Newton Polygons: around the fg + 1 problem

William Aufort

réunion CompA

July, 4th 2017

Onion Peeling

William Aufort

- 2 The fg + 1 problem
- Onion Peeling

4 Conclusion

Motivations: the fg + 1 puzzle

• At the beginning, a conjecture on the number of real roots of a "sparse" polynomial:

$$f(X) = \sum_{i=1}^{p} \prod_{j=1}^{q} f_{i,j}(X)$$

- Motivation: Descartes' rule of signs gives a bound for a polynomial with t monomials
- We understand fg, but fg + 1 is already a puzzle...
- Here: we study a similar problem on polygons

Real roots \iff Points in a convex hull

• A corollary: $VP \neq VNP$ \implies an interesting problem

Motivations: the fg + 1 puzzle

• At the beginning, a conjecture on the number of real roots of a "sparse" polynomial:

$$f(X) = \sum_{i=1}^{p} \prod_{j=1}^{q} f_{i,j}(X)$$

- Motivation: Descartes' rule of signs gives a bound for a polynomial with t monomials
- We understand fg, but fg + 1 is already a puzzle...
- Here: we study a similar problem on polygons

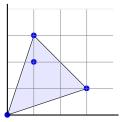
 $\mathsf{Real roots} \Longleftrightarrow \mathsf{Points in a convex hull}$

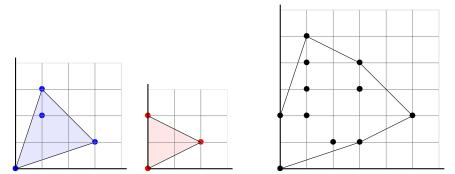
• A corollary: $VP \neq VNP$ \implies an interesting problem in connexion with algebraic complexity

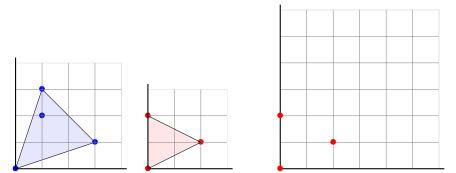
Newton polygon

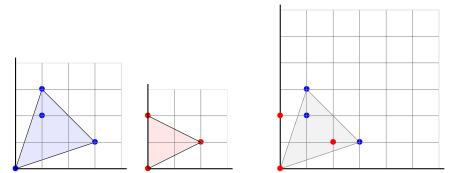
• Let
$$f(X, Y) = \sum_i \alpha_i X^{a_i} Y^{b_i}$$

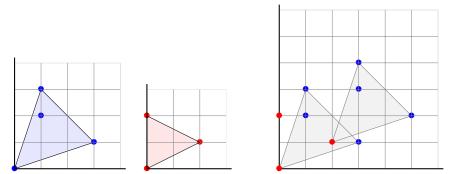
- Monomials of $f: Mon(f) = \{(a_i, b_i), \alpha_i \neq 0\}$
- Newton polygon: Newt(f) = Conv(Mon(f))
- Example: $f(X, Y) = 1 + 2X^3Y + XY^2 + XY^3$



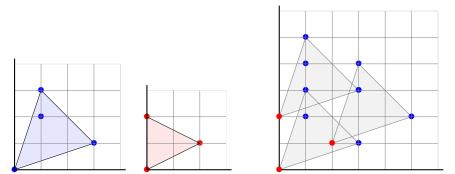




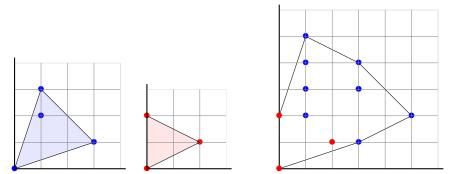


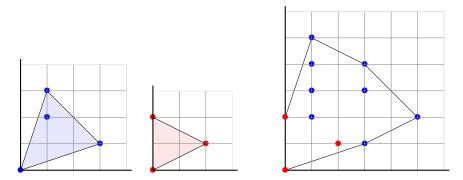


f(X, Y) = 1 + X³Y + XY² + XY³ et g(X, Y) = 1 + X²Y + Y²
(fg)(X, Y) = 1 + Y² + XY² + XY³ + XY⁴ + XY⁵ + X²Y + X³Y + 2X³Y³ + X³Y⁴ + X⁵Y²



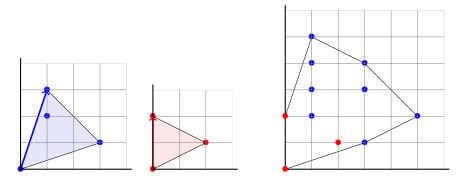
f(X, Y) = 1 + X³Y + XY² + XY³ et g(X, Y) = 1 + X²Y + Y²
(fg)(X, Y) = 1 + Y² + XY² + XY³ + XY⁴ + XY⁵ + X²Y + X³Y + 2X³Y³ + X³Y⁴ + X⁵Y²





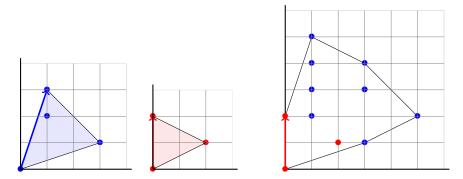
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



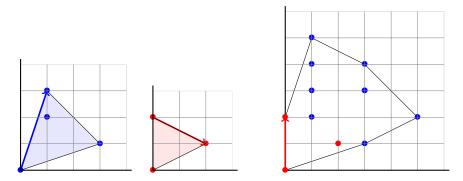
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



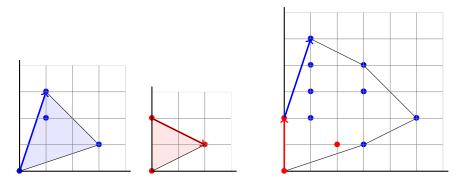
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



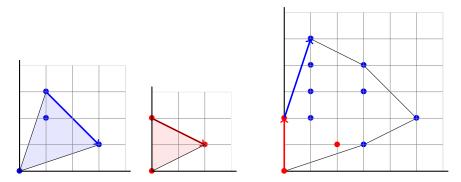
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



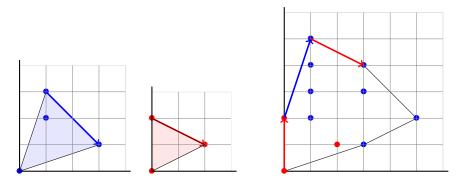
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



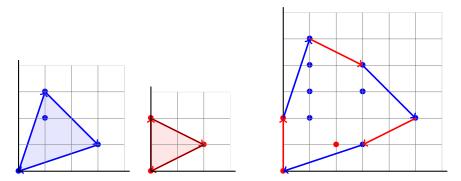
•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski) Newt(fg) = Newt(f) + Newt(g)



•
$$P + Q = \{p + q, p \in P, q \in Q\}$$

Lemma (Ostrowski)

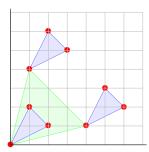
Newt(fg) = Newt(f) + Newt(g)

• We can build the edges of P + Q from those of P and Q

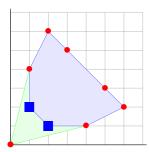
William Aufort

- Newt(fg) = Newt(f) + Newt(g)
- If f and g have t monomials, then Newt(fg) has at most 2t edges
- What happens for Newt(fg+1)?

- Newt(fg) = Newt(f) + Newt(g)
- If f and g have t monomials, then Newt(fg) has at most 2t edges
- What happens for Newt(fg+1)? \Rightarrow Cancellations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$

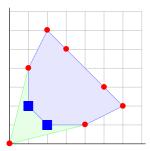


- Newt(fg) = Newt(f) + Newt(g)
- If f and g have t monomials, then Newt(fg) has at most 2t edges
- What happens for Newt(fg+1)? \Rightarrow Cancellations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$



Newt(fg) = Newt(f) + Newt(g)

- If f and g have t monomials, then Newt(fg) has at most 2t edges
- What happens for Newt(fg+1)? \Rightarrow Cancellations
- Ex: $f(X, Y) = -1 + X^2Y + XY^2$ et $g(X, Y) = 1 + X^4Y + XY^4$



Trivial bound: t^2 Better bound: $O(t^{4/3})$ Expectation: linear bound...

3 Onion Peeling

4 Conclusion

William Aufort

• We consider a "true" cancellation (constant coeff of fg equals -1)

- We consider a "true" cancellation (constant coeff of fg equals -1)
- Main idea: decompose P = Mon(f), Q = Mon(g), and the set of new points in the Newton polygon, and then study the differents "interactions"
- We will use the following theorem:

```
Theorem (García-Marco, Knauer)
If P is convex and S \subseteq P + P is convex, then |S| \le 2|P|
```

- We consider a "true" cancellation (constant coeff of fg equals -1)
- Main idea: decompose P = Mon(f), Q = Mon(g), and the set of new points in the Newton polygon, and then study the differents "interactions"
- We will use the following theorem:

Theorem (García-Marco, Knauer) If P is convex and $S \subseteq P + P$ is convex, then $|S| \le 2|P|$

Theorem (Tiwary)

If P and Q are convex of size n and $S \subseteq P + Q$ is convex, then $|S| = O(n \log (n))$

- We consider a "true" cancellation (constant coeff of fg equals -1)
- Main idea: decompose P = Mon(f), Q = Mon(g), and the set of new points in the Newton polygon, and then study the differents "interactions"
- We will use the following theorem:

Theorem (García-Marco, Knauer) If P is convex and $S \subseteq P + P$ is convex, then $|S| \le 2|P|$

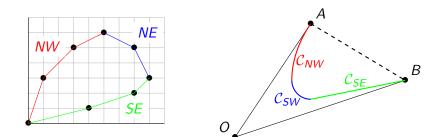
Theorem (Tiwary)

If P and Q are convex of size n and $S \subseteq P + Q$ is convex, then $|S| = O(n \log (n))$

• Suppose that *P* and *Q* are convex

First structural step

• We decompose P and Q into convex chains: P_{NW} , P_{SE} , etc.



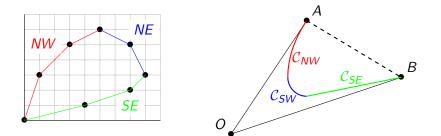
First structural step

- We decompose P and Q into convex chains: P_{NW} , P_{SE} , etc.
- When we delete the (0,0) point, some new points appear $\Rightarrow C$ also decomposable into convex chains



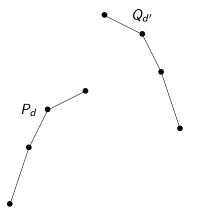
First structural step

- We decompose P and Q into convex chains: P_{NW} , P_{SE} , etc.
- When we delete the (0,0) point, some new points appear $\Rightarrow C$ also decomposable into convex chains
- Goal: bound the |(P_d + Q_{d'}) ∩ C_{d''}| separately
 ⇒ different arguments



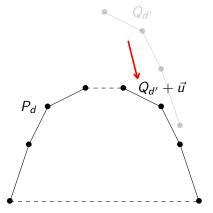
Lemma

If $d \neq d'$, then $|(P_d + Q_{d'}) \cap \mathcal{C}| \leq 2(|P_d| + |Q_{d'}|)$



Lemma

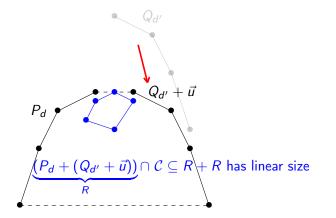
If $d \neq d'$, then $|(P_d + Q_{d'}) \cap \mathcal{C}| \leq 2(|P_d| + |Q_{d'}|)$



11 / 20

Lemma

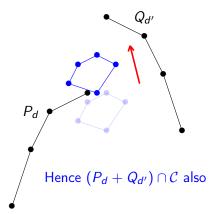
If $d \neq d'$, then $|(P_d + Q_{d'}) \cap \mathcal{C}| \leq 2(|P_d| + |Q_{d'}|)$



11 / 20

Lemma

If $d \neq d'$, then $|(P_d + Q_{d'}) \cap \mathcal{C}| \leq 2(|P_d| + |Q_{d'}|)$



Lemma

If $d \neq d'$, then $|(P_d + Q_d) \cap C_{d'}| \leq |P_d| + |Q_d|$

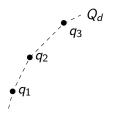
If
$$d \neq d'$$
, then $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

- We build the graph G = (V, E) with $V = P_d \cup Q_d$ and $(p, q) \in E \Leftrightarrow p + q \in C_{d'}$
- If p has three neighbors q_1 , q_2 and q_3 , they form a chain...

Lemma

If
$$d \neq d'$$
, then $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

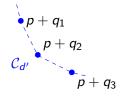
- We build the graph G = (V, E) with $V = P_d \cup Q_d$ and $(p, q) \in E \Leftrightarrow p + q \in C_{d'}$
- If p has three neighbors q_1 , q_2 and q_3 , they form a chain...



• of type d because $q_i \in Q_d$

If
$$d \neq d'$$
, then $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

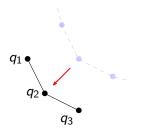
- We build the graph G = (V, E) with $V = P_d \cup Q_d$ and $(p, q) \in E \Leftrightarrow p + q \in C_{d'}$
- If p has three neighbors q_1 , q_2 and q_3 , they form a chain...



- of type d because $q_i \in Q_d$
- of type d' by translation of a subset of $C_{d'}$

If
$$d \neq d'$$
, then $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

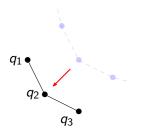
- We build the graph G = (V, E) with $V = P_d \cup Q_d$ and $(p, q) \in E \Leftrightarrow p + q \in C_{d'}$
- If p has three neighbors q_1 , q_2 and q_3 , they form a chain...



- of type d because $q_i \in Q_d$
- of type d' by translation of a subset of C_{d'}

If
$$d \neq d'$$
, then $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

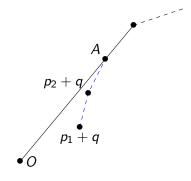
- We build the graph G = (V, E) with $V = P_d \cup Q_d$ and $(p, q) \in E \Leftrightarrow p + q \in C_{d'}$
- If p has three neighbors q_1 , q_2 and q_3 , they form a chain...



- of type d because $q_i \in Q_d$
- of type d' by translation of a subset of $C_{d'}$
- Contradiction since $d \neq d'$

Lemma

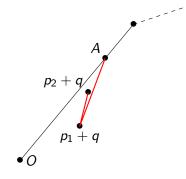
 $|(P_d + Q_d) \cap \mathcal{C}_d| \le |Q_d|$



We consider again the graph G.
If q has two neighbors p₁ and p₂...

Lemma

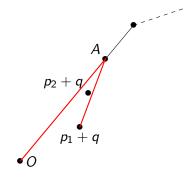
 $|(P_d + Q_d) \cap \mathcal{C}_d| \le |Q_d|$



- We consider again the graph G.
- If *q* has two neighbors *p*₁ and *p*₂...
- $slope(p_1, p_2) > slope(p_1 + q, A)$

Lemma

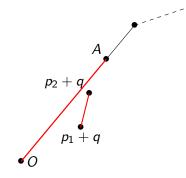
 $|(P_d + Q_d) \cap \mathcal{C}_d| \le |Q_d|$



- We consider again the graph G.
- If *q* has two neighbors *p*₁ and *p*₂...
- $slope(p_1, p_2) > slope(p_1 + q, A)$
- $slope(p_1 + q, A) > slope(O, A)$

Lemma

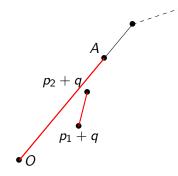
 $|(P_d + Q_d) \cap \mathcal{C}_d| \le |Q_d|$



- We consider again the graph G.
- If *q* has two neighbors *p*₁ and *p*₂...
- $slope(p_1, p_2) > slope(p_1 + q, A)$
- $slope(p_1 + q, A) > slope(O, A)$
- $slope(O, A) \ge slope(p_1, p_2)$
- Contradiction

Lemma

 $|(P_d + Q_d) \cap \mathcal{C}_d| \le |Q_d|$



- We consider again the graph G.
- If *q* has two neighbors *p*₁ and *p*₂...
- $slope(p_1, p_2) > slope(p_1 + q, A)$
- $slope(p_1 + q, A) > slope(O, A)$
- $slope(O, A) \ge slope(p_1, p_2)$
- Contradiction

Theorem

If Mon(f) and Mon(g) are convex, then |Newt(fg + 1)| is linear

• *P* convex: we can extend the second and third arguments:

• If
$$d \neq d'$$
, $|(P_d + Q_d) \cap \mathcal{C}_{d'}| \leq |P_d| + |Q_d|$

• (If d = d') $|(P_d + Q_d) \cap C_d| \le |Q_d|$

• *P* convex: we can extend the second and third arguments:

• If
$$d \neq d'$$
, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$

• (If d = d') $|(P_d + Q_d) \cap C_d| \le |Q_d|$

• *P* convex: we can extend the second and third arguments:

• If
$$d \neq d'$$
, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$

• (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$

- *P* convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude

- P convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude
- *P* and *Q* are weakly convex: new definition of *A* and *B*, same arguments

- P convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude
- *P* and *Q* are weakly convex: new definition of *A* and *B*, same arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$): depend on the position of (α, β) in P + Q, same arguments

- P convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude
- *P* and *Q* are weakly convex: new definition of *A* and *B*, same arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$): depend on the position of (α, β) in P + Q, same arguments

Theorem

In all the previous cases, the Newton polygon has a linear size

- P convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude
- *P* and *Q* are weakly convex: new definition of *A* and *B*, same arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$): depend on the position of (α, β) in P + Q, same arguments

Theorem

In all the previous cases, the Newton polygon has a linear size

• Delete $k \ge 2$ points:

- not consecutive: $\mathcal{O}(n \times k)$
- consecutive: $\mathcal{O}(n + k \log k)$

- P convex: we can extend the second and third arguments:
 - If $d \neq d'$, $|(P_d + Q) \cap C_{d'}| \leq 2|Q|$
 - (If d = d') $|(P_d + Q) \cap C_d| \le |Q|$
 - With this new decomposition, we can conclude
- *P* and *Q* are weakly convex: new definition of *A* and *B*, same arguments
- Newt($fg + c \cdot x^{\alpha}y^{\beta}$): depend on the position of (α, β) in P + Q, same arguments

Theorem

In all the previous cases, the Newton polygon has a linear size

• Delete $k \ge 2$ points:

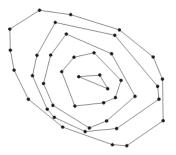
- not consecutive: $\mathcal{O}(n \times k)$
- consecutive: $\mathcal{O}(n + k \log k)$
- General case (k layers), we get a $\mathcal{O}(k \ n \log n)$ bound by decomposing the different layers into convex chains

4 Conclusion

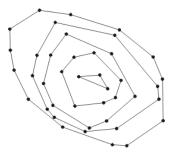
William Aufort

Newton Polygons: around the fg + 1 problem

• Decompose a set of points into "layers"

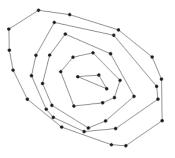


• Decompose a set of points into "layers"



• Motivation: a fg - h problem

• Decompose a set of points into "layers"



- Motivation: a fg h problem
- Goals: in the P + Q case: size of the layers, number of layers, structural properties

• For P + P

Intuitive notion of distance between two points in a convex polygon

• For P + P

- Intuitive notion of distance between two points in a convex polygon
- ▶ If *P* is a regular polygon, a distance/layer connection :

distance $i \iff (i+1)$ -th layer

In general, a weaker result:

distance $i \Longrightarrow (\geq i + 1)$ -th layer

• For P + P

- Intuitive notion of distance between two points in a convex polygon
- ▶ If *P* is a regular polygon, a distance/layer connection :

distance $i \iff (i+1)$ -th layer

In general, a weaker result:

distance $i \implies (\geq i+1)$ -th layer

▶ But no interesting bound ($O(n \times i)$, but we had already O(n) for every $S \subseteq P + P$ convex)

• For P + P

- Intuitive notion of distance between two points in a convex polygon
- ▶ If *P* is a regular polygon, a distance/layer connection :

distance $i \iff (i+1)$ -th layer

In general, a weaker result:

distance $i \Longrightarrow (\geq i + 1)$ -th layer

- ▶ But no interesting bound ($O(n \times i)$, but we had already O(n) for every $S \subseteq P + P$ convex)
- For P + Q, not such interesting distance found/proved
 - Best bound known $\mathcal{O}(n \log (n))$
 - We would expect $\mathcal{O}(n \times i)$ like previously

• For P + P

- Intuitive notion of distance between two points in a convex polygon
- ▶ If *P* is a regular polygon, a distance/layer connection :

distance $i \iff (i+1)$ -th layer

In general, a weaker result:

distance $i \Longrightarrow (\geq i + 1)$ -th layer

- ▶ But no interesting bound ($O(n \times i)$, but we had already O(n) for every $S \subseteq P + P$ convex)
- For P + Q, not such interesting distance found/proved
 - Best bound known $\mathcal{O}(n \log (n))$
 - We would expect $\mathcal{O}(n \times i)$ like previously
- If P and Q are any point set, we get a $O(k \ n \log n)$ bound by studying the links between the layers of P, Q and P + Q

Introduction

- 2 The fg + 1 problem
- 3 Onion Peeling

Conclusion

- About the *fg* + 1 problem: a linear bound when one of the set of monomials is convex
- First generalization to study: if *P* and *Q* have two layers The problem: $(P_{NW,2} + Q_{NW,2}) \cap C_{NW}$
- Lower bounds ? Even $\alpha \cdot n$ with $\alpha > 2$ seems hard...

Questions?

