computed
does not meet the boundaryD, and hence RΓw(Kp, κ, χ)±,fs = RΓw(Kp, κ, χ, cusp)±,fs

is concentrated in degree `±(w) just as in the compact case. As a basic example,
consider the Hilbert Shimura datum (ResF/QGL2,H[F :Q]

1 ) and a prime p which is
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totally inert in F . Then MW = W = {1, w0}[F :Q] and we have RΓw(Kp, κ, χ)±,fs =
RΓw(Kp, κ, χ, cusp)±,fs unless w = (1, . . . , 1) or (w0, . . . , w0).

The following corollary illustrates the importance of the Cousin complex:

Corollary 5.7.7. If the Shimura variety is compact, we have a quasi-isomorphism:
Cous(Kp, κ, χ)± = RΓ(Kp, κ, χ)±,fs

Proof. For the spectral sequence Ep,q(Kp, κ, χ)± converging to Hp+q(Kp, κ, χ)±,fs,
we have Ep,q1 (Kp, κ, χ)± = 0 if q 6= 0. �

5.8. Interior cohomology. For non compact Shimura varieties, we can introduce
the interior cohomology:

H
i
(Kp, κ, χ)±,fs = Im(Hi(Kp, κ, χ, cusp)±,fs → Hi(Kp, κ, χ)±,fs).

We can also consider the interior overconvergent cohomology

H
i

w(Kp, κ, χ)±,fs = Im
(
Hi
w(Kp, κ, χ, cusp)± → Hi

w(Kp, κ, χ)±
)

as well as the interior Cousin complex

Cous(Kp, κ, χ)± =

Im
(
Cous(Kp, κ, χ, cusp)± → Cous(Kp, κ, χ)±

)
.

By definition, Cous(Kp, κ, χ)± is concentrated in degrees in the interval [0, d]

and its degree i object is ⊕w∈MW,`±(w)=iH
i

w(Kp, κ, χ)±,fs.

Corollary 5.8.1. We have the formula:

H
p
(Kp, κ, χ)±,fs = Im(Ep,0∞ (Kp, κ, χ, cusp)± → Ep,0∞ (Kp, κ, χ)±).

Moreover, for all p, H
p
(Kp, κ, χ)±,fs is a subquotient of Hp(Cous(Kp, κ, χ)±).

Proof. We have a commutative diagram:

Hp(Kp, κ, χ, cusp)±,fs //

��

Hp(Kp, κ, χ)±,fs

Ep,0∞ (Kp, κ, χ, cusp)± //

��

Ep,0∞ (Kp, κ, χ)±

OO

Hp(Cous(Kp, κ, χ, cusp)±) // Hp(Cous(Kp, κ, χ)±)

OO

where the map Hp(Kp, κ, χ, cusp)±,fs → Ep,0∞ (Kp, κ, χ, cusp)± is surjective (this
last module is the last non-zero graded piece in the filtration given by the spectral
sequence) and the map Ep,0∞ (Kp, κ, χ)± → Hp(Kp, κ, χ)±,fs is injective (the first
module is the first non-zero graded piece in the filtration given by the spectral
sequence).

We deduce that

H
p
(Kp, κ, χ)±,fs = Im(Ep,0∞ (Kp, κ, χ, cusp)± → Ep,0∞ (Kp, κ, χ)±).

The map

Ep,0∞ (Kp, κ, χ, cusp)± → Hp(Cous(Kp, κ, χ, cusp)±) = Ep,02 (Kp, κ, χ, cusp)±
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is injective, and the map

Hp(Cous(Kp, κ, χ)±) = Ep,02 (Kp, κ, χ)± → Ep,0∞ (Kp, κ, χ)±

is surjective.
We deduce that H

p
(Kp, κ, χ)±,fs is a subquotient of

Im(Hp(Cous(Kp, κ, χ, cusp)±)→ Hp(Cous(Kp, κ, χ)±)).

This last group is a subquotient of Hp(Cous(Kp, κ, χ)±). �

5.9. Lower bounds on slopes. In this section we will write 〈−,−〉 for the usual
pairing X?(T )×X?(T )→ Z. We denote by T d the maximal Qp-split subtorus of T .
We have a relative root system Φd ⊂ X∗(T d) with a choice of positive and simple
roots ∆d ⊂ Φ+

d ⊂ Φd. Because G/Qp is quasi-split, restriction from T to T d defines
a surjective map r : Φ → Φd, which restricts to a surjective map r : ∆ → ∆d (the
fibers of r are exactly the Galois orbits of absolute roots.)

We have on X?(T )R a partial order � where λ � λ′ if and only if λ′−λ ∈ R≥0∆.
We have on X?(T d)R a partial order ≤ where λ ≤ λ′ if and only if λ′−λ ∈ R≥0∆d.
We extend the symbol ≤ to the case that one or both sides are in X?(T )R, in
which case we apply the restriction map X?(T ) → X?(T d) (so in particular for
λ, λ′ ∈ X?(T ), λ � λ′ implies λ ≤ λ′, but not necessarily conversely.)

Recall that we have monoids T+ and T− in T (Qp). In section 3.5.1, we defined
a valuation morphism v : T (Qp) → X?(T

d) ⊗ Q, whose image is a lattice, and
whose kernel is the maximal compact subgroup of T (Qp) which we denoted (slightly
abusively) by T (Zp). For λ ∈ X?(T d)R and t ∈ T (Qp) we will abusively write
v(λ(t)) for 〈v(t), λ〉. The partial order ≤ has another characterization that we
frequently use:

Lemma 5.9.1. Let λ, λ′ ∈ X?(T d)R. Then λ ≤ λ′ if and only if v(λ(t)) ≤ v(λ′(t))
for all t ∈ T+.

Given a homomorphism λ : T (Qp) → F
×
, the composition with the valuation

v : F
× → R factors through a morphism v(T (Qp)) = T (Qp)/T (Zp) → R. This

extends by linearity to a R-linear map X?(T
d)R → R and thus defines an element

of X?(T d)R, which we will denote by v(λ) and call the slope of λ. Unravelling the
definition we have 〈v(λ), v(t)〉 = v(λ(t)).

If we start instead with a monoid homomorphism T± → F
×
, we also define the

slope v(λ) of λ by first extending λ to a group homomorphism T (Qp)→ F
×
(recall

that T (Qp) is generated by the monoids T±).
We now formulate a general conjectural lower bound on the slopes of RΓw(Kp, κ, χ)±,fs

and RΓw(Kp, κ, χ, cusp)±,fs

Conjecture 5.9.2. Fix w ∈ MW , κ ∈ X?(T c)Mµ,+, and χ : T (Zp)→ F
×
of finite

order.
(1) For any character λ of T+ on RΓw(Kp, κ, χ)+,fs or RΓw(Kp, κ, χ, cusp)+,fs

we have v(λ) ≥ w−1w0,M (κ+ ρ) + ρ.
(2) For any character λ of T− on RΓw(Kp, κ, χ)−,fs or RΓw(Kp, κ, χ, cusp)−,fs

we have v(λ) ≤ w−1(κ+ ρ)− ρ.

Remark 5.9.3. We can spell out the meaning of these inequalities. The inequality
v(λ) ≥ w−1w0,M (κ + ρ) + ρ means that for all t ∈ T+ (and corresponding v(t) ∈
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X?(T
d)+

Q ), we have

v(λ(t)) ≥ 〈v(t), w−1w0,M (κ+ ρ) + ρ〉.

The inequality v(λ) ≤ w−1(κ + ρ) − ρ means that for all t ∈ T− and (and corre-
sponding v(t) ∈ X?(T

d)−Q ), we have

v(λ(t)) ≥ 〈v(t), w−1(κ+ ρ)− ρ〉.

Remark 5.9.4. We recall that for any w ∈W we have ρ+wρ, ρ−wρ ∈ X?(T )+ (even
if ρ is not itself in X?(T ).) It follows that for all t ∈ T+ we have 〈t, ρ+w−1w0,Mρ〉 ∈
Z≥0 and for all t ∈ T− we have −〈t, ρ− w−1ρ〉 ∈ Z≥0.

Remark 5.9.5. The bounds of Conjecture 5.9.2 are compatible with duality in the
sense that they are exchanged upon replacing t by t−1 and κ by −2ρnc − w0,Mκ.

On the right hand side of the inequality of conjecture 5.9.2 we have w−1w0,M (κ+
ρ) + ρ and w−1(κ + ρ) − ρ. Each of these expressions can be separated into
(w−1w0,Mκ) + (w−1w0,Mρ + ρ) and (w−1κ) + (w−1ρ − ρ) where the first term
depends on κ and is related to the action of the Hecke correspondences on the
sheaf, while the second term is independent of κ and is related to the geometry of
the correspondence (and in particular to the ramification of integral models of the
correspondence). The second term is the more delicate to study.

The main result of this section is a bound which is slightly weaker than the
conjecture (and concerns only the first term).

Theorem 5.9.6. Fix w ∈ MW , κ ∈ X?(T c)Mµ,+, and χ : T (Zp) → F
×

of finite
order.

(1) For any character λ of T+ on RΓw(Kp, κ, χ)+,fs or RΓw(Kp, κ, χ, cusp)+,fs

we have v(λ) ≥ w−1w0,Mκ and v(λ) ≥ w−1w0,Mκ+ w−12ρnc.
(2) For any character λ of T− on RΓw(Kp, κ, χ)−,fs or RΓw(Kp, κ, χ, cusp)−,fs

we have v(λ) ≤ w−1κ and v(λ) ≤ w−1κ+ w−12ρnc.

Remark 5.9.7. Using eigenvarieties, we will be able to prove the conjecture 5.9.2
for the interior cohomology in theorem 6.10.1.

5.9.8. Proof of theorem 5.9.6. We begin with a reduction. The bounds in theorem
5.9.6 are compatible with the duality theorem 5.7.2. Actually, it will suffice to
prove:

(1) For any character λ of T+ on RΓw(Kp, κ, χ)+,fs or RΓw(Kp, κ, χ, cusp)+,fs

we have v(λ) ≥ w−1w0,Mκ.
(2) For any character λ of T− on RΓw(Kp, κ, χ)−,fs or RΓw(Kp, κ, χ, cusp)−,fs

we have v(λ) ≤ w−1κ.
and the rest will follow from duality.

Let κ ∈ X?(T c)Mµ,+. The definition of the sheaf Vκ is given in 4.1.1 with the
help of the torsorMan

dR and modeled on the highest weight representation Vκ. By
corollary 4.6.7, the sheaf Vκ has an integral structure V+

κ (in the sense of definition
2.6.1), constructed with the help of theMµ-torsorMdR (see proposition 4.6.3) and
modeled on the submodule V +

κ ⊆ Vκ.

Lemma 5.9.9. Let Kp = Kp,m′,b for m′ ≥ b ≥ 0 and m′ > 0.
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(1) Let t ∈ T+. For all n ≥ 1, the isomorphism p?2Vκ → p?1Vκ induces a map
p?2V+

κ → p〈wv(t),w0,Mκ〉p?1V+
κ on

p−1
2

(
(πtorHT,Kp)−1(wGnKp)

)
∩ p−1

1

(
(πtorHT,Kp)−1(wGnKp)

)
.

(2) Let t ∈ T−. For all n ≥ 1, the isomorphism p?2Vκ → p?1Vκ induces a map
p?2V+

κ → p〈wv(t),κ〉p?1V+
κ on

p−1
2

(
(πtorHT,Kp)−1(wGnKp)

)
∩ p−1

1

(
(πtorHT,Kp)−1(wGnKp)

)
.

Proof. We prove the first point. We have a map t : p?2Man
dR → p?1Man

dR, which is
locally represented by wt by proposition 4.6.19.

Therefore, we have an isomorphism t? : p?1Vκ → p?2Vκ which is locally given by
t?f(x′2m) = f(x′1wtm) for trivializations x′1 and x′2 of p?1MdR and p?2MdR. The
map p?2Vκ → p?1Vκ of the lemma is the inverse of the map t?.

This map is locally isomorphic to the map

Vκ → Vκ

v 7→ (wt)−1v

which has eigenvectors of valuation 〈(wv(t))−1, ν〉 where ν ranges through the
weights of Vκ. Since t ∈ T d,+ and w ∈ MW , it follows that wv(t) ∈ X?(T )

Mµ,+
Q

so that (wv(t))−1 ∈ X?(T )
Mµ,−
Q . The lowest weight of Vκ is w0,Mκ and there-

fore, p〈(wv(t))−1,w0,Mκ〉V +
κ ⊆ (wt)−1V +

κ . We deduce that p〈(wv(t))−1,w0,Mκ〉p?2V+
κ ⊆

t?p?1V+
κ from which we deduce that p?2V+

κ → p〈wv(t),w0,Mκ〉p?1V+
κ . The proof of

the second point is almost identical, it is enough to observe that now (wv(t))−1 ∈
X?(T )

Mµ,+
Q and that κ is the highest weight of Vκ. Details are left to the reader. �

Lemma 5.9.10. Let w ∈ MW , κ ∈ X?(T c)Mµ,+.
(1) Let (U ,Z) be a (+, w,Kp,m′,b)-allowed support condition. Assume further

that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of Hi

U∩Z(U ,V+
κ ) in Hi

w(Kp, κ)+,≤fs is an open and
bounded submodule.

(2) Let (U ,Z) be a (−, w,Kp,m′,b)-allowed support condition. Assume further
that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of Hi

U∩Z(U ,V+
κ ) in Hi

w(Kp, κ)−,≤fs is an open and
bounded submodule.

Proof. We only treat the first item since the second one follows with minor modi-
fications. We can represent the cohomology RΓU∩Z(U ,Vκ) by an explicit complex
of Banach modules C•. We choose an affinoid covering U1 of U and consider the
Čech complex Č(U1,Vκ) which computes RΓ(U ,Vκ). Next we take an affinoid cov-
ering U2 of U ∩ Zc refining the covering U1 ∩ Zc and consider the Čech complex
Č(U2,Vκ) which computes RΓ(U ∩ Zc,Vκ). Finally, we represent the cohomology
RΓU∩Z(U ,Vκ) by

C• = Cone(Č(U1,Vκ)→ Č(U2,Vκ))[−1].

We also consider the subcomplex of open and bounded submodules of C•:

C+,• = Cone(Č(U1,V+
κ )→ Č(U2,V+

κ ))[−1].

Any sufficiently regular element T of T++ lifts to a compact endomorphism T̃
of C• and we can consider the direct “slope less or equal than h” factor C•,≤h
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of C•. This is a perfect complex of F -vector spaces, whose cohomology groups
compute Hi

w(Kp, κ)+,≤h. Denote the projection of C+,• in C•,≤h by C+,•,≤h. This
is a perfect complex of OF -modules and the image of Hi(C+,•,≤h) in Hi(C•,≤h) =
Hi
w(Kp, κ)+,≤h is therefore an open and bounded submodule. Therefore, for any

h, the image of Hi(C+,•) in Hi
w(Kp, κ)+,≤h is open and bounded. Passing to the

limit over h, we deduce that the image of Hi(C+,•) in Hi
w(Kp, κ)+,fs is open and

bounded. To prove the lemma, it suffices to show that the map

Hi(C+,•)→ Hi
U∩Z(U ,V+

κ )

has kernel and cokernel of bounded torsion. Using the Čech to cohomology spectral
sequence, this follows from lemma 2.6.5. �

Proof of Theorem 5.9.6. We only prove the + case. The − case follows with minor
modifications. We let t ∈ T+, and let T = [Kp,m′,btKp,m′,b]. We take (U ,Z)
as in lemma 5.9.10.We find by using lemma 5.9.9 that we have an endomorphism
p−〈wv(t),w0,Mκ〉T : RΓU∩Z(U ,V+

κ ) → RΓU∩Z(U ,V+
κ ). It follows from lemma 5.9.10

that p−〈wv(t),w0,Mκ〉T preserves an open and bounded submodule in Hi
w(Kp, κ)+,fs

for all i. For any character of λ of T+ on Hi
w(Kp, κ)+,fs, this implies that v(λ(t)) ≥

〈wv(t), w0,Mκ〉. The theorem is thus proven. �

5.10. Comparisons with slope bounds on classical cohomology. In this sec-
tion, we make the connection between the slope bounds on overconvergent coho-
mology with other slope bounds on classical cohomology.

5.10.1. Some combinatorics. Let κ ∈ X?(T c)Mµ,+. We first attach to κ certain
subsets of the Weyl group. We letW (κ)+ = {w ∈W,ww0,M (κ+ρ) = w0,M (κ+ρ)}.
We letW (κ)− = {w ∈W,w(κ+ρ) = κ+ρ}. We let C(κ)+ = {w ∈W,w−1w0,M (κ+
ρ) ∈ X?(T )−Q} and C(κ)− = {w ∈W,w−1(κ+ ρ) ∈ X?(T )+

Q}.

Proposition 5.10.2. (1) The set C(κ)± is a left principal homogeneous space
under W (κ)±.

(2) C(κ)± ⊆ MW .
(3) κ+ ρ is regular if and only if C(κ)± is reduced to a single element.
(4) We have W (κ)+ = w0,MW (κ)−w0,M and C(κ)+ = w0,MC(κ)−w0.
(5) We have C(κ)± = C(−w0,Mκ− 2ρnc)

∓.

Proof. Left multiplication defines an action ofW (κ)± on C(κ)±. Given a weight λ ∈
X?(T )−, we have wλ ≥ λ for all w ∈W . It follows that if w,w′ ∈ C(κ)±, w(w′)−1 ∈
W (κ)±. The elements of MW are characterized among W by the property that
wX?(T )+ ⊆ X?(T )Mµ,+. Since κ+ρ isMµ-dominant and regular, the second point
follows. The remaining points are evident. �

We now give some more explanations concerning the meaning of these sets and
the connection with infinitesimal characters. The element −w−1w0,M (κ + ρ) ∈
X?(T )+

Q is independent of w ∈ C(κ)+, and we denote it by ν + ρ for ν ∈ X?(T ).

Proposition 5.10.3 ([Har90a], prop. 3.1.4). The character ν + ρ is the dominant
representative of the infinitesimal character of the automorphic representations con-
tributing to the cohomology of the sheaves Vκ or Vκ(−D) over StorK,Σ(C).

Remark 5.10.4. The infinitesimal character of the automorphic representations con-
tributing to the cohomology of the Serre dual sheaves V−w0,Mκ−2ρnc and V−w0,Mκ−2ρnc(−D)
is −ν − ρ. Its dominant representative is therefore −w0ν + ρ.
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It is important to record the formulas that allow us to switch between the infin-
itesimal character and the weight:

ν = −w−1w0,M (κ+ ρ)− ρ, ∀w ∈ C(κ)+

κ = −w0,Mw(ν + ρ)− ρ, ∀w ∈ C(κ)+

ν = −w0w
−1(κ+ ρ)− ρ, ∀w ∈ C(κ)−

κ = −ww0(ν + ρ)− ρ, ∀w ∈ C(κ)−.

We also introduce the notation `min(κ) = minw∈C(κ)+ `+(w) = minw∈C(κ)− `−(w)
and `max(κ) = maxw∈C(κ)+ `+(w) = maxw∈C(κ)− `−(w). Here the equalities follow
from the fact that for w ∈ MW , `+(w0,Mww0) = d − `+(w) = `−(w). Moreover
`min(κ) = `max(κ) if and only if κ + ρ is regular. We note that we expect the
automorphic vector bundle Vκ to have interesting cohomology exactly in the range
[`min(κ), `max(κ)].
Theorem 5.10.5. Let π be an automorphic representation contributing to the co-
homology of the sheaves Vκ or Vκ(−D) over StorK,Σ(C). Assume that π∞ is (essen-
tially) tempered. Then π can only contribute to the cohomology in degree in the
range [`min(κ), `max(κ)].

Proof. This follows from a combination of results of Blasius-Harris-Ramakrishnan,
Mirkovich, Schmid and Williams. See [Har90a], thm. 3.4 and thm. 3.5. �

5.10.6. Slope bounds on classical coherent cohomology. In light of the spectral se-
quences of section 5.5, conjecture 5.9.2 suggests the following conjectural slope
bound for classical cohomology:

Conjecture 5.10.7. Let κ ∈ X?(T c)Mµ,+ and let χ : T (Zp) → F
×

be a finite
order character. Let ν = −w−1w0,M (κ + ρ) − ρ for any w ∈ C(κ)+. For any
eigensystem λ : T± → F

×
occurring in the classical cohomologies RΓ(Kp, κ, χ)±,fs

or RΓ(Kp, κ, χ, cusp)±,fs, we have:
(1) In the + case, v(λ) ≥ −ν.
(2) In the − case, v(λ) ≤ −w0ν.

Remark 5.10.8. The + and − statements are in fact equivalent, in view of the
discussion of section 4.3 and in particular the isomorphism between the Jacquet
modules for U and U given by w0.
Proposition 5.10.9. Conjecture 5.9.2 implies conjecture 5.10.7.

Proof. We treat the non cuspidal + case, the others are identical. By the spectral
sequence of section 5.5 λ occurs in RΓw′(K

p, κ, χ)+,fs for some w′ ∈ MW , and
hence by conjecture 5.9.2 we have

s(λ) ≥ w′−1
w0,M (κ+ ρ) + ρ = −(w′−1w) · ν ≥ −ν

where the last inequality follows from lemma 5.11.4 below, using that ν + ρ ∈
X?(T )+

R . �

We are not able to prove conjecture 5.10.7 completely, however we will see that
it holds when κ + ρ is regular in theorem 5.10.12 in the next section, and we will
eventually use p-adic interpolation to prove it for interior cohomology in theorem
6.10.1, and so in particular it holds for compact Shimura varieties.

We now explain the relation of this conjecture with other known and conjectured
slope bounds on classical cohomology.
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5.10.10. Slope bounds on Betti cohomology. Let ν ∈ X?(T c)+. Let Wν be the
corresponding irreducible representation of G with highest weight ν defined over
F . Over SK(C), we can construct a local system W∨ν attached to W∨ν and we can
consider the Betti cohomology groups H?(SK(C),W∨ν ) and H?

c(SK(C),W∨ν ).

Proposition 5.10.11. Assume that K = KpKp with Kp = Kp,m,b. Let ν ∈
X?(T c)+. For any eigensystem λ : T± → F

×
for the action of H±p,m,b on H?(SK(C),W∨ν )±,fs

or H?
c(SK(C),W∨ν )±,fs, we have:
(1) v(λ) ≥ −ν in the + case,
(2) v(λ) ≤ −w0ν in the − case.

Proof. This is a straightforward adaptation of [Laf11], prop. 3.1 which considers
the case where Kp is hyperspecial in an unramified group G. Recall that G splits
over F . The representation W∨ν admits a lattice W∨,+ν which is stable under the
action of G(OF ) and admits a weight decomposition with respect to the action of
T . For any t ∈ T+, we have that t(W∨,+ν ) ⊆ (−ν)(t)W∨,+ν and for any t ∈ T−,
we have that t(W+,∨

ν ) ⊆ (−w0ν)(t)W+,∨
ν , as −ν and −w0ν are the lowest and

highest weights ofW∨ν . The latticeW+,∨
ν gives an OF -local systemW+,∨

ν such that
W+,∨
ν ⊗OF F =W∨ν . The image of H?(SK(C),W+,∨

ν ) in H?(SK(C),W∨ν ) (resp. of
H?
c(SK(C),W+,∨

ν ) in H?
c(SK(C),W∨ν )) is a lattice L (resp. Lc) by the finiteness

of Betti Cohomology. For any t ∈ T+, we find that [KptKp](L) ⊆ (−ν)(t)L and
[KptKp](Lc) ⊆ (−ν)(t)Lc. For any t ∈ T−, we find that [KptKp](L) ⊆ (−w0ν)(t)L
and [KptKp](Lc) ⊆ (−w0ν)(t)Lc. �

Using this proposition, we can prove conjecture 5.10.7 when the weight is regular.

Corollary 5.10.12. Conjecture 5.10.7 holds when κ+ ρ is G-regular.

Proof. Since κ+ ρ is G regular, there is a unique ν ∈ X?(T )+ and a unique v ∈W
such that −κ − ρ = v(ν + ρ). By the definition we have C(κ)+ = {w0,Mv} and
C(κ)− = {vw0}.

By the degeneration of Faltings’s dual BGG spectral sequences (see for exam-
ple [Har90a] section 4, [HZ01] Cor. 4.2.3),

⊕
w′∈MW Hi−l(w′)(Kp,−w′w0(ν + ρ) −

ρ, χ)±,fs embeds Hecke-equivariantly in Hi(SK(C),W∨ν ) and
⊕

w′∈MW Hi−l(w′)(Kp,−w′w0(ν+

ρ) − ρ, χ, cusp)±,fs embeds Hecke-equivariantly in Hi
c(SK(C),W∨ν ). The estimate

follows from proposition 5.10.11. �

5.10.13. Connection with [FP19]. We make a digression in order to explain the re-
lation between conjecture 5.10.7 and conjecture 4.5 of [FP19] which concerns the
action of the spherical Hecke algebra on coherent cohomology at spherical level.
This conjecture is inspired by [Laf11], and is a translation of the Katz-Mazur in-
equality on the cohomology of algebraic varieties to the automorphic setting.

Let Γ be the Galois group of F/Qp, acting on X?(T ). The restriction map
X?(T )R → X?(T d)R induces an isomorphism X?(T )Γ

R → X?(T d)R, with an inverse
given by λ 7→ 1

|Γ|
∑
σ∈Γ σ.λ̃ where λ̃ ∈ X?(T )R is any lift of λ ∈ X?(T d)R.

We can therefore identify X?(T d)R as a subspace of X?(T )R and the partial
order on X?(T d)R is the one induced by the partial order on X?(T )R. This is the
point of view adopted in [FP19].

We will assume that GQp is of the form ResL/QpG0 where L is a finite extension
of Qp and G0 is an unramified reductive group over L. In [FP19], the group GQp
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was assumed to be unramified, but the same conjecture can be made in this level
of generality, and is interesting for applications. We assume that Kp ⊆ G(Qp) =
G0(L) is a hyperspecial subgroup of G0(L) We consider the classical cohomology
RΓ(StorKpKp,Σ

,Vκ) or RΓ(StorKpKp,Σ
,Vκ(−D)). We let ∞(κ) ∈ X?(T )+ be the domi-

nant representative of −κ − ρ which is the infinitesimal character of automorphic
representations contributing to RΓ(StorKpKp,Σ

,Vκ) or RΓ(StorKpKp,Σ
,Vκ(−D)). Let

H(G(Qp),Kp) be the spherical Hecke algebra.
Let T0 be a maximal torus of G0. We can assume that T = ResL/QpT0. Let

T d0 be the maximal split sub-torus of T0. Then T d0 is naturally defined over Qp
and the diagonal map T d0 ↪→ ResL/QpT

d
0 ↪→ T indentifies T d0 and T d. We let W d

0

be the sub-group of the (geometric) Weyl group of G0 which stabilizes T d0 . We fix
an element p

1
2 ∈ F (this is always possible if we enlarge F ). We have the Satake

isomorphism:
S : H(G(Qp),Kp)⊗Z F → F [X?(T

d
0 )]W

d
0

and to any λ : H(G(Qp),Kp)→ F , we can attach a semi-simple σ-conjugacy class
c ∈ (X?(T d0 ) ⊗ F̄×)/W d

0 = LG0(F̄ )ss/σ − conj, where LG0(F̄ ) = Ĝ0 o Z is the
Langlands group of G0. This is the semi-direct product of the dual group Ĝ0 by
the free group Z generated by σ. The action of σ on GD0 is the one induced by the
Frobenius which is a generator of the Galois group of the unramified extension of
L which splits G0. In particular, if G0 is split, this action is trivial.

Applying the valuation to c gives the element Newtv(c) ∈ X?(T d0 )R/W
d
0 =

X?(T0)Γ
R/W

d
0 = X?(T d0 )+

R = (X?(T0)+
R )Γ.

We also remark that T (Qp)/T (Zp) = T0(L)/T0(OL) = X?(T
d
0 ) via the map

λ ∈ X?(T
d
0 ) 7→ λ($L) where $L is a uniformizing element in L. We have also

defined a valuation map v : T (Qp)/T (Zp)→ X?(T
d)⊗Q. We therefore get a map

v : X?(T
d
0 )→ X?(T

d)⊗Q. This map is given by multiplication by v($L) (via the
identification X?(T

d
0 ) = X?(T

d)).
We have the following conjecture (which is [FP19], conj. 4.5 in the unramified

case):

Conjecture 5.10.14. Let κ ∈ X?(T c)Mµ,+. Let c ∈ LG0(F̄ )ss/σ − conj arising
via the Satake isomorphism from an eigensystem for the spherical Hecke alegbra
action on RΓ(StorKpKp,Σ

,Vκ) or RΓ(StorKpKp,Σ
,Vκ(−D)) For any t ∈ X?(T

d
0 )+

R , we
have

〈t,Newtv(c)〉 ≤ 〈v(t),−w0
1

|Γ|
∑
σ∈Γ

σ.∞(κ)〉.

Remark 5.10.15. If L is unramified, X?(T
d
0 ) is canonically identified with X?(T

d)
via the valuation map v, and the above identity simply writes: Newtv(c) ≤ −w0

1
|Γ|
∑
σ∈Γ σ.∞(κ)

in X?(T ).

We can reformulate this conjecture in another way. Any element t ∈ X?(T
d
0 )+

gives a σ-equivariant representation of Ĝ0 (of highest weight t) and therefore a
representation of LG0.

Lemma 5.10.16. The conjecture 5.10.14 holds if and only if, for any t ∈ X?(T
d
0 )+

viewed as a dominant character of the Langlands group, and with associated highest
weight representation Vt, we have that for any eigenvalue x of c on Vt,

v(x) ≥ −〈v(t),∞(κ)〉.
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Remark 5.10.17. We remark that −∞(κ) is the anti-dominant representative of
κ+ ρ.

Proof. It follows from lemma 3.6 of [FP19] that the conjecture is equivalent to the
statement that v(Tr(c|Vt)) ≥ 〈w0(v(t)),−w0∞(κ)〉 = 〈v(t),−∞(κ)〉. Therefore,
the converse implication holds. Let us prove the direct implication. If there is
a unique eigenvalue of c on Vt with minimal valuation, we deduce that for any
eigenvalue x of c on Vt, v(x) ≥ v(Tr(c|Vt)). Otherwise, let x1, · · · , xi be the i-th
eigenvalues of minimal valuation. Then one considers the representation ΛiVt and
we find iv(x1) = v(Tr(co σ|ΛiVt)) ≥ i〈v(t),−∞(κ)〉. �

Before we state our main compatibility, we need to recall certain relations be-
tween the spherical and Iwahori Hecke algebras. We have the spherical Hecke
algebra H(G,Kp) and the Iwahori Hecke algebra H(G,Kp,1,0). These are alge-
bras for the convolution product for a Haar measure normalized by vol(Kp) = 1
(respectively vol(Kp,1,0) = 1). We have also introduced a subalgebra H+

p,1,0 of
H(G,Kp,1,0), isomorphic to Z[T+], and generated by the elements [Kp,1,0tKp,1,0]
with t ∈ T+.

We now consider the twisted embedding

F [X?(T
d
0 )+] ↪→ H(G,Kp,1,0)⊗Z F

which sends t ∈ T+/T (Zp) = X?(T
d
0 )+ to q−〈t,ρ0〉[Kp,1,0tKp,1,0] where q is the

cardinal of OL/$L and ρ0 is half the sum of the positive roots in G0. All the
operators q−〈t,ρ〉[Kp,1,0tKp,1,0] are invertible in H(G,Kp,1,0) ⊗Z F and this map
extends to an embedding

F [X?(T
d
0 )] ↪→ H(G,Kp,1,0)⊗Z F.

Moreover, F [X?(T
d
0 )]Wd is the center of H(G,Kp,1,0)⊗Z F . Let eKp ∈ H(G,Kp,1,0)

be the idempotent equal to characteristic function of Kp divided by the volume of
Kp. The natural isomorphism:

H(G,Kp)⊗ F → eKp(H(G,Kp,1,0)⊗ F )eKp

induces an isomorphism

H(G,Kp)⊗ F → eKpF [X?(T
d
0 )]Wd

which is the Satake isomorphism.

Corollary 5.10.18. Let π be an irreducible smooth representation of G(Qp) de-
fined over F̄ . Assume that πKp 6= 0. Then πKp is one dimensional. Let c ∈
(X?(T d0 )⊗ F̄×)/W d

0 be the semi-simple σ-conjugacy class corresponding to the ac-
tion of H(G,Kp) on πKp . Any eigensystem of F [X?(T

d
0 )] acting on πKp,1,0 is given

by a lift c̃ ∈ X?(T d0 )⊗ F̄× of c.

Remark 5.10.19. In particular for any t ∈ T+/T (Zp) = X?(T
d
0 )+, the eigenvalues

of q−〈t,ρ0〉[Kp,1,0tKp,1,0] acting on πKp,1,0 are among the eigenvalues of c acting on
the representation Vt of the Langlands dual group.

Proposition 5.10.20. Let κ ∈ X?(T c)Mµ,+. Consider the submodule H(G,Kp,1,0)·
Hi(StorKpKp,Σ

,Vκ) of Hi(StorKpKp,1,0,Σ
,Vκ) generated by the cohomology at spherical

level Hi(StorKpKp,Σ
,Vκ). If conjecture 5.10.14 holds for all eigensystems in Hi(StorKpKp,Σ

,Vκ)

then conjecture 5.10.7 holds for all eigensystems in H(G,Kp,1,0) ·Hi(StorKpKp,Σ
,Vκ).
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Proof. Let c be the semi-simple conjugacy class arising from a spherical eigenclass.
Let λ be the character of H+

p,1,0 on the span of this eigenclass at Iwahori level.
For each t0 ∈ T+/T (Zp) = X?(T

d
0 )+, we see that λ(t0)q−〈t0,ρ0〉 is an eigenvalue

for c acting on Vt0 . It follows from lemma 5.10.16 that v(λ(t0)) − v(q)〈t0, ρ0〉 ≥
〈v(t0),−∞(κ)〉. Where via the valuation map v : X?(T

d
0 )→ X?(T

d)⊗Q, t0 maps
to v($L)t, where we let t be the element corresponding to t0 via the isomorphism
X?(T

d
0 ) = X?(T

d). So this identity can be re-written:

v(λ(t))v($L)− v(q)〈t0, ρ0〉 ≥ v($L)〈t,−∞(κ)〉.

It remains to remark that v(q)v($L)−1 = [L : Qp] and that 〈t0, ρ0〉[L : Qp] =
〈t, ρ〉. �

5.11. Slopes and small slope conditions. We will now define several “small
slope” conditions that will occur in this paper. The reason that there are so many
conditions is explained as follows. First we consider small slope condition on the
coherent cohomology in weight κ, but also conditions on the Betti cohomology in
weight −w0ν. Second, the conditions needed to obtain a vanishing theorem are
not exactly the same as those needed to obtain classicality theorems. For example,
on a Shimura set the vanishing theorem is trivial and does not require any slope
condition, but when one considers the theory of p-adic algebraic automorphic forms,
there is a slope condition to achieve classicality. Finally, in our setting there are two
types of control theorems. We have control theorems for cohomologies of classical
automorphic sheaves, but also control theorems for cohomologies valued in Banach
sheaves. All this explains the large variety of slope conditions we need. We begin
with the small slope condition and then turn to the strongly small slope condition
which we need to use because we were not able to prove conjecture 5.9.2.

5.11.1. Small slope conditions.

Definition 5.11.2. Let λ ∈ X?(T d)R.
• Let ν ∈ X?(T ) satisfy ν + ρ ∈ X?(T )+

R .
– We say λ satisfies +, ss(ν) if for all w ∈W with w · ν 6= ν,

λ 6≥ −w · ν.

– We say λ satisfies −, ss(ν) if for all w ∈W with w · ν 6= ν,

λ 6≤ −w · (w0ν).

• Let κ ∈ X?(T )M,+.
– We say λ satisfies +, ssM (κ) if for all w ∈ MW \ C(κ)+,

λ 6≥ w−1w0,M (κ+ ρ) + ρ.

– We say λ satisfies −, ssM (κ) if for all w ∈ MW \ C(κ)−,

λ 6≤ w−1(κ+ ρ)− ρ.

• Let ν ∈ X?(T )+.
– We say λ satisfies +, ssb(ν) if for all w ∈ MW , λ satisfies +, ssM (−w0,Mw(ν+
ρ)− ρ).

– We say λ satisfies −, ssb(ν) if for all w ∈ MW , λ satisfies −, ssM (−w0,Mw(ν+
ρ)− ρ).

• Let κ ∈ X?(T ) and let w ∈ MW .
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– We say λ satisfies +, ssM,w(κ) if for all w′ ∈WM , w′ 6= 1,

λ 6≥ w−1w0,Mw
′(κ+ ρ) + ρ.

– We say λ satisfies −, ssM,w(κ) if for all w′ ∈WM , w′ 6= 1,

λ 6≤ w−1w′(κ+ ρ)− ρ.

To orient the reader, we give a brief summary of how these conditions arise:
• The condition ±, ssM (κ) will appear in the “geometric” classicality theorem

relating classical cohomology and overconvergent cohomology, as well as
vanishing theorems for classical cohomology in section 5.12.

• The condition ±, ssM,w(κ) will arise in the second classicality theorem “at
the level of the sheaf” relating overconvergent and locally analytic coho-
mologies in algebraic weights in section 6.8.

• The condition ±, ss(ν) is the usual small slope condition that arises in
works on p-adic modular forms from the Betti perspective. We shall see
in proposition 5.11.10 below that it is the combination of the other two
conditions.

• The condition ±, ssb(ν) is the condition that arises in the vanishing the-
orems for classical Betti cohomology. We shall see in proposition 5.11.12
that it is weaker than ±, ss(ν).

We first observe that the + and − conditions are related by two symmetries:

Proposition 5.11.3. Let λ ∈ X?(T d)R.
(1) Let ν ∈ X?(T ) satisfy ν + ρ ∈ X?(T )+

R . Then the following are equivalent:
• λ satisfies −, ss(ν).
• w0(λ) satisfies +, ss(ν).
• −λ satisfies +, ss(−w0ν).

(2) Let ν ∈ X?(T ) satisfy ν + ρ ∈ X?(T )+
R . Then the following are equivalent:

• λ satisfies −, ssb(ν).
• w0(λ) satisfies +, ssb(ν).
• −λ satisfies +, ssb(−w0ν).

(3) Let κ ∈ X?(T )M,+. Then the following are equivalent:
• λ satisfies −, ssM (κ).
• w0(λ) satisfies +, ssM (κ).
• −λ satisfies +, ssM (−w0,Mκ− 2ρnc).

(4) Let κ ∈ X?(T )M,+ and let w ∈ MW . Then the following are equivalent:
• λ satisfies −, ssM,w(κ).
• w0(λ) satisfies +, ssM,w0,Mww0

(κ).
• −λ satisfies +, ssM,w(−w0,Mκ− 2ρnc).

The first symmetry is related to the fact that when we have a smooth, admissible
representation of G(Qp), the action of w0 exchanges the + and − finite slope parts
(see section 5.12.15 below). The second symmetry is related to Poincare and Serre
duality.

Now we try to further explain the meaning of these small slope conditions and
make them more explicit. In view of the symmetries above we only consider the +
case. For ν ∈ X?(T ) we introduce the notation Wν = {w ∈W | w · ν = ν}.

We will use the following standard lemma.

Lemma 5.11.4. Let ν ∈ X?(T )+
R−ρ and let w,w′ ∈W . If w ≤ w′ then w′·ν � w·ν.
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Proof. By the definition of the Bruhat order and induction, it suffices to treat the
case that w′ = sαw with α ∈ Φ+ with l(w′) > l(w), which implies that w−1α ∈ Φ+

by [Hum90] 5.7. Then w′ · ν = w · ν − 〈α∨, w(ν + ρ)〉α, and 〈α∨, w(ν + ρ)〉 =
〈(w−1α)∨, ν + ρ〉 ≥ 0. �

We now give some alternative characterizations of the condition +, ss(ν).

Proposition 5.11.5. The following conditions on λ ∈ X?(T d)R are equivalent:
(1) λ 6≥ −w · ν for all w ∈W \Wν , i.e. λ satisfies +, ss(ν).
(2) λ 6≥ −sα · ν for all α ∈ ∆ with sα 6∈Wν .

Moreover if we additionally assume that λ ≥ −ν then we have the further equivalent
condition:

(3) λ = −ν +
∑
α∈∆d

cαα with

cα < min
β∈r−1(α),sβ 6∈Wν

〈β∨, ν〉+ 1.

Proof. Clearly the first condition implies the second. For the converse, given w ∈
W \Wν , we have w ≥ sα for some α ∈ ∆, sα 6∈Wν (write w as a reduced product of
simple reflections, not all the factors can fix ν as w doesn’t.) Then −w ·ν ≥ −sα ·ν
by lemma 5.11.4 and so λ 6≥ −sα · ν implies λ 6≥ −w · ν.

Under the hypothesis λ ≥ −ν, the equivalence of the second and third conditions
is immediate from the formula −sβ · ν = −ν + (〈β∨, ν〉+ 1)β. �

Now we consider the condition +, ssM (κ). For κ ∈ X?(T ) we can write −κ−ρ =
v(ν + ρ) for a unique ν ∈ X?(T ) with ν + ρ ∈ X?(T )+

R , and v ∈ W uniquely
determined up to right multiplication by Wν .

Proposition 5.11.6. Let κ ∈ X?(T )M,+. Then with ν and v as above, the follow-
ing conditions on λ ∈ X?(T d)R are equivalent:

(1) λ 6≥ w−1w0,M (κ+ρ)+ρ for all w ∈ MW \C(κ)+, i.e. λ satisfies +, ssM (κ).
(2) λ 6≥ −w · ν for all w ∈ (MW )−1 · C(κ)+ \Wν .
(3) λ 6≥ −sα · ν for all α ∈ ∆ with sα ∈ (MW )−1 · C(κ)+ \Wν .

Moreover if we additionally assume that λ ≥ −ν then we have the further equivalent
condition:

(4) λ = −ν +
∑
α∈∆d

cαα with

cα < min
β∈r−1(α),sβ∈(MW )−1·C(κ)+\Wν

〈β∨, ν〉+ 1.

Proof. The second condition is a direct translation of the first: we have C(κ)+ =
w0,MvWν , and we can write

w−1w0,M (κ+ ρ) + ρ = (w−1w0,Mv)v−1(κ+ ρ) + ρ = −(w−1w0,Mv) · ν
and so the first condition is equivalent to λ 6≥ −w · ν for w ∈ (MW )−1w0,Mv \Wν ,
which is equivalent to condition 2 because (MW )−1w0,MvWν = (MW )−1 ·Wν .

The second condition clearly implies the third. For the converse, to argue as
in the proof of proposition 5.11.5 we need to show that for all w ∈ W with w ∈
(MW )−1 ·C(κ)+ \Wν , we have w ≥ sα with α ∈ ∆ and sα ∈ (MW )−1 ·C(κ)+ \Wν .
To do this, suppose w = (w′)−1w′′ with w′ ∈ MW , w′′ ∈ C(κ)+, and let w =
s1 · · · sn be a reduced expression as a product of simple reflections. Choose k such
that sk 6∈Wν but sk+1, . . . , sn ∈Wν (such a k exists as w 6∈Wν .) Then

sk = (w′s1 · · · sk−1)−1(w′′sk+1 · · · sn) ∈ (MW )−1 · C(κ)+
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using lemma 5.11.7 below to see that w′s1 · · · sk−1 ∈ MW . Moreover sk ≤ w, and
sk 6∈Wν , so we are done.

The equivalence of the third and fourth conditions is exactly as in proposition
5.11.5. �

Lemma 5.11.7. Let w,w′ ∈ MW and let w−1w′ = s1 · · · sn be a reduced expression
as a product of simple roots. Then ws1 · · · si ∈ MW for all 1 ≤ i ≤ n.

Proof. We begin with the following claim: if α ∈ Φ+, β ∈ ∆, and u ∈ W are such
that l(usβ) > l(u) and u−1α ∈ Φ−, then (usβ)−1α ∈ Φ−. Indeed, (usβ)−1α =
sβ(u−1α) ∈ Φ+ would imply u−1(α) = −β, and hence uβ ∈ Φ−, contradicting
l(usβ) > l(u).

Applying the claim inductively we see that if α ∈ Φ+, and (s1 · · · si)−1α ∈ Φ−,
then (s1 · · · sn)−1α ∈ Φ−.

Now if ws1 · · · si 6∈ MW , there exists β ∈ ∆M with (ws1 · · · si)−1β = (s1 · · · si)−1(w−1β) ∈
Φ−. But w ∈ MW implies w−1β ∈ Φ+, and so from the above with α = w−1β we
deduce (s1 · · · sn)−1(w−1(β)) = w′

−1
(β) ∈ Φ−, and hence w′ 6∈ MW . �

Now we turn to the conditions +, ssM,w(κ). Let κ ∈ X?(T )+ and let w ∈ MW .
We let v = w0,Mw and we let ν be defined by the formula v(ν + ρ) = −κ− ρ. Note
that we have ν+ρ ∈ X?(T )+

R if and only if w ∈ C(κ)+, which we have not assumed
for the moment.

Proposition 5.11.8. Let κ ∈ X?(T )M,+ and let w ∈W . Let ν and v be as above.
The following conditions on λ ∈ X?(T d)R are equivalent:

(1) λ 6≥ w−1w0,Mw
′(κ + ρ) + ρ for all w′ ∈ WM , w′ 6= 1, i.e. λ satisfies

+, ssM,w(κ)
(2) λ 6≥ −(v−1w′v) · ν for all w′ ∈WM , w′ 6= 1.
(3) λ 6≥ −(v−1sαv) · ν for all α ∈ ∆M .

Proof. The equivalence of the first and second conditions is a direct translation.
For the equivalence of the second and third points, we introduce temporarily the

notation λ1 �M,w λ2 if λ2−λ1 ∈ R≥0w
−1∆M for λ1, λ2 ∈ X?(T )R. Since w ∈ MW

we have w−1∆M ⊆ Φ+ and hence λ1 �M,w λ2 implies λ1 � λ2 and hence λ1 ≤ λ2.
Now applying lemma 5.11.4 for the groupM , we see that for ν′ ∈ X?(T )−,MR −ρM

and w′, w′′ ∈WM with w′ ≤ w′′ we have w′·ν′ �M,1 w
′′·ν′, hence (w0,Mw

′′)·ν′ �M,1

(w0,Mw
′′) · ν′, and hence (w−1w0,Mw

′′) · ν′ �M,w (w−1w0,Mw
′) · ν′. We apply this

with ν′ = v · ν = −κ − ρ ∈ X?(T )−,MR − ρM to deduce that for w′ ≤ w′′ we
have −(v−1w′′v) · ν ≥ −(v−1w′v) · ν, and hence the third condition implies the
second. �

Remark 5.11.9. Note that for w ∈ WM , (v−1wv) · ν = ν implies w = 1. Indeed,
then w · (−κ− 2ρ) = −κ− 2ρ or equivalently w(−κ− ρM ) = −κ− ρM , and hence
that w = 1, since κ ∈ X?(T )M,+.

Note that we have now expressed all the small slope conditions as λ 6≥ −w · ν as
w ranges over a certain subset of W . We may use this to compare them.

Proposition 5.11.10. Let κ ∈ X?(T )M,+ and let w ∈ C(κ)+. Let v = w0,Mw and
let ν be given by v(ν + ρ) = −κ − ρ so that ν + ρ ∈ X?(T )+

R . Then a slope λ ∈
X?(T d)R satisfies +, ss(ν) if and only if it satisfies both +, ssM (κ) and +, ssM,w(κ).



130 G. BOXER AND V. PILLONI

Proof. We apply the characterizations of propositions 5.11.5, 5.11.6, 5.11.8. Then
it is clear that +, ss(ν) implies both +, ssM (κ) and +, ssM,w(κ). For the other
direction, we need to show that for each α ∈ ∆, then either sα ∈ (MW )−1C(κ)+

or vsαv−1 ∈WM .
We apply lemma 5.11.11 to w ∈ MW and sα. If wsα ∈ MW then sα =

(wsα)−1w ∈ (MW−1)w. Otherwise there exists β ∈ ∆M so that sβw = wsα
and hence vsαv−1 = w−1

0,Msβw0,M ∈WM . �

Lemma 5.11.11. Let w ∈ MW and α ∈ ∆. Then either wsα ∈ MW or wsα = sβw
for β ∈ ∆M .

Proof. If wsα 6∈ MW then there exists β ∈ ∆M with sα(w−1(β)) = (wsα)−1(β) ∈
Φ−. But w−1(β) ∈ Φ+. Hence w−1(β) = α, so w−1sβw = sα, hence wsα =
sβw. �

We can write Φ =
∐
i Φi where the Φi are simple root systems. Then ΦM =∐

i ΦM,i where ΦM,i = ΦM ∩ Φi. We let Φb =
∐
i,Φi 6=ΦM,i

Φi be the union of the
simple factors where M is a proper levi. Let ∆b = Φb ∩∆.

Proposition 5.11.12. Suppose that ν ∈ X?(T )+. Then the following conditions
on a slope λ ∈ X?(T d)R are equivalent.

(1) λ satisfies +, ssM (−w0,Mw(ν + ρ)− ρ) for all w ∈ MW .
(2) λ 6≥ −sα · ν for all α ∈ ∆b.

Proof. We need to show that for α ∈ ∆, we have α ∈ ∆b if and only if there is
w ∈ MW so that wsαw−1 6∈WM .

The later condition is equivalent to wα 6∈ ΦM for all w ∈ W (since if we write
w = wMw

M then wα ∈ ΦM implies wMα ∈ ΦM ) but wα for w ∈ W span QΦi
where Φi is the simple factor containing α and so the only way that we will have
wα ∈ ΦM for all w ∈W is if Φi = Φi,M . �

5.11.13. The strongly small slope conditions. We now introduce some slightly stronger
versions of the small slope conditions of the last section. We need these because we
cannot prove the slope bounds of conjecture 5.9.2, but only the weaker bounds of
theorem 5.9.6.

Definition 5.11.14. Let λ ∈ X?(T d)R.
• Let κ ∈ X?(T )M,+.

– We say λ satisfies +, sssM (κ) if for all w ∈ MW \ C(κ)+,

λ 6≥ w−1w0,Mκ or λ 6≥ w−1w0,Mκ+ w−12ρnc.

– We say λ satisfies −, sssM (κ) if for all w ∈ MW \ C(κ)−,

λ 6≤ w−1κ or λ 6≤ w−1κ+ w−12ρnc.

• Let κ ∈ X?(T ) and let w ∈ MW .
– We say λ satisfies +, sssM,w(κ) if for all w′ ∈WM , w′ 6= 1,

λ 6≥ w−1w0,Mw
′(κ) or λ 6≥ w−1w0,Mw

′(κ) + 2w−1w0,Mw
′2ρnc.

– We say λ satisfies −, sssM,w(κ) if for all w′ ∈WM , w′ 6= 1,

λ 6≤ w−1(w′(κ+ ρ)− ρ) or λ 6≤ w−1w′(κ) + 2w−1w′2ρnc.
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It is immediate from the definitions that λ satisfies ±, sssM (κ) if and only if
w0(λ) satisfies ∓, sssM (κ) and if and only if −λ satisfies ∓, sssM (−w0,Mκ− 2ρnc).

We introduce combinations of these conditions motivated by propositions 5.11.12
and 5.11.10.

• We say that λ satisfies +, sssw(ν) if it satisfies +, sssM (−w0,Mw(ν+ρ)−ρ)
and +, sssM,w(−w0,Mw(ν + ρ) − ρ). We say that λ satisfies −, sssw(ν) if
it satisfies −, sssM (−ww0(ν + ρ)− ρ) and −, sssM,w(−ww0(ν + ρ)− ρ).

• We say that λ satisfies ±, sssb(ν) if it satisfies ±, sssM (−w0,Mw(ν+ρ)−ρ)
for all w ∈ MW .

5.12. Small slopes, classicality, and vanishing. We introduce a notation. Let
M be a module or a complex carrying an action of T (Qp) and admitting a slope
decomposition. Let ? be a condition on the slope of characters of T (Qp) (for instance
the condition introduced in definition 5.11.2), thenM? means the factor ofM which
satisfies the condition ?.

5.12.1. Coherent cohomology. Theorem 5.9.6 and the definition of the small slope
condition implies the following vanishing.

Corollary 5.12.2. Let κ ∈ X?(T c)Mµ,+ and let χ : T (Zp)→ F
×

be a finite order
character. Then

RΓw(Kp, κ, χ)±,sss
M (κ) = RΓw(Kp, κ, χ, cusp)±,sss

M (κ) = 0

for w 6∈ C(κ)±.

This implies that if we take the strongly small slope part of the spectral sequences
from finite slope overconvergent cohomology to finite slope classical cohomology of
Theorem 5.5.1, all the terms for w 6∈ C(κ)± vanish. We immediately deduce our
first main classicality theorem.

Theorem 5.12.3. Let κ ∈ X?(T c)Mµ,+ and assume that κ + ρ is regular so that
C(κ)± = {w±}. Let χ : T (Zp)→ F

×
be a finite order character. Then the spectral

sequences of Theorem 5.5.1 induces isomorphisms

RΓw±(Kp, κ, χ)±,sss
M (κ) ' RΓ(Kp, κ, χ)±,sss

M (κ)

RΓw±(Kp, κ, χ, cusp)±,sss
M (κ) ' RΓ(Kp, κ, χ, cusp)±,sss

M (κ)

Remark 5.12.4. Cases of this theorem for the degree 0 cohomology of PEL Shimura
varieties were already proven. See for example [Col96], [Kas06], [Pil11], [BPS16].

We also deduce vanishing theorems for classical cohomology.

Theorem 5.12.5. Let κ ∈ X?(T c)Mµ,+ and let χ : T (Zp) → F
×

be a finite order
character.

(1) RΓ(Kp, κ, χ, cusp)±,sss
M (κ) is concentrated in degree [0, `max(κ)].

(2) RΓ(Kp, κ, χ)±,sss
M (κ) is concentrated in degree [`min(κ), d].

(3) H
i
(Kp, κ, χ)±,sss

M (κ) is concentrated in degree [`min(κ), `max(κ)].

Proof. The vanishing result follows from the spectral sequences of theorem 5.5.1
and the vanishing results of propositions 5.6.2 and 5.7.4, together with theorem
5.9.6. �
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Remark 5.12.6. If we assume the conjecture 5.9.2, then the strongly small slope
conditions in theorems 5.12.5 can be weakened to small slope condition. In theorem
6.10.2 we will actually be able to prove the theorems for the small slope condition
for the interior cohomology only, using the eigenvariety.

Remark 5.12.7. In [Lan16], an analog of theorem 5.12.5 is proved without any small
slope condition, but with a regularity condition on the weight κ instead.

Remark 5.12.8. The classical coherent cohomology can be computed in terms of
automorphic forms for G by the result of Su [Su18]. Thus it may be possible to
reprove theorem 5.12.5 with sufficient knowledge of automorphic forms on G.

The following corollary gives a situation for which the interior Cousin complex
computes the classical interior cohomology.

Corollary 5.12.9. Let κ ∈ X?(T c)Mµ,+ and assume that κ + ρ is regular. Then
Cous(Kp, κ, χ)±,sss

M (κ) computes H
?
(Kp, κ, χ)±,sss

M (κ).

Proof. We have C(κ)± = {w±}. We deduce that

Cous(Kp, κ, χ)±,sss
M (κ) =

Im
(
H`±(w)
w (Kp, κ, χ, cusp)±,sss

M (κ) →

H`±(w)
w (Kp, κ, χ)±,sss

M (κ)
)
[−`±(w)]

which computes H
?
(Kp, κ, χ)±,sss

M (κ) by theorem 5.12.3 and theorem 5.12.5. �

5.12.10. Betti cohomology. Let ν ∈ X?(T c)+. We let Wν be the corresponding
irreducible representation of G with highest weight ν andW∨ν be its contragredient.
We have an associated local system W∨ν over SK(C).

Using Faltings’s dual BGG spectral sequence we deduce vanishing results for the
small slope parts of Betti cohomology.

Theorem 5.12.11. Let ν ∈ X?(T c)+.

(1) Hi(SK(C),W∨ν )±,sssb(ν) is concentrated in degree [d, 2d].
(2) Hi

c(SK(C),W∨ν )±,sssb(ν) is concentrated in degree [0, d].
(3) H

i
(SK(C),W∨ν )±,sssb(ν) is concentrated in degree d.

Remark 5.12.12. If we assume the conjecture 5.9.2, then the strongly small slope
conditions in 5.12.11 can be weakened to small slope condition. In theorem 6.10.2
we will actually be able to prove the theorems for the small slope condition for the
interior cohomology only, using the eigenvariety.

Remark 5.12.13. In [Lan16], analogs of theorem 5.12.11 are proved without any
small slope condition, but with a regularity condition on the weight ν instead.

Remark 5.12.14. The classical Betti cohomology can be computed in terms of au-
tomorphic forms for G by the results of Franke [Fra98]. Thus it may be possible to
reprove theorem 5.12.11 with sufficient knowledge of automorphic forms on G.
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5.12.15. Small slope conditions and Jacquet modules. We now use these small slope
condition to define certain direct summands of smooth admissible representations
and apply this to the cohomology of the Shimura variety.

Proposition 5.12.16. Let π be a smooth admissible representation of G(Qp) and
let ν ∈ X?(T ) satisfy ν + ρ ∈ X?(T )+

R . Then the following are equivalent:
(1) There exists m ≥ b ≥ 0 such that πKp,m,b,+,ss(ν) 6= 0.
(2) There exists m ≥ b ≥ 0 such that πKp,m,b,−,ss(ν) 6= 0.
(3) (πU )+,ss(ν) 6= 0.
(4) (πU )−,ss(ν) 6= 0.
We have the same equivalent properties when the condition ss(ν) replaced by

ssb(ν), sssb(ν), or ssM (κ), sssM (κ) for κ ∈ X?(T )M,+.

Proof. The equivalence of (1) with (3) and (2) with (4) is immediate from proposi-
tion 4.3.1. The equivalence of (3) and (4) follows from proposition 5.11.3 and the
isomorphism between πU and πU given by w0. �

Definition 5.12.17. Let π be a smooth admissible representation of G(Qp), let
ν ∈ X?(T ) satisfy ν + ρ ∈ X?(T )+

R and let κ ∈ X?(T )M,+. We define πss(ν) ⊆ π
to be the sum of all indecomposable summands of π which satisfy the equivalent
conditions of proposition 5.12.16 for ss(ν). We define πssb(ν), πss

M (κ), πsssb(ν),
and πsss

M (κ) similarly.

Remark 5.12.18. It is not necessarily true that any irreducible subquotient of πss(ν)

satisfies the condition ss(ν) and similarly for the other conditions.

Remark 5.12.19. If π is irreducible, then πss(ν) = π means that π admits an em-
bedding in ιGBψ for a character ψ : T (Qp) → Q×p with v(ψ) satisfying +, ss(ν). A
similar remark holds for the other slope conditions.

With these definition in place, we can deduce (most of) theorems 1.3.8 and
1.3.10 of the introduction (we will be able to use the small slope condition for
interior cohomology after we prove theorem 6.10.2):

Theorem 5.12.20. For any κ ∈ X?(T
c)Mµ,+,

(1) H
i
(Kp, κ)sss

M (κ) is concentrated in the range [`min(κ), `max(κ)],
(2) Hi(Kp, κ, cusp)sss

M (κ) is concentrated in the range [0, `max(κ)],
(3) Hi(Kp, κ)sss

M (κ) is concentrated in the range [`min(κ), d].
For any ν ∈ X?(T

c)+,

(1) H
i
(Kp,W∨ν )sssb(ν) is concentrated in the middle degree d,

(2) Hi
c(K

p,W∨ν )sssb(ν) is concentrated in the range [0, d],
(3) Hi(Kp,W∨ν )sssb(ν) is concentrated in the range [d, 2d].

Proof. This follows immediately from theorems 5.12.5 and 5.12.11. �

5.13. De Rham and rigid cohomology. Let ν ∈ X?(T c)+. Let (W∨ν,dR,∇)
be the associated filtered vector bundle with integrable logarithmic connection
over StorK,Σ. Over SK(C), the set of horizontal sections of the corresponding holo-
morphic vector bundle is the local system W∨ν . Let DR(W∨ν ) = W∨ν,dR ⊗OStor

K,Σ

Ω•StorK,Σ/F
(log(D)) be the filtered de Rham complex with logarithmic poles associated
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to (W∨ν,dR,∇). Its cohomology will be denoted RΓdR(StorK,Σ,W∨ν ). We also consider
the sub-complex DR(W∨ν (−D)) and its cohomology will be denoted RΓdR,c(S

tor
K,Σ,W∨ν )

where the subscript c stands for compact support.
Faltings’s dual BGG complex forW∨ν is a filtered complex BGG(W∨ν ) in the cat-

egory of vector bundles with maps given by differential operators. See for example
[LP18] or [LLZ19], sect. 6.1. We have BGG(W∨ν )i = ⊕w∈MW,`(w)=iV−ww0(ν+ρ)−ρ.
We also have a subcomplex BGG(W∨ν (−D)) with

BGG(W∨ν (−D))i = ⊕w∈MW,`(w)=iV−ww0(ν+ρ)−ρ(−D).

We have (see for example [LLZ19], thm. 6.1.10):

Theorem 5.13.1. There is a filtered quasi-isomorphism BGG(W∨ν ) → DR(W∨ν )
in the category of vector bundles over StorK,Σ, with morphisms given by differential
operators. The stupid filtration on BGG(W∨ν ) induces is a spectral sequence

Ep,q1 = ⊕w∈MW,`(w)=pH
q(StorK,Σ,V−ww0(ν+ρ)−ρ)⇒ Hp+q

dR (StorK,Σ,W∨ν )

degenerating at E1. There is a quasi-isomorphism BGG(W∨ν (−D))→ DR(W∨ν (−D)).
The stupid filtration on BGG(W∨ν (−D)) induces a spectral sequence

Ep,q1 = ⊕w∈MW,`(w)=pH
q(StorK,Σ,V−ww0(ν+ρ)−ρ(−D))⇒ Hp+q

dR,c(S
tor
K,Σ,W∨ν )

degenerating at E1.

Remark 5.13.2. Instead of using the stupid filtration on BGG(W∨ν ) one can use
the filtration F corresponding to the Hodge filtration on DR(W∨ν ). The associated
graded of this filtration F are complexes of automorphic vector bundles (featuring
those appearing as objects in BGG(W∨ν )), with trivial differential. The spectral
sequence for the F -filtration is then the Hodge-to-de Rham spectral sequence. It
also degenerates at E1. The difference between the Hodge-to-de Rham spectral se-
quence and the stupid filtration spectral sequence is therefore basically a reindexing
of the terms.

We now pass to p-adic geometry. We can consider DR(W∨ν ) and BGG(W∨ν ) as
complexes of vector bundles with maps given by differential operators over the adic
space StorK,Σ and the GAGA theorem ensures that RΓdR(StorK,Σ,W∨ν ) still computes
the algebraic de Rham cohomology groups. If K = KpKp with Kp = Kp,m,b, and
χ : T (Zp)→ F

×
is a finite order character, we can define RΓdR(Kp,W∨ν , χ)±,fs as a

direct factor of the complex of RΓdR(StorKpKp,Σ
,W∨ν ) (see section 4.2.11). We can also

define RΓdR,c(K
p,W∨ν , χ)±,fs as a direct factor of the complex of RΓdR,c(StorKpKp,Σ

,W∨ν )

For any w ∈ MW , we can also make sense of RΓdR,w(Kp,W∨ν , χ)±,fs as in
section 5.4. Namely, one just copies verbatim this section with the automorphic
sheaf Vκ replaced by the complex of automorphic sheaves DR(W∨ν ). Similarly, we
can define RΓdR,c,w(Kp,W∨ν , χ)±,fs by considering the cohomology of the complex
DR(W∨ν (−D)).

Remark 5.13.3. It would be interesting to study in depth the cohomologies

RΓdR,w(Kp,W∨ν , χ)±,fs.

For example, are the cohomology groups finite dimensional F -vector spaces? In the
Siegel case, the cohomologies RΓdR,w(Kp,W∨ν , χ)±,fs and RΓdR,c,w(Kp,W∨ν , χ)±,fs
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for w ∈ {Id, wM0 } are rigid cohomologies with support conditions of certain cov-
erings of the ordinary locus in the Shimura variety. Is this a general phenomena
(with the ordinary locus replaced by the Igusa variety corresponding to w)?

The following theorem is the direct analogue of theorem 5.5.1. The proof pro-
ceeds in the exact same way.

Theorem 5.13.4. Let ν ∈ X?(T c)+ be a weight and let χ : T (Zp) → F
×

be a
finite order character. For a choice of + or −, there is a H±p,m,b-equivariant spectral
sequence Ep,qdR(Kp,W∨ν , χ)± converging to classical finite slope de Rham cohomology
Hp+q
dR (Kp,W∨ν , χ)±,fs, such that

Ep,qdR,1(Kp,W∨ν , χ)± = ⊕w∈MW,`±(w)=pH
p+q
dR,w(Kp,W∨ν , χ)±,fs.

There are also spectral sequences Ep,qdR,c(K
p,W∨ν , χ)± converging to Hp+q

dR,c(K
p,W∨ν , χ)±,fs

such that

Ep,qdR,c,1(Kp,W∨ν , χ)± = ⊕w∈MW,`±(w)=pH
p+q
dR,c,w(Kp,W∨ν , χ)±,fs.

It follows that we have two spectral sequences converging to the classical coho-
mology RΓdR(Kp,W∨ν , χ)±,fs (and the compactly supported one). The first one is
associated to the stupid filtration on the de Rham complex (and is basically the
Hodge-to-de Rham spectral sequence). The other one is the spectral sequence of
theorem 5.13.4, and it is really coming from the Bruhat stratification on the Flag
variety.

By comparing both spectral sequences on the strongly small slope part, we obtain
the following decomposition of the de Rham cohomology.

Theorem 5.13.5. For all ν ∈ X?(T c)+, we have that:

(Hn
dR(Kp,W∨ν , χ)+,sssb(ν)) =

⊕
p+q=n

⊕w,`(w)=pH
q(Kp,−ww0(ν + ρ)− ρ, χ)+,sssb(ν)

and that

(Hn
dR(Kp,W∨ν , χ))−,sssb(ν) =

⊕
p+q=n

⊕w,`−(w)=pH
q(Kp,−ww0(ν + ρ)− ρ, χ)−,sssb(ν)

We have similarly:

(Hn
dR,c(K

p,W∨ν , χ)+,sssb(ν)) =
⊕
p+q=n

⊕w,`(w)=pH
q(Kp,−ww0(ν+ρ)−ρ, χ, cusp)+,sssb(ν)

and that

(Hn
dR,c(K

p,W∨ν , χ))−,sssb(ν) =
⊕
p+q=n

⊕w,`−(w)=pH
q(Kp,−ww0(ν+ρ)−ρ, χ, cusp)−,sssb(ν).

Proof. We only prove the first displayed equation. The idea of the proof is that the
two spectral spectral sequences are in a certain sense opposite to each other on the
strongly small slope part, and therefore, not only do we have degeneration at E1,
but also the induced filtration on cohomology is split.

From theorem 5.12.3 and corollary 5.12.2, we have that

Hp+q
dR,w(Kp,W∨ν , χ)+,sssb(ν) = Hp+q−`−(w)

w (Kp,−w0,Mw(ν + ρ)− ρ, χ)+,sssb(ν)

= Hp+q−`−(w)(Kp,−w0,Mw(ν + ρ)− ρ, χ)+,sssb(ν)
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For the spectral sequence of theorem 5.13.4, we deduce that

Ep,qdR,1(Kp,W∨ν , χ)+,sssb(ν) = ⊕w∈MW,`(w)=pH
p+q
dR,w(Kp,W∨ν , χ)±,fs

= ⊕w∈MW,`(w)=pH
p+q−`−(w)(Kp,−w0,Mw(ν + ρ)− ρ, χ)+,sssb(ν)

For the spectral sequence of theorem 5.13.1, we have

(Ep,q1 )+,sssb(ν) = ⊕w∈MW,`(w)=pH
q(Kp,−ww0(ν + ρ)− ρ, χ)+,sssb(ν)

= Ep
′,q′

dR,1(Kp,W∨ν , χ)+,sssb(ν), for p′ = d− p, p′ + q′ = p+ q.

The spectral sequence of theorem 5.13.1 degenerates at E1, and we deduce that we
get two opposite filtrations on the cohomology. This gives the splitting. �

Remark 5.13.6. This theorem is reminiscent of complex Hodge theory, where one
obtains a splitting of the Hodge filtration given by harmonic C∞-differential forms.
In the p-adic setting, the de Rham cohomology comes with additional structure (no-
tably a Frobenius on the Hyodo-Kato cohomology [HK94]). Is the above splitting
induced by these additional structure?

We conclude this section by constructing an interior Cousin bi-complex analogue
to the interior Cousin complex of section 5.8.

We define Cous(Kp,W∨ν , χ)± as the bi-complex concentrated in degrees in [0, d]×
[0, d], where for all (i, j) ∈ Z× Z, we have:

(Cous(Kp,W∨ν , χ)±)(i,j) = ⊕w∈MW,`±(w)=i⊕w′∈MW,`(w′)=jH
i

w(Kp,−w′w0(ν+ρ)−ρ, χ)±,fs

The horizontal complexes (Cous(Kp,W∨ν , χ)±)(•,j) are

⊕w′∈MW,`(w′)=jCous(Kp,−w′w0(ν + ρ)− ρ, χ)±

and the vertical differentials are those given by the maps in the BGG complexes.
Let us define the interior de Rham cohomology by

H
i

dR(Kp,W∨ν , χ)± = Im(Hi
dR,c(K

p,W∨ν , χ)± → Hi
dR,c(K

p,W∨ν , χ)±).

If the Shimura variety is compact we simply write Cous(Kp,W∨ν , χ)± instead of
Cous(Kp,W∨ν , χ)±.

We find:

Proposition 5.13.7. If the Shimura variety is compact, the complex Tot(Cous(Kp,W∨ν , χ)±)
is quasi-isomorphic to RΓdR(Kp,W∨ν , χ)±. For a general Shimura variety, the in-
terior cohomology H

i

dR(Kp,W∨ν , χ)± is a subquotient of

Hi(Tot(Cous(Kp,W∨ν , χ)±)).

Proof. This follows from corollary 5.8.1. �

5.14. Explicit formulas in the symplectic case. Let V be a Q-vector space
of dimension 2g. Let Ψ be the symplectic form on V given in the canonical basis
e1, · · · , e2g by Ψ(ei, ej) = 1 if i ≤ g and j = 2g− i+1 and Ψ(ei, ej) = 0 if i ≤ g and
j 6= 2g−i+1. Let G = GSp2g, be the subgroup of automorphisms of V respecting Ψ
up to a similitude factor ν. We pick the maximal diagonal torus T in G. A typical
element t ∈ T is labelled (t1, · · · , tg; c) = diag(t1c, · · · , tgc, t−1

g c, · · · , t−1
1 c). The

character group X?(T ) identifies with {(k1, · · · , kg; k) ∈ Zg+1,
∑
ki = k mod 2}.

The action is given by (k1, · · · , kg; k)(t1, · · · , tg; c) =
∏
tkii c

k. We let P stdµ be the
stabilizer of the Lagrangian plan 〈e1, · · · , eg〉. We therefore let Pµ be the stabilizer
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of the Lagrangian plan 〈eg+1, · · · , e2g〉. We have Mµ ' GLg ×Gm. We choose the
upper triangular Borel inMµ, which fixes the positive compact roots. Recall that we
choose the positive non-compact roots to be in g/pstdµ . It follows that X?(T )Mµ,+ =

{(k1, · · · , kg; k), k1 ≥ k2 ≥ · · · ≥ kg} and X?(T )+ = {(k1, · · · , kg; k), 0 ≥ k1 ≥ k2 ≥
· · · ≥ kg}. We have ρ = (−1,−2,−3, · · · , g; 0), 2ρnc = (−g− 1, · · · ,−g− 1; 0). The
usual way to normalize the central character in the theory of Siegel modular forms
is to consider weights of the form (k1, · · · , kg;−

∑
ki), with k1 ≥ · · · ≥ kg. For

example (consult [FP19], example 5.2 for the details), when g = 1, V(k;−k) = ω⊗kE
where E → S?K is the universal semi-abelian scheme and ωE is its conormal sheaf.
When g = 2, V(k1,k2;−k1−k2) = Symk1−k2ωA ⊗ detk2 ωA where A → StorK,Σ is the
universal semi-abelian scheme and ωA is its conormal sheaf.

A standard basis of Hecke operators in H+
p,1,0 is given by the classes:

(1) Ug = [Kp,1,0(−1/2, · · · ,−1/2;−1/2)(p)Kp,1,0], where (−1/2, · · · ,−1/2;−1/2)(p) =
diag(p−1, · · · , p−1, 1, · · · , 1).

(2) Ui = [Kp,1,0(0, · · · , 0,−1, · · · ,−1;−1)(p)Kp,1,0] for 1 ≤ i ≤ g − 1 with
i many −1 before the ;. We have that (0, · · · , 0,−1, · · · ,−1;−1)(p) =
diag(p−1Idg−i, p

−2Idi, Idi, pIdg−i)
(3) S = [pKp,1,0], S−1.

Remark 5.14.1. Following [FP19], remark 5.6, we justify that for g = 1, the double
class [Kp,1,0diag(p−1, 1)Kp,1,0] indeed corresponds to the standard Up-operator! For
simplicity let us assume that Kp ⊆ GL2(

∏
` 6=p Z`). The corresponding moduli

space (ignoring cusps) parametrizes two elliptic curves E1, E2 up to isomorphisms,
with K level structures, together with a quasi isogeny E2 → E1 giving a map
V (E2) → V (E1) where V (Ei) = limEi[N ] ⊗ Q is the adelic Tate module, and we
ask that this map is represented by Kdiag(p−1, 1)K. Concretely this means that
the quasi-isogeny E2 → E1 comes from a degree p isogeny E1 → E2 and that this
isogeny matches K-level structures on the Tate modules. The Kp,1,0 level structure
is the data of a rank p-subgroup Hi ⊆ Ei[p]. Because we choose the lower triangular
Borel, we find that the isogeny E1 → E2 induces and isomorphism between H1 and
H2.

5.14.2. GL2/Q. In this case, everything is already in [BP20]. Let κ = (k;−k). The
Cousin complex is Cous(Kp, κ, χ) : H0

1(Kp, κ, χ)+,fs → H1
w(Kp, κ, χ)+,fs where

H1(Kp, κ, χ)+,fs is the space of finite slope overconvergent modular forms of weight
k, nebentypus χ and H1

w(Kp, κ, χ)+,fs is the finite slope part of the cohomology with
compact support of the dagger space “ordinary locus” in weight k and nebentypus χ.
We have w0,M = 1 for GL2. For w = 1, we find that w−1w0,M (κ+ρ)+ρ = (k−2;−k)
and that 〈(−1/2;−1/2), (k − 2;−k)〉 = 1. The un-normalized Up-operator acts on
q-expansion by

∑
anq

n = p
∑
anpq

n and has indeed slope greater or equal to 1
on H0

1(Kp, κ, χ)+,fs. For w 6= 1, we find that w−1w0,M (κ + ρ) + ρ = (−k;−k)
and we get that −〈(−1/2;−1/2), (−k;−k)〉 = k. On H1

w(Kp, κ, χ)+,fs, Up acts like
Frobenius, and this explains why it is of slope greater or equal than k. See lemma
5.3 in [BP20]. We deduce from this lemma the classicality theorem.

5.14.3. GSp4/Q. TheWeyl group is generated by the following transposition: s0(k1, k2; k) =
(k2, k1; k) and s1(k1, k2; k) = (−k1, k2; k). The elements ofMW are Id, s1, s1s0, s1s0s1.
We consider the weight κ = (k1, k2;−k1−k2) so that −w0,Mκ = (−k2,−k1; k1+k2).
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The following table indicates the value of the pairing

〈t, w−1w0,M (κ+ ρ) + ρ〉 = 〈t, w−1w0,M (κ)〉+ 〈t, w−1w0,M (ρ) + ρ〉
where t = (−1/2,−1/2;−1/2)(p) or (0,−1;−1)(p), and w ∈ MW .

Id s1 s1s0 s1s0s1

(-1/2,-1/2;-1/2) 3 k2 + 1 k2 + 1 k1 + k2

(0,-1;-1) k2 + 3 k2 + 3 2k2 + k1 2k2 + k1

The table below gives the value

max{〈t, w−1w0,M (κ)〉, 〈t, w−1w0,M (κ) + 2w−1ρnc〉}
which appears in the strictly small slope condition.

Id s1 s1s0 s1s0s1

(-1/2,-1/2;-1/2) 3 k2 k2 k1 + k2

(0,-1;-1) k2 + 3 k2 + 3 2k2 + k1 2k2 + k1

The difference between these two tables illustrates the difference between con-
jecture 5.9.2 (first table) and theorem 5.9.6 (second table). Let us explain how to
interpret this information.

Let us take a weight in the interior of the holomorphic chamber: k2 > 2. We
assume that U2 has slopes < k2+1. This is the “small slope” condition because there
are conjecturally no overconvergent cohomology classes for w 6= 1 which satisfy this
slope condition. Therefore the U2-slope < k2 + 1 part of classical cohomology
identifies conjecturally with the overconvergent cohomology for w = 1. Under the
bounds of theorem 5.9.6, we have to use the strongly small slope condition < k2

instead.
Let us take a weight in the interior of the “H1 chamber”: k2 < 2 and k1 +k2 > 3.

The small slope condition is now U2-slope < 3 and U1-slope < k1 + 2k2. The first
condition kills the overconvergent cohomology for 1. The second condition kills the
overconvergent cohomology for s1s0 and s1s0s1. Therefore, the small slope classical
cohomology identifies with the small slope overconvergent cohomology for w = s1.

6. p-adic families of overconvergent cohomology

6.1. Relative spectral theory and slope decompositions.

6.1.1. Slope decomposition over Tate algebras. Let (A,A+) be a finite type Tate
(F,OF )-algebra. For any point x ∈ Spa(A,A+), we let k(x) be the complete residue
field. It possesses a rank one valuation v which we normalize by v(p) = 1 (this
valuation corresponds to the maximal generalization x̃ of x).

Definition 6.1.2. A polynomial Q ∈ A[X] whose leading coefficient is a unit is
said to be of slope ≤ h for h ∈ Q if for all x ∈ Spa(A,A+), the image of Q in
k(x)[X] has slope less or equal than h in the sense of section 5.1.1.

Remark 6.1.3. This definition of being of slope ≤ h agrees with [AS08], def. 4.3.2,
in the case that A is reduced, we take the supremum norm as a norm on A, and
the leading coefficient of Q is a multiplicative unit.

Definition 6.1.4. Let M be an A-module and let T be an A-linear endomorphism
of M . Let h ∈ Q. An h-slope decomposition of M with respect to T is a direct sum
decomposition of A-modules M = M≤h ⊕M>h such that:
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(1) M≤h and M>h are stable under the action of T .
(2) M≤h is a finite A-module.
(3) There is a unitary polynomial Q ∈ A[X] with slope ≤ h such that Q?(T ) is

zero on M≤h.
(4) For any unitary polynomial Q ∈ A[X] with slope ≤ h, the restriction of

Q∗(T ) to M>h is an invertible endomorphism.

This definition fits in the framework of [AS08], def. 4.1.1. It is easy to see that
if such a slope decomposition exists, it is unique.

Now let S = Spa(A,A+) and let M be a sheaf of OS-modules. We let T ∈
EndOS (M) be an endomorphism.

Definition 6.1.5. We say thatM has slope decomposition with respect to T if for
any x ∈ S and h ∈ Q, there exists a affinoid neighborhood U of x in S, h′ ≥ h, and
a T -stable direct sum decomposition of sheaves of OU -modules

M|U = (M|U )≤h
′
⊕ (M|U )>h

′

such that:
(1) (M|U )≤h

′
is a coherent sheaf of OU -modules.

(2) For any affinoid open V = Spa(B,B+) ⊆ U ,

M(V ) = (M|U )≤h
′
(V )⊕ (M|U )>h

′
(V )

is a h′-slope decomposition of the B-moduleM(V ) in the sense of definition
6.1.4.

Remark 6.1.6. It is a subtle but important point in the definition that we only ask
for a slope h′ decomposition for some h′ ≥ h and not for an h-slope decomposition
for any h.

We say that a section s ∈ M(U) for an open U ⊆ S has infinite slope if for any
affinoid open V ⊆ U and h ∈ Q such thatM(V ) admits an h-slope decomposition,
s|V ∈ M(V )>h. The infinite slope sections form a subsheaf M∞s ⊆ M. We let
Mfs =M/M∞s and call it the finite slope part ofM.

Lemma 6.1.7. (1) Let f : M → N be a map of sheaves of OS-modules. Let
TM and TN be endomorphisms of M and N respectively, commuting with
f . Assume thatM and N have slope decompositions. Then ker(f), im(f),
and coker(f) have slope decompositions.

(2) Let 0 → L → M → N → 0 be an exact sequence of sheaves of OS-
modules. Let T ∈ EndOS (M) be such that T (L) ⊆ L. Then if two out
of L,M,N have slope decomposition with respect to T , then so does the
third. Moreover, taking the infinite slope part yields an exact sequence
0 → L∞s → M∞s → N∞s → 0 and taking the finite slope part gives
an exact sequence 0→ Lfs →Mfs → N fs → 0.

Proof. We reduce easily to the case of modules where this is [AS08], prop. 4.1.2. �

We now explain the construction of the spectral variety Z ↪→ A1,an
S . For any

affinoid open U = Spa(B,B+) for which we have a slope decomposition M(U) =
M(U)≤h ⊕M(U)>h, we define a map B[X] → EndB(M(U)≤h) by sending X to
T−1 (note that T is invertible on M(U)≤h). We let I be the kernel of this map.
We let ZU,h ↪→ A1,an

S be Spa(B[X]/I, (B[X]/I)+) where (B[X]/I)+ is the integral
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closure of B+ in B[X]/I. If U ′ ⊆ U , is an open affinoid, we see (using the flatness
of OS(U)→ OS(U ′)) that ZU,h×U U ′ = ZU ′,h. If h′ ≥ h andM(U) also has an h′-
slope decomposition, we see that ZU,h ↪→ ZU,h′ is a union of connected components
sinceM(U) =M(U)≤h ⊕ (M(U)≤h

′ ∩M(U)>h)⊕M(U)>h
′
.

We let Z =
∐
U,hZU,h/ ∼ where ∼ is the equivalence relation defined by the

inclusions ZU,h ↪→ ZU,h′ for h ≥ h′ and ZU ′,h ↪→ ZU,h for U ′ ⊆ U . Let π : Z → S
be the projection which is locally quasi-finite, and partially proper. There is a
coherent sheaf Mfs

Z ↪→ MZ = π?M defined by Mfs
Z (ZU,h) = M(U)≤h. We see

that π?Mfs
Z =Mfs is the finite slope part ofM.

In many applications, there is also a commutative algebra H with T ∈ H, which
acts onM. It is clear that H acts also onMfs. We can consider OE which is the
coherent OZ -subalgebra of EndOZ (Mfs

Z ) generated by H. We let E be its relative
adic spectrum over Z. The morphism E → Z is finite surjective. This is the
eigenvariety attached to H acting onM.

6.1.8. Finite slope decomposition for an algebra of operators. It is often the case
that we want to consider the finite slope decomposition of a module or a sheaf when
we have an algebra acting. We now let Zr≥0 be the free monoid on r generators,
generated by element T1, · · · , Tr. We assume that we have an action of Zr≥0 on a
sheaf M. We also assume that for all the operators T ∈ Zr≥1, the sheaf M has
slope decomposition.

Proposition 6.1.9. Let T, T ′ ∈ Zr≥1, and consider the finite slope projections
pT :M→MT,fs and pT ′ :M→MT ′,fs. Then there is an isomorphismMT,fs →
MT ′,fs compatible with the projections pT and pT ′ .

Proof. Let x ∈ S, let h ∈ Q, and let V be a neighborhood of x such that we have
h-slope decomposition with respect to T :

M|V =M≤Th|V ⊕M>Th
|V .

We claim that M≤Th|V has slope decomposition with respect to T ′ and that the

projection M|V → M≤Th|V orthogonal to M>Th
|V factors through MT ′,fs

|V . This
will show that the projection pT : M → MT,fs factors M → MT ′,fs → MT,fs.
Reversing the roles of T and T ′ we conclude the proof of the proposition.

We observe that T is invertible on M≤Th|V and therefore T ′ is also invertible

as there is n ∈ Z≥0 and u ∈ Zr≥0 such that Tn = T ′u. Note that M≤Th|V is a
coherent sheaf. For any y ∈ V , we claim that we can find a neighborhood W of
y and a unitary polynomial Q such that Q(0) is a unit and such that Q?(T ′) = 0

on (M≤Th|V )|W . Indeed, consider the stalk (M≤Th|V )y. This is a finite OS,y-module.

By Nakayama’s lemma, we can pick a surjection Om
S,y → (M≤Th|V )y and lift T ′ to

an invertible endomorphism T̃ ′ of Om
S,y. We let Q = det(T̃ ′

−1 − XId). This is a
unitary polynomial whose constant coefficient is a unit and Q?(T ′) = 0 by Cayley-
Hamilton. It follows thatM≤Th|V has a slope decomposition with respect to T ′ and
that it is equal to its finite slope part for T ′.

�
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6.1.10. Relative spectral theory. We recall briefly the relative spectral theory for
compact operators. The original reference is [Col97]. Let (A,A+) be a finite type
complete Tate (F,OF )-algebra, and let S = Spa(A,A+). LetM• ∈ Ob(Kproj(Ban(A))),
and letM• be the associated complex of Banach sheaves on S. Let T ∈ EndD(Ban(A))(M

•)

be a compact operator. Let Hi(M•) be the ith cohomology sheaf.

Proposition 6.1.11. The sheaves Hi(M•) have slope decomposition for T . More-
over, there is an object M•,fs ∈ D(Mod(OS)) and a morphism M• → M•,fs
(unique up to a non unique quasi-isomorphism) with the property that Hi(M•,fs) =
Hi(M•)fs.

Proof. We begin by describing a construction which depends on a lift T̃ ∈ EndA(M•)
which is compact in all degrees. We let

P̃ (X) =
∏
k

det(1−XT̃ |Mk) ∈ A[[X]]

be the (total) Fredholm determinant of T̃ (see [Col97], section A 2). The series P̃ (X)

is an entire series, and we let Z̃ ↪→ Ganm × Spa(A,A+) be the vanishing locus of P̃ .
This is the spectral variety associated to T̃ . The morphism π : Z̃ → Spa(A,A+) is
locally quasi-finite, flat, and partially proper (see [AIP18], thm. B1 for a short proof
in the language of adic spaces). Any point z ∈ Z̃ has a neighborhood Uz such that
{z} ⊆ Uz and Uz → π(Uz) is finite flat. We can describe such a neighborhood more
precisely. Let x ∈ Spa(A,A+) be the image of z. Then there is a neighborhood
Spa(B,B+) of x in Spa(A,A+) and a factorization in B{{X}} (the ring of global
functions on A1,an

Spa(B,B+)) P̃ (X) = R̃(X)Q̃(X) where R̃(X) is a Fredholm series
(that is R(0) = 1), Q̃(X) = 1 + a1X + · · · + adX

d is a polynomial with ad ∈ B×,
R̃(X) and Q̃(X) are prime to each other, and Q̃(z) = 0. Then Uz = V (Q̃(X)) ⊆
A1 × Spa(B,B+) is a neighborhood of z in Z̃.

Over Z̃ we have a complex of coherent sheaves M̃•,fsZ̃ whose definition we briefly
recall. Let Q̃∗(X) = XdQ̃(X−1). Over Spa(B,B+) we have a unique decomposition
M•⊗̂AB = M•(Q̃) ⊕ N•(Q̃) where Q̃∗(T̃ ) is zero on M•(Q̃) and invertible on
N•(Q̃). Moreover, the projection on each factor is given by an entire series in T̃
(see [Ser62], proposition 12).

It follows that M•(Q̃) has a natural structure of a complex of B[X]/Q̃(X) mod-
ules of finite type (with X−1 acting as T̃ ), and we let M•,fsZ̃ |V (Q̃(X)) = M•(Q̃).
These glue to give the complex M•,fsZ̃ over Z̃. We observe that by construction
M•,fsZ̃ is a perfect complex of π−1OSpa(A,A+)-modules. Moreover, if M• is concen-
trated in the range [a, b], so isM•,fsZ̃ .

We can actually assume (after possibly changing the neighborhood Uz) that in
the factorization P̃ (X) = R̃(X)Q̃(X), there exists h ∈ Q such that Q̃(X) has slope
≤ h and R̃(X) has slope > h. We deduce that

M•⊗̂AB = M•(Q̃)⊕N•(Q̃) = (M•⊗̂AB)≤h ⊕ (M•⊗̂AB)>h

is an h-slope decomposition of the complex. Indeed, for any unitary polynomial
S(X) of slope ≤ h, we deduce that S(X) and R̃(X) are coprime to each other in
B{{X}} since the resultant Res(S, R̃) ∈ B×. It follows from [Col97], lem A4.1 that
S?(T̃ ) acts invertibly on (M•⊗̂AB)>h.
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By varying z in the fiber of x, we deduce thatM• has a slope decomposition with
respect to T̃ . We let M•,fs be the finite slope quotient. Observe that M•,fs =

π?M•,fsZ̃ . The map M• → M•,fs is given by adjunction by the map π?M• →
M•,fsZ̃ (which in the above notations, is locally given by the projection M•⊗̂B →
M•(Q̃), orthogonal to N•(Q̃)).

It follows from lemma 6.1.7 that Hi(M•) has a slope decomposition and that
Hi(M•)fs = Hi(M)fs

We now discuss unicity. We have an exact triangleM•,∞s →M• →M•,fs +1→
in D(Mod(S)). Another choice of compact lift T̃ ′ of T gives another exact triangle
M′,•,∞s →M• →M′,•,fs +1→.

Let C• be the cone of the morphism of complexes M•,∞s → M• → M′,•,fs

obtained by taking inclusion inM• followed by projection. The diagram:

M•,∞s //

T̃

��

M′,•,fs

T̃ ′

��
M•,∞s //M′,•,fs

commutes up to homotopy. We deduce that there is a morphism T̃ ′′ : C• → C•

which on Cn =M′,n,fs⊕Mn+1,∞s is given by
(
T̃ ′ bn
0 T̃

)
where bn depends on the

choice of a homotopy between T̃ and T̃ ′ (see [Sta13], TAG 014F). We deduce that
the complex C• has slope decomposition with respect to T̃ ′′ and we let C•,fs be
its finite slope quotient. The mapM′,•,fs → C•,fs is a quasi-isomorphism. By the
TR4 axiom on triangulated categories, we find that there is a commutative diagram

M• //

��

M•,fs

��
M′,•,fs // C•

and we deduce that in the commutative diagram:

M• //

��

M•,fs

��
M′,•,fs // C•,fs

the right vertical map and the bottom horizontal line are quasi-isomorphisms.
�

Remark 6.1.12. The proof reveals that there is a non-canonical spectral variety
π : Z̃ → S such that M•,fs = π?M•,fsZ̃ where M•,fsZ̃ is a complex of coherent
OZ̃-modules, perfect as a complex of π−1OS-modules, of the same amplitude as
M•. Moreover, we have a projection π?M• → π?M•,fsZ̃ . This projection is locally
on Z̃ given by an entire series in T̃ with coefficients in π−1OS .

6.1.13. Relative spectral theory for an algebra of operators. We now let Zr≥0 be the
free monoid on r generators, generated by element T1, · · · , Tr. We assume that we
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have an action of Zr≥0 on an object M• ∈ Ob(Kproj(Ban(A))). We also assume
that the operators T ∈ Zr≥1 are potent compact.

For any choice of T ∈ Zr≥1 acting compactly, we have a finite slope projection
M• →M•,T,fs and we can consider the cohomlogy Hi(M•,T,fs) = Hi(M•)T,fs.

Lemma 6.1.14. For any T, T ′ acting compactly, we have a canonical isomor-
phism Hi(M•)T,fs ' Hi(M•)T ′,fs commuting with the projections Hi(M•) →
Hi(M•)T,fs and Hi(M•)→ Hi(M•)T ′,fs.

Proof. This follows from proposition 6.1.9. �

Remark 6.1.15. It is not clear to us whether there is a quasi-isomorphismM•,T ′,fs →
M•,T,fs. In this paper, what we will do is choose a compact operator T once and
for all. Ultimately, we are only interested in the cohomology, and the ambiguity dis-
appears. We note that we could only prove that the objectM•,T,fs is well defined
up to a non-canonical quasi-isomorphism (in some sense, it depends on the choice
of a compact lift T̃ of T ). It is not even clear to us that T ′ will act onM•,T,fs. One
can prove this locally on the spectral variety Z̃T : the projection π?M• →M•,T,fsZ̃T
is locally given by an entire series in T̃ and if we fix a lift T̃ ′ of T ′ commuting up
to homotopy with T̃ one can prove that T̃ ′ commutes up to homotopy with the
projector, hence giving an action of T ′ onM•,T,fsZ̃T

, locally on Z̃T .

6.1.16. The case of projective or inductive limits of complexes. We now work in
a slightly more general setting than in section 6.1.10. We consider an object
“ limi ”M•i ∈ Ob(ProN(Kproj(Ban(A)))) or “colimi”M

•
i ∈ Ob(IndN(Kproj(Ban(A))))

together with a compact operator T . By lemma 2.4.10, T induces a compact oper-
ator Ti of M•i for i large enough.

We let M•i be the complex of Banach sheaves over S attached to M•i . By
proposition 6.1.11, for all i large enough and all k ∈ Z, we have a projection
Hk(M•i )→ Hk(M•i )fs.

Lemma 6.1.17. (1) For “ limi ”M•i ∈ Ob(ProN(Kproj(Ban(A)))), the maps
Hk(M•i )fs → Hk(M•i−1)fs are isomorphisms.

(2) For “colimi”M
•
i ∈ Ob(IndN(Kproj(Ban(A)))), the maps Hk(M•i )fs → Hk(M•i+1)fs

are isomorphisms.

Proof. We only prove the first item. The action of Ti factorizes as Ti : Hk(M•i )→
Hk(M•i−1)→ Hk(M•i ). We deduce that there is a bijective map Ti : Hk(M•i )fs →
Hk(M•i−1)fs → Hk(M•i )fs. The action of Ti−1 factorizes as well as Ti−1 : Hk(M•i−1)→
Hk(M•i ) → Hk(M•i−1) from which we deduce that there is a bijective map Ti−1 :

Hk(M•i−1)fs → Hk(M•i )fs → Hk(M•i−1)fs. �

LetM• ∈ D(Mod(OS)) be either limiM•i or colimiM•i . Then we let Hk(M•)fs =

Hk(M•i )fs for any large enough i. We also defineM•,fs =M•,fsi for some chosen
i large enough. We remark that this definition depends on the choice of i. But the
ambiguity disappears when we pass to cohomology.

6.2. Locally analytic inductions and the locally analytic BGG resolution.
In this section we recall some basic facts about analytic inductions and BGG reso-
lutions for p-adic groups. Standard references for this material are [Urb11], section
3 and [Jon11]. The notations for this section are as follows. We let F be a finite
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extension of Qp, and we let M → Spec OF be a split reductive group. We fix a
maximal torus T and a Borel B containing T . We let ΦM = Φ+

M

∐
Φ−M be the root

system. We also let ∆M ⊂ Φ+
M be the positive simple roots. We denote by WM the

Weyl group, and denote by ` : WM → Z≥0 the length function. For all i ∈ Z≥0, we
let W (i)

M be the set of elements in WM of length i. We denote by w0,M the longest
element of WM . We let ρM be half the sum of the positive roots. The Weyl group
acts on T , X?(T ) and X?(T ). We also have the dotted action on X?(T ) given by
w ·κ = w(κ+ρM )−ρM . We let X?(T )M,+ be the cones of dominant characters, and
we let X?(T )M,++ be the cones of dominant regular characters. We use a − sign to
denote the opposite cones. We assume that TF = T ×Spec OF Spec F is in fact de-
fined over Qp. Namely, there is a torus TQp and an isomorphism TQp×Spec F = TF .
We often drop the subscripts F or Qp when the context is clear.

Remark 6.2.1. In our applications, M will be the Levi M c
µ of the group G which is

part of the Shimura datum. A slight warning is that the torus TQp will in general
be the conjugate of a maximal torus of GQp by an element of the absolute Weyl
group of G which is not necessarily rational.

We let T d ⊆ TQp be the maximal split subtorus. We let T (Zp) ⊆ T (Qp) be the
maximal compact subgroup. There is a valuation map v : T (Qp) → X?(T

d) ⊗ Q
whose image is a lattice and whose kernel is T (Zp). We let TM,+ be the monoid in
T (Qp) of elements t such that v(α(t)) ≥ 0 for all α ∈ Φ+

M and we let TM,++ be
the monoid in TM,+ of elements t such that v(α(t)) > 0 for all α ∈ Φ+

M .
For any κ ∈ X?(T ),we let F (κ) be the one dimensional F vector space endowed

with the action of T (Qp) via the character κ. If V is a F -vector space endowed
with an action of (a submonoid of) T (Qp), we let V (κ) = V ⊗ F (κ).

We letM be the quasi-compact adic space over Spa(F,OF ) attached to M and
we denote by Mn the subgroup of M of elements reducing to 1 modulo pn. We
define in a similar fashion T , the quasi-compact torus over Spa(F,OF ) attached to
T and Tn the subgroup of T of elements reducing to 1 modulo pn.

We letM1 ⊆M(OF ) be a closed subgroup possessing an Iwahori decomposition,
in the sense that the product map

N1 × T1 ×N1 →M1

is an isomorphism, where N1 = M1 ∩U , T1 = M1 ∩ T , N1 = M1 ∩U (for U and U
the unipotent radical of B and the opposite Borel B respectively). We also assume
that T1 = T (Zp), and that TM,− normalizes N1.

6.2.2. Algebraic inductions. Let κ ∈ X?(T )M,+. We have the algebraic representa-
tion Vκ of M with highest weight κ. It can be realized as an algebraic induction:

Vκ = IndMB (w0,Mκ)

= {f : M → A1 | f(mb) = (w0,Mκ)(b−1)f(m), ∀ (m, b) ∈M ×B}

We have a left action of M given by hf(m) = f(h−1m) for any h ∈M .

6.2.3. Analytic weights. Let (A,A+) be a complete Tate algebra over (F,OF ) and
let κA be a continuous morphism T (Zp) → A×. Let n ∈ Z≥0. We say that κA is
n-analytic if the map κA can be extended to a pairing:

T (Zp)Tn × Spa(A,A+)→ Ganm
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where T (Zp)Tn is the subgroup of T generated by T (Zp) and Tn (this is a finite
union of translates of Tn). We recall that any continuous character κA is n-analytic
for some n (see [Urb11], lemma 3.2.5. for example).

6.2.4. Analytic inductions. Let (A,A+) be a complete Tate algebra over (F,OF )
and let S = Spa(A,A+). We assume that A is uniform (i.e A0 is bounded) and
equip A with the supremum norm. Let n0 ∈ Z≥0 be an integer. We now fix
a character κA : w−1

0,MT (Zp)w0,M → A× which is n0-analytic, or equivalently a
character w0,MκA : T (Zp)→ A× which is n0-analytic.

Remark 6.2.5. The notation w0,MκA may seem strange so let us explain it to orient
the reader. Let κ ∈ X?(T ) be an algebraic character of T . Then for any w ∈WM ,
we have 〈wκ, t〉 = 〈κ,w−1t〉 so that wκ(t) = κ(w−1tw).

Let B be the quasi-compact adic space attached to B. For all n ≥ n0 we can
define

V n−anκA = an− IndM1Mn

B∩(M1Mn)(w0,MκA) =

{f : (M1Mn)S → A1,an
S | f(mb) = (w0,MκA)(b−1)f(m), ∀ (m, b) ∈ (M1Mn)S×(B∩(M1Mn))S}.

This is a Banach A-module for the supremum norm. We let V n−an,+κA be the
module of elements with supremum norm less or equal than one. The space V n−anκA

carries the following actions of the group (M1Mn)S and of the monoid TM,+:
• hf(m) = f(h−1m) for h,m ∈ (M1Mn)S ,
• tf(m) = f(t−1nmtmt) for t ∈ TM,+, m ∈ (M1Mn)S , and m = nmtmnm

the Iwahori decomposition of m.
These actions respect the submodule V n−an,+κA .
We record the following lemma for later use. Let Mp

1 be the quotient of M1 by
its maximal normal pro-p subgroup.

Lemma 6.2.6. The representation V n−an,+κA ⊗A+A+/A++ ofM1Mn is a countable
inductive limit of finite projective A+/A++-submodules Vi stable under the action of
M1Mn, and with the property that the action on Vi+1/Vi factors through an action
of Mp

1 .

Proof. The character κA mod A++ factors through a finite character and therefore
it is locally constant on the reduced ring A+/A++. We may assume it is constant.
We are then reduced to the case that A is a finite field extension of F and A+/A++

is a finite field. The stabilizer of any vector v ∈ V n−an,+κA ⊗A+ A+/A++ is open
in M1Mn and we deduce that V n−an,+κA ⊗A+ A+/A++ is a countable inductive
limit of finite dimensional representations. Since pro-p groups have non-zero fixed
vectors on non-trivial finite dimensional representations in characteristic p, the
claim follows. �

We also let V lanκA = colimnV
n−an
κA be the locally analytic induction.

Lemma 6.2.7. The operators t ∈ TM,++ are compact on V n−anκA . Moreover, if
A is a field, the maps V n−anκA → V n+1−an

κA induce isomorphisms on the finite slope
part, and the slopes of t ∈ TM,+ on V lan,fsκA are ≥ 0.

Proof. If t ∈ TM,++, one sees easily that the map t : V n−anκA → V n−anκA improves
analyticity. In particular, if minα∈∆M

v(α(t)) ≥ 1, one has a factorization

V n−anκA → V n+1−an
κA → V n−anκA
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where the first inclusion is compact. Moreover, we deduce from the definition of
the action that if t ∈ TM,+, then t preserves the open and bounded submodule
V n−an,+κA . �

The space V n−anκA embeds in H0(M1Mn,OM1Mn
) and similarly V lanκA embeds in

colimnH0(M1Mn,OM1Mn
).

We have a left action ofM1Mn on H0(M1Mn,OM1Mn
) given by h∗f(m) = f(mh).

Passing to the limit over n and differentiating, we get an action of the Lie algebra
m of M on colimnH0(M1Mn,OM1Mn

) which can be extended to an action of the
enveloping algebra U(m).

Remark 6.2.8. We are not requiring that M1 ⊆ M(OF ) is an open subgroup, and
M1 will not always be Zariski dense in M . In our definition of the locally analytic
induction, we consider analytic functions on neighborhoods of M1 in M. These
functions are not necessarily determined by their restrictions to M1.

6.2.9. Twist by a finite order character. We fix a character κA : w−1
0,MT (Zp)w0,M →

A× which is n-analytic. Let w0,Mχ : M1 → F
×

be a finite order character which
we assume is trivial on M1 ∩ Mn. We also denote by w0,Mχ its restriction to
T (Zp) and by χ the corresponding character of w−1

0,MT (Zp)w0,M , which is trivial
on w−1

0,MT (Zp)w0,M ∩ Tn and hence n-analytic. We also denote by w0,Mχ the
corresponding 1-dimensional representation of M1. We endow it with the trivial
action of TM,+. We have the following lemma:

Lemma 6.2.10. There is a canonical map V n−anκA ⊗F w0,Mχ → V n−anκA⊗χ which is
an isomorphism of (M1, T

M,+)-modules.

Proof. The map is defined by sending a function a ⊗ 1 ∈ V n−anκA to the function
aw0,Mχ

−1 on M1Mn. The rest of the lemma follows easily and is left to the
reader. �

6.2.11. Locally algebraic induction. Let κ ∈ X?(T )M,+. From κ we obtain a charac-
ter κ : w−1

0,MT (Zp)w0,M → F× as the composition of the inclusion w−1
0,MT (Zp)w0,M ⊂

T (F ) and κ : T (F )→ F×. From the definitions, restriction induces a natural inclu-
sion ι : Vκ ↪→ V lanκ . There is an action ofM on Vκ, and therefore actions ofM1 and
TM,+. The map ι is M1-equivariant, but not TM,+-equivariant. More precisely, we
have the following formula:

ι(tv) = (w0,Mκ)(t)tι(v)

from which we deduce that the twisted map ι : Vκ → V lanκ (w0,Mκ) is (M1, T
M,+)-

equivariant. We can define the subspace V lalgκ of V lanκ , consisting of elements arising
from functions on M1Mn for some n which on each component of M1Mn are the
restriction of a polynomial function onM . This is a (M1, T

M,+)-subrepresentation.
This space contains the space Vκ(−w0,Mκ) of algebraic functions. Let

V sm1 = sm− IndM1

B∩M1
1 =

{f : M1 → F | f(mb) = f(m) ∀ (m, b) ∈M1 ×B ∩M1, f is locally constant}.
The map Vκ⊗V sm1 → V lalgκ (w0,Mκ) is an isomorphism of (M1, T

+
1 )-representations.
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6.2.12. The BGG complex. For all α ∈ ∆M , we fix a generator Xα of the root space
uα ⊆ m and we have the corresponding generator X−α of u−α. Let κ ∈ X?(T ).

Lemma 6.2.13. For all α ∈ ∆M such that 〈κ, α∨〉 ≥ −1, we have maps:

Θα : V lanκ (w0,Mκ) → V lansα·κ(w0,M (sα · κ))

f 7→ X〈κ,α̌〉+1
w0,Mα ∗ f

equivariant for the action of (M1, T
M,+).

Proof. These maps are constructed in [Urb11], proposition 3.2.11, remark 3.3.11,
proposition 3.3.12, as well as [Jon11], section 5, see also the remark below theorem
13. �

Remark 6.2.14. The normalization of [Urb11] and [Jon11] is slightly different from
the one we use here. They realize the highest weight κ representation Vκ as the
following induction: V ′κ = {f : M → A1 | f(bm) = κ(b)f(m), ∀ (m, b) ∈ M × B}.
To translate to our setting, one simply applies the involution m 7→ w0,Mm

−1w0,M .
We therefore get an isomorphism Vκ → V ′κ which sends f to f ′ defined by f ′(m) =
f(w0,Mm

−1w0,M ). There is an action ofM on V ′κ induced from the right translation
action of M on itself. We find that mf ′ = ((w0,Mmw

−1
0,M )f)′. This explains the

twist by w0,M appearing in lemma 6.2.13 compared to loc. cit.

Remark 6.2.15. We have

w0,M (sα · κ− κ) = −(〈κ, α∨〉+ 1)w0,Mα.

In particular, for any t ∈ TM,+, (〈κ, α∨〉+ 1)〈−w0,Mα, v(t)〉 ≥ 0. This means that
Θα increases the slopes.

Theorem 6.2.16 ([Jon11], thm. 26, [Urb11], sect. 3.3.9). There is an exact
sequence of (M1, T

M,+)-representations

0→ Vκ ⊗ V sm1 → V lanκ (w0,Mκ)→
⊕

w∈W (1)
M

V lanw·κ (w0,M (w · κ))→ · · · →

⊕
w∈W (i)

M

V lanw·κ (w0,M (w · κ))→ · · · → V lanw0,M ·κ(w0,M (w0,M · κ))→ 0

where the first map Vκ ⊗ V sm1 → V lanκ (w0,Mκ) is the natural inclusion, the second
map V lanκ (w0,Mκ) →

⊕
w∈W (1)

M

V lanw·κ (w0,M (w · κ)) is a linear combination of the

maps Θα for α ∈ ∆M , and more generally the differentials ⊕
w∈W (i)

M

V lanw·κ (w0,M (w ·
κ)) → ⊕

w∈W (i+1)
M

V lanw·κ (w0,M (w · κ)) are linear combinations of maps of the form
X ∗ · for suitable elements X ∈ U(m).

Definition 6.2.17. Let κ ∈ X?(T )M,+. We say that a TM,+- eigensystem λ in
V lanκ is of M -small slope (abbreviated +, ssM ) if

v(λ) < −(〈κ, α∨〉+ 1)w0,Mα

for some α ∈ ∆M .
We say that a TM,+- eigensystem λ in Vκ is of M -small slope (abbreviated

+, ssM ) if
v(λ) < w0,Mκ− (〈κ, α∨〉+ 1)w0,Mα

for some α ∈ ∆M .



148 G. BOXER AND V. PILLONI

Corollary 6.2.18. The map V +,ssM
κ → V lan,+,ssMκ (w0,Mκ) is an isomorphism of

(M1, T
M,+)-modules.

Proof. It follows from theorem 6.2.16 and lemma 6.2.7, that the map Vκ ⊗ V sm1 →
V lanκ (w0,Mκ) is an isomorphism on the small slope part. On the other hand, the
map Vκ → Vκ ⊗ V1 is an isomorphism on the finite slope part. �

Example 6.2.19. Let M = SL2/Qp, with diagonal torus T and upper triangular
Borel B. Then X?(T ) = Z, and there is a unique simple root α = 2. For any
k ∈ X?(T )M,+ = Z≥0, we have Vk = Symk(St). The valuation of the eigenvalues of
t = diag(p, p−1) on Vk are −k,−k+2, · · · , k. TheM−ss condition on Vk translates
into the condition that the eigenvalues of t have valuation < −k+ 2(k+ 1) = k+ 2.
This condition is always satisfied (in the case of SL2) and we have Vk = VM−ssk .
The space V lank identifies with the space of locally analytic functions on pZp and
the action of t is given by f(z) 7→ f(p2z). A basis of finite slope vectors in V lank is
given by the monomial functions z 7→ zn for n ∈ Z≥0. The slopes of t on this basis
are 0, 2, · · · , 2n, · · · . The inclusion Vk ↪→ V lank identifies Vk with the polynomial
functions of degree ≤ k, which is indeed the space defined by the slope condition
M − ss.

6.2.20. Distributions. Let κA : w−1
0,MT (Zp)w0,M → A× be n0-analytic. For all

n ≥ n0, we now consider (V n−anκA )∨ the continuous A-dual. This is a Banach A-
module. However it is not a projective Banach A-module in general (it is so if A is

a field). In order to remedy this, we introduce another related space. Let
◦
Mn be

the open subset ofMn of elements m ∈Mn such that m = 1 mod pn+ε for some
ε > 0 (this is an “open polydisc”). Let

V ◦,n−anκA =

{f : (M1

◦
Mn)S → A1,an

S , f(mb) = (w0,MκA)(b−1)f(m), ∀ (m, b) ∈ (M1Mn)S × (B ∩ (M1Mn))S

f is bounded}

Let V ◦,n−an,+κA ⊆ V ◦,n−anκA be the subset of functions which are bounded by 1. The
space V ◦,n−an,+κA is a projective limit of finite free A+-module, which defines a topol-
ogy on it, and this determines a topology on V ◦,n−anκA (with this topologyV ◦,n−anκA
is not a Banach module).

We have a map V n−anκA → V ◦,n−anκA with dense image. We letDn−an
κA = (V ◦,n−anκA )∨

be the continuous A-dual, equipped with the strong topology. This is a projective
Banach A-module and we have a map Dn−an

κA → (V n−anκA )∨ with dense image. We
let Dn−an,+

κA be the continuous A+-dual of V ◦,n−an,+κA . It is an open and bounded
submodule of Dn−an

κA . We let Dlan
κA = limnD

n−an
κA = limn(V lanκA )∨. This is a com-

pact projective limit of Banach A-modules (the distributions of weight κA). There
is a perfect pairing:

〈−,−〉 : V lanκA ×D
lan
κA → A.

The space Dlan
κA carries a right action of (M1, T

M,+) defined by 〈mf, µ〉 = 〈f, µm〉,
〈tf, µ〉 = 〈f, µt〉 for (t,m, f, µ) ∈ TM,+×M1×V lanκA ×D

lan
κA . The spaceDlan

κA therefore
carries a left action of (M1, T

M,−) defined by 〈m−1f, µ〉 = 〈f,mµ〉, 〈t−1f, µ〉 =
〈f, tµ〉 for (t,m, f, µ) ∈ TM,− ×M1 × V lanκA × Dlan

κA . The action of TM,−− is by
compact operators on Dlan

κA .



HIGHER COLEMAN THEORY 149

Let κ ∈ X?(T )+. By dualizing the exact sequence of theorem 6.2.16, we get the
following complex of (M1, T

M,−)-representations:

0→ Dlan
w0,M .κ(−w0,M (w0,M · κ))→ · · · → ⊕

w∈W (i)
M

Dlan
w·κ(−w0,M (w · κ))

→ · · · → ⊕
w∈W (1)

M

Dlan
w·κ(−w0,M (w · κ))→ Dlan

κ (−w0,Mκ)→ 0

This complex is exact except in the last degree. The cokernel of⊕
w∈W (1)

M

Dlan
w·κ(−w0,M (w·

κ)) → Dlan
κ (−w0,Mκ) maps to V ∨κ . Passing to the finite slope part gives an exact

sequence:

0→ Dlan
w0,M .κ(−w0,M (w0,M · κ))fs → · · · → ⊕

w∈W (i)
M

Dlan
w·κ(−w0,M (w · κ))fs

→ · · · → ⊕
w∈W (1)

M

Dlan
w·κ(−w0,M (w · κ))fs → Dlan

κ (−w0,Mκ)fs → V ∨κ → 0

Definition 6.2.21. Let κ ∈ X?(T )M,+. We say that a TM,−- eigensystem λ in
Dlan
κ is of M -small slope (abbreviated −, ssM ) if

v(λ) > (〈κ, α∨〉+ 1)w0,Mα

for some α ∈ ∆M .
We say that a TM,−- eigensystem λ in V ∨κ is of M -small slope (abbreviated

−, ssM ) if
v(λ) > −w0,Mκ+ (〈κ, α∨〉+ 1)w0,Mα

for some α ∈ ∆M .

We have the following control theorem:

Corollary 6.2.22. The map (Dlan
κ )−,ssM (−w0,Mκ) → (V ∨κ )−,ssM is an isomor-

phism of (M1, T
M,−)-modules.

Proof. This is the dual of corollary 6.2.18. �

6.3. p-adic families of sheaves.

6.3.1. Definition of the sheaves. We let Kp = Kp,m′,0 with m′ > 0. Let w ∈ MW .
By the results of section 4.6.8, for any n ≥ 0, over (πtorHT,Kp)−1(]Cw,k[n,nKp) the
torsorMan

dR has a reduction to a torsorMHT,n,Kp under the group Kc
p,w,Mµ

Mc
µ,n.

The group Kc
p,w,Mµ

has an Iwahori decomposition by proposition 4.6.9. More-
over, Kc

p,w,Mµ
∩ T c = wT c(Zp)w−1.

Let (A,A+) be a Tate algebra over (F,OF ). Let νA : T c(Zp) → A× be an
n-analytic character. Let κA : w0,MwT

c(Zp)(w0,Mw)−1 → A× be given by κA =
−w0,MwνA − (w0,Mwρ+ ρ).

We can construct a sheaf Vn−anνA over (πtorHT,Kp)−1(]Cw,k[n,nKp), modeled on
V n−anκA . Namely consider the torsor π : MHT,n,Kp → (πtorHT,Kp)−1(]Cw,k[n,nKp)

and π × 1 : MHT,n,Kp × Spa(A,A+) → (πtorHT )−1(]Cw,k[n,nKp) × Spa(A,A+).
We let Vn−anνA be the subsheaf of (π × 1)?OMHT,n,Kp×Spa(A,A+) of sections which
satisfy f(mb) = (w0,MκA)(b−1)f(m) for all b ∈ Bc ∩ (Kc

p,w,Mµ
Mc

µ,n). We also
have Dn−anνA ⊆ (Vn−anνA )∨ ⊗ V−2ρnc = (Vn−anνA−2w−1ρnc

)∨, a sheaf locally modeled on
Dn−an
κA+2ρnc

.
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6.3.2. First properties. We prove that the interpolation sheaves are locally projec-
tive Banach sheaves.

Proposition 6.3.3. The sheaves Vn−anνA and Dn−anνA are locally projective Ba-
nach sheaves over (πtorHT,Kp)−1(]Cw,k[n,nKp). More precisely, for any affinoid U =

Spa(R,R+) ↪→ (πtorHT,Kp)−1(]Cw,k[n,nKp), Vn−anνA (U) and Dn−anνA (U) are projective
Banach R⊗̂FA-modules and the maps Vn−anνA (U)⊗̂ROU → Vn−anνA |U and Dn−anνA (U)⊗̂ROU →
Dn−anνA |U are isomorphisms.

Proof. It follows from proposition 4.6.15, that there is a finite flat morphism f :
U ′ = Spa(R′, (R′)+)→ U , a finite group H acting on U ′ such that U ′/H = U , such
that the torsorMHT,n,Kp |U ′ is trivial. It follows that Vn−anνA (U) = (V n−anκA ⊗̂R′)H
(where H acts semi-linearly) is a direct factor of the projective A⊗̂FR-module
V n−anκA ⊗̂R′. Similarly,

Vn−anνA |U = (V n−anκA ⊗F OU ′)
H = (V n−anκA ⊗F R′ ⊗R OU )H = Vn−anνA (U)⊗̂ROU .

The case of the distribution sheaf is similar and left to the reader. �

Corollary 6.3.4. Let U ⊆ (πtorHT,Kp)−1(]Cw,k[n,nKp) be an open subset which is a
finite union of quasi-Stein opens. Then

RΓet(U,Vn−anνA ) = RΓan(U,Vn−anνA ), and RΓet(U,Dn−anνA ) = RΓan(U,Dn−anνA )

and they are both representable by objects of ProN(Kproj(Ban(A))).

Proof. This follows from proposition 6.3.3 and lemma 2.5.21 (or a slight elaboration
of it). �

6.3.5. Interpolation sheaves and locally algebraic weights. Let ν ∈ X?(T c) and let
κ = −w0,Mwν − (w0,Mwρ + ρ) be algebraic characters of T . By restriction they
also define characters ν : T c(Zp)→ F×, κ : w0,MwT

c(Zp)(w0,Mw)−1 → F×.

Proposition 6.3.6. Suppose κ ∈ X?(T c)Mµ,+. Let Kp = Kp,m′,b for m′ ≥ b ≥ 0,
m′ > 0. Over (πtorHT,Kp)−1(]Cw,k[n,nKp) we have dual morphisms Vκ → Vn−anν and
Dn−anν → V∨κ+2ρnc = V−w0,Mκ−2ρnc .

Proof. This follows from the construction. Compare with section 6.2.11. �

We would like to have a similar formula for locally algebraic dominant weights.
We introduce some notation. Let m′ ≥ b ≥ 0. We let K ′p = Kp,m′,bZs(Zp). Then
the map StorKpK′p,Σ

→ StorKpKp,m′,0,Σ
is an étale cover with group T c(Zp)/T cb . For

any character χ : T c(Zp)/T cb → F×, we get an invertible sheaf OStor
KpK

p,m′,0,Σ
(χ).

For any sheaf of OStor
KpK

p,m′,0,Σ
-modules F , we let F (χ) denote F ⊗OStor

KpK
p,m′,0,Σ

OStor
KpK

p,m′,0,Σ
(χ).

Proposition 6.3.7. Let Kp = Kp,m′,0 with m′ > 0. Let χ : T c(Zp)/T cb → F× be a
character with b ≤ m′, n. Let νA : T c(Zp) → A× be an n-analytic character. Over
(πtorHT,Kp)−1(]Cw,k[n,nKp) we have Vn−anνAχ = Vn−anνA (χ).

Proof. The map (πtorHT,K′p)−1(]Cw,k[n,nK
′
p) → (πtorHT,Kp)−1(]Cw,k[n,nKp) is an étale

cover of group T c(Zp)/T cb since ]Cw,k[n,nK
′
p =]Cw,k[n,nKp. We also have a map
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of torsorsMHT,n,n,K′p
→MHT,n,n,Kp equivariant for the map: K ′p,w,Mµ

M1
µ,n,n →

Kp,w,Mµ
M1

µ,n,n. We form the quotient:

Kp,w,Mµ
M1

µ,m,n/K
′
p,w,Mµ

M1
µ,m,n = wT (Zp)w−1/wTbw

−1.

By taking the pushout of the mapMHT,m,n,K′p
→MHT,m,n,Kp viaKp,w,Mµ

M1
µ,m,n →

wT (Zp)w−1/wTbw
−1, we get a map:

(πtorHT,K′p)−1(]Cw,k[m,nK
′
p)→MHT,m,n,Kp ×Kp,w,MµM1

µ,m,n
(wT (Zp)w−1/wTbw

−1)

This map is necessarily an isomorphism, because the left hand side is an étale
cover of (πtorHT,Kp)−1(]Cw,k[m,nKp) of group T (Zp)/Tb and the right hand side is an
étale cover of group wT (Zp)w−1/wTbw

−1. Moreover, the map is equivariant under
the isomorphism T (Zp)/Tb → wT (Zp)w−1/wTbw

−1 given by conjugation by w. It
follows that the étale cover (πtorHT,K′p)−1(]Cw,k[m,nK

′
p)→ (πtorHT,Kp)−1(]Cw,k[m,nKp)

can be realized as a pushout of the torsorMHT,n,Kp . We deduce from lemma 6.2.10
that V n−anκA ⊗ wχ = VκA⊗(w0,Mwχ−1). The lemma follows. �

Corollary 6.3.8. Let ν = νalgχ be a locally algebraic character of T c(Zp), with
νalg ∈ X∗(T c) algebraic and χ : T c(Zp)→ F

×
a finite order character of conductor

b ≤ n. Let Kp = Kp,m′,0 for m′ ≥ b, m′ > 0. If κalg = −w0,Mwνalg+(w0,Mwρ−ρ)
is M -dominant, then over (πtorHT,Kp)−1(]Cw,k[n,nKp) we have maps of sheaves

Vκalg (χ)→ Vn−anν and Dn−anν → V−2ρnc−κalg (−χ).

Proof. This is a combination of propositions 6.3.6 and 6.3.7. �

6.3.9. Definition of the Hecke action. Let t ∈ T+. Let Kp = Kp,m′,0. We consider
the Hecke correspondence:

StorKp(Kp∩tKpt−1),Σ′′

p1

''

p2

ww
StorKpKp,Σ

StorKpKp,Σ′

Over p−1
2

(
(πtorHT,Kp)−1(]Cw,k[n,nKp)

)
∩p−1

1

(
(πtorHT,Kp)−1(]Cw,k[n,nKp)

)
we have a

map

p?1Man
HT

[t−1] // p?2Man
HT

p?1MHT,n,Kp

OO

p?2MHT,n,Kp

OO

which is represented byKc
p,w,Mµ

Mc
µ,nwt

−1w−1Kc
p,w,Mµ

Mc
µ,n by proposition 4.6.19.

So far, all this discussion depends only on the double coset KptKp and therefore
only on the image of t in T+/T (Zp). In particular, if t ∈ T (Zp), all the maps are
the identity.

We now consider the following map:˜[t−1] : p?1Man
HT /Uan → p?2Man

HT /Uan

which is given by xUan 7→ [t−1]xwtw−1Uan. This map depends on t and not only
on its class in T+/T (Zp).



152 G. BOXER AND V. PILLONI

Lemma 6.3.10. (1) The map ˜[t−1] restricts to a map

p?1MHT,n,Kp/Un → p?2MHT,n,Kp/Un.

(2) If t ∈ T++ and n ≥ 1, this map factors

p?1MHT,n,Kp/Un ↪→ p?1MHT,n−1,Kp/Un−1 → p?2MHT,n,Kp/Un.

(3) Let νA be an n-analytic weight. Then ˜[t−1] induces a morphism˜[t−1] : p?2Vn−anνA → p?1Vn−anνA

which is locally modeled on the morphism wtw−1 : V n−anκA → V n−anκA defined
in section 6.2.4. If t ∈ T++ then this is a compact morphism (in the sense
of definition 2.5.3).

Proof. Easy and left to the reader. Observe that wtw−1 ∈ TMµ,+. �

Now for νA an n-analytic weight, we can now define a map

t : R(p1)?p
?
2Vn−anνA → Vn−anνA

as the composite of ˜[t−1] : R(p1)?p
?
2Vn−anνA → R(p1)?p

?
1Vn−anνA and (−w−1w0,Mρ +

ρ)(t)Trp1 : R(p1)?p
?
1Vn−anνA → Vn−anνA .

Lemma 6.3.11. If t ∈ T (Zp), then

t : R(p1)?p
?
2Vn−anνA = Vn−anνA → Vn−anνA

acts via scalar multiplication by νA(t).

Proof. This follows from the identity νA = w−1w0,MκA−w−1w0,Mρ+ρ. The scalar
multiplication by w−1w0,MκA(t) comes from the map ˜[t−1] and the multiplication
by (−w−1w0,Mρ+ ρ)(t) comes from the normalization of the trace map. �

By duality we also obtain a morphism: p?2Dn−anνA → p?1Dn−anνA which is locally
modeled on (wtw−1)−1 : Dn−an

κA+2ρnc
→ Dn−an

κA+2ρnc
.

6.4. Locally analytic overconvergent cohomology. Fix w ∈ MW . For a choice
of + or − and a weight νA : T c(Zp)→ A× we want to define a finite slope, overcon-
vergent, locally analytic cohomology RΓw,an(Kp, νA)±,fs and the cuspidal coun-
terpart RΓw,an(Kp, νA, cusp)

±,fs by taking cohomologies of the analytic sheaves
Vn−anνA or Dn−anνA (for n large enough), with suitable support conditions of neigh-
borhoods on the inverse image of Pµ\PµwKp by the Hodge-Tate period map, and
passing to finite slope parts for a suitable Hecke operator.

6.4.1. First definition. Let Kp = Kp,m′,0 with m′ > n and let νA : T c(Zp) →
A× be an n-analytic weight. We fix t ∈ T++ and we assume that min(t) =
infα∈Φ+ v(α(t)) ≥ 1 in order to simplify notations. We let T be the associated
Hecke operator.

We have that

Tn+1((πtorHT,Kp)−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp)−1(]Yw,k[)) ⊆ (πtorHT,Kp)−1(]Cw,k[n+1,n+1Kp)

⊆ (πtorHT,Kp)−1(]Cw,k[n,nKp)

by lemma 3.5.10, and hence the sheaves Vn−anνA and Dn−anνA are defined over a
neighborhood of Tn+1((πtorHT,Kp)−1(]Xw,k[)) ∩ (T t)n+1((πtorHT,Kp)−1(]Yw,k[)).
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We also have that

Tn+1((πtorHT,Kp)−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp)−1(]Yw,k[)) ⊆ (πtorHT,Kp)−1(]Cw,k[n+1,n+1Kp)

⊆ (πtorHT,Kp)−1(]Cw,k[n,nKp)

and therefore, the sheaves Vn−anνA and Dn−anνA are defined over a neighborhood of
Tn+1((πtorHT,Kp)−1(]Xw,k[)) ∩ (T t)n+1((πtorHT,Kp)−1(]Yw,k[)) as well.

We define:
RΓw,n−an(KpKp, νA)+,fs :=

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA )+,fs.

Implicit in this definition is that it makes sense to take the finite slope part: namely
the cohomology is an object of ProN(Kproj(Ban(A))) and that H+

p,m′,0 acts on it in
a way that H++

p,m′,0 acts by potent compact operators. This is proved in Theorem
6.4.3 below. Note that RΓw,n−an(KpKp, νA)+,fs is an object of the derived category
of sheaves of OSpa(A,A+)-modules, which possibly depends on several choices (see
sections 6.1.10, 6.1.13, 6.1.16), but the cohomologies Hk

w,n−an(KpKp, νA)+,fs are
well defined.

Similarly, we define:

RΓw,n−an(KpKp, νA)−,fs :=

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

((T t)n+1((πtorHT,Kp)−1(]Yw,k[)),Dn−anνA )−,fs.

Again implicit in this definition is that it makes sense to take the finite slope part:
namely the cohomology is an object of ProN(Kproj(Ban(A))) and that H−p,m′,0 acts
on it in a way that H−−p,m′,0 acts by potent compact operators. This is also proved
in Theorem 6.4.3 below.

We have similar definitions for cuspidal cohomologies RΓw,n−an(KpKp, νA, cusp)
+,fs

and RΓw,n−an(KpKp, νA, cusp)
−,fs

6.4.2. Existence of finite slope cohomology. We now justify that the cohomologies
introduced in the previous section are well defined.

Theorem 6.4.3. Let Kp = Kp,m′,0 for some m′ > n, w ∈ MW , and νA : T c(Zp)→
A× an n-analytic character.

(1) The cohomologies

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA ),

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

((T t)n+1((πtorHT,Kp)−1(]Yw,k[)),Dn−anνA )

are objects of ProN(Kproj(Ban(A))).
(2) There is an action of H+

p,m′,0 on

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA )

for which H++
p,m′,0 acts via compact operators.

(3) There is an action of H−p,m′,0 on

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

((T t)n+1((πtorHT,Kp)−1(]Yw,k[)),Dn−anνA )

for which H−−p,m′,0 acts via compact operators.
(4) All the analogous statements hold for cuspidal cohomology.
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Proof. The property that the objects at hand are objects of ProN(Kproj(Ban(A)))
is corollary 6.3.4. The rest of the argument follows almost verbatim the proof of
theorem 5.4.3, now using lemmas 2.5.26 and 6.3.10 to see that the operators in
H±±p,m′,0 are potent compact. The details are left to the reader. �

6.4.4. Change of analyticity radius.

Theorem 6.4.5. Let m′ > n + 1. Let νA be an n-analytic character. The maps
Hi
w,n+1−an(KpKp, νA)+,fs → Hi

w,n−an(KpKp, νA)+,fs and Hi
w,n−an(KpKp, νA)−,fs →

Hi
w,n+1−an(KpKp, νA)−,fs are quasi-isomorphisms. The same results hold for cus-

pidal cohomologies.

Proof. Let T = [Kp,m′,0tKp,m′,0] for t ∈ T++ satisfying min(t) ≥ 1. The endomor-
phism T of

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA )

factors into

RΓ
Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))

(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA )

−→
RΓ

Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))
(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn+1−an

νA )

−→
RΓ

Tn+1((πtorHT,Kp )−1(]Xw,k[))∩(T t)n+1((πtorHT,Kp )−1(]Yw,k[))
(Tn+1((πtorHT,Kp)−1(]Xw,k[)),Vn−anνA ).

The − case follows similarly. �

6.4.6. Change of support condition. It is important to us that the cohomology
RΓw,n−an(KpKp, νA)±,fs can actually be realized as the finite slope part of coho-
mology groups with different support conditions. The following definition is similar
to definition 5.4.10. We start by fixing an element t ∈ T++ such that min(t) ≥ 1
and we set C = max(t).

Definition 6.4.7. Let m′ > n. A (+, w,Kp,m′,0, n− an)-allowed support is a pair
(U ,Z) where:

(1) U is an open subset of StorKpKp,m′,0,Σ
which is a finite union of quasi-Stein

open subsets.
(2) Z is a closed subset of StorKpKp,m′,0,Σ

whose complement is a finite union of
quasi-Stein open subsets.

(3) There exists m, l, s ∈ Z≥0 such that:

(πtorHT,Kp,m′,0)−1(]Cw,k[m,0Kp,m′,0∩]Cw,k[0,l+sKp,m′,0) ⊆ Z∩U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[0,ClKp,m′,0),

(πtorHT,Kp,m′,0)−1(]Cw,k[m+s,0Kp,m′,0∩]Cw,k[0,lKp,m′,0) ⊆ U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[Cm,−1Kp,m′,0),

Z ∩ U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[n,nKp,m′,0).

Let m′ > n. A (−, w,Kp,m′,0, n− an)-allowed support is a pair (U ,Z) where:
(1) U is an open subset of StorKpKp,m′,0,Σ

which is a finite union of quasi-Stein
open subsets.

(2) Z is a closed subset of StorKpKp,m′,0,Σ
whose complement is a finite union of

quasi-Stein open subsets.
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(3) There exists m, l, s ∈ Z≥0 such that:

(πtorHT,Kp,m′,0)−1(]Cw,k[m+s,0Kp,m′,0∩]Cw,k[0,nKp,m′,0) ⊆ Z∩U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[Cm,0Kp,m′,0),

(πtorHT,Kp,m′,0)−1(]Cw,k[m,0Kp,m′,0∩]Cw,k[0,l+sKp,m′,0) ⊆ U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[−1,ClKp,m′,0),

Z ∩ U ⊆ (πtorHT,Kp,m′,0)−1(]Cw,k[n,nKp,m′,0).

Theorem 6.4.8. Let m′ > n, w ∈ MW , and νA an n-analytic character.
(1) Let (U ,Z) be a (+, w,Kp,m′,0, n − an)-allowed support condition. Then

RΓZ∩U (U ,Vn−anνA ) and RΓZ∩U (U ,Vn−anνA (−D)) are objects of ProN(Kproj(Ban(A)))
and carry a compact action of T s for sufficiently large s. Moreover there
are canonical isomorphisms

Hi
w,n−an(KpKp,m′,0, νA)+,fs ' Hi

Z∩U (U ,Vn−anνA )T
s−fs

and

Hi
w,n−an(KpKp,m′,0, νA, cusp)

+,fs ' Hi
Z∩U (U ,Vn−anνA (−D))T

s−fs.

(2) Let (U ,Z) be a (−, w,Kp,m′,0, n − an)-allowed support condition. Then
RΓZ∩U (U ,Dn−anνA ) and RΓZ∩U (U ,Dn−anνA (−D)) are objects of ProN(Kproj(Ban(A)))
and carry a compact action of T s for sufficiently large s. Moreover there
are canonical isomorphisms

Hi
w,n−an(KpKp,m′,0, νA)−,fs ' Hi

Z∩U (U ,Dn−anνA )T
s−fs

and

Hi
w,n−an(KpKp,m′,0, νA, cusp)

−,fs ' Hi
Z∩U (U ,Dn−anνA (−D))T

s−fs.

Proof. This is very similar to the proof of theorem 5.4.12, and left to the reader. �

6.4.9. Change of level. Now we investigate how the finite slope cohomologies RΓw,n−an(KpKp, νA)±,fs

and RΓw,n−an(KpKp, νA, cusp)
±,fs vary with the level Kp.

Theorem 6.4.10. For all w ∈ MW and all m′′ ≥ m′ > n, the pullback map

Hi
w,n−an(KpKp,m′,0, νA)+,fs → Hi

w,n−an(KpKp,m′′,0, νA)+,fs

and the trace map

Hi
w,n−an(KpKp,m′′,0, νA)−,fs → Hi

w,n−an(KpKp,m′,0, νA)−,fs

are quasi-isomorphisms, compatible with the action of T (Qp), and the same state-
ments are true for cuspidal cohomology.

Proof. This is very similar to the proof of theorem 5.4.14. Details are left to the
reader. �

As a result of the theorems 6.4.5 and 6.4.10, we can let

RΓw,an(Kp, νA)±,fs and RΓw,an(Kp, νA, cusp)
±,fs

denote respectively

RΓw,n−an(KpKp,m′,0, νA)±,fs and RΓw,n−an(KpKp,m′,0, νA, cusp)
±,fs

for some choice of n and m′ > n. Although the cohomology complexes depend on
a number of choices, the cohomology groups are independent of any choice.
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6.5. Two spectral sequences. We consider two spectral sequences. The first
spectral sequence is a Tor spectral sequence for specialization in the weight space.
The second spectral sequence comes from the locally analytic BGG resolution and
relates locally analytic overconvergent and overconvergent cohomology in classical
weights.

6.5.1. The Tor spectral sequence.

Theorem 6.5.2. Let w ∈ MW , let νA be a weight, and let x ∈ Spa(A,A+) = S.
Let νx be the corresponding weight. We have spectral sequences:

Ep,q2 = TorOS
−p(Hq

w,an(Kp, νA)±,fs, k(x))⇒ Hp+q
w,an(Kp, νx)±,fs

and similarly for cuspidal cohomology.

Remark 6.5.3. Concretely, if we are interested in computing the slope ≤ h part of
RΓw,an(Kp, νx)±,fs for a given compact operator t ∈ T±, we first can find h′ > h
and Spa(B,B+) ↪→ S an affinoid open containing x such that Hi

w,an(Kp, νx)±,fs|Spa(B,B+)

have slope ≤ h′ decomposition (actually, we can suppose that x is a maximal point
and we can take h = h′). We can thus consider the finiteB-module Hi

w,an(Kp, νx)±,≤h
′
(Spa(B,B+)).

The spectral sequence specializes to

TorB−p(H
q
w,an(Kp, νA)±,≤h

′
(Spa(B,B+)), k(x))⇒ Hp+q

w,an(Kp, νx)±,≤h
′
.

Proof. Following the above remark, it suffices to show that for any h, there exists
B and h′ and a spectral sequence

TorB−p(H
q
w,an(Kp, νA)±,≤h

′
(Spa(B,B+)), k(x))⇒ Hp+q

w,an(Kp, νx)±,≤h
′
.

But by construction (see remark 6.1.12), we can find a complex M• of B-modules
which computes RΓw,an(Kp, νB)±,≤h

′
and such thatM•⊗Bk(x) computes RΓw,an(Kp, νx)±,≤h

′
.

We can therefore apply [Sta13], example TAG 061Z. �

6.5.4. The spectral sequence from locally analytic overconvergent to overconvergent
cohomology. Let w ∈ MW and let ν = νalgχ : T c(Zp)→ F× be a locally algebraic
weight so that κalg = −w0,Mwνalg − (w0,Mwρ+ ρ) is M -dominant.

By corollary 6.3.8, we have morphisms:

RΓw(Kp, κalg, χ)+,fs → RΓw,an(Kp, ν)+,fs

RΓw,an(Kp, ν)−,fs → RΓw(Kp,−w0,Mκalg − 2ρnc, χ
−1)−,fs

and similarly for cuspidal cohomology. We remark that these morphisms are not
Hecke equivariant. Namely, on RΓw,an(Kp, ν)+,fs we have an action of T+ with
the property that T (Zp) acts via ν and on RΓw,an(Kp, ν)−,fs, we have an ac-
tion of T− such that T (Zp) acts by −ν (see lemma 6.3.11). We deduce (compare
with section 6.2.11) that there is a T+-equivariant map: RΓw(Kp, κalg, χ)+,fs →
RΓw,an(Kp, ν)+,fs(−νalg) and a T−-equivariant map: RΓw,an(Kp, ν)−,fs(νalg) →
RΓw(Kp,−w0,Mκalg − 2ρnc, χ

−1)−,fs

We can study these maps with the help of the locally analytic BGG resolution.

Theorem 6.5.5. In the setting above, there is a H+
p,m,0-equivariant spectral se-

quence Ep,qw (Kp, κ, χ)+ converging to finite slope overconvergent cohomology Hp+q
w (Kp, κalg, χ)+,fs,

such that
Ep,qw,1(Kp, κalg, χ)+ =

⊕v∈WM ,`(v)=pH
q
w,an

(
Kp, (((w0,Mw)−1vw0,Mw)·νalg)χ

)+,fs(−(((w0,Mw)−1vw0,Mw)·νalg)
)
.
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There is a H−p,m,0-equivariant spectral sequence Ep,qw (Kp, κ, χ)− converging to
finite slope overconvergent cohomology Hp+q

w (Kp,−w0,Mκalg − 2ρnc, χ
−1)−,fs, such

that
Ep,qw,1(Kp, κalg, χ)− =

⊕v∈WM ,`(v)=−pH
q
w,an

(
Kp, (((w0,Mw)−1vw0,Mw)·νalg)χ

)−,fs(
(((w0,Mw)−1vw0,Mw)·νalg)

)
.

Proof. This is the spectral sequence associated to the BGG sequence of theo-
rem 6.2.16, as well as its variant for distribution sheaves. We use the following
identities: νalg + ρ = −w−1w0,M (κalg + ρ) and −w−1w0,M (v. · κalg + ρ) − ρ =
((w0,Mw)−1vw0,Mw) · νalg. �

6.6. Cohomological vanishing. The following is the analogue of theorem 5.6.1.

Theorem 6.6.1. For all w ∈ MW and weights νA, the cohomology RΓw,an(Kp, νA, cusp)
±,fs

is concentrated in degree [0, `±(w)].

Proof. This is exactly the same as the proof of theorem 5.6.1, granting lemmas
6.6.2 and 6.6.4 below. �

The key lemma to prove the theorem is the following (this lemma and its proof
are inspired by [AIP15]):

Lemma 6.6.2. Assume that (G,X) is a Hodge type Shimura datum. Suppose the
weight νA is n-analytic, and let Kp ⊆ Kp,m′,0 for some m′ > n. For all affinoid
opens U ⊆]Cw,k[n,nKp, RΓ((πtorHT,Kp)−1(U),Vn−anνA (−D)) and RΓ((πtorHT,Kp)−1(U),Dn−anνA (−D))

are concentrated in degree 0.

Proof. We only consider the case of the sheaf Vn−anνA (−D), the other case is iden-
tical. For any compact open K ′p ⊆ Kp, let Stor

KpK′p,Σ
be an integral toroidal com-

pactification, and let S?
KpK′p

be an integral minimal compactification (whose ex-
istence is given by the main results of [MP19], see also section 4.4.31). Let U
be a formal model for U , realized as an open subset of the normalization of a
blow-up of FLG,µ. By theorem 4.4.36, for K ′p ⊆ Kp small enough, we have nor-
mal formal models S?,mod

KpK′p,U
→ S?

KpK′p
for the map π−1

HT,K′p
(U) → S?KpK′p

and

Stor,mod
KpK′p,Σ,U

→ Stor
KpK′p,Σ

for the map (πtorHT,K′p)−1(U) → StorKpK′p,Σ
and we have a

map fK′p : Stor,mod
KpK′p,Σ,U

→ S?,mod
KpK′p,U

.
We may actually assume that K ′p is a subgroup of the pro p-group Kp,m′,1.
By proposition 4.6.15 for K ′′p ⊆ K ′p small enough, the torsor MHT,n,Kp,m′,1 is

trivial on the generic fiber of a Zariski cover of Stor,mod
KpK′′p ,Σ,U

.
We can construct a formal model for the Banach sheaf Vn−anνA that we denote

Vn−an,+
νA over Stor,mod

KpK′′p ,Σ,U
. Indeed let Stor,mod

KpK′′p ,Σ,U
= ∪iVK′′p ,i

be a Zariski cov-
ering with the property that the torsor MHT,n,Kp,m′,1 is trivial over the generic
fiber VK′′p ,i of VK′′p ,i

. We fix such a trivialization. We can construct the associ-
ated 1-cocycle: over each intersection VK′′p ,i,j

= VK′′p ,i
∩ VK′′p ,j

we have an ele-
ment mi,j ∈ Kc

p,m′,1,w,Mµ
Mc

µ,n describing the change of trivialization of the torsor
MHT,n,Kp,m′,1 . Over VK′′p ,i we let Vn−an,+

νA = V n−an,+κA ⊗̂OFOVK′′p ,i
and we glue

these sheaves using multiplication by mi,j on each intersection. The sheaf Vn−an,+
νA

is a flat formal Banach sheaf (see section 2.5.5). We claim that it is also small (see
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again section 2.5.5). Indeed, it follows from lemma 6.2.6 that the representation
V n−an,+κA ⊗A+A+/A++ of Kc

p,w,Mµ
Mc

µ,n is an inductive limit of finite free A+/A++-
submodules colimiVi, stable under Kc

p,w,Mµ
Mc

µ,n, and such that over Vi/Vi−1 the
action factors over the quotient Kc,p

p,w,Mµ
of Kc

p,w,Mµ
by its maximal normal pro-p

subgroup. We find that Kc,p
p,w,Mµ

= wT c(Zp)w−1/wT c1w
−1 is a finite abelian group.

Moreover, the elements mi,j map trivially to Kc,p
p,w,Mµ

.
It follows that the sheaf Vn−an,+

νA ⊗A+ A+/A++ = colimiFi is an inductive limit
of locally free sheaves of A+/A++ ⊗ OStor,mod

KpK′′p ,Σ,U
-modules with the property that

Fi/Fi−1 is the trivial sheaf. We now fix L an ample line bundle over S?,mod
KpK′′p ,U

(this last formal scheme is quasi-projective, so L exists).
We claim that there existsm ≥ 0 such that RΓ(Stor,mod

KpK′′p ,Σ,U
, f?K′′p L

m⊗Vn−an,+
νA (−DK′′p

))

(where −DK′′p
is the boundary divisor at level K ′′p ) is concentrated in degree 0.

The cohomology is represented by a complex of A+-modules which are comple-
tions of free A+-modules (take the Čech complex associated with the covering
∪VK′′p ,i

). It follows from lemma 6.6.3 below that it suffices to prove that there
exists m ≥ 0 such that RΓ(Stor,mod

KpK′′p ,Σ,U
, f?K′′p L

m⊗Vn−an,+
νA /A++(−DKp)) is concen-

trated in degree 0. We are therefore reduced to prove that there exists m such that
RΓ(Stor,mod

KpK′′p ,Σ,U
, f?K′′p L

m ⊗ Fi/Fi−1(−DK′′p
)) is concentrated in degree 0. By the

projection formula,

RΓ(Stor,mod
KpK′′p ,Σ,U

, f?K′′p L
m⊗Fi/Fi−1(−DK′′p

)) = RΓ(S?,mod
KpK′′p ,Σ,U

,Lm⊗R(fK′′p )?Fi/Fi−1(−DK′′p
)).

We first observe that R(fK′′p )?Fi/Fi−1(−DK′′p
) is a sheaf concentrated in degree 0

by theorem 4.4.37. Since L is very ample onS?,mod
KpK′′p ,Σ,U

and (fK′′p )?Fi/Fi−1(−DK′′p
)

is a coherent sheaf independant of i, it follows that there exists m such that
RΓ(Stor,mod

KpK′p,Σ,U
, f?K′′p L

m ⊗Fi/Fi−1(−DK′′p
)) is concentrated in degree 0 for all i.

Let L = H0(S?,mod
KpK′′p ,U

,L[1/p]). This is a rank 1 projective OS?
KpK′′p

((πHT,K′′p )−1(U))-
module. We observe that

f?K′′p L
m⊗O

S
tor,mod
KpK′′p ,Σ,U

Vn−an,+
νA (−DK′′p

)[1/p] = Lm⊗O
π
−1
HT,K′′p

(U)
Vn−an,+
νA (−DK′′p

)[1/p].

We deduce that

RΓ(Stor,mod
KpK′′p ,Σ,U

, f?K′′p L
m ⊗Vn−an,+

νA (−DK′′p
)[1/p]) =

Lm ⊗O
π
−1
HT,K′′p

(U)
RΓ(π−1

HT,K′′p
(U),Vn−an,+

νA (−DK′′p
)[1/p])

and therefore RΓ(Stor,mod
KpK′′p ,Σ,U

,Vn−an,+
νA (−DK′′p

)[1/p]) is concentrated in degree 0.

Taking a Zariski covering of Stor,mod
KpK′′p ,Σ,U

, we deduce that the associated augmented

Čech complex on the generic fiber is exact. By theorem 2.5.9, affinoids are acyclic for
Banach sheaves arisings as generic fibers of flat small formal Banach sheaves. We de-
duce from the Čech to cohomology spectral sequence that RΓ((πtorHT,K′′p )−1(U),Vn−an,+νA (−DK′′p

))

is concentrated in degree 0. The lemma follows by taking the invariants under
Kp/K

′′
p .

�
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Lemma 6.6.3. Let A+ be a ring, A++ be an ideal of A+. Assume that A+ is A++-
adically complete and separated, Let M0

f0→ M1
f1→ M2 be a complex of complete,

separated, and torsion free A+-modules. Assume that

M0 ⊗A+ A+/A++ →M1 ⊗A+ A+/A++ →M2 ⊗A+ A+/A++

is exact. Then the complex M0
f0→M1

f1→M2 is exact.

Proof. It follows from the assumptions that Im(f0)+(A++M1∩Ker(f1)) = Ker(f1).
Since M2 is torsion free, we deduce that (A++M1 ∩ Ker(f1)) = A++Ker(f1). Let
m ∈ Ker(f1). By successive approximation, we can construct a sequence of elements
mn ∈M0 for n ≥ 0, withmn−mn+1 ∈ (A++)nM0 and f0(mn)−m ∈ (A++)n+1M1.
The sequence mn converges to m∞ and f0(m∞) = m. �

Lemma 6.6.4. Lemma 6.6.2 holds without assuming that (G,X) is an Hodge type
Shimura datum.

Proof. We consider a diagram of Shimura datum with (G,X) of abelian type and
(G1, X1) of Hodge type as in section 4.4.41:

(B1, XB1
) //

��

(B,XB)

��
(G1, X1) (G,X)

We may assume that the various morphisms between the groups G1, B1, B,G over
Q extend to morphisms over OF . We will prove that lemma 6.6.2 holds first for
B1 and second for G. We add decorations H or (H,XH) to objects depending on
the Shimura datum (H,XH) in order to make the distinction between the Shimura
data. Let νA : T (B1)(Zp) → A× be a continuous, n-analytic character. It induces
a character ν′A : T (G1)(Zp) → A×. We consider the morphism of compact open
subgroupsKp = Kp,m′,0(B1)→ K ′p = Kp,m′,0(G1) and we deduce a finite morphism
of Shimura varieties:

f : Stor(B1, XB1
)K,Σ → Stor(G1, XG1

)K′,Σ

with K = KpKp and K ′ = (K ′)pK ′p and by restriction (see theorem 4.4.45, lemma
3.5.6) we have a finite morphism:

f : (πtorHT,Kp)−1(]Cw,k[n,nKp)→ (πtorHT,K′p)−1(]Cw,k[n,nK
′
p)

We claim that there is an isomorphism

f?Vn−anν′A
= Vn−anνA .

This follows from remark 4.6.6 and remark 4.6.13, observing that the torsor com-
ming from the Shimura variety (T,XT ) is trivial. We insist that the above formula
does not describe the Hecke action at the level of B1, but this is irrelevant for
us now. We can the find another compact K ′′ ⊆ K ′ such that there is a finite,
generically finite étale morphism f : Stor,0(G1, XG1)K′′,Σ → Stor,0(B1, XB1)K,Σ
with group ∆. We now deduce that RΓ((πtorHT,Kp)−1(U)0,Vn−anνA (−D)) is the di-
rect factor of invariants under ∆ of RΓ((πtorHT,K′′p )−1(U)0,Vn−anν′A

(−D)). We wrote
(πtorHT,Kp)−1(U)0 for Stor,0(B1, XB1

)K,Σ ∩ (πtorHT,Kp)−1(U) and similarly for G1. The
lemma is thus proven for B1. We observe that the lemma holds for any refine-
ment of the cone decomposition Σ by the projection formula. We now deduce the
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lemma for G. We reset the notations. Let νA : T (G)(Zp) → A× be a contin-
uous, n-analytic character. It induces a character ν′A : T (B1)(Zp) → A×. Let
K = KpKp be a compact open subgroup of G(Af ). We can find a compact open
subgroup K ′ ⊆ B1(Af ) such that there is a finite, generically finite étale morphism
f : Stor,0(B1, XB1

)K′,Σ → Stor,0(G,XG)K,Σ with group ∆(K,K ′). This map in-
duces a finite map : f : (πtorHT,K′p)−1(]Cw,k[n,nK

′
p)

0 → (πtorHT,Kp)−1(]Cw,k[n,nKp)
0.

We find that
Vn−anνA = (f?Vn−anν′A

)∆(K,K′).

We deduce that RΓ((πtorHT,Kp)−1(U)0,Vn−anνA (−D)) is the direct factor of invariants
under ∆(K,K ′) of RΓ((πtorHT,K′p)−1(U)0,Vn−anν′A

(−D)). The lemma is thus proven
for G. �

6.7. Cup products and Serre duality. We now consider cup-products on locally
analytic overconvergent cohomology.

Theorem 6.7.1. For all w ∈ MW and weights νA there is a pairing:

〈, 〉 : Hi
w,an(Kp, νA, cusp)

±,fs ×Hd−i
w,an(Kp, νA)∓,fs → A

For any t ∈ T (Qp) we have 〈t−,−〉 = 〈−, t−1−〉. Let ν = νalgχ be a locally
algebraic weight so that κalg = −w0,Mwνalg − (w0,Mwρ + ρ) is M -dominant. The
above pairing induces a pairing between the spectral sequences:

〈, 〉p,q,r : Ep,qw,r(K
p, κalg, χ, cusp)

± ×E−p,d−qw,r (Kp, κ, χ−1)∓ → F

On the abutment of the spectral sequence the pairing 〈, 〉p,q,∞ is induced by the
pairing of theorem 5.7.1:

Hp+q
w (Kp, κ, χ, cusp)±,fs ×Hd−p−q

w (Kp,−2ρnc − w0,Mκ, χ
−1)∓,fs → F.

Proof. We construct the pairing

〈, 〉 : Hi
w,an(Kp, νA, cusp)

+,fs ×Hd−i
w,an(Kp, νA)−,fs → F.

We can realize RΓw,an(Kp, νA, cusp)
+,fs as the the finite slope part of

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s,−1Kp,m′,0),Vn−anνA (−D))

for s >> 0 and m′ >> s by definition 6.4.7 and theorem 6.4.8. Similarly we can
realize RΓw,an(Kp, νA)−,fs as the finite slope part of

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s+1,s−1Kp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[−1,s−1Kp,m′,0),Dn−anνA ).

Moreover, by construction we have a pairing Vn−anνA (−D)×Dn−anνA → V−2ρnc(−D)⊗
A. We have a cup-product by proposition 2.2.1:

Hi
(πtorHT,K

p,m′,0
)−1(]Cw,k[s,sKp,m′,0)((π

tor
HT,Kp,m′,0

)−1(]Cw,k[s,−1Kp,m′,0),Vn−anνA (−D))×

Hd−i
(πtorHT,K

p,m′,0
)−1(]Cw,k[s+1,s−1Kp,m′,0)

((πtorHT,Kp,m′,0)−1(]Cw,k[−1,s−1Kp,m′,0),Dn−anνA )

→ Hd
(πtorHT,K

p,m′,0
)−1(]Cw,k[s+1,sKp,m′,0)((π

tor
HT,Kp,m′,0

)−1(]Cw,k[s,s−1Kp,m′,0),V−2ρnc(−D)⊗A)

and there is a trace map (by theorem 2.7.1):

Hd
(πtorHT,K

p,m′,0
)−1(]Cw,k[s+1,sKp,m′,0)((π

tor
HT,Kp,m′,0

)−1(]Cw,k[s,s−1Kp,m′,0),V−2ρnc(−D)⊗A)→ A.
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This pairing intertwines the actions of H+
p,m,0 and H−p,m,0. It is straightforward

(and painful) to check that the induced pairing

〈, 〉 : Hi
w,an(Kp, νA, cusp)

+,fs ×Hd−i
w,an(Kp, νA)−,fs → A

is independent of choices.
The rest of the theorem follows from the functoriality of the trace map.

�

Theorem 6.7.2. Let w ∈ MW , let A be a field and fix a weight νA. The pairing
〈, 〉 : Hi

w,an(Kp, νA, cusp)
±,fs ×Hd−i

w,an(Kp, νA)∓,fs → A is non-degenerate.

Proof. We follow closely the proof of theorem 5.7.2. Our strategy is to express the
cohomologies as cones of cohomologies (possibly with compact support) of dagger
spaces and to use the duality for affinoid dagger spaces to produce dual complexes
whose finite slope part computes the cohomology. We can realize RΓw,an(Kp, νA, cusp)

+,fs

as the the finite slope part of

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s,−1Kp,m′,0),Vn−anνA (−D))

for s >> 0 and m′ >> s by definition 6.4.7 and theorem 6.4.8
We now introduce the following closed subspaces of FLG,µ:
]Cw,k[s−1

′
,s= ∩ε>0]Cw,k[s−1−ε,s, and ]Cw,k[

[s−1,s]
′
,s

=]Cw,k[s−1
′
,s\]Cw,k[s,s.

Both are the closure of quasi-compact open subspaces of FLG,µ. We have an exact
triangle:

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[
[s−1,s]′,sKp,m′,0)((π

tor
HT,Kp,m′,0

)−1(]Cw,k[s−2,−1Kp,m′,0),Vn−anνA (−D))→

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s−1′,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s−2,−1Kp,m′,0),Vn−anνA (−D))

→ RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s,−1Kp,m′,0),Vn−anνA (−D))
+1→

We observe that RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[
[s−1,s]′,sKp,m′,0)((π

tor
HT,Kp,m′,0

)−1(]Cw,k[s−2,−1Kp,m′,0),Vn−anνA (−D))

and RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s−1′,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s−2,−1Kp,m′,0),Vn−anνA (−D))

are the cohomology with compact support of the dagger spaces (πtorHT,Kp,m′,0)−1(]Cw,k[
[s−1,s]

′
,s
Kp,m′,0)

and (πtorHT,Kp,m′,0)−1(]Cw,k[s−1
′
,sKp,m′,0) respectively.

For the − theory, we see that for any ε > 0, the cohomology

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s,s−εKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[−1,s−εKp,m′,0), (Vn−anνA )∨⊗V−2ρnc)

is quasi-isomorphic to the cone of

RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[s′,s−εKp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1]→

RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[
[s−1,s]

′
,s−εKp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1]

We point out that in this argument, in order to apply duality theorems, we prefer to
use as coefficients (Vn−anνA )∨⊗V−2ρnc rather than Dn−anνA . There is a map Dn−anνA →
(Vn−anνA )∨ ⊗V−2ρnc . When we pass to the inverse limit on n, these maps induce an
isomorphism. Since A is a field, (Vn−anνA )∨ ⊗ V−2ρnc is a projective Banach sheaf.

Passing to the limit over ε, we deduce easily that the finite slope part of the cone
of

RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[s′,sKp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1]→
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RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[
[s−1,s]

′
,s
Kp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1]

computes RΓw,an(Kp, νA)−,fs.
We can consider a finite covering ∪iU†i of (πtorHT,Kp,m′,0)−1(]Cw,k[s−1

′
,sKp,m′,0)

by affinoid dagger spaces (or equivalently by closed spaces which are the closure of
quasi-compact open spaces) and we let ∪jV †j be a covering of (πtorHT,Kp,m′,0)−1(]Cw,k[

[s−1,s]
′
,s
Kp,m′,0)

by affinoid dagger spaces, refining ∪i(U†i ∩ (πtorHT,Kp,m′,0)−1(]Cw,k[
[s−1,s]

′
,s
Kp,m′,0)).

We let A• = Čc({U†i },Vn−anνA (−D)) and B• = Čc({V †i },Vn−anνA (−D)) be the
Čhech cohomology complex with compact support. There is a natural map B• →
A• and we let C• be the cone of this map which represents

RΓ(πtorHT,K
p,m′,0

)−1(]Cw,k[s,sKp,m′,0)((π
tor
HT,Kp,m′,0

)−1(]Cw,k[s,−1Kp,m′,0),Vn−anνA (−D)).

Let t ∈ T++. As explained in lemma 5.2.6 , we can lift t to a compact endomor-
phism of C•.

We let D• be the complex which is the strict dual of C•. By the duality for
affinoid spaces, this complex computes the cone of

RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[s′,s−εKp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1]→

RΓ((πtorHT,Kp,m′,0)−1(]Cw,k[
[s−1,s]

′
,s−εKp,m′,0), (Vn−anνA )∨ ⊗ V−2ρnc)[−1].

For any slope h, taking the slope ≤ h part yields a perfect pairing between C•,≤h
and D•,≤h and passing to cohomology gives the theorem.

�

Using duality we can deduce an improved vanishing theorem.

Theorem 6.7.3. Let w ∈ MW and let νA be a weight. The cohomology Hi
w,an(Kp, νA, cusp)

±,fs

is concentrated in degree [0, `±(w)] and the cohomology Hi
w,an(Kp, νA)±,fs is con-

centrated in degree [`±(w), d]. Moreover, if A is a domain, H
`±(w)
w,an (Kp, νA)±,fs is

a torsion free sheaf of OSpa(A,A+)-modules.

Proof. The case of Hi
w,an(Kp, νA, cusp)

±,fs is theorem 6.6.1. The case of Hi
w,an(Kp, νA)±,fs

when A is a field follows from the duality theorem 6.7.2. The case of general co-
efficients can be deduced as follows. First observe that we can suppose that A is
reduced as the universal weight space is reduced. Let us fix a compact operator
t ∈ T±. For any point x ∈ Spa(A,A+) and any slope h, we can find a slope h′ ≥ h
and an open Spa(B,B+) ↪→ Spa(A,A+) such that Hi

w,an(Kp, νA)|Spa(B,B)+ has
slope h′ decomposition for t, and Hi

w,an(Kp, νA)(Spa(B,B)+)±,≤h
′
is computed by

a perfect complex C• of B-modules. Since we know that for any x ∈ Spa(B,B+),
C•⊗Bk(x) has cohomology concentrated in the range [`±(w), d], we deduce that C•
is quasi-isomorphic to τ≥`±(w)C

•, and this truncated complex is a perfect complex
(by an application of [Mum08], lemma 2 on p. 49). It follows that its cohomology
in degree `±(w) is torsion free if A is a domain. �

6.8. Slope estimates and control theorem. We now formulate a conjecture
regarding the slopes of the locally analytic overconvergent cohomologies. This is of
course consistent with conjecture 5.9.2.

Conjecture 6.8.1. Fix w ∈ MW , and let ν : T c(Zp) → C×p be a continuous
character.
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(1) For any character λ of T+ on RΓw,an(Kp, ν)+,fs or RΓw,an(Kp, ν, cusp)+,fs,
we have v(λ) ≥ 0.

(2) For any character λ of T− on RΓw,an(Kp, ν)−,fs or RΓw,an(Kp, ν, cusp)−,fs,
we have v(λ) ≤ 0.

Remark 6.8.2. The inequalities in conjecture 6.8.1 are compatible with those of
conjecture 5.9.2 due to the way we have renormalized the Hecke operators acting
on locally analytic cohomology. Similarly the slightly weaker bounds we prove in
theorem 6.8.3 are compatible with those of theorem 5.9.6.

We can prove a bound which is slightly weaker than the conjecture.

Theorem 6.8.3. Fix w ∈ MW , and let ν : T (Zp)→ C×p be a continuous character.
(1) For any character λ of T+ on RΓw,an(Kp, ν)+,fs and RΓw,an(Kp, ν, cusp)+,fs,

we have v(λ) ≥ −w−1w0,Mρ− ρ and v(λ) ≥ −w−1w0,Mρ− ρ+ w−12ρnc
(2) For any character λ of T− on RΓw,an(Kp, ν)−,fs and RΓw,an(Kp, ν, cusp)−,fs,

we have v(λ) ≤ −w−1ρ+ ρ and v(λ) ≤ −w−1ρ+ w−12ρnc.

Proof. This is similar to the proof of theorem 5.9.6 and left to the reader. �

Corollary 6.8.4. Fix w ∈ MW , and let ν = νalgχ be a locally algebraic character.
Let κalg = −w0,Mwνalg − (w0,Mwρ + ρ) and suppose κalg ∈ X?(T )M,+. Then the
morphisms

RΓw(Kp, κalg, χ)+,sssM,w(κalg) → RΓw,an(Kp, ν)(−νalg)+,sssM,w(κalg)

RΓw,an(Kp, ν)(νalg)
−,sssM,w(−w0,Mκalg−2ρnc) → RΓw(Kp,−w0,Mκ−2ρnc, χ

−1)−,sssM,w(−w0,Mκalg−2ρnc)

and the corresponding morphisms for cuspidal cohomology are all quasi-isomorphisms.

Proof. This follows from the spectral sequence of theorem 6.5.5, together with the
slope bounds of theorem 6.8.3. �

Remark 6.8.5. If we assume conjectures 5.9.2 and 6.8.1, we can replace the sssM,w

condition by the ssM,w condition in the above corollary.

6.9. Eigenvarieties. Consider the Iwasawa algebra Zp[[T c(Zp)]] and the weight
space

W = Spa(Zp[[T c(Zp)]],Zp[[T c(Zp)]])×Spa(Zp,Zp) Spa(Qp,Zp).
For a (A,A+) a complete Tate (F,OF )-algebra,

Hom(Spa(A,A+),W) = {Continuous characters νA : T c(Zp)→ A×}.

Also let T̂ be the analytic adic space of characters of T (Qp), whose restric-
tion to T (Zp) factor through T c(Zp). If we fix a splitting ξ for the map T (Qp) →
T (Qp)/T (Zp), and we fix an isomorphism T (Qp)/T (Zp) ' Zr (for r = rank(X?(T d))),
then we have an isomorphism T̂ ' W × (Ganm )r, where the map sends a character
λ to (λ|T c(Zp), λ(ξ(e1)), · · · , λ(ξ(er))) (for the canonical basis e1, · · · , er of Zr). We
also observe that there is a natural map T → OT̂ .

Let Spa(A,A+) ⊂ W be an affinoid open and let νunA : T c(Zp) → A× be the
universal character.

For each w ∈ MW we have sheaves over Spa(A,A+): ⊕iHi
w,an(Kp, νunA )±,fs and

⊕iHi
w,an(Kp, νunA , cusp)±,fs. Gluing these sheaves for an affinoid covering of W

we deduce that there are sheaves of OW -modules ⊕di=`±(w)H
i
w,an(Kp, νun)±,fs and

⊕`±(w)
i=0 Hi

w,an(Kp, νun, cusp)±,fs, admitting slope decomposition.
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Remark 6.9.1. Our weight variable ν is morally a translate of the infinitesimal
character. We recall how to switch between the weight of our coherent coho-
mologies and the infinitesimal character. Let ν = νalgχ be a locally algebraic
weight. Then Hi

w,an(Kp, νun)+,fs⊗OW k(ν) and Hi
w,an(Kp, νun, cusp)+,fs⊗OW k(ν)

are related to classical or overconvergent cohomology in weight κalg where νalg =
−w−1w0,M (κalg + ρ) − ρ. On the other hand, Hi

w,an(Kp, νun)−,fs ⊗OW k(ν) and
Hi
w,an(Kp, νun, cusp)−,fs⊗OW k(ν) are related to classical or overconvergent coho-

mology in weight κ∨alg = −w0,Mκalg − 2ρnc and νalg = w−1(κ∨alg + ρ)− ρ.

We also have cup-products:

Hi
w,an(Kp, νun)±,fs ⊗Hd−i

w,an(Kp, νun, cup)∓,fs → OW .

Wemodify the action of T (Qp) on Hi
w,an(Kp, νun)−,fs and Hi

w,an(Kp, νun, cusp)−,fs,
by composing it with the inverse map t 7→ t−1. With this modification, the opera-
tors t ∈ T (Qp) are self adjoint for the pairing. The action of T (Qp) on the various
sheaves Hi

w,an(Kp, νun)±,fs and Hi
w,an(Kp, νun, cusp)±,fs overW produces a spec-

tral variety, which is a Zariski closed subset Z ↪→ T̂ (see section 6.1). We have
coherent sheaves Hi

w,an(Kp, νun)±,fsZ and Hi
w,an(Kp, νun, cusp)±,fsZ of OT̂ -modules

supported on Z and OZ acts faithfully on the direct sum of all these sheaves. More-
over, if π : T̂ → W is the projection to the weight space, π?Hi

w,an(Kp, νun)±,fsZ =

Hi
w,an(Kp, νun)±,fs and π?Hi

w,an(Kp, νun, cusp)±,fsZ = Hi
w,an(Kp, νun, cusp)±,fs.

We assume that Kp =
∏
K` and we let S′ be the set of primes ` 6= p such that

K` is not hyperspecial. We let S = S′ ∪{p}. Let HS = C∞c (G(ASf )//KS ,Q) be the
spherical Hecke algebra at places away from S. We let E be the finite adic space over
Z whose algebra is the coherent OZ -algebra generated by the operators h ∈ HS
acting on the sum of the sheaves Hi

w,an(Kp, νun)±,fsZ and Hi
w,an(Kp, νun, cusp)±,fsZ ,

for all i ∈ Z, all w ∈ MW , and all choices of + or −.
A (classical rigid analytic) point of Z corresponds to a character λp : T (Qp) →

C×p . We can attach to λp the weight ν = λp|T c(Zp) : T c(Zp) → C×p . When the
weight ν = νalgχ is locally algebraic, then we let λsmp = λpν

−1
alg with νalg viewed as

a character of T (Qp). Then λsmp factors through a character of T (Qp)/Tb where b
is the conductor of χ.

Remark 6.9.2. The superscript sm stands for smooth, because the character λsmp
is the smooth character attached to λp. Remark that the Hecke action on classical
cohomology produces smooth characters. This is visible in point (1) of theorem
6.9.3 below.

A point of E corresponds to a pair (λp, λ
S) where λS : HS → Cp is a character.

Theorem 6.9.3. The eigenvariety π : E → W is locally quasi-finite and partially
proper. It carries graded coherent sheaves⊕

w∈MW,k∈Z

(Hk
w,an(Kp, νun)+,fs

Z ⊕Hk
w,an(Kp, νun)−,fsZ

⊕Hk
w,an(Kp, νun, cusp)+,fs

Z ⊕Hk
w,an(Kp, νun, cusp)−,fsZ )

and they satisfy the following properties:
(1) (Any classical, finite slope eigenclass gives a point of the eigenvariety) For

any κalg ∈ X?(T c)M,+, finite order character χ : T c(Zp) → F
×
, and
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any system of Hecke eigenvalues (λsmp , λS) occurring in Hi(Kp, κalg, χ)+,fs

(resp. Hi(Kp, κ∨alg, χ
−1)−,fs, Hi(Kp, κalg, χ, cusp)

+,fs, or Hi(Kp, κ∨alg, χ
−1, cusp)−,fs)

there is a w = wMw
M ∈W , so that if ν = νalgχ with νalg = −w−1w0,M (κalg+

ρ)− ρ, then (λsmp νalg, λ
S) is a point of the eigenvariety E which lies in the

support of ⊕k∈ZHk
wM ,an(Kp, νun)+,fs

Z (resp. ⊕k∈ZHk
wM ,an(Kp, νun)−,fsZ , ⊕k∈ZHk

wM ,an(Kp, νun, cusp)+,fs
Z ,

or ⊕k∈ZHk
wM ,an(Kp, νun, cusp)−,fsZ ).

(2) (Small slope points of the eigenvariety in regular, locally algebraic weights
are classical) Conversely if ν = νalgχ is a locally algebraic weight with νalg ∈
X?(T )+, and (λp, λ

S) is a point of E in the support of ⊕k∈ZHk
w,an(Kp, νun)+,fs

Z
(resp. ⊕k∈ZHk

w,an(Kp, νun)−,fsZ , ⊕k∈ZHk
w,an(Kp, νun, cusp)+,fs

Z , or ⊕k∈ZHk
w,an(Kp, νun, cusp)−,fsZ )

for some w ∈ MW , and if λsmp = λpν
−1
alg satisfies +, sssw(ν) then (λsmp , λS)

occurs in Hi(Kp, κalg, χ)+,fs (resp. Hi(Kp, κ∨alg, χ
−1)−,fs, Hi(Kp, κalg, χ, cusp)

+,fs,
or Hi(Kp, κ∨alg, χ

−1, cusp)−,fs) for κalg = −w0,Mw(νalg + ρ)− ρ.
(3) (Serre duality interpolates over the eigenvariety) We have pairings:

Hk
w,an(Kp, νun)±,fsZ ⊗Hd−k

w,an(Kp, νun, cusp)∓,fsZ → π−1OE .

and these pairings are compatible with Serre duality under the classicality
theorem.

Proof. We only prove the first point for Hi(Kp, κalg, χ)+,fs. The other cases are
similar. There is a succession of three spectral sequences, having as input the
sheaves Hk

w,an(Kp, νun)+,fs (for varying k and w) and finally converging to the
classical cohomology Hi(Kp, κalg, χ)+,fs. The first spectral sequence is the Tor
spectral sequence of theorem 6.5.2, from the cohomology sheaf over W to the lo-
cally analytic overconvergent cohomology in a given weight. The second spectral
sequence is the BGG spectral sequence of theorem 6.5.5, from locally analytic over-
convergent cohomology to overconvergent cohomology. The third spectral sequence
is the spectral sequence of theorem 5.5.1, from overconvergent to classical coho-
mology. Therefore, starting from a classical class, we can lift it successively to the
E1 terms of the last two spectral sequences (for suitable choices of wM and wM )
and then to a class in a suitable TorOW

−p (Hq
w,an(Kp, νun)+,fs, k(ν)) for ν = νalgχ.

Therefore, (λsmp νalg, λ
S) is in the support of Hq

w,an(Kp, νun)+,fs.
We now prove point (2). Let (λp, λ

S) be a point in the support of⊕k∈ZHk
w,an(Kp, νun)+,fs

over a weight ν. Then one sees that there is a corresponding class in⊕kHk
w,an(Kp, ν)+,fs.

Indeed, take k maximal such that (λp, λ
S) is in the support of⊕k∈ZHk

w,an(Kp, νun)+,fs.
The Tor spectral sequence implies that (λp, λ

S) is in the support of Hk
w,an(Kp, ν)+,fs.

Then we conclude by the control theorems (corollary 6.8.4 and theorem 5.12.3):

⊕kHk
w,an(Kp, ν)+,sssw(ν) = ⊕kHk(Kp,−w0,Mw(νalg + ρ)− ρ, χ)+,sssw(ν).

The last point follows from the functoriality of the pairing. �

We now define certain components of the eigenvariety of maximal dimension and
show that they contain all finite slope interior cohomology classes. We first define
sheaves:

H
`±(w)

w,an (Kp, νun)±,fs = Im(H`±(w)
w,an (Kp, νun, cusp)±,fs → H`±(w)

w,an (Kp, νun)±,fs).
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Proposition 6.9.4. (1) The sheaves H
`±(w)

w,an (Kp, νun)±,fs are torsion free sheaves
of OW -modules.

(2) For any ν : T c(Zp) → C×p , the map H
`±(w)

w,an (Kp, νun)±,fs ⊗OW k(ν) →
H
`±(w)

w,an (Kp, ν)±,fs is surjective.
(3) For any κalg ∈ X?(T c)Mµ,+ and χ : T c(Zp)→ F

×
a finite order character,

let ν = νalgχ with νalg = −w−1w0,M (κalg + ρ)− ρ. Then the map

H
`+(w)

w (Kp, κ, χ)+,fs → H
`+(w)

w,an (Kp, ν)+,fs

is injective and the map

H
`−(w)

w,an (Kp, ν)−,fs → H
`−(w)

w (Kp,−w0,Mκ− 2ρnc, χ
−1)−,fs

is surjective.
(4) There is a pairing

H
`+(w)

w,an (Kp, νun)+,fs ×H
`−(w)

w,an (Kp, νun)−,fs → OW

compatible with the preceding maps and the pairings

H
`+(w)

w,an (Kp, ν)+,fs ×H
`−(w)

w,an (Kp, ν)−,fs → k(ν)

and

H
`+(w)

w (Kp, κ, χ)+,fs ×H
`−(w)

w (Kp,−w0,Mκ− 2ρnc, χ
−1)−,fs → F.

Proof. The first point follows from theorem 6.7.3. The vanishing theorem and Tor
spectral sequence imply that H

`±(w)
w,an (Kp, νun, cusp)±,fs⊗OWk(ν)→ H

`±(w)
w,an (Kp, ν, cusp)±,fs

is an isomorphism, which gives the second point. The vanishing theorems and the
BGG spectral sequence imply that H

`+(w)
w (Kp, κ, χ)+,fs → H

`+(w)
w,an (Kp, ν)+,fs is in-

jective and H
`−(w)
w,an (Kp, ν, cusp)−,fs → H

`−(w)

w (Kp,−w0,Mκ − 2ρnc, χ
−1, cusp)−,fs

is surjective, which gives the third point follows. The last point is clear. �

Remark 6.9.5. There is an asymmetry between the − and + theories in point
(3). This asymmetry results from our choice to develop the + theory using locally
analytic induction sheaves and the − theory using their dual distribution sheaves.

We let Z !
w, E !

w be the supports of H
`±(w)

w,an (Kp, νun)±,fsZ and H
`±(w)

w,an (Kp, νun)±,fsZ .
We let Z ! and E ! be the union of the Z !

w and E !
w.

Theorem 6.9.6. The following holds:
(1) The eigenvariety E ! and the spectral variety Z ! are either empty or equidi-

mensional of dimension dimW. The same is true of the E !
w and Z !

w for
each w ∈ MW .

(2) For all w ∈ MW , κalg ∈ X?(T c)M,+, and χ : T c(Zp) → F
×

a finite
order character, let νalg = −w−1w0,M (κalg + ρ) − ρ. Any eigenclass in
H
`−(w)

w (Kp, κ∨alg, χ
−1)−,fs or H

`+(w)

w (Kp, κalg, χ)+,fs gives a point of E !
w of

weight ν = νalgχ.
(3) Let κalg ∈ X?(T c)M,+ and χ : T c(Zp) → F

×
be a finite order character.

For any eigenclass c in H
i
(Kp, κalg, χ)+,fs or H

i
(Kp, κ∨alg, χ

−1)−,fs there is
a w ∈ MW with `±(w) = i so that c gives a point of E !

w of weight ν = νalgχ
where νalg = −w−1w0,M (κalg + ρ)− ρ.
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Proof. This first two points follow from proposition 6.9.4. The third point follows
from the second point and corollary 5.8.1. �

This theorem in particular implies that any finite slope system of Hecke eigen-
values in classical or overconvergent interior cohomology admits an analytic defor-
mation of maximum dimension.

In light of point (3) of the theorem, it is natural to ask: given an eigenclass c
occurring in H

i
(Kp, κalg, χ)+,fs, what is the set MW (c) of w ∈ MW with `+(w) = i

for which c occurs in H
i

w(Kp, κalg, χ)? It is natural to compare MW (c) to the set
C(κalg)

+, i.e. the set of w ∈ MW for which νalg + ρ ∈ X?(T c)+.

Proposition 6.9.7. Assume that the eigenclass c satisfies +, ssM (κalg). Then
MW (c) ⊆ C(κ)+.

Proof. By theorem 6.10.1 (2) below, H
i

w(Kp, κalg, χ)+,ssM (κ) = 0 unless w ∈ C(κ)+.
�

In particular if C(κ)+ has only one element of length i (for example if κ + ρ is
regular) then MW (c) is determined under this small slope hypothesis.

Example 6.9.8. We give a basic counter-example to the proposition if we drop the
small slope hypothesis. We assume the Shimura variety is compact, so that the
constant function 1 ∈ H0(SK ,O) defines a finite slope interior cohomology class.
Then MW (1) = {Id}, and the corresponding point of the eigenvariety E is in weight
νalg = −w0,Mρ− ρ = −2ρnc, and so in particular νalg + ρ is not dominant. On the
other hand we have C(0)+ = {wM0 }.

Remark 6.9.9. If c is a cohomology class represented by an automorphic represen-
tation π which is tempered at∞ and contributes to coherent cohomology in weight
κ, then π∞ is a limit of discrete series which is described by the pair consisting
of its infinitesimal character −κ − ρ and a chamber wX?(T )+

Q ⊆ X?(T )M,+
Q for

w ∈ C(κ)+ (see [Har90a], sect. 3.3). We can ask if this class lifts to a point in E !
w.

6.10. Improved slope bounds for interior cohomology and applications.
Using the interior eigenvariety we are able to prove that the conjectured slopes
bounds 6.8.1, 5.9.2, and 5.10.7 hold for interior cohomology. The idea is that
classical points in regular weight satisfy the correct slope bound by corollary 5.10.12,
and these points are dense in the interior eigenvariety.

Theorem 6.10.1. (1) Fix w ∈ MW and a locally algebraic weight ν = νalgχ

for νalg ∈ X?(T c) and χ : T c(Zp) → F
×

a finite order character. For any
character λ of T± on H

`±(w)

w,an (Kp, ν)±,fs we have v(λ) ≥ 0 in the + case
and v(λ) ≤ 0 in the − case.

(2) Fix w ∈ MW , κ ∈ X?(T c)M,+, and a finite order character χ : T c(Zp) →
F×. For any character λ of T± on H

`±(w)

w (Kp, κ, χ)±,fs we have v(λ) ≥
w−1w0,M (κ+ρ)+ρ in the + case and v(λ) ≤ w−1(κ+ρ)−ρ in the − case.

(3) Fix κ ∈ X?(T c)M,+ and a finite order character χ : T c(Zp) → F
×
. Let

ν = −w−1w0,M (κ+ρ)−ρ for any w ∈ C(κ)+. Then for any character λ of
T± on H

i
(Kp, κ, χ)±,fs we have v(λ) ≥ −ν in the + case and v(λ) ≤ −w0ν

in the − case.
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Proof. In the − case, the first point implies the second point by theorem 6.9.6 (3).
In the + case, one repeats the constructions of this section, exchanging the roles
of the sheaves of locally analytic functions and distributions. The second point
implies the third point as in the proof of proposition 5.10.9 using corollary 5.8.1.

We now prove the first point. The eigensystem λ gives a point (ν, λp, λ
S) of E !

(where λp = λ in the + case and λt in the − case.) We can find another point
(ν′, λ′p, λ

′S) which satisfies v(λ′p) = v(λp) and ν′ = ν′algχ is locally algebraic, and
ν′alg ∈ X?(T c)+ is sufficiently large so that v(λ′p) satisfies +, sss(ν). Then this point
is classical by theorem 6.9.3 (2), and so the slope bound is satisfied by corollary
5.10.12. �

As a consequence we deduce a vanishing theorem for interior cohomology which
improves on theorem 5.12.5.

Theorem 6.10.2. Let κ ∈ X?(T c)M,+ and let χ : T c(Zp) → F
×

be a finite order
character. We have that H

i
(Kp, κ, χ)ss

M (κ) is supported in the range [`min(κ), `max(κ)].

Proof. Theorem 6.10.1 (2) implies that the complex Cous(Kp, κ, χ)±,ss
M (κ) is con-

centrated in the range [`min(κ), `max(κ)], which implies the theorem by corollary
5.8.1

�

As another application we are able to improve our classicality theorem for over-
convergent cuspforms.

Theorem 6.10.3. Let κ ∈ X?(T c)M,+ satisfy C(κ)+ = {1}, and let χ : T c(Zp)→
F
×
be a finite order character. Then H0

Id(K
p, κ, χ, cusp)+,ssM (κ) → H0

Id(K
p, κ, χ)+,ssM (κ)

factors through H0(Kp, κ, χ)+,ssM (κ).

Proof. We have a commutative diagram

H0
Id(K

p, κ, χ, cusp)+,fs //

��

Cous1(Kp, κ, χ, cusp)+

��
0 // H0(Kp, κ, χ)+,fs // H0

Id(K
p, κ, χ)+,fs // Cous1(Kp, κ, χ)+

where the bottom row is exact by proposition 5.7.4. After passing to the +, ssM (κ)
part of this diagram, the right vertical arrow is 0 by theorem 6.10.2. �

Remark 6.10.4. Theorem 6.10.3 says that a small slope overconvergent cuspform
comes from a classical eigenform. Although we have not proved it, this eigenform
should also be cuspidal (for instance this would follow from conjeture 5.9.2). We
note that it is possible for an overconvergent cuspform which does not have small
slope to come from a non cuspidal eigenform. A basic example is the non-ordinary
p-stabilization of an Eisenstein series for GL2.

6.11. Application: construction of Galois representations and local-global
compatibility p. Let L be a totally real or CM number field. The class of regular,
algebraic, essentially (conjugate) self dual, cuspidal automorphic representations
for GLn/L have been studied intensively. In particular, one can attach to them
compatible systems of Galois representations which satisfy many of the expected
properties (see, e.g., [CH13], [BLGGT14]):



HIGHER COLEMAN THEORY 169

Theorem 6.11.1 (Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse,
Shin, Taylor, . . . ). Let π be a regular, algebraic, essentially (conjugate) self dual,
cuspidal automorphic representation of GLn/L with πc = π∨ ⊗ χ and infinites-
imal character λ = ((λ1,τ , . . . , λn,τ )τ∈Hom(L,C)) with λ1,τ > · · · > λn,τ . Then
for each isomorphism ι : Qp ' C there is a continuous Galois representation
ρπ,ι : GL → GLn(Qp) such that:

(1) ρcπ,ι ' ρ∨π,ι ⊗ ε1−np ⊗ χι where χι is the p-adic realization of χ and εp is the
cyclotomic character.

(2) ρπ,ι is pure.
(3) ρπ,ι is de Rham at all places dividing p, with ι−1 ◦ τ -Hodge-Tate weights:

(−λn,τ + n−1
2 , · · · ,−λ1,τ + n−1

2 ).
(4) For all finite place v one has

ιWD(ρπ,ι|GFv )F−ss = rec(πv ⊗ | det |
1−n

2
v ).

The Galois representations of this theorem are usually found in the étale coho-
mology of unitary Shimura varieties, while in the remaining cases they are con-
structed by p-adic interpolation.

In [FP19], section 9, we defined a certain class of cuspidal automorphic rep-
resentations for the group GLn/L which (when L is CM) realize in the coherent
cohomology of unitary Shimura varieties, by weakening the condition of regular to
weakly regular and odd. To these weakly regular, odd, algebraic, essentially (con-
jugate) self dual, cuspidal automorphic representations, one can still attach com-
patible system of Galois representations ([Box15], [GK19], [PS16]), but at present
many of their expected properties are not known. The techniques of this paper al-
lows for a new construction of the Galois representation via analytic families. The
advantage of this construction is that we can prove some instances of local-global
compatibility at p, using results of Kisin [Kis03] on the interpolation of crystalline
periods in analytic families, as in the work of Jorza and Mok [Jor12], [Mok14].

Theorem 6.11.2. Let π be a weakly regular, odd, algebraic, essentially (conjugate)
self dual, cuspidal automorphic representation of GLn/L with πc = π∨ ⊗ χ and
infinitesimal character λ = ((λ1,τ , . . . , λn,τ )τ∈Hom(L,C)) with λ1,τ ≥ · · · ≥ λn,τ .
Then for each isomorphism ι : Qp ' C there is a continuous Galois representation
ρπ,ι : GL → GLn(Qp) such that:

(1) ρcπ,ι ' ρ∨ ⊗ ε1−np ⊗ χι where χι is the p-adic realization of χ.
(2) ρπ,ι is unramified at all finite places v - p for which πv is unramified and

one has

ιWD(ρπ,ι|GLv )F−ss = rec(πv ⊗ | det |
1−n

2
v ).

(3) ρπ,ι has generalized ι−1 ◦ τ -Hodge–Tate weights (−λn,τ + n−1
2 , · · · ,−λ1,τ +

n−1
2 ).

(4) Let v | p be a place of L and assume that πv is a regular principal series
(i.e. the Jacquet module (πv)U is a direct sum of n! distinct characters of
T (Lv)). Then ρπ,ι|GLv is potentially crystalline and

ιWD(ρπ,ι|GLv )F−ss = rec(πv ⊗ | det |
1−n

2
v ).

Proof. The existence of a Galois representation satisfying points (1) and (2) is
already known (see [FP19], theorem 9.10). In order to prove points (3) and (4), by
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base change we may assume that L is CM with maximal totally real subfield F , all
the primes above p in F split in L, and for all primes v | p of L, πv is a constituent
of a principal series representation (and so has finite slope in the sense of section
4.3).

Let GU(n)/F be the quasi-split unitary similitude group in n variables, and let
G ⊂ ResF/Q be the subgroup where the similitude factor lands in Gm ⊆ ResF/QGm.
The group G admits a PEL Shimura datum (G,X), so that π realizes in the interior
coherent cohomology of the corresponding Shimura variety, as explained in the proof
of theorem 9.11 of [FP19] (we note that this is conditional on the main results of
[Mok15]).

The result now follows from theorems 6.9.6 and 6.11.1, using the results of [Kis03]
as explained in proof of theorem 4.1 of [Jor12]. �
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