Colles Semaine 1 – 22 Septembre

Une attention particulière sera accordée à l'explication du raisonnement de l'étudiant ainsi qu'à sa maîtrise du cours. L'objectif n'est pas de recopier une solution toute rédigée.

Sujet 1 - Auduc Quentin

Exercice 1: Echauffement

Déterminer la nature de la série de terme général $\frac{1}{n\cos^2(n)}$.

Exercice 2: Etude d'un produit scalaire

On note C_0 (respectivement C_1) l'ensemble des fonctions continues (respectivement de classe c^1) définies sur [0,1] et à valeurs dans \mathbb{R} .

- 1) a) Rappeler pourquoi $(f,g)\mapsto \int\limits_0^1 f(t)g(t)dt$ définit un produit scalaire sur $\mathcal{C}_0.$
- b) Démontrer que pour $f \in \mathcal{C}_1$, $\int_0^1 f'(t)^2 dt \ge (f(1) f(0))^2$
- 2) Pour $f, g \in \mathcal{C}_1$, on pose :

$$\varphi(f,g) = \int_0^1 f'(t)g'(t)dt + f(1)g(0) + f(0)g(1)$$

Démontrer que φ définit un produit scalaire sur \mathcal{C}_1 .

Sujet 2 - Caline Lucie

Exercice 1: Etude d'un produit scalaire

Montrer que l'application :

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t)(1-t^2)dt$$

définit un produit scalaire sur E l'ensemble des fonctions continues de [-1,1] dans \mathbb{R} .

Exercice 2 : Quelques sommes de séries

1) Justifier la convergence des séries suivantes :

$$\sum_{n\geq 1} \frac{1}{n^2}, \quad \sum_{k\geq 0} \frac{1}{(2k+1)^2}, \quad \sum_{n\geq 1} \frac{(-1)^n}{n^2}$$

- 2) On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- a) Démontrer que $\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$
- b) En déduire que $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$

Sujet 3 - Guillaud Solène

Question courte

Vous aurez une question courte autour du thème : "Orthogonalité dans un espace euclidien".

Exercice 1: Echauffement

Etudier la nature de la série de terme général $\left(\frac{n}{n+1}\right)^{n^2}$.

Exercice 2 : Calcul d'une somme de séries

- Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n^3 e^n}$. 1) Montrer que la série $\sum_{n \geq 1} u_n$ converge. On note S sa somme.
- 2) a) Démontrer que pour tout $n \in \mathbb{N}^*$:

$$\left| S - \sum_{k=1}^{n} u_k \right| \le \frac{1}{(e-1)e^n}$$

b) En déduire une méthode pour calculer S à 10^{-3} près.

Sujet 4 - Beroard Gilles

Exercice: Etude d'un produit scalaire

On définit pour P et Q dans $\mathbb{R}[X]$:

$$(P|Q) = \int_0^1 P(t)Q(t)dt$$

- 1) a) Démontrer que cela définit un produit scalaire sur $\mathbb{R}[X]$.
- b) Montrer que si P est tel que P(0) = P(1) = 0, alors (P'|Q) = -(P,Q').
- 2) On pose, pour $n \in \mathbb{N}$, $L_n = (X^n(1-X)^n)^{(n)} \in \mathbb{R}[X]$, où $(\dots)^{(n)}$ désigne la dérivée n-ième.
- a) Montrer que pour tout n, L_n est un polynôme de degré n.
- b) Démontrer que pour tout $n \in \mathbb{N}$, $L_n \in \mathbb{R}_{n-1}[X]^{\perp}$.

Indication: On pourra utiliser soigneusement la question 1b).

- c) En déduire que $(L_k)_{0 \le k \le n}$ est une base orthogonale de $\mathbb{R}_n[X]$.
- d) Est-ce que la base est orthonormale?

Sujet 5 - Blanchet Alice

Question courte

Au début de la colle, vous aurez une question de cours autour du thème "Sous-espaces supplémentaires et orthogonaux dans un espace euclidien".

Exercice: Etude d'une fonction définie par une série

Dans cet exercice, on fixe $x \in [0, 1[$.

- 1) Etablir la convergence de la série $\sum_{p\geq 1} \frac{x^p}{p}$.
- 2) a) Simplifier, pour $t \in [0, x]$ et $n \in \mathbb{N}^*$, la somme $\sum_{n=1}^n t^{p-1}$.
- b) En déduire que pour tout $n \in \mathbb{N}^*$ on a :

$$\sum_{p=1}^{n} \frac{x^{p}}{p} = -\ln(1-x) - \int_{0}^{x} \frac{t^{n}}{1-t} dt$$

c) Démontrer que $\sum_{n=1}^{+\infty} \frac{x^p}{p} = -\ln(1-x)$.

Sujet 6 - Braun Loys

Exercice court

Déterminer, selon la valeur de $x \in \mathbb{R}$, la nature de la série de terme général n^2x^n .

Exercice: Etude d'un produit scalaire

On note $\ell_2(\mathbb{N})$ l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que la série $\sum_{n\geq 0}u_n^2$ converge. On pose, pour $u = (u_n)$ et $v = (v_n)$ dans $\ell_2(\mathbb{N})$:

$$\varphi(u,v) = \sum_{n=0}^{+\infty} u_n v_n$$

- 1) Montrer que φ définit bien un produit scalaire sur $\ell_2(\mathbb{N})$. $\ell_2(\mathbb{N})$ muni de ce produit scalaire est-il un espace euclidien?
 - 2) On pose F l'ensemble des suites réelles nulles à partir d'un certain rang.

 - a) Montrer que F est un sous-espace vectoriel de $\ell_2(\mathbb{N})$. b) Déterminer F^{\perp} , puis $F^{\perp\perp}$. Que pouvez-vous dire?