Colles Semaine 13 – 13 Janvier

Une attention particulière sera accordée à l'explication du raisonnement de l'étudiant ainsi qu'à sa maîtrise du cours. L'objectif n'est pas de recopier une solution toute rédigée.

Sujet 1 - Barbier Sarah

Exercice: Autour d'une loi de couple

Dans cet exercice, toutes les variables aléatoires sont définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} . On connaît la loi de probabilité du couple (X,Y):

$$\forall (i,j) \in \mathbb{N}^2, \quad \mathbb{P}((X,Y) = (i,j)) = p^2 q^{i+j}$$

où p et q sont deux réels de]0,1[tels que p+q=1.

- 1) a) Déterminer les lois marginales du couple (X, Y). Que remarque-t-on?
- b) Démontrer que les variables aléatoires X et Y sont indépendantes.
- c) Déterminer la fonction de répartition F_X de la variable aléatoire X.

Indication : Pour plus de clarté, on pourra introduire, pour $x \ge 0$, l'entier k_x tel que $k_x - 1 < x \le k_x$.

- 2) a) Déterminer la fonction de répartition de la variable aléatoire $U = \max(X, Y)$.
- b) En déduire la loi de U.
- 3) a) Démontrer que pour tout entier naturel k, $\mathbb{P}(X+Y=k)=(k+1)p^2q^k$.
- b) Soit $n \in \mathbb{N}$ fixé. Déterminer la loi conditionnelle sachant (X + Y = 2n + 1) de U.
- c) Quelle loi usuelle reconnaissez-vous?

Sujet 2 - Battesti Mazarine

Question courte

Vous aurez une question de cours autour du thème suivant : "Intégrales impropres : propriétés et calcul".

Exercice : Autour d'un lancer de dé

Un joueur lance un dé équilibré à 6 faces. Soit X (respectivement Y) la variable aléatoire égale au nombre de lancers nécessaires pour obtenir une fois (respectivement 2 fois) le chiffre 3.

- 1) a) Donner sans calcul la loi de probabilité de X et celle de Y. Justifier.
- b) Soit k un entier naturel non nul. Donner, sans calcul, la loi conditionnelle sachant (X = k) de Y. Justifier.
 - c) Déterminer la loi du couple (X, Y).
 - d) Soit $n \geq 2$. Déterminer la loi conditionnelle sachant (Y = n) de X.
 - 2) Soit m un entier naturel non nul. Déterminer la loi de $Z = \min(X, m)$.

Sujet 3 - Baudras Mariette

Exercice 1 : Mise en bouche

Soit la matrice $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Soit f l'endomorphisme de \mathbb{R}^3 de matrice A dans la base canonique. Déterminer le noyau et l'image de f. Sont-ils supplémentaires? orthogonaux?

Exercice 2 : Bernouilli comes back

On considère n variables aléatoires de Bernouilli indépendantes, notées U_1, \ldots, U_n , de même loi, de paramètre $p \in]0,1[$.

- 1) Calculer $\mathbb{E}(U_1 + \cdots + U_n)$.
- 2) Calculer $\mathbb{P}(U_1 \leq U_2 \leq \cdots \leq U_n)$.
- 3) Calculer, pour $k \in \mathbb{N}^*$, $\mathbb{P}\left(\sum_{i=1}^n U_i = k | \sum_{i=1}^n U_i > 0\right)$.

Sujet 4 - Dufour Dimitri

Question courte

Vous aurez une question de cours autour du thème : "Produit scalaire et norme : égalités et inégalités".

Exercice: Que dire avec les lois marginales?

Une urne contient 3 boules blanches et 4 boules noires. On tire au hasard deux boules dans l'urne. Soit X la variable aléatoire égale à 1 si la première boule est blanche, et à 0 sinon. Soit Y la variable aléatoire égale à 1 si la deuxième boule est blanche, et à 0 sinon.

- 1) Déterminer la loi du couple (X,Y) et les lois marginales du couple (X,Y) dans le cas d'un tirage avec remise.
 - 2) Même question si le tirage est sans remise.
 - 3) Comparez vos résultats.
 - 4) Dans le cas du tirage avec remise, calculer la loi de la variable aléatoire $Z = \max(X, Y)$.

Sujet 5 - Girier-Dufournier Jehan

Exercice: Vecteurs de Bernouilli

On note $\mathcal{M}_{k,1}(\mathbb{R})$ l'ensemble des vecteurs colonnes à k lignes à coefficients réels, sa base canonique est notée (e_1,\ldots,e_n) . On dit qu'un vecteur aléatoire $Y=(Y_1,\ldots,Y_k)$ admet une espérance si chacune des variables

aléatoires
$$Y_i$$
 admet une espérance, et dans ce cas on pose $\mathcal{E}(Y) = \begin{pmatrix} \mathbb{E}(Y_1) \\ \vdots \\ \mathbb{E}(Y_k) \end{pmatrix}$. On note $p = \begin{pmatrix} p_1 \\ \vdots \\ p_k \end{pmatrix}$ un

élement de $\mathcal{M}_{k,1}(\mathbb{R})$ tel que pour tout $i, p_i \geq 0$ et $\sum_{i=1}^{n} p_i = 1$.

On dit qu'un vecteur aléatoire
$$(Y_1, \dots, Y_k)$$
 suit la loi généralisée de Bernouilli de paramètre p si on a pour tout $i : \mathbb{P}(Y = e_i) = p_i$, avec $Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_k \end{pmatrix}$.

- 1) a) Montrer que chaque variable aléatoire Y_i suit une loi de Bernouilli de paramètre p_i .
- b) En déduire que Y admet une espérance et donner $\mathcal{E}(Y)$.
- 2) a) Déterminer la loi de la variable aléatoire $Y_1 + Y_2$.
- b) Quelle est la loi de la variable aléatoire $Y_1 + \cdots + Y_n$?
- 3) a) Montrer que $Cov(Y_1, Y_2) = -p_1p_2$.
- b) Calculer la matrice de variance-covariance du vecteur aléatoire Y.

Sujet 6 - Gounot Thomas

Exercice 1 : Symétrie et antisymétrie

On pose $E = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $\langle A, B \rangle = \text{Tr}({}^tAB)$. On rappelle que $\text{Tr}(M) = \sum_{i=1}^n m_{i,i}$ pour $M \in E$. On note $\mathcal{S}_n(\mathbb{R})$ (respectivement $\mathcal{A}_n(\mathbb{R})$) l'ensemble des matrices symétriques (respectivement antisymétriques) de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire telles que ${}^tA = A$ (respectivement ${}^tA = -A$). On rappelle que ce sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.

Montrer que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont supplémentaires orthogonaux.

Exercice 2 : Plein de lois uniformes

Soient $X_1, \ldots X_m$ m variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de même loi uniforme sur $\{1, \ldots, n\}$. Soit Y la variable aléatoire définie par $Y = \max(X_1, \ldots, X_m)$.

- 1) a) Calculer $\mathbb{P}(Y \leq k)$ pour $k \in \{1, \dots n\}$.
- b) En déduire la loi de Y.
- 2) a) Démontrer que $\mathbb{E}(Y) = \sum\limits_{k=1}^n \mathbb{P}(Y \geq k).$
- b) En déduire que $\mathbb{E}(Y) = n \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^m$.
- c) Calculer $\lim_{m\to +\infty} \mathbb{E}(Y)$.
- d) Comment interpréter ce résultat?