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Motivations: the fg + 1 puzzle

@ At the beginning, a conjecture on the number of real roots of a
"sparse" polynomial:

fF(X)=> T

i=1 j=1

@ Motivation: Descartes’ rule of signs gives a bound for a polynomial
with t monomials

@ We understand fg, but fg + 1 is already a puzzle...

@ Here: we study a similar problem on polygons
Real roots <= Points in a convex hull

@ A corollary: VP # VNP
= an interesting problem
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Motivations: the fg + 1 puzzle

@ At the beginning, a conjecture on the number of real roots of a
"sparse" polynomial:

fF(X)=> T

i=1 j=1

@ Motivation: Descartes’ rule of signs gives a bound for a polynomial
with t monomials

@ We understand fg, but fg + 1 is already a puzzle...

@ Here: we study a similar problem on polygons
Real roots <= Points in a convex hull

@ A corollary: VP # VNP
= an interesting problem in connexion with algebraic complexity
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Newton polygon

Let £(X,Y) =3, a; X2 Ybi

Monomials of f: Mon(f) = {(a;, b;), a; # 0}
Newton polygon: Newt(f) = Conv(Mon(f))
Example: f(X,Y)=142X3Y 4+ XY? 4+ XY3
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Link with Minkowski sums

/ /

0 F(X,Y)=1+X3Y + XY2 4+ XY3et g(X,Y) =1+ X2Y + Y?
o (f2)(X,Y) =1+ Y24+ XY2+XY3+XY*+ XY+ X2Y + X3Y +
2X3Y3 4 X3y4 4 X3y?
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Link with Minkowski sums

/ /

o F(X,Y)=1+X3Y + XY2 + XY3 et g(X,Y) =1+ XY + Y2
o (f2)(X,Y)=1+ Y2+ XY?2 - XY3+XY*+ XY> + X2V + X3Y +
2X3Y3 4 X3y4 4 XOy?



Link with Minkowski sums

o P+Q={p+q,peP,qgeQ}

Lemma (Ostrowski)
Newt(fg) = Newt(f) + Newt(g)

@ We can build the edges of P + Q from those of P and Q
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Link with Minkowski sums

/ >

o P+Q={p+q,peP,qgeQ}

Lemma (Ostrowski)
Newt(fg) = Newt(f) + Newt(g)

@ We can build the edges of P + Q from those of P and Q



Link with Minkowski sums

— > T

o P+Q={p+q,peP,gecQ}

Lemma (Ostrowski)
Newt(fg) = Newt(f) + Newt(g)

@ We can build the edges of P + Q from those of P and Q
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The fg + 1 problem
o Newt(fg) = Newt(f) + Newt(g)

e If f and g have t monomials, then Newt(fg) has at most 2t edges
e What happens for Newt(fg+1)?
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The fg + 1 problem

o Newt(fg) = Newt(f) + Newt(g)

e If f and g have t monomials, then Newt(fg) has at most 2t edges
e What happens for Newt(fg+1)? = Cancellations

o Ex: f(X,Y)=—-1+X2Y +XY?et g(X,Y)=1+X*Y + XY*

N
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The fg + 1 problem

o Newt(fg) = Newt(f) + Newt(g)

e If f and g have t monomials, then Newt(fg) has at most 2t edges
e What happens for Newt(fg+1)? = Cancellations

o Ex: f(X,Y)=—-1+X2Y +XY?et g(X,Y)=1+X*Y + XY*

Trivial bound: t2
Better bound: O(t*/3)

Expectation: linear bound...
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Plan

© The fg + 1 problem
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Overview

@ We consider a "true" cancellation (constant coeff of fg equals —1)
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Overview

@ We consider a "true" cancellation (constant coeff of fg equals —1)

e Main idea: decompose P = Mon(f), @ = Mon(g), and the set of new
points in the Newton polygon, and then study the differents
"interactions"

@ We will use the following theorem:

Theorem (Garcia-Marco, Knauer)
If P is convex and S C P + P is convex, then |S| < 2|P| J
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Overview

@ We consider a "true" cancellation (constant coeff of fg equals —1)

e Main idea: decompose P = Mon(f), @ = Mon(g), and the set of new
points in the Newton polygon, and then study the differents
"interactions"

@ We will use the following theorem:
Theorem (Garcia-Marco, Knauer)

If P is convex and S C P + P is convex, then |S| < 2|P|

Theorem (Tiwary)

If P and @ are convex of size n and S C P + @ is convex, then
S| = O(nlog (n))
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Overview

@ We consider a "true" cancellation (constant coeff of fg equals —1)

e Main idea: decompose P = Mon(f), @ = Mon(g), and the set of new
points in the Newton polygon, and then study the differents
"interactions"

@ We will use the following theorem:
Theorem (Garcia-Marco, Knauer)

If P is convex and S C P + P is convex, then |S| < 2|P|

Theorem (Tiwary)

If P and @ are convex of size n and S C P + @ is convex, then
S| = O(nlog (n))

@ Suppose that P and Q are convex
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First structural step

@ We decompose P and Q into convex chains: Pyy/, Psg, etc.

NE
NW

SE

William Aufort Newton Polygons: around the fg + 1 problem



First structural step
@ We decompose P and Q into convex chains: Pyy/, Psg, etc.

@ When we delete the (0,0) point, some new points appear
= C also decomposable into convex chains

NE
NW

SE
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First structural step

@ We decompose P and Q into convex chains: Pyy/, Psg, etc.

@ When we delete the (0,0) point, some new points appear
= C also decomposable into convex chains

@ Goal: bound the |(Py + Qg) N Cyr| separately
= different arguments

NE
NW

SE
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Argument 1: "P + P convex"

Lemma
Ifd # d', then |(Pg + Q') NC| < 2(|Pg| + | Qarl)

Qu’

Py
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Argument 1: "P + P convex"

Lemma
Ifd # d', then |(Pg + Qa') N C| < 2(| Pyl + |Qa]) J
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Argument 1: "P + P convex"

Lemma
Ifd # d', then |(Pg + Qq') N C| < 2(|Pg| + | Qar)
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Argument 1: "P + P convex"

Lemma
Ifd # d', then [(Pg + Q') N C| < 2(|Pa| + |Qa|) J

Hence (Py + Qq/) NC also
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qq) NCar| < |Pg| + | Q4
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qu4) N Car| < |P4| + | Q4 J

e We build the graph G = (V, E) with V = P, U Q, and
(p,q) EESp+qgely
o If p has three neighbors g1, g» and g3, they form a chain...
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qu4) N Car| < |P4| + | Q4 J

e We build the graph G = (V, E) with V = P, U Q, and
(p,q) EESp+qgely
o If p has three neighbors g1, g» and g3, they form a chain...

o~ @d e of type d because q; € Qq

2

a3
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qu4) N Car| < |P4| + | Q4 J

e We build the graph G = (V, E) with V = P4 U Qg and
(p,q) EESp+qgely
o If p has three neighbors g1, g» and g3, they form a chain...

\

°p+qi
Y\ Pt g @ of type d because g; € Qq
) 2
. o of type d’ by translation of a
Ca e subset of Cyr
P+ g3
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qu4) N Car| < |P4| + | Q4 J

e We build the graph G = (V, E) with V = P4 U Qg and
(p,q) EESp+qgely
o If p has three neighbors g1, g» and g3, they form a chain...

o of type d because g; € Qq

a1 o of type d’ by translation of a
/ subset of Cy/

q3
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Argument 2: chains

Lemma
Ifd # d', then |(Pg + Qu4) N Car| < |P4| + | Q4 J

e We build the graph G = (V, E) with V = P4 U Qg and
(p,q) EESp+qgely
o If p has three neighbors g1, g» and g3, they form a chain...

o of type d because g; € Qq

a1 o of type d’ by translation of a
/ subset of Cy/

e Contradiction since d # d’
q3
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Argument 3: slopes

Lemma
|(Pg + Qq) N Cyl| < |Qql J

@ We consider again the graph G.
o If g has two neighbors p; and
P2...
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Argument 3: slopes

Lemma
|(Pag 4+ Q4) N Ca| < | Q4] J

@ We consider again the graph G.

A o If g has two neighbors p; and
P2...
P2+ o slope(ps, p2) > slope(p1 + g, A)
P1+q
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Argument 3: slopes

Lemma
|(Pg + Qq) NCyq| < |Qq| J

- @ We consider again the graph G.

o If g has two neighbors p; and
P2...

o slope(pr, p2) > slope(p1 + g, A)

@ slope(p1 + g, A) > slope(0, A)
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Argument 3: slopes

Lemma
|(Pg + Qq) NCyq| < |Qq| J

We consider again the graph G.
If g has two neighbors p; and
P2...
P2+ o slope(p1, p2) > slope(p1 + g, A)
/ o
o
o

>
°

slope(p1 + g, A) > slope( 0, A)
slope(O, A) > slope(ps, p2)
Contradiction

p1+4q
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Argument 3: slopes

Lemma
|(Pg + Qq) N Cyl| < |Qql J
- @ We consider again the graph G.
A o If g has two neighbors p; and
P2...
P2+ o slope(p1, p2) > slope(p1 + g, A)
/ @ slope(p1 + g, A) > slope(0, A)
p1 - q @ slope(O, A) > slope(pi1, p2)
o) o Contradiction
Theorem
If Mon(f) and Mon(g) are convex, then |Newt(fg + 1)| is linear J
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Generalizations

@ P convex: we can extend the second and third arguments:
» Ifd#d, |(Pg+ Qq) NCa| <[Pyl +|Qdl
» (If d =d") |(Pg+ Q4) NCal < |Qul
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Generalizations

@ P convex: we can extend the second and third arguments:
> If d# dl, |(Pd + Q)ﬁCdl| < 2|Q|
» (Ifd=d") [(Pa+ Qq) NCal <|Qul
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Generalizations

@ P convex: we can extend the second and third arguments:

»Ifd#d, |(Ps+ Q)NCa| <2|Q|
> (Ifd=d’) |(Ps+Q)NCal <|Q|
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Generalizations

@ P convex: we can extend the second and third arguments:

» If d §£ d/, |(Pd + Q)ﬂCdl| < 2|Q|
» (fd=d") |(Pa+Q)NCal <|Q|
» With this new decomposition, we can conclude
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Generalizations

@ P convex: we can extend the second and third arguments:

» If d §£ d/, |(Pd + Q)ﬂCdl\ < 2|Q‘
» (fd=d") |(Pa+Q)NCal <|Q|
» With this new decomposition, we can conclude

@ P and Q are weakly convex: new definition of A and B, same
arguments
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Generalizations

@ P convex: we can extend the second and third arguments:

> Ifd#d, |(Pa+ Q)NCy| <2|Q|
» (fd=d") |(Pa+Q)NCal <|Q|
» With this new decomposition, we can conclude

@ P and Q are weakly convex: new definition of A and B, same
arguments

o Newt(fg + c - x*y?): depend on the position of (, 3) in P+ Q, same
arguments
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Generalizations

@ P convex: we can extend the second and third arguments:

> Ifd#d, |(Pa+ Q)NCy| <2|Q|
» (fd=d") |(Pa+Q)NCal <|Q|
» With this new decomposition, we can conclude

@ P and Q are weakly convex: new definition of A and B, same

arguments
o Newt(fg + c - x*y?): depend on the position of (, 3) in P+ Q, same
arguments
Theorem
In all the previous cases, the Newton polygon has a linear size J
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Generalizations

@ P convex: we can extend the second and third arguments:

> Ifd#d, |(Pa+ Q)NCy| <2|Q|
» (Ifd=d') |(Ps+Q)NC4| < Q|
» With this new decomposition, we can conclude

@ P and Q are weakly convex: new definition of A and B, same

arguments
o Newt(fg + c - x*y?): depend on the position of (, 3) in P+ Q, same
arguments
Theorem
In all the previous cases, the Newton polygon has a linear size J

@ Delete k > 2 points:
» not consecutive: O(n X k)
» consecutive: O(n + klog k)
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Generalizations

@ P convex: we can extend the second and third arguments:

» Ifd#d, |(Pa+Q)NCa| <2|Q|
» (Ifd=4d") |(Ps+Q)NCy| < Q|
» With this new decomposition, we can conclude

@ P and Q are weakly convex: new definition of A and B, same

arguments
o Newt(fg + c - x*y?): depend on the position of (, 3) in P+ Q, same
arguments
Theorem
In all the previous cases, the Newton polygon has a linear size J

@ Delete k > 2 points:
» not consecutive: O(n X k)
» consecutive: O(n + klog k)

@ General case (k layers), we get a O(k nlog n) bound by decomposing
the different layers into convex chains
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Plan

© Onion Peeling
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Onion Peeling

@ Decompose a set of points into "layers"
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Onion Peeling

@ Decompose a set of points into "layers"

@ Motivation: a fg — h problem

William Aufort Newton Polygons: around the fg + 1 problem



Onion Peeling

@ Decompose a set of points into "layers"

@ Motivation: a fg — h problem

@ Goals: in the P + Q case: size of the layers, number of layers,
structural properties
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Results: if P and @ are convex

o For P+ P
» Intuitive notion of distance between two points in a convex polygon
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Results: if P and @ are convex

o For P+ P

» Intuitive notion of distance between two points in a convex polygon
» If P is a regular polygon, a distance/layer connection :

distance i <= (i + 1)-th layer
> In general, a weaker result:
distance i = (> i + 1)-th layer
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Results: if P and @ are convex

o For P+ P

» Intuitive notion of distance between two points in a convex polygon
» If P is a regular polygon, a distance/layer connection :

distance i <= (i + 1)-th layer
> In general, a weaker result:
distance i = (> i + 1)-th layer
» But no interesting bound (O(n x i), but we had already O(n) for every
S C P+ P convex)
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Results: if P and @ are convex

o For P+ P

» Intuitive notion of distance between two points in a convex polygon
» If P is a regular polygon, a distance/layer connection :

distance i <= (i + 1)-th layer
> In general, a weaker result:
distance i = (> i + 1)-th layer
» But no interesting bound (O(n x i), but we had already O(n) for every
S C P+ P convex)
e For P + @, not such interesting distance found/proved

» Best bound known O(nlog(n))
» We would expect O(n x i) like previously
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Results: if P and @ are convex

o For P+ P
» Intuitive notion of distance between two points in a convex polygon
» If P is a regular polygon, a distance/layer connection :

distance i <= (i + 1)-th layer
> In general, a weaker result:
distance i = (> i + 1)-th layer
» But no interesting bound (O(n x i), but we had already O(n) for every
S C P+ P convex)
e For P + @, not such interesting distance found/proved
» Best bound known O(nlog(n))
» We would expect O(n x i) like previously
e If P and Q are any point set, we get a O(k nlog n) bound by studying
the links between the layers of P, @ and P + Q

William Aufort Newton Polygons: around the fg + 1 problem July, 4th 2017 17 / 20



Plan

@ Conclusion
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Conclusion

@ About the fg + 1 problem: a linear bound when one of the set of
monomials is convex

@ First generalization to study: if P and Q have two layers
The problem: (Pyw 2 + Quw ,2) N Chw

o Lower bounds 7 Even « - n with o > 2 seems hard...
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Questions?
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