Colles Semaine 3 – 6 Octobre

Une attention particulière sera accordée à l'explication du raisonnement de l'étudiant ainsi qu'à sa maîtrise du cours. L'objectif n'est pas de recopier une solution toute rédigée.

Sujet 1 - Merry Lelia

Exercice courte

Etudier la nature de la série de terme général $u_n = 1 - \cos(\frac{\pi}{\sqrt{n}})$.

Exercice : étude d'une densité

On considère la fonction f définie par :

$$f(x) = \begin{cases} \frac{4}{3}(1-x)^{1/3} & \text{si } 0 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

- 1) Montrer que f est la densité d'une variable aléatoire X.
- 2) Calculer la fonction de répartition de X, notée F. Tracer sa courbe représentative.
- 3) Calculer l'espérance de X.

Sujet 2 - Meunier Zoé

Exercice: Etude d'une variable aléatoire

- 1) a) Montrer que l'intégrale $\int\limits_0^{+\infty} \frac{dx}{(1+x)^2}$ converge et donner sa valeur.
- b) Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{2(1+|x|)^2}$. Démontrer que f est une densité de probabilité.
- 2) Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, admettant pour densité f. On note F sa fonction de répartition. On pose enfin $Y = \ln(1 + |X|)$, et on admet que Y est une variable aléatoire définie sur le même espace probabilisé.
 - a) Déterminer $Y(\Omega)$.
 - b) Exprimer la fonction de répartition de Y, que l'on notera G, en fonction de F.
 - c) En déduire la loi de Y.

Sujet 3 - Sellem David-Anthony

Exercice: Etude d'un produit scalaire

On note $\mathcal{A}([0,+\infty[,\mathbb{R})$ l'ensemble des fonctions définies sur $[0,+\infty[$ à valeurs dans \mathbb{R} . En particulier, on rappelle que c'est un espace vectoriel sur \mathbb{R} .

On définit E comme étant l'ensemble des fonctions $f:[0,+\infty[\to\mathbb{R} \text{ bornées, de classe } c^1,\text{ telles que } f(0)=0.$

- 1) Montrer que E est un sous-espace vectoriel de $\mathcal{A}([0,+\infty[,\mathbb{R}).$
- 2) a) Montrer que, pour $f \in E$, $\lim_{x\to 0} \frac{f(x)}{x} = f'(0)$.
- b) En déduire que l'application $\varphi: E^2 \to \mathbb{R}, (f,g) \mapsto \int_0^{+\infty} \frac{f(x)g(x)}{x^2} dx$ est bien définie.
- c) Montrer que φ définit en fait un produit scalaire sur E.
- 3) Démontrer que pour tout $(f,g) \in E^2$, $\varphi(f,g) = \int_0^{+\infty} \frac{f'(x)g(x) + f(x)g'(x)}{x} dx$

Sujet 4 - Crunchant Romain

Question courte

Vous aurez une question de cours autour du thème : "Propriétés des intégrales impropres".

Exercice: Etude d'ensembles de suites

On note E l'ensemble des suites réelles $(u_n)_{n\geq 1}$ telles que la série de terme général $n^2u_n^2$ converge. On note F le sous-ensemble de E formé des suites pour lesquelles on a en plus $\sum_{n=0}^{+\infty} n^2 u_n^2 \le 1$.

- 1) On étudie dans cette question quelques exemples.
- a) Soit a_n la suite définie par $a_n = \frac{1}{n^2}$. Montrer qu'elle appartient à E. Appartient-elle à F? b) Soit b_n la suite définie par $b_n = \frac{1}{n\sqrt{n(n+1)}}$. Montrer qu'elle appartient à E et à F.
- c) Soit X une variable aléatoire suivant la loi géométrique de paramètre 1/2. Rappeler les valeurs de l'espérance et de la variance de X. En déduire que la suite $c_n = \frac{1}{2^{n/2}}$ appartient à E et calculer $\sum_{n=1}^{+\infty} n^2 c_n^2$.
 - 2) On étudie maintenant quelques propriétés de E et F.
 - a) Montrer que si u et v sont deux suites de E, alors la série de terme général $n^2u_nv_n$ converge absolument.
 - b) En déduire que E est un \mathbb{R} -espace vectoriel.
 - c) F est-il un sous-espace vectoriel de E?
 - d) Montrer que l'application définie sur $E \times E$ par $\langle u, v \rangle = \sum_{n=1}^{+\infty} n^2 u_n v_n$ définit un produit scalaire sur E.

Sujet 5 - Saye-Hoc Barnaud Gabriel

Exercice court

Etudier la nature de l'intégrale suivante :

$$\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$$

Exercice - Des densités

- 1) Rappeler la densité, la fonction de répartition et l'espérance d'une variable aléatoire U suivant la loi uniforme sur [a, b], avec a < b.
 - A partir de maintenant, on considère U une variable aléatoire de loi uniforme sur [0,2]. Soit $X=\sqrt{U}$.
 - 2) Calculer la fonction de répartition F_X de X.
 - 3) Calculer la densité f_X de X.
 - 4) Mêmes questions pour Y = 1/U.

Sujet 6 - Monange Stanislas

Exercice court

Etudier la nature de la série de terme général :

$$\frac{(-1)^n + n}{n^2 + 1}$$

Exercice : des densités

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^{-x}}{(1+e^{-x})^2}$.

- 1) Montrer que f est une densité de probabilité.
- 2) Soit X une variable aléatoire de densité f.
- a) Déterminer la fonction de répartition de X.
- b) On pose $Y = X^2$. Montrer que Y est une variable aléatoire à densité et donner une densité de Y.
- c) Mêmes questions pour $Z = e^{-Y}$.